1 /* Ada language support routines for GDB, the GNU debugger.
3 Copyright (C) 1992-2020 Free Software Foundation, Inc.
5 This file is part of GDB.
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
23 #include "gdb_regex.h"
28 #include "expression.h"
29 #include "parser-defs.h"
35 #include "breakpoint.h"
38 #include "gdb_obstack.h"
40 #include "completer.h"
47 #include "observable.h"
49 #include "typeprint.h"
50 #include "namespace.h"
51 #include "cli/cli-style.h"
54 #include "mi/mi-common.h"
55 #include "arch-utils.h"
56 #include "cli/cli-utils.h"
57 #include "gdbsupport/function-view.h"
58 #include "gdbsupport/byte-vector.h"
61 /* Define whether or not the C operator '/' truncates towards zero for
62 differently signed operands (truncation direction is undefined in C).
63 Copied from valarith.c. */
65 #ifndef TRUNCATION_TOWARDS_ZERO
66 #define TRUNCATION_TOWARDS_ZERO ((-5 / 2) == -2)
69 static struct type
*desc_base_type (struct type
*);
71 static struct type
*desc_bounds_type (struct type
*);
73 static struct value
*desc_bounds (struct value
*);
75 static int fat_pntr_bounds_bitpos (struct type
*);
77 static int fat_pntr_bounds_bitsize (struct type
*);
79 static struct type
*desc_data_target_type (struct type
*);
81 static struct value
*desc_data (struct value
*);
83 static int fat_pntr_data_bitpos (struct type
*);
85 static int fat_pntr_data_bitsize (struct type
*);
87 static struct value
*desc_one_bound (struct value
*, int, int);
89 static int desc_bound_bitpos (struct type
*, int, int);
91 static int desc_bound_bitsize (struct type
*, int, int);
93 static struct type
*desc_index_type (struct type
*, int);
95 static int desc_arity (struct type
*);
97 static int ada_type_match (struct type
*, struct type
*, int);
99 static int ada_args_match (struct symbol
*, struct value
**, int);
101 static struct value
*make_array_descriptor (struct type
*, struct value
*);
103 static void ada_add_block_symbols (struct obstack
*,
104 const struct block
*,
105 const lookup_name_info
&lookup_name
,
106 domain_enum
, struct objfile
*);
108 static void ada_add_all_symbols (struct obstack
*, const struct block
*,
109 const lookup_name_info
&lookup_name
,
110 domain_enum
, int, int *);
112 static int is_nonfunction (struct block_symbol
*, int);
114 static void add_defn_to_vec (struct obstack
*, struct symbol
*,
115 const struct block
*);
117 static int num_defns_collected (struct obstack
*);
119 static struct block_symbol
*defns_collected (struct obstack
*, int);
121 static struct value
*resolve_subexp (expression_up
*, int *, int,
123 innermost_block_tracker
*);
125 static void replace_operator_with_call (expression_up
*, int, int, int,
126 struct symbol
*, const struct block
*);
128 static int possible_user_operator_p (enum exp_opcode
, struct value
**);
130 static const char *ada_op_name (enum exp_opcode
);
132 static const char *ada_decoded_op_name (enum exp_opcode
);
134 static int numeric_type_p (struct type
*);
136 static int integer_type_p (struct type
*);
138 static int scalar_type_p (struct type
*);
140 static int discrete_type_p (struct type
*);
142 static struct type
*ada_lookup_struct_elt_type (struct type
*, const char *,
145 static struct value
*evaluate_subexp_type (struct expression
*, int *);
147 static struct type
*ada_find_parallel_type_with_name (struct type
*,
150 static int is_dynamic_field (struct type
*, int);
152 static struct type
*to_fixed_variant_branch_type (struct type
*,
154 CORE_ADDR
, struct value
*);
156 static struct type
*to_fixed_array_type (struct type
*, struct value
*, int);
158 static struct type
*to_fixed_range_type (struct type
*, struct value
*);
160 static struct type
*to_static_fixed_type (struct type
*);
161 static struct type
*static_unwrap_type (struct type
*type
);
163 static struct value
*unwrap_value (struct value
*);
165 static struct type
*constrained_packed_array_type (struct type
*, long *);
167 static struct type
*decode_constrained_packed_array_type (struct type
*);
169 static long decode_packed_array_bitsize (struct type
*);
171 static struct value
*decode_constrained_packed_array (struct value
*);
173 static int ada_is_packed_array_type (struct type
*);
175 static int ada_is_unconstrained_packed_array_type (struct type
*);
177 static struct value
*value_subscript_packed (struct value
*, int,
180 static struct value
*coerce_unspec_val_to_type (struct value
*,
183 static int lesseq_defined_than (struct symbol
*, struct symbol
*);
185 static int equiv_types (struct type
*, struct type
*);
187 static int is_name_suffix (const char *);
189 static int advance_wild_match (const char **, const char *, int);
191 static bool wild_match (const char *name
, const char *patn
);
193 static struct value
*ada_coerce_ref (struct value
*);
195 static LONGEST
pos_atr (struct value
*);
197 static struct value
*value_pos_atr (struct type
*, struct value
*);
199 static struct value
*val_atr (struct type
*, LONGEST
);
201 static struct value
*value_val_atr (struct type
*, struct value
*);
203 static struct symbol
*standard_lookup (const char *, const struct block
*,
206 static struct value
*ada_search_struct_field (const char *, struct value
*, int,
209 static int find_struct_field (const char *, struct type
*, int,
210 struct type
**, int *, int *, int *, int *);
212 static int ada_resolve_function (struct block_symbol
*, int,
213 struct value
**, int, const char *,
216 static int ada_is_direct_array_type (struct type
*);
218 static struct value
*ada_index_struct_field (int, struct value
*, int,
221 static struct value
*assign_aggregate (struct value
*, struct value
*,
225 static void aggregate_assign_from_choices (struct value
*, struct value
*,
227 int *, LONGEST
*, int *,
228 int, LONGEST
, LONGEST
);
230 static void aggregate_assign_positional (struct value
*, struct value
*,
232 int *, LONGEST
*, int *, int,
236 static void aggregate_assign_others (struct value
*, struct value
*,
238 int *, LONGEST
*, int, LONGEST
, LONGEST
);
241 static void add_component_interval (LONGEST
, LONGEST
, LONGEST
*, int *, int);
244 static struct value
*ada_evaluate_subexp (struct type
*, struct expression
*,
247 static void ada_forward_operator_length (struct expression
*, int, int *,
250 static struct type
*ada_find_any_type (const char *name
);
252 static symbol_name_matcher_ftype
*ada_get_symbol_name_matcher
253 (const lookup_name_info
&lookup_name
);
257 /* The result of a symbol lookup to be stored in our symbol cache. */
261 /* The name used to perform the lookup. */
263 /* The namespace used during the lookup. */
265 /* The symbol returned by the lookup, or NULL if no matching symbol
268 /* The block where the symbol was found, or NULL if no matching
270 const struct block
*block
;
271 /* A pointer to the next entry with the same hash. */
272 struct cache_entry
*next
;
275 /* The Ada symbol cache, used to store the result of Ada-mode symbol
276 lookups in the course of executing the user's commands.
278 The cache is implemented using a simple, fixed-sized hash.
279 The size is fixed on the grounds that there are not likely to be
280 all that many symbols looked up during any given session, regardless
281 of the size of the symbol table. If we decide to go to a resizable
282 table, let's just use the stuff from libiberty instead. */
284 #define HASH_SIZE 1009
286 struct ada_symbol_cache
288 /* An obstack used to store the entries in our cache. */
289 struct obstack cache_space
;
291 /* The root of the hash table used to implement our symbol cache. */
292 struct cache_entry
*root
[HASH_SIZE
];
295 static void ada_free_symbol_cache (struct ada_symbol_cache
*sym_cache
);
297 /* Maximum-sized dynamic type. */
298 static unsigned int varsize_limit
;
300 static const char ada_completer_word_break_characters
[] =
302 " \t\n!@#%^&*()+=|~`}{[]\";:?/,-";
304 " \t\n!@#$%^&*()+=|~`}{[]\";:?/,-";
307 /* The name of the symbol to use to get the name of the main subprogram. */
308 static const char ADA_MAIN_PROGRAM_SYMBOL_NAME
[]
309 = "__gnat_ada_main_program_name";
311 /* Limit on the number of warnings to raise per expression evaluation. */
312 static int warning_limit
= 2;
314 /* Number of warning messages issued; reset to 0 by cleanups after
315 expression evaluation. */
316 static int warnings_issued
= 0;
318 static const char * const known_runtime_file_name_patterns
[] = {
319 ADA_KNOWN_RUNTIME_FILE_NAME_PATTERNS NULL
322 static const char * const known_auxiliary_function_name_patterns
[] = {
323 ADA_KNOWN_AUXILIARY_FUNCTION_NAME_PATTERNS NULL
326 /* Maintenance-related settings for this module. */
328 static struct cmd_list_element
*maint_set_ada_cmdlist
;
329 static struct cmd_list_element
*maint_show_ada_cmdlist
;
331 /* The "maintenance ada set/show ignore-descriptive-type" value. */
333 static bool ada_ignore_descriptive_types_p
= false;
335 /* Inferior-specific data. */
337 /* Per-inferior data for this module. */
339 struct ada_inferior_data
341 /* The ada__tags__type_specific_data type, which is used when decoding
342 tagged types. With older versions of GNAT, this type was directly
343 accessible through a component ("tsd") in the object tag. But this
344 is no longer the case, so we cache it for each inferior. */
345 struct type
*tsd_type
= nullptr;
347 /* The exception_support_info data. This data is used to determine
348 how to implement support for Ada exception catchpoints in a given
350 const struct exception_support_info
*exception_info
= nullptr;
353 /* Our key to this module's inferior data. */
354 static const struct inferior_key
<ada_inferior_data
> ada_inferior_data
;
356 /* Return our inferior data for the given inferior (INF).
358 This function always returns a valid pointer to an allocated
359 ada_inferior_data structure. If INF's inferior data has not
360 been previously set, this functions creates a new one with all
361 fields set to zero, sets INF's inferior to it, and then returns
362 a pointer to that newly allocated ada_inferior_data. */
364 static struct ada_inferior_data
*
365 get_ada_inferior_data (struct inferior
*inf
)
367 struct ada_inferior_data
*data
;
369 data
= ada_inferior_data
.get (inf
);
371 data
= ada_inferior_data
.emplace (inf
);
376 /* Perform all necessary cleanups regarding our module's inferior data
377 that is required after the inferior INF just exited. */
380 ada_inferior_exit (struct inferior
*inf
)
382 ada_inferior_data
.clear (inf
);
386 /* program-space-specific data. */
388 /* This module's per-program-space data. */
389 struct ada_pspace_data
393 if (sym_cache
!= NULL
)
394 ada_free_symbol_cache (sym_cache
);
397 /* The Ada symbol cache. */
398 struct ada_symbol_cache
*sym_cache
= nullptr;
401 /* Key to our per-program-space data. */
402 static const struct program_space_key
<ada_pspace_data
> ada_pspace_data_handle
;
404 /* Return this module's data for the given program space (PSPACE).
405 If not is found, add a zero'ed one now.
407 This function always returns a valid object. */
409 static struct ada_pspace_data
*
410 get_ada_pspace_data (struct program_space
*pspace
)
412 struct ada_pspace_data
*data
;
414 data
= ada_pspace_data_handle
.get (pspace
);
416 data
= ada_pspace_data_handle
.emplace (pspace
);
423 /* If TYPE is a TYPE_CODE_TYPEDEF type, return the target type after
424 all typedef layers have been peeled. Otherwise, return TYPE.
426 Normally, we really expect a typedef type to only have 1 typedef layer.
427 In other words, we really expect the target type of a typedef type to be
428 a non-typedef type. This is particularly true for Ada units, because
429 the language does not have a typedef vs not-typedef distinction.
430 In that respect, the Ada compiler has been trying to eliminate as many
431 typedef definitions in the debugging information, since they generally
432 do not bring any extra information (we still use typedef under certain
433 circumstances related mostly to the GNAT encoding).
435 Unfortunately, we have seen situations where the debugging information
436 generated by the compiler leads to such multiple typedef layers. For
437 instance, consider the following example with stabs:
439 .stabs "pck__float_array___XUP:Tt(0,46)=s16P_ARRAY:(0,47)=[...]"[...]
440 .stabs "pck__float_array___XUP:t(0,36)=(0,46)",128,0,6,0
442 This is an error in the debugging information which causes type
443 pck__float_array___XUP to be defined twice, and the second time,
444 it is defined as a typedef of a typedef.
446 This is on the fringe of legality as far as debugging information is
447 concerned, and certainly unexpected. But it is easy to handle these
448 situations correctly, so we can afford to be lenient in this case. */
451 ada_typedef_target_type (struct type
*type
)
453 while (type
->code () == TYPE_CODE_TYPEDEF
)
454 type
= TYPE_TARGET_TYPE (type
);
458 /* Given DECODED_NAME a string holding a symbol name in its
459 decoded form (ie using the Ada dotted notation), returns
460 its unqualified name. */
463 ada_unqualified_name (const char *decoded_name
)
467 /* If the decoded name starts with '<', it means that the encoded
468 name does not follow standard naming conventions, and thus that
469 it is not your typical Ada symbol name. Trying to unqualify it
470 is therefore pointless and possibly erroneous. */
471 if (decoded_name
[0] == '<')
474 result
= strrchr (decoded_name
, '.');
476 result
++; /* Skip the dot... */
478 result
= decoded_name
;
483 /* Return a string starting with '<', followed by STR, and '>'. */
486 add_angle_brackets (const char *str
)
488 return string_printf ("<%s>", str
);
491 /* Assuming V points to an array of S objects, make sure that it contains at
492 least M objects, updating V and S as necessary. */
494 #define GROW_VECT(v, s, m) \
495 if ((s) < (m)) (v) = (char *) grow_vect (v, &(s), m, sizeof *(v));
497 /* Assuming VECT points to an array of *SIZE objects of size
498 ELEMENT_SIZE, grow it to contain at least MIN_SIZE objects,
499 updating *SIZE as necessary and returning the (new) array. */
502 grow_vect (void *vect
, size_t *size
, size_t min_size
, int element_size
)
504 if (*size
< min_size
)
507 if (*size
< min_size
)
509 vect
= xrealloc (vect
, *size
* element_size
);
514 /* True (non-zero) iff TARGET matches FIELD_NAME up to any trailing
515 suffix of FIELD_NAME beginning "___". */
518 field_name_match (const char *field_name
, const char *target
)
520 int len
= strlen (target
);
523 (strncmp (field_name
, target
, len
) == 0
524 && (field_name
[len
] == '\0'
525 || (startswith (field_name
+ len
, "___")
526 && strcmp (field_name
+ strlen (field_name
) - 6,
531 /* Assuming TYPE is a TYPE_CODE_STRUCT or a TYPE_CODE_TYPDEF to
532 a TYPE_CODE_STRUCT, find the field whose name matches FIELD_NAME,
533 and return its index. This function also handles fields whose name
534 have ___ suffixes because the compiler sometimes alters their name
535 by adding such a suffix to represent fields with certain constraints.
536 If the field could not be found, return a negative number if
537 MAYBE_MISSING is set. Otherwise raise an error. */
540 ada_get_field_index (const struct type
*type
, const char *field_name
,
544 struct type
*struct_type
= check_typedef ((struct type
*) type
);
546 for (fieldno
= 0; fieldno
< struct_type
->num_fields (); fieldno
++)
547 if (field_name_match (TYPE_FIELD_NAME (struct_type
, fieldno
), field_name
))
551 error (_("Unable to find field %s in struct %s. Aborting"),
552 field_name
, struct_type
->name ());
557 /* The length of the prefix of NAME prior to any "___" suffix. */
560 ada_name_prefix_len (const char *name
)
566 const char *p
= strstr (name
, "___");
569 return strlen (name
);
575 /* Return non-zero if SUFFIX is a suffix of STR.
576 Return zero if STR is null. */
579 is_suffix (const char *str
, const char *suffix
)
586 len2
= strlen (suffix
);
587 return (len1
>= len2
&& strcmp (str
+ len1
- len2
, suffix
) == 0);
590 /* The contents of value VAL, treated as a value of type TYPE. The
591 result is an lval in memory if VAL is. */
593 static struct value
*
594 coerce_unspec_val_to_type (struct value
*val
, struct type
*type
)
596 type
= ada_check_typedef (type
);
597 if (value_type (val
) == type
)
601 struct value
*result
;
603 /* Make sure that the object size is not unreasonable before
604 trying to allocate some memory for it. */
605 ada_ensure_varsize_limit (type
);
608 || TYPE_LENGTH (type
) > TYPE_LENGTH (value_type (val
)))
609 result
= allocate_value_lazy (type
);
612 result
= allocate_value (type
);
613 value_contents_copy_raw (result
, 0, val
, 0, TYPE_LENGTH (type
));
615 set_value_component_location (result
, val
);
616 set_value_bitsize (result
, value_bitsize (val
));
617 set_value_bitpos (result
, value_bitpos (val
));
618 if (VALUE_LVAL (result
) == lval_memory
)
619 set_value_address (result
, value_address (val
));
624 static const gdb_byte
*
625 cond_offset_host (const gdb_byte
*valaddr
, long offset
)
630 return valaddr
+ offset
;
634 cond_offset_target (CORE_ADDR address
, long offset
)
639 return address
+ offset
;
642 /* Issue a warning (as for the definition of warning in utils.c, but
643 with exactly one argument rather than ...), unless the limit on the
644 number of warnings has passed during the evaluation of the current
647 /* FIXME: cagney/2004-10-10: This function is mimicking the behavior
648 provided by "complaint". */
649 static void lim_warning (const char *format
, ...) ATTRIBUTE_PRINTF (1, 2);
652 lim_warning (const char *format
, ...)
656 va_start (args
, format
);
657 warnings_issued
+= 1;
658 if (warnings_issued
<= warning_limit
)
659 vwarning (format
, args
);
664 /* Issue an error if the size of an object of type T is unreasonable,
665 i.e. if it would be a bad idea to allocate a value of this type in
669 ada_ensure_varsize_limit (const struct type
*type
)
671 if (TYPE_LENGTH (type
) > varsize_limit
)
672 error (_("object size is larger than varsize-limit"));
675 /* Maximum value of a SIZE-byte signed integer type. */
677 max_of_size (int size
)
679 LONGEST top_bit
= (LONGEST
) 1 << (size
* 8 - 2);
681 return top_bit
| (top_bit
- 1);
684 /* Minimum value of a SIZE-byte signed integer type. */
686 min_of_size (int size
)
688 return -max_of_size (size
) - 1;
691 /* Maximum value of a SIZE-byte unsigned integer type. */
693 umax_of_size (int size
)
695 ULONGEST top_bit
= (ULONGEST
) 1 << (size
* 8 - 1);
697 return top_bit
| (top_bit
- 1);
700 /* Maximum value of integral type T, as a signed quantity. */
702 max_of_type (struct type
*t
)
704 if (t
->is_unsigned ())
705 return (LONGEST
) umax_of_size (TYPE_LENGTH (t
));
707 return max_of_size (TYPE_LENGTH (t
));
710 /* Minimum value of integral type T, as a signed quantity. */
712 min_of_type (struct type
*t
)
714 if (t
->is_unsigned ())
717 return min_of_size (TYPE_LENGTH (t
));
720 /* The largest value in the domain of TYPE, a discrete type, as an integer. */
722 ada_discrete_type_high_bound (struct type
*type
)
724 type
= resolve_dynamic_type (type
, {}, 0);
725 switch (type
->code ())
727 case TYPE_CODE_RANGE
:
729 const dynamic_prop
&high
= type
->bounds ()->high
;
731 if (high
.kind () == PROP_CONST
)
732 return high
.const_val ();
735 gdb_assert (high
.kind () == PROP_UNDEFINED
);
737 /* This happens when trying to evaluate a type's dynamic bound
738 without a live target. There is nothing relevant for us to
739 return here, so return 0. */
744 return TYPE_FIELD_ENUMVAL (type
, type
->num_fields () - 1);
749 return max_of_type (type
);
751 error (_("Unexpected type in ada_discrete_type_high_bound."));
755 /* The smallest value in the domain of TYPE, a discrete type, as an integer. */
757 ada_discrete_type_low_bound (struct type
*type
)
759 type
= resolve_dynamic_type (type
, {}, 0);
760 switch (type
->code ())
762 case TYPE_CODE_RANGE
:
764 const dynamic_prop
&low
= type
->bounds ()->low
;
766 if (low
.kind () == PROP_CONST
)
767 return low
.const_val ();
770 gdb_assert (low
.kind () == PROP_UNDEFINED
);
772 /* This happens when trying to evaluate a type's dynamic bound
773 without a live target. There is nothing relevant for us to
774 return here, so return 0. */
779 return TYPE_FIELD_ENUMVAL (type
, 0);
784 return min_of_type (type
);
786 error (_("Unexpected type in ada_discrete_type_low_bound."));
790 /* The identity on non-range types. For range types, the underlying
791 non-range scalar type. */
794 get_base_type (struct type
*type
)
796 while (type
!= NULL
&& type
->code () == TYPE_CODE_RANGE
)
798 if (type
== TYPE_TARGET_TYPE (type
) || TYPE_TARGET_TYPE (type
) == NULL
)
800 type
= TYPE_TARGET_TYPE (type
);
805 /* Return a decoded version of the given VALUE. This means returning
806 a value whose type is obtained by applying all the GNAT-specific
807 encodings, making the resulting type a static but standard description
808 of the initial type. */
811 ada_get_decoded_value (struct value
*value
)
813 struct type
*type
= ada_check_typedef (value_type (value
));
815 if (ada_is_array_descriptor_type (type
)
816 || (ada_is_constrained_packed_array_type (type
)
817 && type
->code () != TYPE_CODE_PTR
))
819 if (type
->code () == TYPE_CODE_TYPEDEF
) /* array access type. */
820 value
= ada_coerce_to_simple_array_ptr (value
);
822 value
= ada_coerce_to_simple_array (value
);
825 value
= ada_to_fixed_value (value
);
830 /* Same as ada_get_decoded_value, but with the given TYPE.
831 Because there is no associated actual value for this type,
832 the resulting type might be a best-effort approximation in
833 the case of dynamic types. */
836 ada_get_decoded_type (struct type
*type
)
838 type
= to_static_fixed_type (type
);
839 if (ada_is_constrained_packed_array_type (type
))
840 type
= ada_coerce_to_simple_array_type (type
);
846 /* Language Selection */
848 /* If the main program is in Ada, return language_ada, otherwise return LANG
849 (the main program is in Ada iif the adainit symbol is found). */
852 ada_update_initial_language (enum language lang
)
854 if (lookup_minimal_symbol ("adainit", NULL
, NULL
).minsym
!= NULL
)
860 /* If the main procedure is written in Ada, then return its name.
861 The result is good until the next call. Return NULL if the main
862 procedure doesn't appear to be in Ada. */
867 struct bound_minimal_symbol msym
;
868 static gdb::unique_xmalloc_ptr
<char> main_program_name
;
870 /* For Ada, the name of the main procedure is stored in a specific
871 string constant, generated by the binder. Look for that symbol,
872 extract its address, and then read that string. If we didn't find
873 that string, then most probably the main procedure is not written
875 msym
= lookup_minimal_symbol (ADA_MAIN_PROGRAM_SYMBOL_NAME
, NULL
, NULL
);
877 if (msym
.minsym
!= NULL
)
879 CORE_ADDR main_program_name_addr
= BMSYMBOL_VALUE_ADDRESS (msym
);
880 if (main_program_name_addr
== 0)
881 error (_("Invalid address for Ada main program name."));
883 main_program_name
= target_read_string (main_program_name_addr
, 1024);
884 return main_program_name
.get ();
887 /* The main procedure doesn't seem to be in Ada. */
893 /* Table of Ada operators and their GNAT-encoded names. Last entry is pair
896 const struct ada_opname_map ada_opname_table
[] = {
897 {"Oadd", "\"+\"", BINOP_ADD
},
898 {"Osubtract", "\"-\"", BINOP_SUB
},
899 {"Omultiply", "\"*\"", BINOP_MUL
},
900 {"Odivide", "\"/\"", BINOP_DIV
},
901 {"Omod", "\"mod\"", BINOP_MOD
},
902 {"Orem", "\"rem\"", BINOP_REM
},
903 {"Oexpon", "\"**\"", BINOP_EXP
},
904 {"Olt", "\"<\"", BINOP_LESS
},
905 {"Ole", "\"<=\"", BINOP_LEQ
},
906 {"Ogt", "\">\"", BINOP_GTR
},
907 {"Oge", "\">=\"", BINOP_GEQ
},
908 {"Oeq", "\"=\"", BINOP_EQUAL
},
909 {"One", "\"/=\"", BINOP_NOTEQUAL
},
910 {"Oand", "\"and\"", BINOP_BITWISE_AND
},
911 {"Oor", "\"or\"", BINOP_BITWISE_IOR
},
912 {"Oxor", "\"xor\"", BINOP_BITWISE_XOR
},
913 {"Oconcat", "\"&\"", BINOP_CONCAT
},
914 {"Oabs", "\"abs\"", UNOP_ABS
},
915 {"Onot", "\"not\"", UNOP_LOGICAL_NOT
},
916 {"Oadd", "\"+\"", UNOP_PLUS
},
917 {"Osubtract", "\"-\"", UNOP_NEG
},
921 /* The "encoded" form of DECODED, according to GNAT conventions. The
922 result is valid until the next call to ada_encode. If
923 THROW_ERRORS, throw an error if invalid operator name is found.
924 Otherwise, return NULL in that case. */
927 ada_encode_1 (const char *decoded
, bool throw_errors
)
929 static char *encoding_buffer
= NULL
;
930 static size_t encoding_buffer_size
= 0;
937 GROW_VECT (encoding_buffer
, encoding_buffer_size
,
938 2 * strlen (decoded
) + 10);
941 for (p
= decoded
; *p
!= '\0'; p
+= 1)
945 encoding_buffer
[k
] = encoding_buffer
[k
+ 1] = '_';
950 const struct ada_opname_map
*mapping
;
952 for (mapping
= ada_opname_table
;
953 mapping
->encoded
!= NULL
954 && !startswith (p
, mapping
->decoded
); mapping
+= 1)
956 if (mapping
->encoded
== NULL
)
959 error (_("invalid Ada operator name: %s"), p
);
963 strcpy (encoding_buffer
+ k
, mapping
->encoded
);
964 k
+= strlen (mapping
->encoded
);
969 encoding_buffer
[k
] = *p
;
974 encoding_buffer
[k
] = '\0';
975 return encoding_buffer
;
978 /* The "encoded" form of DECODED, according to GNAT conventions.
979 The result is valid until the next call to ada_encode. */
982 ada_encode (const char *decoded
)
984 return ada_encode_1 (decoded
, true);
987 /* Return NAME folded to lower case, or, if surrounded by single
988 quotes, unfolded, but with the quotes stripped away. Result good
992 ada_fold_name (gdb::string_view name
)
994 static char *fold_buffer
= NULL
;
995 static size_t fold_buffer_size
= 0;
997 int len
= name
.size ();
998 GROW_VECT (fold_buffer
, fold_buffer_size
, len
+ 1);
1000 if (name
[0] == '\'')
1002 strncpy (fold_buffer
, name
.data () + 1, len
- 2);
1003 fold_buffer
[len
- 2] = '\000';
1009 for (i
= 0; i
<= len
; i
+= 1)
1010 fold_buffer
[i
] = tolower (name
[i
]);
1016 /* Return nonzero if C is either a digit or a lowercase alphabet character. */
1019 is_lower_alphanum (const char c
)
1021 return (isdigit (c
) || (isalpha (c
) && islower (c
)));
1024 /* ENCODED is the linkage name of a symbol and LEN contains its length.
1025 This function saves in LEN the length of that same symbol name but
1026 without either of these suffixes:
1032 These are suffixes introduced by the compiler for entities such as
1033 nested subprogram for instance, in order to avoid name clashes.
1034 They do not serve any purpose for the debugger. */
1037 ada_remove_trailing_digits (const char *encoded
, int *len
)
1039 if (*len
> 1 && isdigit (encoded
[*len
- 1]))
1043 while (i
> 0 && isdigit (encoded
[i
]))
1045 if (i
>= 0 && encoded
[i
] == '.')
1047 else if (i
>= 0 && encoded
[i
] == '$')
1049 else if (i
>= 2 && startswith (encoded
+ i
- 2, "___"))
1051 else if (i
>= 1 && startswith (encoded
+ i
- 1, "__"))
1056 /* Remove the suffix introduced by the compiler for protected object
1060 ada_remove_po_subprogram_suffix (const char *encoded
, int *len
)
1062 /* Remove trailing N. */
1064 /* Protected entry subprograms are broken into two
1065 separate subprograms: The first one is unprotected, and has
1066 a 'N' suffix; the second is the protected version, and has
1067 the 'P' suffix. The second calls the first one after handling
1068 the protection. Since the P subprograms are internally generated,
1069 we leave these names undecoded, giving the user a clue that this
1070 entity is internal. */
1073 && encoded
[*len
- 1] == 'N'
1074 && (isdigit (encoded
[*len
- 2]) || islower (encoded
[*len
- 2])))
1078 /* If ENCODED follows the GNAT entity encoding conventions, then return
1079 the decoded form of ENCODED. Otherwise, return "<%s>" where "%s" is
1080 replaced by ENCODED. */
1083 ada_decode (const char *encoded
)
1089 std::string decoded
;
1091 /* With function descriptors on PPC64, the value of a symbol named
1092 ".FN", if it exists, is the entry point of the function "FN". */
1093 if (encoded
[0] == '.')
1096 /* The name of the Ada main procedure starts with "_ada_".
1097 This prefix is not part of the decoded name, so skip this part
1098 if we see this prefix. */
1099 if (startswith (encoded
, "_ada_"))
1102 /* If the name starts with '_', then it is not a properly encoded
1103 name, so do not attempt to decode it. Similarly, if the name
1104 starts with '<', the name should not be decoded. */
1105 if (encoded
[0] == '_' || encoded
[0] == '<')
1108 len0
= strlen (encoded
);
1110 ada_remove_trailing_digits (encoded
, &len0
);
1111 ada_remove_po_subprogram_suffix (encoded
, &len0
);
1113 /* Remove the ___X.* suffix if present. Do not forget to verify that
1114 the suffix is located before the current "end" of ENCODED. We want
1115 to avoid re-matching parts of ENCODED that have previously been
1116 marked as discarded (by decrementing LEN0). */
1117 p
= strstr (encoded
, "___");
1118 if (p
!= NULL
&& p
- encoded
< len0
- 3)
1126 /* Remove any trailing TKB suffix. It tells us that this symbol
1127 is for the body of a task, but that information does not actually
1128 appear in the decoded name. */
1130 if (len0
> 3 && startswith (encoded
+ len0
- 3, "TKB"))
1133 /* Remove any trailing TB suffix. The TB suffix is slightly different
1134 from the TKB suffix because it is used for non-anonymous task
1137 if (len0
> 2 && startswith (encoded
+ len0
- 2, "TB"))
1140 /* Remove trailing "B" suffixes. */
1141 /* FIXME: brobecker/2006-04-19: Not sure what this are used for... */
1143 if (len0
> 1 && startswith (encoded
+ len0
- 1, "B"))
1146 /* Make decoded big enough for possible expansion by operator name. */
1148 decoded
.resize (2 * len0
+ 1, 'X');
1150 /* Remove trailing __{digit}+ or trailing ${digit}+. */
1152 if (len0
> 1 && isdigit (encoded
[len0
- 1]))
1155 while ((i
>= 0 && isdigit (encoded
[i
]))
1156 || (i
>= 1 && encoded
[i
] == '_' && isdigit (encoded
[i
- 1])))
1158 if (i
> 1 && encoded
[i
] == '_' && encoded
[i
- 1] == '_')
1160 else if (encoded
[i
] == '$')
1164 /* The first few characters that are not alphabetic are not part
1165 of any encoding we use, so we can copy them over verbatim. */
1167 for (i
= 0, j
= 0; i
< len0
&& !isalpha (encoded
[i
]); i
+= 1, j
+= 1)
1168 decoded
[j
] = encoded
[i
];
1173 /* Is this a symbol function? */
1174 if (at_start_name
&& encoded
[i
] == 'O')
1178 for (k
= 0; ada_opname_table
[k
].encoded
!= NULL
; k
+= 1)
1180 int op_len
= strlen (ada_opname_table
[k
].encoded
);
1181 if ((strncmp (ada_opname_table
[k
].encoded
+ 1, encoded
+ i
+ 1,
1183 && !isalnum (encoded
[i
+ op_len
]))
1185 strcpy (&decoded
.front() + j
, ada_opname_table
[k
].decoded
);
1188 j
+= strlen (ada_opname_table
[k
].decoded
);
1192 if (ada_opname_table
[k
].encoded
!= NULL
)
1197 /* Replace "TK__" with "__", which will eventually be translated
1198 into "." (just below). */
1200 if (i
< len0
- 4 && startswith (encoded
+ i
, "TK__"))
1203 /* Replace "__B_{DIGITS}+__" sequences by "__", which will eventually
1204 be translated into "." (just below). These are internal names
1205 generated for anonymous blocks inside which our symbol is nested. */
1207 if (len0
- i
> 5 && encoded
[i
] == '_' && encoded
[i
+1] == '_'
1208 && encoded
[i
+2] == 'B' && encoded
[i
+3] == '_'
1209 && isdigit (encoded
[i
+4]))
1213 while (k
< len0
&& isdigit (encoded
[k
]))
1214 k
++; /* Skip any extra digit. */
1216 /* Double-check that the "__B_{DIGITS}+" sequence we found
1217 is indeed followed by "__". */
1218 if (len0
- k
> 2 && encoded
[k
] == '_' && encoded
[k
+1] == '_')
1222 /* Remove _E{DIGITS}+[sb] */
1224 /* Just as for protected object subprograms, there are 2 categories
1225 of subprograms created by the compiler for each entry. The first
1226 one implements the actual entry code, and has a suffix following
1227 the convention above; the second one implements the barrier and
1228 uses the same convention as above, except that the 'E' is replaced
1231 Just as above, we do not decode the name of barrier functions
1232 to give the user a clue that the code he is debugging has been
1233 internally generated. */
1235 if (len0
- i
> 3 && encoded
[i
] == '_' && encoded
[i
+1] == 'E'
1236 && isdigit (encoded
[i
+2]))
1240 while (k
< len0
&& isdigit (encoded
[k
]))
1244 && (encoded
[k
] == 'b' || encoded
[k
] == 's'))
1247 /* Just as an extra precaution, make sure that if this
1248 suffix is followed by anything else, it is a '_'.
1249 Otherwise, we matched this sequence by accident. */
1251 || (k
< len0
&& encoded
[k
] == '_'))
1256 /* Remove trailing "N" in [a-z0-9]+N__. The N is added by
1257 the GNAT front-end in protected object subprograms. */
1260 && encoded
[i
] == 'N' && encoded
[i
+1] == '_' && encoded
[i
+2] == '_')
1262 /* Backtrack a bit up until we reach either the begining of
1263 the encoded name, or "__". Make sure that we only find
1264 digits or lowercase characters. */
1265 const char *ptr
= encoded
+ i
- 1;
1267 while (ptr
>= encoded
&& is_lower_alphanum (ptr
[0]))
1270 || (ptr
> encoded
&& ptr
[0] == '_' && ptr
[-1] == '_'))
1274 if (encoded
[i
] == 'X' && i
!= 0 && isalnum (encoded
[i
- 1]))
1276 /* This is a X[bn]* sequence not separated from the previous
1277 part of the name with a non-alpha-numeric character (in other
1278 words, immediately following an alpha-numeric character), then
1279 verify that it is placed at the end of the encoded name. If
1280 not, then the encoding is not valid and we should abort the
1281 decoding. Otherwise, just skip it, it is used in body-nested
1285 while (i
< len0
&& (encoded
[i
] == 'b' || encoded
[i
] == 'n'));
1289 else if (i
< len0
- 2 && encoded
[i
] == '_' && encoded
[i
+ 1] == '_')
1291 /* Replace '__' by '.'. */
1299 /* It's a character part of the decoded name, so just copy it
1301 decoded
[j
] = encoded
[i
];
1308 /* Decoded names should never contain any uppercase character.
1309 Double-check this, and abort the decoding if we find one. */
1311 for (i
= 0; i
< decoded
.length(); ++i
)
1312 if (isupper (decoded
[i
]) || decoded
[i
] == ' ')
1318 if (encoded
[0] == '<')
1321 decoded
= '<' + std::string(encoded
) + '>';
1326 /* Table for keeping permanent unique copies of decoded names. Once
1327 allocated, names in this table are never released. While this is a
1328 storage leak, it should not be significant unless there are massive
1329 changes in the set of decoded names in successive versions of a
1330 symbol table loaded during a single session. */
1331 static struct htab
*decoded_names_store
;
1333 /* Returns the decoded name of GSYMBOL, as for ada_decode, caching it
1334 in the language-specific part of GSYMBOL, if it has not been
1335 previously computed. Tries to save the decoded name in the same
1336 obstack as GSYMBOL, if possible, and otherwise on the heap (so that,
1337 in any case, the decoded symbol has a lifetime at least that of
1339 The GSYMBOL parameter is "mutable" in the C++ sense: logically
1340 const, but nevertheless modified to a semantically equivalent form
1341 when a decoded name is cached in it. */
1344 ada_decode_symbol (const struct general_symbol_info
*arg
)
1346 struct general_symbol_info
*gsymbol
= (struct general_symbol_info
*) arg
;
1347 const char **resultp
=
1348 &gsymbol
->language_specific
.demangled_name
;
1350 if (!gsymbol
->ada_mangled
)
1352 std::string decoded
= ada_decode (gsymbol
->linkage_name ());
1353 struct obstack
*obstack
= gsymbol
->language_specific
.obstack
;
1355 gsymbol
->ada_mangled
= 1;
1357 if (obstack
!= NULL
)
1358 *resultp
= obstack_strdup (obstack
, decoded
.c_str ());
1361 /* Sometimes, we can't find a corresponding objfile, in
1362 which case, we put the result on the heap. Since we only
1363 decode when needed, we hope this usually does not cause a
1364 significant memory leak (FIXME). */
1366 char **slot
= (char **) htab_find_slot (decoded_names_store
,
1367 decoded
.c_str (), INSERT
);
1370 *slot
= xstrdup (decoded
.c_str ());
1379 ada_la_decode (const char *encoded
, int options
)
1381 return xstrdup (ada_decode (encoded
).c_str ());
1388 /* Assuming that INDEX_DESC_TYPE is an ___XA structure, a structure
1389 generated by the GNAT compiler to describe the index type used
1390 for each dimension of an array, check whether it follows the latest
1391 known encoding. If not, fix it up to conform to the latest encoding.
1392 Otherwise, do nothing. This function also does nothing if
1393 INDEX_DESC_TYPE is NULL.
1395 The GNAT encoding used to describe the array index type evolved a bit.
1396 Initially, the information would be provided through the name of each
1397 field of the structure type only, while the type of these fields was
1398 described as unspecified and irrelevant. The debugger was then expected
1399 to perform a global type lookup using the name of that field in order
1400 to get access to the full index type description. Because these global
1401 lookups can be very expensive, the encoding was later enhanced to make
1402 the global lookup unnecessary by defining the field type as being
1403 the full index type description.
1405 The purpose of this routine is to allow us to support older versions
1406 of the compiler by detecting the use of the older encoding, and by
1407 fixing up the INDEX_DESC_TYPE to follow the new one (at this point,
1408 we essentially replace each field's meaningless type by the associated
1412 ada_fixup_array_indexes_type (struct type
*index_desc_type
)
1416 if (index_desc_type
== NULL
)
1418 gdb_assert (index_desc_type
->num_fields () > 0);
1420 /* Check if INDEX_DESC_TYPE follows the older encoding (it is sufficient
1421 to check one field only, no need to check them all). If not, return
1424 If our INDEX_DESC_TYPE was generated using the older encoding,
1425 the field type should be a meaningless integer type whose name
1426 is not equal to the field name. */
1427 if (index_desc_type
->field (0).type ()->name () != NULL
1428 && strcmp (index_desc_type
->field (0).type ()->name (),
1429 TYPE_FIELD_NAME (index_desc_type
, 0)) == 0)
1432 /* Fixup each field of INDEX_DESC_TYPE. */
1433 for (i
= 0; i
< index_desc_type
->num_fields (); i
++)
1435 const char *name
= TYPE_FIELD_NAME (index_desc_type
, i
);
1436 struct type
*raw_type
= ada_check_typedef (ada_find_any_type (name
));
1439 index_desc_type
->field (i
).set_type (raw_type
);
1443 /* The desc_* routines return primitive portions of array descriptors
1446 /* The descriptor or array type, if any, indicated by TYPE; removes
1447 level of indirection, if needed. */
1449 static struct type
*
1450 desc_base_type (struct type
*type
)
1454 type
= ada_check_typedef (type
);
1455 if (type
->code () == TYPE_CODE_TYPEDEF
)
1456 type
= ada_typedef_target_type (type
);
1459 && (type
->code () == TYPE_CODE_PTR
1460 || type
->code () == TYPE_CODE_REF
))
1461 return ada_check_typedef (TYPE_TARGET_TYPE (type
));
1466 /* True iff TYPE indicates a "thin" array pointer type. */
1469 is_thin_pntr (struct type
*type
)
1472 is_suffix (ada_type_name (desc_base_type (type
)), "___XUT")
1473 || is_suffix (ada_type_name (desc_base_type (type
)), "___XUT___XVE");
1476 /* The descriptor type for thin pointer type TYPE. */
1478 static struct type
*
1479 thin_descriptor_type (struct type
*type
)
1481 struct type
*base_type
= desc_base_type (type
);
1483 if (base_type
== NULL
)
1485 if (is_suffix (ada_type_name (base_type
), "___XVE"))
1489 struct type
*alt_type
= ada_find_parallel_type (base_type
, "___XVE");
1491 if (alt_type
== NULL
)
1498 /* A pointer to the array data for thin-pointer value VAL. */
1500 static struct value
*
1501 thin_data_pntr (struct value
*val
)
1503 struct type
*type
= ada_check_typedef (value_type (val
));
1504 struct type
*data_type
= desc_data_target_type (thin_descriptor_type (type
));
1506 data_type
= lookup_pointer_type (data_type
);
1508 if (type
->code () == TYPE_CODE_PTR
)
1509 return value_cast (data_type
, value_copy (val
));
1511 return value_from_longest (data_type
, value_address (val
));
1514 /* True iff TYPE indicates a "thick" array pointer type. */
1517 is_thick_pntr (struct type
*type
)
1519 type
= desc_base_type (type
);
1520 return (type
!= NULL
&& type
->code () == TYPE_CODE_STRUCT
1521 && lookup_struct_elt_type (type
, "P_BOUNDS", 1) != NULL
);
1524 /* If TYPE is the type of an array descriptor (fat or thin pointer) or a
1525 pointer to one, the type of its bounds data; otherwise, NULL. */
1527 static struct type
*
1528 desc_bounds_type (struct type
*type
)
1532 type
= desc_base_type (type
);
1536 else if (is_thin_pntr (type
))
1538 type
= thin_descriptor_type (type
);
1541 r
= lookup_struct_elt_type (type
, "BOUNDS", 1);
1543 return ada_check_typedef (r
);
1545 else if (type
->code () == TYPE_CODE_STRUCT
)
1547 r
= lookup_struct_elt_type (type
, "P_BOUNDS", 1);
1549 return ada_check_typedef (TYPE_TARGET_TYPE (ada_check_typedef (r
)));
1554 /* If ARR is an array descriptor (fat or thin pointer), or pointer to
1555 one, a pointer to its bounds data. Otherwise NULL. */
1557 static struct value
*
1558 desc_bounds (struct value
*arr
)
1560 struct type
*type
= ada_check_typedef (value_type (arr
));
1562 if (is_thin_pntr (type
))
1564 struct type
*bounds_type
=
1565 desc_bounds_type (thin_descriptor_type (type
));
1568 if (bounds_type
== NULL
)
1569 error (_("Bad GNAT array descriptor"));
1571 /* NOTE: The following calculation is not really kosher, but
1572 since desc_type is an XVE-encoded type (and shouldn't be),
1573 the correct calculation is a real pain. FIXME (and fix GCC). */
1574 if (type
->code () == TYPE_CODE_PTR
)
1575 addr
= value_as_long (arr
);
1577 addr
= value_address (arr
);
1580 value_from_longest (lookup_pointer_type (bounds_type
),
1581 addr
- TYPE_LENGTH (bounds_type
));
1584 else if (is_thick_pntr (type
))
1586 struct value
*p_bounds
= value_struct_elt (&arr
, NULL
, "P_BOUNDS", NULL
,
1587 _("Bad GNAT array descriptor"));
1588 struct type
*p_bounds_type
= value_type (p_bounds
);
1591 && p_bounds_type
->code () == TYPE_CODE_PTR
)
1593 struct type
*target_type
= TYPE_TARGET_TYPE (p_bounds_type
);
1595 if (target_type
->is_stub ())
1596 p_bounds
= value_cast (lookup_pointer_type
1597 (ada_check_typedef (target_type
)),
1601 error (_("Bad GNAT array descriptor"));
1609 /* If TYPE is the type of an array-descriptor (fat pointer), the bit
1610 position of the field containing the address of the bounds data. */
1613 fat_pntr_bounds_bitpos (struct type
*type
)
1615 return TYPE_FIELD_BITPOS (desc_base_type (type
), 1);
1618 /* If TYPE is the type of an array-descriptor (fat pointer), the bit
1619 size of the field containing the address of the bounds data. */
1622 fat_pntr_bounds_bitsize (struct type
*type
)
1624 type
= desc_base_type (type
);
1626 if (TYPE_FIELD_BITSIZE (type
, 1) > 0)
1627 return TYPE_FIELD_BITSIZE (type
, 1);
1629 return 8 * TYPE_LENGTH (ada_check_typedef (type
->field (1).type ()));
1632 /* If TYPE is the type of an array descriptor (fat or thin pointer) or a
1633 pointer to one, the type of its array data (a array-with-no-bounds type);
1634 otherwise, NULL. Use ada_type_of_array to get an array type with bounds
1637 static struct type
*
1638 desc_data_target_type (struct type
*type
)
1640 type
= desc_base_type (type
);
1642 /* NOTE: The following is bogus; see comment in desc_bounds. */
1643 if (is_thin_pntr (type
))
1644 return desc_base_type (thin_descriptor_type (type
)->field (1).type ());
1645 else if (is_thick_pntr (type
))
1647 struct type
*data_type
= lookup_struct_elt_type (type
, "P_ARRAY", 1);
1650 && ada_check_typedef (data_type
)->code () == TYPE_CODE_PTR
)
1651 return ada_check_typedef (TYPE_TARGET_TYPE (data_type
));
1657 /* If ARR is an array descriptor (fat or thin pointer), a pointer to
1660 static struct value
*
1661 desc_data (struct value
*arr
)
1663 struct type
*type
= value_type (arr
);
1665 if (is_thin_pntr (type
))
1666 return thin_data_pntr (arr
);
1667 else if (is_thick_pntr (type
))
1668 return value_struct_elt (&arr
, NULL
, "P_ARRAY", NULL
,
1669 _("Bad GNAT array descriptor"));
1675 /* If TYPE is the type of an array-descriptor (fat pointer), the bit
1676 position of the field containing the address of the data. */
1679 fat_pntr_data_bitpos (struct type
*type
)
1681 return TYPE_FIELD_BITPOS (desc_base_type (type
), 0);
1684 /* If TYPE is the type of an array-descriptor (fat pointer), the bit
1685 size of the field containing the address of the data. */
1688 fat_pntr_data_bitsize (struct type
*type
)
1690 type
= desc_base_type (type
);
1692 if (TYPE_FIELD_BITSIZE (type
, 0) > 0)
1693 return TYPE_FIELD_BITSIZE (type
, 0);
1695 return TARGET_CHAR_BIT
* TYPE_LENGTH (type
->field (0).type ());
1698 /* If BOUNDS is an array-bounds structure (or pointer to one), return
1699 the Ith lower bound stored in it, if WHICH is 0, and the Ith upper
1700 bound, if WHICH is 1. The first bound is I=1. */
1702 static struct value
*
1703 desc_one_bound (struct value
*bounds
, int i
, int which
)
1705 char bound_name
[20];
1706 xsnprintf (bound_name
, sizeof (bound_name
), "%cB%d",
1707 which
? 'U' : 'L', i
- 1);
1708 return value_struct_elt (&bounds
, NULL
, bound_name
, NULL
,
1709 _("Bad GNAT array descriptor bounds"));
1712 /* If BOUNDS is an array-bounds structure type, return the bit position
1713 of the Ith lower bound stored in it, if WHICH is 0, and the Ith upper
1714 bound, if WHICH is 1. The first bound is I=1. */
1717 desc_bound_bitpos (struct type
*type
, int i
, int which
)
1719 return TYPE_FIELD_BITPOS (desc_base_type (type
), 2 * i
+ which
- 2);
1722 /* If BOUNDS is an array-bounds structure type, return the bit field size
1723 of the Ith lower bound stored in it, if WHICH is 0, and the Ith upper
1724 bound, if WHICH is 1. The first bound is I=1. */
1727 desc_bound_bitsize (struct type
*type
, int i
, int which
)
1729 type
= desc_base_type (type
);
1731 if (TYPE_FIELD_BITSIZE (type
, 2 * i
+ which
- 2) > 0)
1732 return TYPE_FIELD_BITSIZE (type
, 2 * i
+ which
- 2);
1734 return 8 * TYPE_LENGTH (type
->field (2 * i
+ which
- 2).type ());
1737 /* If TYPE is the type of an array-bounds structure, the type of its
1738 Ith bound (numbering from 1). Otherwise, NULL. */
1740 static struct type
*
1741 desc_index_type (struct type
*type
, int i
)
1743 type
= desc_base_type (type
);
1745 if (type
->code () == TYPE_CODE_STRUCT
)
1747 char bound_name
[20];
1748 xsnprintf (bound_name
, sizeof (bound_name
), "LB%d", i
- 1);
1749 return lookup_struct_elt_type (type
, bound_name
, 1);
1755 /* The number of index positions in the array-bounds type TYPE.
1756 Return 0 if TYPE is NULL. */
1759 desc_arity (struct type
*type
)
1761 type
= desc_base_type (type
);
1764 return type
->num_fields () / 2;
1768 /* Non-zero iff TYPE is a simple array type (not a pointer to one) or
1769 an array descriptor type (representing an unconstrained array
1773 ada_is_direct_array_type (struct type
*type
)
1777 type
= ada_check_typedef (type
);
1778 return (type
->code () == TYPE_CODE_ARRAY
1779 || ada_is_array_descriptor_type (type
));
1782 /* Non-zero iff TYPE represents any kind of array in Ada, or a pointer
1786 ada_is_array_type (struct type
*type
)
1789 && (type
->code () == TYPE_CODE_PTR
1790 || type
->code () == TYPE_CODE_REF
))
1791 type
= TYPE_TARGET_TYPE (type
);
1792 return ada_is_direct_array_type (type
);
1795 /* Non-zero iff TYPE is a simple array type or pointer to one. */
1798 ada_is_simple_array_type (struct type
*type
)
1802 type
= ada_check_typedef (type
);
1803 return (type
->code () == TYPE_CODE_ARRAY
1804 || (type
->code () == TYPE_CODE_PTR
1805 && (ada_check_typedef (TYPE_TARGET_TYPE (type
))->code ()
1806 == TYPE_CODE_ARRAY
)));
1809 /* Non-zero iff TYPE belongs to a GNAT array descriptor. */
1812 ada_is_array_descriptor_type (struct type
*type
)
1814 struct type
*data_type
= desc_data_target_type (type
);
1818 type
= ada_check_typedef (type
);
1819 return (data_type
!= NULL
1820 && data_type
->code () == TYPE_CODE_ARRAY
1821 && desc_arity (desc_bounds_type (type
)) > 0);
1824 /* Non-zero iff type is a partially mal-formed GNAT array
1825 descriptor. FIXME: This is to compensate for some problems with
1826 debugging output from GNAT. Re-examine periodically to see if it
1830 ada_is_bogus_array_descriptor (struct type
*type
)
1834 && type
->code () == TYPE_CODE_STRUCT
1835 && (lookup_struct_elt_type (type
, "P_BOUNDS", 1) != NULL
1836 || lookup_struct_elt_type (type
, "P_ARRAY", 1) != NULL
)
1837 && !ada_is_array_descriptor_type (type
);
1841 /* If ARR has a record type in the form of a standard GNAT array descriptor,
1842 (fat pointer) returns the type of the array data described---specifically,
1843 a pointer-to-array type. If BOUNDS is non-zero, the bounds data are filled
1844 in from the descriptor; otherwise, they are left unspecified. If
1845 the ARR denotes a null array descriptor and BOUNDS is non-zero,
1846 returns NULL. The result is simply the type of ARR if ARR is not
1849 static struct type
*
1850 ada_type_of_array (struct value
*arr
, int bounds
)
1852 if (ada_is_constrained_packed_array_type (value_type (arr
)))
1853 return decode_constrained_packed_array_type (value_type (arr
));
1855 if (!ada_is_array_descriptor_type (value_type (arr
)))
1856 return value_type (arr
);
1860 struct type
*array_type
=
1861 ada_check_typedef (desc_data_target_type (value_type (arr
)));
1863 if (ada_is_unconstrained_packed_array_type (value_type (arr
)))
1864 TYPE_FIELD_BITSIZE (array_type
, 0) =
1865 decode_packed_array_bitsize (value_type (arr
));
1871 struct type
*elt_type
;
1873 struct value
*descriptor
;
1875 elt_type
= ada_array_element_type (value_type (arr
), -1);
1876 arity
= ada_array_arity (value_type (arr
));
1878 if (elt_type
== NULL
|| arity
== 0)
1879 return ada_check_typedef (value_type (arr
));
1881 descriptor
= desc_bounds (arr
);
1882 if (value_as_long (descriptor
) == 0)
1886 struct type
*range_type
= alloc_type_copy (value_type (arr
));
1887 struct type
*array_type
= alloc_type_copy (value_type (arr
));
1888 struct value
*low
= desc_one_bound (descriptor
, arity
, 0);
1889 struct value
*high
= desc_one_bound (descriptor
, arity
, 1);
1892 create_static_range_type (range_type
, value_type (low
),
1893 longest_to_int (value_as_long (low
)),
1894 longest_to_int (value_as_long (high
)));
1895 elt_type
= create_array_type (array_type
, elt_type
, range_type
);
1897 if (ada_is_unconstrained_packed_array_type (value_type (arr
)))
1899 /* We need to store the element packed bitsize, as well as
1900 recompute the array size, because it was previously
1901 computed based on the unpacked element size. */
1902 LONGEST lo
= value_as_long (low
);
1903 LONGEST hi
= value_as_long (high
);
1905 TYPE_FIELD_BITSIZE (elt_type
, 0) =
1906 decode_packed_array_bitsize (value_type (arr
));
1907 /* If the array has no element, then the size is already
1908 zero, and does not need to be recomputed. */
1912 (hi
- lo
+ 1) * TYPE_FIELD_BITSIZE (elt_type
, 0);
1914 TYPE_LENGTH (array_type
) = (array_bitsize
+ 7) / 8;
1919 return lookup_pointer_type (elt_type
);
1923 /* If ARR does not represent an array, returns ARR unchanged.
1924 Otherwise, returns either a standard GDB array with bounds set
1925 appropriately or, if ARR is a non-null fat pointer, a pointer to a standard
1926 GDB array. Returns NULL if ARR is a null fat pointer. */
1929 ada_coerce_to_simple_array_ptr (struct value
*arr
)
1931 if (ada_is_array_descriptor_type (value_type (arr
)))
1933 struct type
*arrType
= ada_type_of_array (arr
, 1);
1935 if (arrType
== NULL
)
1937 return value_cast (arrType
, value_copy (desc_data (arr
)));
1939 else if (ada_is_constrained_packed_array_type (value_type (arr
)))
1940 return decode_constrained_packed_array (arr
);
1945 /* If ARR does not represent an array, returns ARR unchanged.
1946 Otherwise, returns a standard GDB array describing ARR (which may
1947 be ARR itself if it already is in the proper form). */
1950 ada_coerce_to_simple_array (struct value
*arr
)
1952 if (ada_is_array_descriptor_type (value_type (arr
)))
1954 struct value
*arrVal
= ada_coerce_to_simple_array_ptr (arr
);
1957 error (_("Bounds unavailable for null array pointer."));
1958 ada_ensure_varsize_limit (TYPE_TARGET_TYPE (value_type (arrVal
)));
1959 return value_ind (arrVal
);
1961 else if (ada_is_constrained_packed_array_type (value_type (arr
)))
1962 return decode_constrained_packed_array (arr
);
1967 /* If TYPE represents a GNAT array type, return it translated to an
1968 ordinary GDB array type (possibly with BITSIZE fields indicating
1969 packing). For other types, is the identity. */
1972 ada_coerce_to_simple_array_type (struct type
*type
)
1974 if (ada_is_constrained_packed_array_type (type
))
1975 return decode_constrained_packed_array_type (type
);
1977 if (ada_is_array_descriptor_type (type
))
1978 return ada_check_typedef (desc_data_target_type (type
));
1983 /* Non-zero iff TYPE represents a standard GNAT packed-array type. */
1986 ada_is_packed_array_type (struct type
*type
)
1990 type
= desc_base_type (type
);
1991 type
= ada_check_typedef (type
);
1993 ada_type_name (type
) != NULL
1994 && strstr (ada_type_name (type
), "___XP") != NULL
;
1997 /* Non-zero iff TYPE represents a standard GNAT constrained
1998 packed-array type. */
2001 ada_is_constrained_packed_array_type (struct type
*type
)
2003 return ada_is_packed_array_type (type
)
2004 && !ada_is_array_descriptor_type (type
);
2007 /* Non-zero iff TYPE represents an array descriptor for a
2008 unconstrained packed-array type. */
2011 ada_is_unconstrained_packed_array_type (struct type
*type
)
2013 return ada_is_packed_array_type (type
)
2014 && ada_is_array_descriptor_type (type
);
2017 /* Given that TYPE encodes a packed array type (constrained or unconstrained),
2018 return the size of its elements in bits. */
2021 decode_packed_array_bitsize (struct type
*type
)
2023 const char *raw_name
;
2027 /* Access to arrays implemented as fat pointers are encoded as a typedef
2028 of the fat pointer type. We need the name of the fat pointer type
2029 to do the decoding, so strip the typedef layer. */
2030 if (type
->code () == TYPE_CODE_TYPEDEF
)
2031 type
= ada_typedef_target_type (type
);
2033 raw_name
= ada_type_name (ada_check_typedef (type
));
2035 raw_name
= ada_type_name (desc_base_type (type
));
2040 tail
= strstr (raw_name
, "___XP");
2041 gdb_assert (tail
!= NULL
);
2043 if (sscanf (tail
+ sizeof ("___XP") - 1, "%ld", &bits
) != 1)
2046 (_("could not understand bit size information on packed array"));
2053 /* Given that TYPE is a standard GDB array type with all bounds filled
2054 in, and that the element size of its ultimate scalar constituents
2055 (that is, either its elements, or, if it is an array of arrays, its
2056 elements' elements, etc.) is *ELT_BITS, return an identical type,
2057 but with the bit sizes of its elements (and those of any
2058 constituent arrays) recorded in the BITSIZE components of its
2059 TYPE_FIELD_BITSIZE values, and with *ELT_BITS set to its total size
2062 Note that, for arrays whose index type has an XA encoding where
2063 a bound references a record discriminant, getting that discriminant,
2064 and therefore the actual value of that bound, is not possible
2065 because none of the given parameters gives us access to the record.
2066 This function assumes that it is OK in the context where it is being
2067 used to return an array whose bounds are still dynamic and where
2068 the length is arbitrary. */
2070 static struct type
*
2071 constrained_packed_array_type (struct type
*type
, long *elt_bits
)
2073 struct type
*new_elt_type
;
2074 struct type
*new_type
;
2075 struct type
*index_type_desc
;
2076 struct type
*index_type
;
2077 LONGEST low_bound
, high_bound
;
2079 type
= ada_check_typedef (type
);
2080 if (type
->code () != TYPE_CODE_ARRAY
)
2083 index_type_desc
= ada_find_parallel_type (type
, "___XA");
2084 if (index_type_desc
)
2085 index_type
= to_fixed_range_type (index_type_desc
->field (0).type (),
2088 index_type
= type
->index_type ();
2090 new_type
= alloc_type_copy (type
);
2092 constrained_packed_array_type (ada_check_typedef (TYPE_TARGET_TYPE (type
)),
2094 create_array_type (new_type
, new_elt_type
, index_type
);
2095 TYPE_FIELD_BITSIZE (new_type
, 0) = *elt_bits
;
2096 new_type
->set_name (ada_type_name (type
));
2098 if ((check_typedef (index_type
)->code () == TYPE_CODE_RANGE
2099 && is_dynamic_type (check_typedef (index_type
)))
2100 || get_discrete_bounds (index_type
, &low_bound
, &high_bound
) < 0)
2101 low_bound
= high_bound
= 0;
2102 if (high_bound
< low_bound
)
2103 *elt_bits
= TYPE_LENGTH (new_type
) = 0;
2106 *elt_bits
*= (high_bound
- low_bound
+ 1);
2107 TYPE_LENGTH (new_type
) =
2108 (*elt_bits
+ HOST_CHAR_BIT
- 1) / HOST_CHAR_BIT
;
2111 new_type
->set_is_fixed_instance (true);
2115 /* The array type encoded by TYPE, where
2116 ada_is_constrained_packed_array_type (TYPE). */
2118 static struct type
*
2119 decode_constrained_packed_array_type (struct type
*type
)
2121 const char *raw_name
= ada_type_name (ada_check_typedef (type
));
2124 struct type
*shadow_type
;
2128 raw_name
= ada_type_name (desc_base_type (type
));
2133 name
= (char *) alloca (strlen (raw_name
) + 1);
2134 tail
= strstr (raw_name
, "___XP");
2135 type
= desc_base_type (type
);
2137 memcpy (name
, raw_name
, tail
- raw_name
);
2138 name
[tail
- raw_name
] = '\000';
2140 shadow_type
= ada_find_parallel_type_with_name (type
, name
);
2142 if (shadow_type
== NULL
)
2144 lim_warning (_("could not find bounds information on packed array"));
2147 shadow_type
= check_typedef (shadow_type
);
2149 if (shadow_type
->code () != TYPE_CODE_ARRAY
)
2151 lim_warning (_("could not understand bounds "
2152 "information on packed array"));
2156 bits
= decode_packed_array_bitsize (type
);
2157 return constrained_packed_array_type (shadow_type
, &bits
);
2160 /* Given that ARR is a struct value *indicating a GNAT constrained packed
2161 array, returns a simple array that denotes that array. Its type is a
2162 standard GDB array type except that the BITSIZEs of the array
2163 target types are set to the number of bits in each element, and the
2164 type length is set appropriately. */
2166 static struct value
*
2167 decode_constrained_packed_array (struct value
*arr
)
2171 /* If our value is a pointer, then dereference it. Likewise if
2172 the value is a reference. Make sure that this operation does not
2173 cause the target type to be fixed, as this would indirectly cause
2174 this array to be decoded. The rest of the routine assumes that
2175 the array hasn't been decoded yet, so we use the basic "coerce_ref"
2176 and "value_ind" routines to perform the dereferencing, as opposed
2177 to using "ada_coerce_ref" or "ada_value_ind". */
2178 arr
= coerce_ref (arr
);
2179 if (ada_check_typedef (value_type (arr
))->code () == TYPE_CODE_PTR
)
2180 arr
= value_ind (arr
);
2182 type
= decode_constrained_packed_array_type (value_type (arr
));
2185 error (_("can't unpack array"));
2189 if (type_byte_order (value_type (arr
)) == BFD_ENDIAN_BIG
2190 && ada_is_modular_type (value_type (arr
)))
2192 /* This is a (right-justified) modular type representing a packed
2193 array with no wrapper. In order to interpret the value through
2194 the (left-justified) packed array type we just built, we must
2195 first left-justify it. */
2196 int bit_size
, bit_pos
;
2199 mod
= ada_modulus (value_type (arr
)) - 1;
2206 bit_pos
= HOST_CHAR_BIT
* TYPE_LENGTH (value_type (arr
)) - bit_size
;
2207 arr
= ada_value_primitive_packed_val (arr
, NULL
,
2208 bit_pos
/ HOST_CHAR_BIT
,
2209 bit_pos
% HOST_CHAR_BIT
,
2214 return coerce_unspec_val_to_type (arr
, type
);
2218 /* The value of the element of packed array ARR at the ARITY indices
2219 given in IND. ARR must be a simple array. */
2221 static struct value
*
2222 value_subscript_packed (struct value
*arr
, int arity
, struct value
**ind
)
2225 int bits
, elt_off
, bit_off
;
2226 long elt_total_bit_offset
;
2227 struct type
*elt_type
;
2231 elt_total_bit_offset
= 0;
2232 elt_type
= ada_check_typedef (value_type (arr
));
2233 for (i
= 0; i
< arity
; i
+= 1)
2235 if (elt_type
->code () != TYPE_CODE_ARRAY
2236 || TYPE_FIELD_BITSIZE (elt_type
, 0) == 0)
2238 (_("attempt to do packed indexing of "
2239 "something other than a packed array"));
2242 struct type
*range_type
= elt_type
->index_type ();
2243 LONGEST lowerbound
, upperbound
;
2246 if (get_discrete_bounds (range_type
, &lowerbound
, &upperbound
) < 0)
2248 lim_warning (_("don't know bounds of array"));
2249 lowerbound
= upperbound
= 0;
2252 idx
= pos_atr (ind
[i
]);
2253 if (idx
< lowerbound
|| idx
> upperbound
)
2254 lim_warning (_("packed array index %ld out of bounds"),
2256 bits
= TYPE_FIELD_BITSIZE (elt_type
, 0);
2257 elt_total_bit_offset
+= (idx
- lowerbound
) * bits
;
2258 elt_type
= ada_check_typedef (TYPE_TARGET_TYPE (elt_type
));
2261 elt_off
= elt_total_bit_offset
/ HOST_CHAR_BIT
;
2262 bit_off
= elt_total_bit_offset
% HOST_CHAR_BIT
;
2264 v
= ada_value_primitive_packed_val (arr
, NULL
, elt_off
, bit_off
,
2269 /* Non-zero iff TYPE includes negative integer values. */
2272 has_negatives (struct type
*type
)
2274 switch (type
->code ())
2279 return !type
->is_unsigned ();
2280 case TYPE_CODE_RANGE
:
2281 return type
->bounds ()->low
.const_val () - type
->bounds ()->bias
< 0;
2285 /* With SRC being a buffer containing BIT_SIZE bits of data at BIT_OFFSET,
2286 unpack that data into UNPACKED. UNPACKED_LEN is the size in bytes of
2287 the unpacked buffer.
2289 The size of the unpacked buffer (UNPACKED_LEN) is expected to be large
2290 enough to contain at least BIT_OFFSET bits. If not, an error is raised.
2292 IS_BIG_ENDIAN is nonzero if the data is stored in big endian mode,
2295 IS_SIGNED_TYPE is nonzero if the data corresponds to a signed type.
2297 IS_SCALAR is nonzero if the data corresponds to a signed type. */
2300 ada_unpack_from_contents (const gdb_byte
*src
, int bit_offset
, int bit_size
,
2301 gdb_byte
*unpacked
, int unpacked_len
,
2302 int is_big_endian
, int is_signed_type
,
2305 int src_len
= (bit_size
+ bit_offset
+ HOST_CHAR_BIT
- 1) / 8;
2306 int src_idx
; /* Index into the source area */
2307 int src_bytes_left
; /* Number of source bytes left to process. */
2308 int srcBitsLeft
; /* Number of source bits left to move */
2309 int unusedLS
; /* Number of bits in next significant
2310 byte of source that are unused */
2312 int unpacked_idx
; /* Index into the unpacked buffer */
2313 int unpacked_bytes_left
; /* Number of bytes left to set in unpacked. */
2315 unsigned long accum
; /* Staging area for bits being transferred */
2316 int accumSize
; /* Number of meaningful bits in accum */
2319 /* Transmit bytes from least to most significant; delta is the direction
2320 the indices move. */
2321 int delta
= is_big_endian
? -1 : 1;
2323 /* Make sure that unpacked is large enough to receive the BIT_SIZE
2325 if ((bit_size
+ HOST_CHAR_BIT
- 1) / HOST_CHAR_BIT
> unpacked_len
)
2326 error (_("Cannot unpack %d bits into buffer of %d bytes"),
2327 bit_size
, unpacked_len
);
2329 srcBitsLeft
= bit_size
;
2330 src_bytes_left
= src_len
;
2331 unpacked_bytes_left
= unpacked_len
;
2336 src_idx
= src_len
- 1;
2338 && ((src
[0] << bit_offset
) & (1 << (HOST_CHAR_BIT
- 1))))
2342 (HOST_CHAR_BIT
- (bit_size
+ bit_offset
) % HOST_CHAR_BIT
)
2348 unpacked_idx
= unpacked_len
- 1;
2352 /* Non-scalar values must be aligned at a byte boundary... */
2354 (HOST_CHAR_BIT
- bit_size
% HOST_CHAR_BIT
) % HOST_CHAR_BIT
;
2355 /* ... And are placed at the beginning (most-significant) bytes
2357 unpacked_idx
= (bit_size
+ HOST_CHAR_BIT
- 1) / HOST_CHAR_BIT
- 1;
2358 unpacked_bytes_left
= unpacked_idx
+ 1;
2363 int sign_bit_offset
= (bit_size
+ bit_offset
- 1) % 8;
2365 src_idx
= unpacked_idx
= 0;
2366 unusedLS
= bit_offset
;
2369 if (is_signed_type
&& (src
[src_len
- 1] & (1 << sign_bit_offset
)))
2374 while (src_bytes_left
> 0)
2376 /* Mask for removing bits of the next source byte that are not
2377 part of the value. */
2378 unsigned int unusedMSMask
=
2379 (1 << (srcBitsLeft
>= HOST_CHAR_BIT
? HOST_CHAR_BIT
: srcBitsLeft
)) -
2381 /* Sign-extend bits for this byte. */
2382 unsigned int signMask
= sign
& ~unusedMSMask
;
2385 (((src
[src_idx
] >> unusedLS
) & unusedMSMask
) | signMask
) << accumSize
;
2386 accumSize
+= HOST_CHAR_BIT
- unusedLS
;
2387 if (accumSize
>= HOST_CHAR_BIT
)
2389 unpacked
[unpacked_idx
] = accum
& ~(~0UL << HOST_CHAR_BIT
);
2390 accumSize
-= HOST_CHAR_BIT
;
2391 accum
>>= HOST_CHAR_BIT
;
2392 unpacked_bytes_left
-= 1;
2393 unpacked_idx
+= delta
;
2395 srcBitsLeft
-= HOST_CHAR_BIT
- unusedLS
;
2397 src_bytes_left
-= 1;
2400 while (unpacked_bytes_left
> 0)
2402 accum
|= sign
<< accumSize
;
2403 unpacked
[unpacked_idx
] = accum
& ~(~0UL << HOST_CHAR_BIT
);
2404 accumSize
-= HOST_CHAR_BIT
;
2407 accum
>>= HOST_CHAR_BIT
;
2408 unpacked_bytes_left
-= 1;
2409 unpacked_idx
+= delta
;
2413 /* Create a new value of type TYPE from the contents of OBJ starting
2414 at byte OFFSET, and bit offset BIT_OFFSET within that byte,
2415 proceeding for BIT_SIZE bits. If OBJ is an lval in memory, then
2416 assigning through the result will set the field fetched from.
2417 VALADDR is ignored unless OBJ is NULL, in which case,
2418 VALADDR+OFFSET must address the start of storage containing the
2419 packed value. The value returned in this case is never an lval.
2420 Assumes 0 <= BIT_OFFSET < HOST_CHAR_BIT. */
2423 ada_value_primitive_packed_val (struct value
*obj
, const gdb_byte
*valaddr
,
2424 long offset
, int bit_offset
, int bit_size
,
2428 const gdb_byte
*src
; /* First byte containing data to unpack */
2430 const int is_scalar
= is_scalar_type (type
);
2431 const int is_big_endian
= type_byte_order (type
) == BFD_ENDIAN_BIG
;
2432 gdb::byte_vector staging
;
2434 type
= ada_check_typedef (type
);
2437 src
= valaddr
+ offset
;
2439 src
= value_contents (obj
) + offset
;
2441 if (is_dynamic_type (type
))
2443 /* The length of TYPE might by dynamic, so we need to resolve
2444 TYPE in order to know its actual size, which we then use
2445 to create the contents buffer of the value we return.
2446 The difficulty is that the data containing our object is
2447 packed, and therefore maybe not at a byte boundary. So, what
2448 we do, is unpack the data into a byte-aligned buffer, and then
2449 use that buffer as our object's value for resolving the type. */
2450 int staging_len
= (bit_size
+ HOST_CHAR_BIT
- 1) / HOST_CHAR_BIT
;
2451 staging
.resize (staging_len
);
2453 ada_unpack_from_contents (src
, bit_offset
, bit_size
,
2454 staging
.data (), staging
.size (),
2455 is_big_endian
, has_negatives (type
),
2457 type
= resolve_dynamic_type (type
, staging
, 0);
2458 if (TYPE_LENGTH (type
) < (bit_size
+ HOST_CHAR_BIT
- 1) / HOST_CHAR_BIT
)
2460 /* This happens when the length of the object is dynamic,
2461 and is actually smaller than the space reserved for it.
2462 For instance, in an array of variant records, the bit_size
2463 we're given is the array stride, which is constant and
2464 normally equal to the maximum size of its element.
2465 But, in reality, each element only actually spans a portion
2467 bit_size
= TYPE_LENGTH (type
) * HOST_CHAR_BIT
;
2473 v
= allocate_value (type
);
2474 src
= valaddr
+ offset
;
2476 else if (VALUE_LVAL (obj
) == lval_memory
&& value_lazy (obj
))
2478 int src_len
= (bit_size
+ bit_offset
+ HOST_CHAR_BIT
- 1) / 8;
2481 v
= value_at (type
, value_address (obj
) + offset
);
2482 buf
= (gdb_byte
*) alloca (src_len
);
2483 read_memory (value_address (v
), buf
, src_len
);
2488 v
= allocate_value (type
);
2489 src
= value_contents (obj
) + offset
;
2494 long new_offset
= offset
;
2496 set_value_component_location (v
, obj
);
2497 set_value_bitpos (v
, bit_offset
+ value_bitpos (obj
));
2498 set_value_bitsize (v
, bit_size
);
2499 if (value_bitpos (v
) >= HOST_CHAR_BIT
)
2502 set_value_bitpos (v
, value_bitpos (v
) - HOST_CHAR_BIT
);
2504 set_value_offset (v
, new_offset
);
2506 /* Also set the parent value. This is needed when trying to
2507 assign a new value (in inferior memory). */
2508 set_value_parent (v
, obj
);
2511 set_value_bitsize (v
, bit_size
);
2512 unpacked
= value_contents_writeable (v
);
2516 memset (unpacked
, 0, TYPE_LENGTH (type
));
2520 if (staging
.size () == TYPE_LENGTH (type
))
2522 /* Small short-cut: If we've unpacked the data into a buffer
2523 of the same size as TYPE's length, then we can reuse that,
2524 instead of doing the unpacking again. */
2525 memcpy (unpacked
, staging
.data (), staging
.size ());
2528 ada_unpack_from_contents (src
, bit_offset
, bit_size
,
2529 unpacked
, TYPE_LENGTH (type
),
2530 is_big_endian
, has_negatives (type
), is_scalar
);
2535 /* Store the contents of FROMVAL into the location of TOVAL.
2536 Return a new value with the location of TOVAL and contents of
2537 FROMVAL. Handles assignment into packed fields that have
2538 floating-point or non-scalar types. */
2540 static struct value
*
2541 ada_value_assign (struct value
*toval
, struct value
*fromval
)
2543 struct type
*type
= value_type (toval
);
2544 int bits
= value_bitsize (toval
);
2546 toval
= ada_coerce_ref (toval
);
2547 fromval
= ada_coerce_ref (fromval
);
2549 if (ada_is_direct_array_type (value_type (toval
)))
2550 toval
= ada_coerce_to_simple_array (toval
);
2551 if (ada_is_direct_array_type (value_type (fromval
)))
2552 fromval
= ada_coerce_to_simple_array (fromval
);
2554 if (!deprecated_value_modifiable (toval
))
2555 error (_("Left operand of assignment is not a modifiable lvalue."));
2557 if (VALUE_LVAL (toval
) == lval_memory
2559 && (type
->code () == TYPE_CODE_FLT
2560 || type
->code () == TYPE_CODE_STRUCT
))
2562 int len
= (value_bitpos (toval
)
2563 + bits
+ HOST_CHAR_BIT
- 1) / HOST_CHAR_BIT
;
2565 gdb_byte
*buffer
= (gdb_byte
*) alloca (len
);
2567 CORE_ADDR to_addr
= value_address (toval
);
2569 if (type
->code () == TYPE_CODE_FLT
)
2570 fromval
= value_cast (type
, fromval
);
2572 read_memory (to_addr
, buffer
, len
);
2573 from_size
= value_bitsize (fromval
);
2575 from_size
= TYPE_LENGTH (value_type (fromval
)) * TARGET_CHAR_BIT
;
2577 const int is_big_endian
= type_byte_order (type
) == BFD_ENDIAN_BIG
;
2578 ULONGEST from_offset
= 0;
2579 if (is_big_endian
&& is_scalar_type (value_type (fromval
)))
2580 from_offset
= from_size
- bits
;
2581 copy_bitwise (buffer
, value_bitpos (toval
),
2582 value_contents (fromval
), from_offset
,
2583 bits
, is_big_endian
);
2584 write_memory_with_notification (to_addr
, buffer
, len
);
2586 val
= value_copy (toval
);
2587 memcpy (value_contents_raw (val
), value_contents (fromval
),
2588 TYPE_LENGTH (type
));
2589 deprecated_set_value_type (val
, type
);
2594 return value_assign (toval
, fromval
);
2598 /* Given that COMPONENT is a memory lvalue that is part of the lvalue
2599 CONTAINER, assign the contents of VAL to COMPONENTS's place in
2600 CONTAINER. Modifies the VALUE_CONTENTS of CONTAINER only, not
2601 COMPONENT, and not the inferior's memory. The current contents
2602 of COMPONENT are ignored.
2604 Although not part of the initial design, this function also works
2605 when CONTAINER and COMPONENT are not_lval's: it works as if CONTAINER
2606 had a null address, and COMPONENT had an address which is equal to
2607 its offset inside CONTAINER. */
2610 value_assign_to_component (struct value
*container
, struct value
*component
,
2613 LONGEST offset_in_container
=
2614 (LONGEST
) (value_address (component
) - value_address (container
));
2615 int bit_offset_in_container
=
2616 value_bitpos (component
) - value_bitpos (container
);
2619 val
= value_cast (value_type (component
), val
);
2621 if (value_bitsize (component
) == 0)
2622 bits
= TARGET_CHAR_BIT
* TYPE_LENGTH (value_type (component
));
2624 bits
= value_bitsize (component
);
2626 if (type_byte_order (value_type (container
)) == BFD_ENDIAN_BIG
)
2630 if (is_scalar_type (check_typedef (value_type (component
))))
2632 = TYPE_LENGTH (value_type (component
)) * TARGET_CHAR_BIT
- bits
;
2635 copy_bitwise (value_contents_writeable (container
) + offset_in_container
,
2636 value_bitpos (container
) + bit_offset_in_container
,
2637 value_contents (val
), src_offset
, bits
, 1);
2640 copy_bitwise (value_contents_writeable (container
) + offset_in_container
,
2641 value_bitpos (container
) + bit_offset_in_container
,
2642 value_contents (val
), 0, bits
, 0);
2645 /* Determine if TYPE is an access to an unconstrained array. */
2648 ada_is_access_to_unconstrained_array (struct type
*type
)
2650 return (type
->code () == TYPE_CODE_TYPEDEF
2651 && is_thick_pntr (ada_typedef_target_type (type
)));
2654 /* The value of the element of array ARR at the ARITY indices given in IND.
2655 ARR may be either a simple array, GNAT array descriptor, or pointer
2659 ada_value_subscript (struct value
*arr
, int arity
, struct value
**ind
)
2663 struct type
*elt_type
;
2665 elt
= ada_coerce_to_simple_array (arr
);
2667 elt_type
= ada_check_typedef (value_type (elt
));
2668 if (elt_type
->code () == TYPE_CODE_ARRAY
2669 && TYPE_FIELD_BITSIZE (elt_type
, 0) > 0)
2670 return value_subscript_packed (elt
, arity
, ind
);
2672 for (k
= 0; k
< arity
; k
+= 1)
2674 struct type
*saved_elt_type
= TYPE_TARGET_TYPE (elt_type
);
2676 if (elt_type
->code () != TYPE_CODE_ARRAY
)
2677 error (_("too many subscripts (%d expected)"), k
);
2679 elt
= value_subscript (elt
, pos_atr (ind
[k
]));
2681 if (ada_is_access_to_unconstrained_array (saved_elt_type
)
2682 && value_type (elt
)->code () != TYPE_CODE_TYPEDEF
)
2684 /* The element is a typedef to an unconstrained array,
2685 except that the value_subscript call stripped the
2686 typedef layer. The typedef layer is GNAT's way to
2687 specify that the element is, at the source level, an
2688 access to the unconstrained array, rather than the
2689 unconstrained array. So, we need to restore that
2690 typedef layer, which we can do by forcing the element's
2691 type back to its original type. Otherwise, the returned
2692 value is going to be printed as the array, rather
2693 than as an access. Another symptom of the same issue
2694 would be that an expression trying to dereference the
2695 element would also be improperly rejected. */
2696 deprecated_set_value_type (elt
, saved_elt_type
);
2699 elt_type
= ada_check_typedef (value_type (elt
));
2705 /* Assuming ARR is a pointer to a GDB array, the value of the element
2706 of *ARR at the ARITY indices given in IND.
2707 Does not read the entire array into memory.
2709 Note: Unlike what one would expect, this function is used instead of
2710 ada_value_subscript for basically all non-packed array types. The reason
2711 for this is that a side effect of doing our own pointer arithmetics instead
2712 of relying on value_subscript is that there is no implicit typedef peeling.
2713 This is important for arrays of array accesses, where it allows us to
2714 preserve the fact that the array's element is an array access, where the
2715 access part os encoded in a typedef layer. */
2717 static struct value
*
2718 ada_value_ptr_subscript (struct value
*arr
, int arity
, struct value
**ind
)
2721 struct value
*array_ind
= ada_value_ind (arr
);
2723 = check_typedef (value_enclosing_type (array_ind
));
2725 if (type
->code () == TYPE_CODE_ARRAY
2726 && TYPE_FIELD_BITSIZE (type
, 0) > 0)
2727 return value_subscript_packed (array_ind
, arity
, ind
);
2729 for (k
= 0; k
< arity
; k
+= 1)
2733 if (type
->code () != TYPE_CODE_ARRAY
)
2734 error (_("too many subscripts (%d expected)"), k
);
2735 arr
= value_cast (lookup_pointer_type (TYPE_TARGET_TYPE (type
)),
2737 get_discrete_bounds (type
->index_type (), &lwb
, &upb
);
2738 arr
= value_ptradd (arr
, pos_atr (ind
[k
]) - lwb
);
2739 type
= TYPE_TARGET_TYPE (type
);
2742 return value_ind (arr
);
2745 /* Given that ARRAY_PTR is a pointer or reference to an array of type TYPE (the
2746 actual type of ARRAY_PTR is ignored), returns the Ada slice of
2747 HIGH'Pos-LOW'Pos+1 elements starting at index LOW. The lower bound of
2748 this array is LOW, as per Ada rules. */
2749 static struct value
*
2750 ada_value_slice_from_ptr (struct value
*array_ptr
, struct type
*type
,
2753 struct type
*type0
= ada_check_typedef (type
);
2754 struct type
*base_index_type
= TYPE_TARGET_TYPE (type0
->index_type ());
2755 struct type
*index_type
2756 = create_static_range_type (NULL
, base_index_type
, low
, high
);
2757 struct type
*slice_type
= create_array_type_with_stride
2758 (NULL
, TYPE_TARGET_TYPE (type0
), index_type
,
2759 type0
->dyn_prop (DYN_PROP_BYTE_STRIDE
),
2760 TYPE_FIELD_BITSIZE (type0
, 0));
2761 int base_low
= ada_discrete_type_low_bound (type0
->index_type ());
2762 LONGEST base_low_pos
, low_pos
;
2765 if (!discrete_position (base_index_type
, low
, &low_pos
)
2766 || !discrete_position (base_index_type
, base_low
, &base_low_pos
))
2768 warning (_("unable to get positions in slice, use bounds instead"));
2770 base_low_pos
= base_low
;
2773 base
= value_as_address (array_ptr
)
2774 + ((low_pos
- base_low_pos
)
2775 * TYPE_LENGTH (TYPE_TARGET_TYPE (type0
)));
2776 return value_at_lazy (slice_type
, base
);
2780 static struct value
*
2781 ada_value_slice (struct value
*array
, int low
, int high
)
2783 struct type
*type
= ada_check_typedef (value_type (array
));
2784 struct type
*base_index_type
= TYPE_TARGET_TYPE (type
->index_type ());
2785 struct type
*index_type
2786 = create_static_range_type (NULL
, type
->index_type (), low
, high
);
2787 struct type
*slice_type
= create_array_type_with_stride
2788 (NULL
, TYPE_TARGET_TYPE (type
), index_type
,
2789 type
->dyn_prop (DYN_PROP_BYTE_STRIDE
),
2790 TYPE_FIELD_BITSIZE (type
, 0));
2791 LONGEST low_pos
, high_pos
;
2793 if (!discrete_position (base_index_type
, low
, &low_pos
)
2794 || !discrete_position (base_index_type
, high
, &high_pos
))
2796 warning (_("unable to get positions in slice, use bounds instead"));
2801 return value_cast (slice_type
,
2802 value_slice (array
, low
, high_pos
- low_pos
+ 1));
2805 /* If type is a record type in the form of a standard GNAT array
2806 descriptor, returns the number of dimensions for type. If arr is a
2807 simple array, returns the number of "array of"s that prefix its
2808 type designation. Otherwise, returns 0. */
2811 ada_array_arity (struct type
*type
)
2818 type
= desc_base_type (type
);
2821 if (type
->code () == TYPE_CODE_STRUCT
)
2822 return desc_arity (desc_bounds_type (type
));
2824 while (type
->code () == TYPE_CODE_ARRAY
)
2827 type
= ada_check_typedef (TYPE_TARGET_TYPE (type
));
2833 /* If TYPE is a record type in the form of a standard GNAT array
2834 descriptor or a simple array type, returns the element type for
2835 TYPE after indexing by NINDICES indices, or by all indices if
2836 NINDICES is -1. Otherwise, returns NULL. */
2839 ada_array_element_type (struct type
*type
, int nindices
)
2841 type
= desc_base_type (type
);
2843 if (type
->code () == TYPE_CODE_STRUCT
)
2846 struct type
*p_array_type
;
2848 p_array_type
= desc_data_target_type (type
);
2850 k
= ada_array_arity (type
);
2854 /* Initially p_array_type = elt_type(*)[]...(k times)...[]. */
2855 if (nindices
>= 0 && k
> nindices
)
2857 while (k
> 0 && p_array_type
!= NULL
)
2859 p_array_type
= ada_check_typedef (TYPE_TARGET_TYPE (p_array_type
));
2862 return p_array_type
;
2864 else if (type
->code () == TYPE_CODE_ARRAY
)
2866 while (nindices
!= 0 && type
->code () == TYPE_CODE_ARRAY
)
2868 type
= TYPE_TARGET_TYPE (type
);
2877 /* The type of nth index in arrays of given type (n numbering from 1).
2878 Does not examine memory. Throws an error if N is invalid or TYPE
2879 is not an array type. NAME is the name of the Ada attribute being
2880 evaluated ('range, 'first, 'last, or 'length); it is used in building
2881 the error message. */
2883 static struct type
*
2884 ada_index_type (struct type
*type
, int n
, const char *name
)
2886 struct type
*result_type
;
2888 type
= desc_base_type (type
);
2890 if (n
< 0 || n
> ada_array_arity (type
))
2891 error (_("invalid dimension number to '%s"), name
);
2893 if (ada_is_simple_array_type (type
))
2897 for (i
= 1; i
< n
; i
+= 1)
2898 type
= TYPE_TARGET_TYPE (type
);
2899 result_type
= TYPE_TARGET_TYPE (type
->index_type ());
2900 /* FIXME: The stabs type r(0,0);bound;bound in an array type
2901 has a target type of TYPE_CODE_UNDEF. We compensate here, but
2902 perhaps stabsread.c would make more sense. */
2903 if (result_type
&& result_type
->code () == TYPE_CODE_UNDEF
)
2908 result_type
= desc_index_type (desc_bounds_type (type
), n
);
2909 if (result_type
== NULL
)
2910 error (_("attempt to take bound of something that is not an array"));
2916 /* Given that arr is an array type, returns the lower bound of the
2917 Nth index (numbering from 1) if WHICH is 0, and the upper bound if
2918 WHICH is 1. This returns bounds 0 .. -1 if ARR_TYPE is an
2919 array-descriptor type. It works for other arrays with bounds supplied
2920 by run-time quantities other than discriminants. */
2923 ada_array_bound_from_type (struct type
*arr_type
, int n
, int which
)
2925 struct type
*type
, *index_type_desc
, *index_type
;
2928 gdb_assert (which
== 0 || which
== 1);
2930 if (ada_is_constrained_packed_array_type (arr_type
))
2931 arr_type
= decode_constrained_packed_array_type (arr_type
);
2933 if (arr_type
== NULL
|| !ada_is_simple_array_type (arr_type
))
2934 return (LONGEST
) - which
;
2936 if (arr_type
->code () == TYPE_CODE_PTR
)
2937 type
= TYPE_TARGET_TYPE (arr_type
);
2941 if (type
->is_fixed_instance ())
2943 /* The array has already been fixed, so we do not need to
2944 check the parallel ___XA type again. That encoding has
2945 already been applied, so ignore it now. */
2946 index_type_desc
= NULL
;
2950 index_type_desc
= ada_find_parallel_type (type
, "___XA");
2951 ada_fixup_array_indexes_type (index_type_desc
);
2954 if (index_type_desc
!= NULL
)
2955 index_type
= to_fixed_range_type (index_type_desc
->field (n
- 1).type (),
2959 struct type
*elt_type
= check_typedef (type
);
2961 for (i
= 1; i
< n
; i
++)
2962 elt_type
= check_typedef (TYPE_TARGET_TYPE (elt_type
));
2964 index_type
= elt_type
->index_type ();
2968 (LONGEST
) (which
== 0
2969 ? ada_discrete_type_low_bound (index_type
)
2970 : ada_discrete_type_high_bound (index_type
));
2973 /* Given that arr is an array value, returns the lower bound of the
2974 nth index (numbering from 1) if WHICH is 0, and the upper bound if
2975 WHICH is 1. This routine will also work for arrays with bounds
2976 supplied by run-time quantities other than discriminants. */
2979 ada_array_bound (struct value
*arr
, int n
, int which
)
2981 struct type
*arr_type
;
2983 if (check_typedef (value_type (arr
))->code () == TYPE_CODE_PTR
)
2984 arr
= value_ind (arr
);
2985 arr_type
= value_enclosing_type (arr
);
2987 if (ada_is_constrained_packed_array_type (arr_type
))
2988 return ada_array_bound (decode_constrained_packed_array (arr
), n
, which
);
2989 else if (ada_is_simple_array_type (arr_type
))
2990 return ada_array_bound_from_type (arr_type
, n
, which
);
2992 return value_as_long (desc_one_bound (desc_bounds (arr
), n
, which
));
2995 /* Given that arr is an array value, returns the length of the
2996 nth index. This routine will also work for arrays with bounds
2997 supplied by run-time quantities other than discriminants.
2998 Does not work for arrays indexed by enumeration types with representation
2999 clauses at the moment. */
3002 ada_array_length (struct value
*arr
, int n
)
3004 struct type
*arr_type
, *index_type
;
3007 if (check_typedef (value_type (arr
))->code () == TYPE_CODE_PTR
)
3008 arr
= value_ind (arr
);
3009 arr_type
= value_enclosing_type (arr
);
3011 if (ada_is_constrained_packed_array_type (arr_type
))
3012 return ada_array_length (decode_constrained_packed_array (arr
), n
);
3014 if (ada_is_simple_array_type (arr_type
))
3016 low
= ada_array_bound_from_type (arr_type
, n
, 0);
3017 high
= ada_array_bound_from_type (arr_type
, n
, 1);
3021 low
= value_as_long (desc_one_bound (desc_bounds (arr
), n
, 0));
3022 high
= value_as_long (desc_one_bound (desc_bounds (arr
), n
, 1));
3025 arr_type
= check_typedef (arr_type
);
3026 index_type
= ada_index_type (arr_type
, n
, "length");
3027 if (index_type
!= NULL
)
3029 struct type
*base_type
;
3030 if (index_type
->code () == TYPE_CODE_RANGE
)
3031 base_type
= TYPE_TARGET_TYPE (index_type
);
3033 base_type
= index_type
;
3035 low
= pos_atr (value_from_longest (base_type
, low
));
3036 high
= pos_atr (value_from_longest (base_type
, high
));
3038 return high
- low
+ 1;
3041 /* An array whose type is that of ARR_TYPE (an array type), with
3042 bounds LOW to HIGH, but whose contents are unimportant. If HIGH is
3043 less than LOW, then LOW-1 is used. */
3045 static struct value
*
3046 empty_array (struct type
*arr_type
, int low
, int high
)
3048 struct type
*arr_type0
= ada_check_typedef (arr_type
);
3049 struct type
*index_type
3050 = create_static_range_type
3051 (NULL
, TYPE_TARGET_TYPE (arr_type0
->index_type ()), low
,
3052 high
< low
? low
- 1 : high
);
3053 struct type
*elt_type
= ada_array_element_type (arr_type0
, 1);
3055 return allocate_value (create_array_type (NULL
, elt_type
, index_type
));
3059 /* Name resolution */
3061 /* The "decoded" name for the user-definable Ada operator corresponding
3065 ada_decoded_op_name (enum exp_opcode op
)
3069 for (i
= 0; ada_opname_table
[i
].encoded
!= NULL
; i
+= 1)
3071 if (ada_opname_table
[i
].op
== op
)
3072 return ada_opname_table
[i
].decoded
;
3074 error (_("Could not find operator name for opcode"));
3077 /* Returns true (non-zero) iff decoded name N0 should appear before N1
3078 in a listing of choices during disambiguation (see sort_choices, below).
3079 The idea is that overloadings of a subprogram name from the
3080 same package should sort in their source order. We settle for ordering
3081 such symbols by their trailing number (__N or $N). */
3084 encoded_ordered_before (const char *N0
, const char *N1
)
3088 else if (N0
== NULL
)
3094 for (k0
= strlen (N0
) - 1; k0
> 0 && isdigit (N0
[k0
]); k0
-= 1)
3096 for (k1
= strlen (N1
) - 1; k1
> 0 && isdigit (N1
[k1
]); k1
-= 1)
3098 if ((N0
[k0
] == '_' || N0
[k0
] == '$') && N0
[k0
+ 1] != '\000'
3099 && (N1
[k1
] == '_' || N1
[k1
] == '$') && N1
[k1
+ 1] != '\000')
3104 while (N0
[n0
] == '_' && n0
> 0 && N0
[n0
- 1] == '_')
3107 while (N1
[n1
] == '_' && n1
> 0 && N1
[n1
- 1] == '_')
3109 if (n0
== n1
&& strncmp (N0
, N1
, n0
) == 0)
3110 return (atoi (N0
+ k0
+ 1) < atoi (N1
+ k1
+ 1));
3112 return (strcmp (N0
, N1
) < 0);
3116 /* Sort SYMS[0..NSYMS-1] to put the choices in a canonical order by the
3120 sort_choices (struct block_symbol syms
[], int nsyms
)
3124 for (i
= 1; i
< nsyms
; i
+= 1)
3126 struct block_symbol sym
= syms
[i
];
3129 for (j
= i
- 1; j
>= 0; j
-= 1)
3131 if (encoded_ordered_before (syms
[j
].symbol
->linkage_name (),
3132 sym
.symbol
->linkage_name ()))
3134 syms
[j
+ 1] = syms
[j
];
3140 /* Whether GDB should display formals and return types for functions in the
3141 overloads selection menu. */
3142 static bool print_signatures
= true;
3144 /* Print the signature for SYM on STREAM according to the FLAGS options. For
3145 all but functions, the signature is just the name of the symbol. For
3146 functions, this is the name of the function, the list of types for formals
3147 and the return type (if any). */
3150 ada_print_symbol_signature (struct ui_file
*stream
, struct symbol
*sym
,
3151 const struct type_print_options
*flags
)
3153 struct type
*type
= SYMBOL_TYPE (sym
);
3155 fprintf_filtered (stream
, "%s", sym
->print_name ());
3156 if (!print_signatures
3158 || type
->code () != TYPE_CODE_FUNC
)
3161 if (type
->num_fields () > 0)
3165 fprintf_filtered (stream
, " (");
3166 for (i
= 0; i
< type
->num_fields (); ++i
)
3169 fprintf_filtered (stream
, "; ");
3170 ada_print_type (type
->field (i
).type (), NULL
, stream
, -1, 0,
3173 fprintf_filtered (stream
, ")");
3175 if (TYPE_TARGET_TYPE (type
) != NULL
3176 && TYPE_TARGET_TYPE (type
)->code () != TYPE_CODE_VOID
)
3178 fprintf_filtered (stream
, " return ");
3179 ada_print_type (TYPE_TARGET_TYPE (type
), NULL
, stream
, -1, 0, flags
);
3183 /* Read and validate a set of numeric choices from the user in the
3184 range 0 .. N_CHOICES-1. Place the results in increasing
3185 order in CHOICES[0 .. N-1], and return N.
3187 The user types choices as a sequence of numbers on one line
3188 separated by blanks, encoding them as follows:
3190 + A choice of 0 means to cancel the selection, throwing an error.
3191 + If IS_ALL_CHOICE, a choice of 1 selects the entire set 0 .. N_CHOICES-1.
3192 + The user chooses k by typing k+IS_ALL_CHOICE+1.
3194 The user is not allowed to choose more than MAX_RESULTS values.
3196 ANNOTATION_SUFFIX, if present, is used to annotate the input
3197 prompts (for use with the -f switch). */
3200 get_selections (int *choices
, int n_choices
, int max_results
,
3201 int is_all_choice
, const char *annotation_suffix
)
3206 int first_choice
= is_all_choice
? 2 : 1;
3208 prompt
= getenv ("PS2");
3212 args
= command_line_input (prompt
, annotation_suffix
);
3215 error_no_arg (_("one or more choice numbers"));
3219 /* Set choices[0 .. n_chosen-1] to the users' choices in ascending
3220 order, as given in args. Choices are validated. */
3226 args
= skip_spaces (args
);
3227 if (*args
== '\0' && n_chosen
== 0)
3228 error_no_arg (_("one or more choice numbers"));
3229 else if (*args
== '\0')
3232 choice
= strtol (args
, &args2
, 10);
3233 if (args
== args2
|| choice
< 0
3234 || choice
> n_choices
+ first_choice
- 1)
3235 error (_("Argument must be choice number"));
3239 error (_("cancelled"));
3241 if (choice
< first_choice
)
3243 n_chosen
= n_choices
;
3244 for (j
= 0; j
< n_choices
; j
+= 1)
3248 choice
-= first_choice
;
3250 for (j
= n_chosen
- 1; j
>= 0 && choice
< choices
[j
]; j
-= 1)
3254 if (j
< 0 || choice
!= choices
[j
])
3258 for (k
= n_chosen
- 1; k
> j
; k
-= 1)
3259 choices
[k
+ 1] = choices
[k
];
3260 choices
[j
+ 1] = choice
;
3265 if (n_chosen
> max_results
)
3266 error (_("Select no more than %d of the above"), max_results
);
3271 /* Given a list of NSYMS symbols in SYMS, select up to MAX_RESULTS>0
3272 by asking the user (if necessary), returning the number selected,
3273 and setting the first elements of SYMS items. Error if no symbols
3276 /* NOTE: Adapted from decode_line_2 in symtab.c, with which it ought
3277 to be re-integrated one of these days. */
3280 user_select_syms (struct block_symbol
*syms
, int nsyms
, int max_results
)
3283 int *chosen
= XALLOCAVEC (int , nsyms
);
3285 int first_choice
= (max_results
== 1) ? 1 : 2;
3286 const char *select_mode
= multiple_symbols_select_mode ();
3288 if (max_results
< 1)
3289 error (_("Request to select 0 symbols!"));
3293 if (select_mode
== multiple_symbols_cancel
)
3295 canceled because the command is ambiguous\n\
3296 See set/show multiple-symbol."));
3298 /* If select_mode is "all", then return all possible symbols.
3299 Only do that if more than one symbol can be selected, of course.
3300 Otherwise, display the menu as usual. */
3301 if (select_mode
== multiple_symbols_all
&& max_results
> 1)
3304 printf_filtered (_("[0] cancel\n"));
3305 if (max_results
> 1)
3306 printf_filtered (_("[1] all\n"));
3308 sort_choices (syms
, nsyms
);
3310 for (i
= 0; i
< nsyms
; i
+= 1)
3312 if (syms
[i
].symbol
== NULL
)
3315 if (SYMBOL_CLASS (syms
[i
].symbol
) == LOC_BLOCK
)
3317 struct symtab_and_line sal
=
3318 find_function_start_sal (syms
[i
].symbol
, 1);
3320 printf_filtered ("[%d] ", i
+ first_choice
);
3321 ada_print_symbol_signature (gdb_stdout
, syms
[i
].symbol
,
3322 &type_print_raw_options
);
3323 if (sal
.symtab
== NULL
)
3324 printf_filtered (_(" at %p[<no source file available>%p]:%d\n"),
3325 metadata_style
.style ().ptr (), nullptr, sal
.line
);
3329 styled_string (file_name_style
.style (),
3330 symtab_to_filename_for_display (sal
.symtab
)),
3337 (SYMBOL_CLASS (syms
[i
].symbol
) == LOC_CONST
3338 && SYMBOL_TYPE (syms
[i
].symbol
) != NULL
3339 && SYMBOL_TYPE (syms
[i
].symbol
)->code () == TYPE_CODE_ENUM
);
3340 struct symtab
*symtab
= NULL
;
3342 if (SYMBOL_OBJFILE_OWNED (syms
[i
].symbol
))
3343 symtab
= symbol_symtab (syms
[i
].symbol
);
3345 if (SYMBOL_LINE (syms
[i
].symbol
) != 0 && symtab
!= NULL
)
3347 printf_filtered ("[%d] ", i
+ first_choice
);
3348 ada_print_symbol_signature (gdb_stdout
, syms
[i
].symbol
,
3349 &type_print_raw_options
);
3350 printf_filtered (_(" at %s:%d\n"),
3351 symtab_to_filename_for_display (symtab
),
3352 SYMBOL_LINE (syms
[i
].symbol
));
3354 else if (is_enumeral
3355 && SYMBOL_TYPE (syms
[i
].symbol
)->name () != NULL
)
3357 printf_filtered (("[%d] "), i
+ first_choice
);
3358 ada_print_type (SYMBOL_TYPE (syms
[i
].symbol
), NULL
,
3359 gdb_stdout
, -1, 0, &type_print_raw_options
);
3360 printf_filtered (_("'(%s) (enumeral)\n"),
3361 syms
[i
].symbol
->print_name ());
3365 printf_filtered ("[%d] ", i
+ first_choice
);
3366 ada_print_symbol_signature (gdb_stdout
, syms
[i
].symbol
,
3367 &type_print_raw_options
);
3370 printf_filtered (is_enumeral
3371 ? _(" in %s (enumeral)\n")
3373 symtab_to_filename_for_display (symtab
));
3375 printf_filtered (is_enumeral
3376 ? _(" (enumeral)\n")
3382 n_chosen
= get_selections (chosen
, nsyms
, max_results
, max_results
> 1,
3385 for (i
= 0; i
< n_chosen
; i
+= 1)
3386 syms
[i
] = syms
[chosen
[i
]];
3391 /* Resolve the operator of the subexpression beginning at
3392 position *POS of *EXPP. "Resolving" consists of replacing
3393 the symbols that have undefined namespaces in OP_VAR_VALUE nodes
3394 with their resolutions, replacing built-in operators with
3395 function calls to user-defined operators, where appropriate, and,
3396 when DEPROCEDURE_P is non-zero, converting function-valued variables
3397 into parameterless calls. May expand *EXPP. The CONTEXT_TYPE functions
3398 are as in ada_resolve, above. */
3400 static struct value
*
3401 resolve_subexp (expression_up
*expp
, int *pos
, int deprocedure_p
,
3402 struct type
*context_type
, int parse_completion
,
3403 innermost_block_tracker
*tracker
)
3407 struct expression
*exp
; /* Convenience: == *expp. */
3408 enum exp_opcode op
= (*expp
)->elts
[pc
].opcode
;
3409 struct value
**argvec
; /* Vector of operand types (alloca'ed). */
3410 int nargs
; /* Number of operands. */
3417 /* Pass one: resolve operands, saving their types and updating *pos,
3422 if (exp
->elts
[pc
+ 3].opcode
== OP_VAR_VALUE
3423 && SYMBOL_DOMAIN (exp
->elts
[pc
+ 5].symbol
) == UNDEF_DOMAIN
)
3428 resolve_subexp (expp
, pos
, 0, NULL
, parse_completion
, tracker
);
3430 nargs
= longest_to_int (exp
->elts
[pc
+ 1].longconst
);
3435 resolve_subexp (expp
, pos
, 0, NULL
, parse_completion
, tracker
);
3440 resolve_subexp (expp
, pos
, 1, check_typedef (exp
->elts
[pc
+ 1].type
),
3441 parse_completion
, tracker
);
3444 case OP_ATR_MODULUS
:
3454 case TERNOP_IN_RANGE
:
3455 case BINOP_IN_BOUNDS
:
3461 case OP_DISCRETE_RANGE
:
3463 ada_forward_operator_length (exp
, pc
, &oplen
, &nargs
);
3472 arg1
= resolve_subexp (expp
, pos
, 0, NULL
, parse_completion
, tracker
);
3474 resolve_subexp (expp
, pos
, 1, NULL
, parse_completion
, tracker
);
3476 resolve_subexp (expp
, pos
, 1, value_type (arg1
), parse_completion
,
3494 case BINOP_LOGICAL_AND
:
3495 case BINOP_LOGICAL_OR
:
3496 case BINOP_BITWISE_AND
:
3497 case BINOP_BITWISE_IOR
:
3498 case BINOP_BITWISE_XOR
:
3501 case BINOP_NOTEQUAL
:
3508 case BINOP_SUBSCRIPT
:
3516 case UNOP_LOGICAL_NOT
:
3526 case OP_VAR_MSYM_VALUE
:
3533 case OP_INTERNALVAR
:
3543 *pos
+= 4 + BYTES_TO_EXP_ELEM (exp
->elts
[pc
+ 1].longconst
+ 1);
3546 case STRUCTOP_STRUCT
:
3547 *pos
+= 4 + BYTES_TO_EXP_ELEM (exp
->elts
[pc
+ 1].longconst
+ 1);
3560 error (_("Unexpected operator during name resolution"));
3563 argvec
= XALLOCAVEC (struct value
*, nargs
+ 1);
3564 for (i
= 0; i
< nargs
; i
+= 1)
3565 argvec
[i
] = resolve_subexp (expp
, pos
, 1, NULL
, parse_completion
,
3570 /* Pass two: perform any resolution on principal operator. */
3577 if (SYMBOL_DOMAIN (exp
->elts
[pc
+ 2].symbol
) == UNDEF_DOMAIN
)
3579 std::vector
<struct block_symbol
> candidates
;
3583 ada_lookup_symbol_list (exp
->elts
[pc
+ 2].symbol
->linkage_name (),
3584 exp
->elts
[pc
+ 1].block
, VAR_DOMAIN
,
3587 if (n_candidates
> 1)
3589 /* Types tend to get re-introduced locally, so if there
3590 are any local symbols that are not types, first filter
3593 for (j
= 0; j
< n_candidates
; j
+= 1)
3594 switch (SYMBOL_CLASS (candidates
[j
].symbol
))
3599 case LOC_REGPARM_ADDR
:
3607 if (j
< n_candidates
)
3610 while (j
< n_candidates
)
3612 if (SYMBOL_CLASS (candidates
[j
].symbol
) == LOC_TYPEDEF
)
3614 candidates
[j
] = candidates
[n_candidates
- 1];
3623 if (n_candidates
== 0)
3624 error (_("No definition found for %s"),
3625 exp
->elts
[pc
+ 2].symbol
->print_name ());
3626 else if (n_candidates
== 1)
3628 else if (deprocedure_p
3629 && !is_nonfunction (candidates
.data (), n_candidates
))
3631 i
= ada_resolve_function
3632 (candidates
.data (), n_candidates
, NULL
, 0,
3633 exp
->elts
[pc
+ 2].symbol
->linkage_name (),
3634 context_type
, parse_completion
);
3636 error (_("Could not find a match for %s"),
3637 exp
->elts
[pc
+ 2].symbol
->print_name ());
3641 printf_filtered (_("Multiple matches for %s\n"),
3642 exp
->elts
[pc
+ 2].symbol
->print_name ());
3643 user_select_syms (candidates
.data (), n_candidates
, 1);
3647 exp
->elts
[pc
+ 1].block
= candidates
[i
].block
;
3648 exp
->elts
[pc
+ 2].symbol
= candidates
[i
].symbol
;
3649 tracker
->update (candidates
[i
]);
3653 && (SYMBOL_TYPE (exp
->elts
[pc
+ 2].symbol
)->code ()
3656 replace_operator_with_call (expp
, pc
, 0, 4,
3657 exp
->elts
[pc
+ 2].symbol
,
3658 exp
->elts
[pc
+ 1].block
);
3665 if (exp
->elts
[pc
+ 3].opcode
== OP_VAR_VALUE
3666 && SYMBOL_DOMAIN (exp
->elts
[pc
+ 5].symbol
) == UNDEF_DOMAIN
)
3668 std::vector
<struct block_symbol
> candidates
;
3672 ada_lookup_symbol_list (exp
->elts
[pc
+ 5].symbol
->linkage_name (),
3673 exp
->elts
[pc
+ 4].block
, VAR_DOMAIN
,
3676 if (n_candidates
== 1)
3680 i
= ada_resolve_function
3681 (candidates
.data (), n_candidates
,
3683 exp
->elts
[pc
+ 5].symbol
->linkage_name (),
3684 context_type
, parse_completion
);
3686 error (_("Could not find a match for %s"),
3687 exp
->elts
[pc
+ 5].symbol
->print_name ());
3690 exp
->elts
[pc
+ 4].block
= candidates
[i
].block
;
3691 exp
->elts
[pc
+ 5].symbol
= candidates
[i
].symbol
;
3692 tracker
->update (candidates
[i
]);
3703 case BINOP_BITWISE_AND
:
3704 case BINOP_BITWISE_IOR
:
3705 case BINOP_BITWISE_XOR
:
3707 case BINOP_NOTEQUAL
:
3715 case UNOP_LOGICAL_NOT
:
3717 if (possible_user_operator_p (op
, argvec
))
3719 std::vector
<struct block_symbol
> candidates
;
3723 ada_lookup_symbol_list (ada_decoded_op_name (op
),
3727 i
= ada_resolve_function (candidates
.data (), n_candidates
, argvec
,
3728 nargs
, ada_decoded_op_name (op
), NULL
,
3733 replace_operator_with_call (expp
, pc
, nargs
, 1,
3734 candidates
[i
].symbol
,
3735 candidates
[i
].block
);
3746 if (exp
->elts
[pc
].opcode
== OP_VAR_MSYM_VALUE
)
3747 return evaluate_var_msym_value (EVAL_AVOID_SIDE_EFFECTS
,
3748 exp
->elts
[pc
+ 1].objfile
,
3749 exp
->elts
[pc
+ 2].msymbol
);
3751 return evaluate_subexp_type (exp
, pos
);
3754 /* Return non-zero if formal type FTYPE matches actual type ATYPE. If
3755 MAY_DEREF is non-zero, the formal may be a pointer and the actual
3757 /* The term "match" here is rather loose. The match is heuristic and
3761 ada_type_match (struct type
*ftype
, struct type
*atype
, int may_deref
)
3763 ftype
= ada_check_typedef (ftype
);
3764 atype
= ada_check_typedef (atype
);
3766 if (ftype
->code () == TYPE_CODE_REF
)
3767 ftype
= TYPE_TARGET_TYPE (ftype
);
3768 if (atype
->code () == TYPE_CODE_REF
)
3769 atype
= TYPE_TARGET_TYPE (atype
);
3771 switch (ftype
->code ())
3774 return ftype
->code () == atype
->code ();
3776 if (atype
->code () == TYPE_CODE_PTR
)
3777 return ada_type_match (TYPE_TARGET_TYPE (ftype
),
3778 TYPE_TARGET_TYPE (atype
), 0);
3781 && ada_type_match (TYPE_TARGET_TYPE (ftype
), atype
, 0));
3783 case TYPE_CODE_ENUM
:
3784 case TYPE_CODE_RANGE
:
3785 switch (atype
->code ())
3788 case TYPE_CODE_ENUM
:
3789 case TYPE_CODE_RANGE
:
3795 case TYPE_CODE_ARRAY
:
3796 return (atype
->code () == TYPE_CODE_ARRAY
3797 || ada_is_array_descriptor_type (atype
));
3799 case TYPE_CODE_STRUCT
:
3800 if (ada_is_array_descriptor_type (ftype
))
3801 return (atype
->code () == TYPE_CODE_ARRAY
3802 || ada_is_array_descriptor_type (atype
));
3804 return (atype
->code () == TYPE_CODE_STRUCT
3805 && !ada_is_array_descriptor_type (atype
));
3807 case TYPE_CODE_UNION
:
3809 return (atype
->code () == ftype
->code ());
3813 /* Return non-zero if the formals of FUNC "sufficiently match" the
3814 vector of actual argument types ACTUALS of size N_ACTUALS. FUNC
3815 may also be an enumeral, in which case it is treated as a 0-
3816 argument function. */
3819 ada_args_match (struct symbol
*func
, struct value
**actuals
, int n_actuals
)
3822 struct type
*func_type
= SYMBOL_TYPE (func
);
3824 if (SYMBOL_CLASS (func
) == LOC_CONST
3825 && func_type
->code () == TYPE_CODE_ENUM
)
3826 return (n_actuals
== 0);
3827 else if (func_type
== NULL
|| func_type
->code () != TYPE_CODE_FUNC
)
3830 if (func_type
->num_fields () != n_actuals
)
3833 for (i
= 0; i
< n_actuals
; i
+= 1)
3835 if (actuals
[i
] == NULL
)
3839 struct type
*ftype
= ada_check_typedef (func_type
->field (i
).type ());
3840 struct type
*atype
= ada_check_typedef (value_type (actuals
[i
]));
3842 if (!ada_type_match (ftype
, atype
, 1))
3849 /* False iff function type FUNC_TYPE definitely does not produce a value
3850 compatible with type CONTEXT_TYPE. Conservatively returns 1 if
3851 FUNC_TYPE is not a valid function type with a non-null return type
3852 or an enumerated type. A null CONTEXT_TYPE indicates any non-void type. */
3855 return_match (struct type
*func_type
, struct type
*context_type
)
3857 struct type
*return_type
;
3859 if (func_type
== NULL
)
3862 if (func_type
->code () == TYPE_CODE_FUNC
)
3863 return_type
= get_base_type (TYPE_TARGET_TYPE (func_type
));
3865 return_type
= get_base_type (func_type
);
3866 if (return_type
== NULL
)
3869 context_type
= get_base_type (context_type
);
3871 if (return_type
->code () == TYPE_CODE_ENUM
)
3872 return context_type
== NULL
|| return_type
== context_type
;
3873 else if (context_type
== NULL
)
3874 return return_type
->code () != TYPE_CODE_VOID
;
3876 return return_type
->code () == context_type
->code ();
3880 /* Returns the index in SYMS[0..NSYMS-1] that contains the symbol for the
3881 function (if any) that matches the types of the NARGS arguments in
3882 ARGS. If CONTEXT_TYPE is non-null and there is at least one match
3883 that returns that type, then eliminate matches that don't. If
3884 CONTEXT_TYPE is void and there is at least one match that does not
3885 return void, eliminate all matches that do.
3887 Asks the user if there is more than one match remaining. Returns -1
3888 if there is no such symbol or none is selected. NAME is used
3889 solely for messages. May re-arrange and modify SYMS in
3890 the process; the index returned is for the modified vector. */
3893 ada_resolve_function (struct block_symbol syms
[],
3894 int nsyms
, struct value
**args
, int nargs
,
3895 const char *name
, struct type
*context_type
,
3896 int parse_completion
)
3900 int m
; /* Number of hits */
3903 /* In the first pass of the loop, we only accept functions matching
3904 context_type. If none are found, we add a second pass of the loop
3905 where every function is accepted. */
3906 for (fallback
= 0; m
== 0 && fallback
< 2; fallback
++)
3908 for (k
= 0; k
< nsyms
; k
+= 1)
3910 struct type
*type
= ada_check_typedef (SYMBOL_TYPE (syms
[k
].symbol
));
3912 if (ada_args_match (syms
[k
].symbol
, args
, nargs
)
3913 && (fallback
|| return_match (type
, context_type
)))
3921 /* If we got multiple matches, ask the user which one to use. Don't do this
3922 interactive thing during completion, though, as the purpose of the
3923 completion is providing a list of all possible matches. Prompting the
3924 user to filter it down would be completely unexpected in this case. */
3927 else if (m
> 1 && !parse_completion
)
3929 printf_filtered (_("Multiple matches for %s\n"), name
);
3930 user_select_syms (syms
, m
, 1);
3936 /* Replace the operator of length OPLEN at position PC in *EXPP with a call
3937 on the function identified by SYM and BLOCK, and taking NARGS
3938 arguments. Update *EXPP as needed to hold more space. */
3941 replace_operator_with_call (expression_up
*expp
, int pc
, int nargs
,
3942 int oplen
, struct symbol
*sym
,
3943 const struct block
*block
)
3945 /* A new expression, with 6 more elements (3 for funcall, 4 for function
3946 symbol, -oplen for operator being replaced). */
3947 struct expression
*newexp
= (struct expression
*)
3948 xzalloc (sizeof (struct expression
)
3949 + EXP_ELEM_TO_BYTES ((*expp
)->nelts
+ 7 - oplen
));
3950 struct expression
*exp
= expp
->get ();
3952 newexp
->nelts
= exp
->nelts
+ 7 - oplen
;
3953 newexp
->language_defn
= exp
->language_defn
;
3954 newexp
->gdbarch
= exp
->gdbarch
;
3955 memcpy (newexp
->elts
, exp
->elts
, EXP_ELEM_TO_BYTES (pc
));
3956 memcpy (newexp
->elts
+ pc
+ 7, exp
->elts
+ pc
+ oplen
,
3957 EXP_ELEM_TO_BYTES (exp
->nelts
- pc
- oplen
));
3959 newexp
->elts
[pc
].opcode
= newexp
->elts
[pc
+ 2].opcode
= OP_FUNCALL
;
3960 newexp
->elts
[pc
+ 1].longconst
= (LONGEST
) nargs
;
3962 newexp
->elts
[pc
+ 3].opcode
= newexp
->elts
[pc
+ 6].opcode
= OP_VAR_VALUE
;
3963 newexp
->elts
[pc
+ 4].block
= block
;
3964 newexp
->elts
[pc
+ 5].symbol
= sym
;
3966 expp
->reset (newexp
);
3969 /* Type-class predicates */
3971 /* True iff TYPE is numeric (i.e., an INT, RANGE (of numeric type),
3975 numeric_type_p (struct type
*type
)
3981 switch (type
->code ())
3986 case TYPE_CODE_RANGE
:
3987 return (type
== TYPE_TARGET_TYPE (type
)
3988 || numeric_type_p (TYPE_TARGET_TYPE (type
)));
3995 /* True iff TYPE is integral (an INT or RANGE of INTs). */
3998 integer_type_p (struct type
*type
)
4004 switch (type
->code ())
4008 case TYPE_CODE_RANGE
:
4009 return (type
== TYPE_TARGET_TYPE (type
)
4010 || integer_type_p (TYPE_TARGET_TYPE (type
)));
4017 /* True iff TYPE is scalar (INT, RANGE, FLOAT, ENUM). */
4020 scalar_type_p (struct type
*type
)
4026 switch (type
->code ())
4029 case TYPE_CODE_RANGE
:
4030 case TYPE_CODE_ENUM
:
4039 /* True iff TYPE is discrete (INT, RANGE, ENUM). */
4042 discrete_type_p (struct type
*type
)
4048 switch (type
->code ())
4051 case TYPE_CODE_RANGE
:
4052 case TYPE_CODE_ENUM
:
4053 case TYPE_CODE_BOOL
:
4061 /* Returns non-zero if OP with operands in the vector ARGS could be
4062 a user-defined function. Errs on the side of pre-defined operators
4063 (i.e., result 0). */
4066 possible_user_operator_p (enum exp_opcode op
, struct value
*args
[])
4068 struct type
*type0
=
4069 (args
[0] == NULL
) ? NULL
: ada_check_typedef (value_type (args
[0]));
4070 struct type
*type1
=
4071 (args
[1] == NULL
) ? NULL
: ada_check_typedef (value_type (args
[1]));
4085 return (!(numeric_type_p (type0
) && numeric_type_p (type1
)));
4089 case BINOP_BITWISE_AND
:
4090 case BINOP_BITWISE_IOR
:
4091 case BINOP_BITWISE_XOR
:
4092 return (!(integer_type_p (type0
) && integer_type_p (type1
)));
4095 case BINOP_NOTEQUAL
:
4100 return (!(scalar_type_p (type0
) && scalar_type_p (type1
)));
4103 return !ada_is_array_type (type0
) || !ada_is_array_type (type1
);
4106 return (!(numeric_type_p (type0
) && integer_type_p (type1
)));
4110 case UNOP_LOGICAL_NOT
:
4112 return (!numeric_type_p (type0
));
4121 1. In the following, we assume that a renaming type's name may
4122 have an ___XD suffix. It would be nice if this went away at some
4124 2. We handle both the (old) purely type-based representation of
4125 renamings and the (new) variable-based encoding. At some point,
4126 it is devoutly to be hoped that the former goes away
4127 (FIXME: hilfinger-2007-07-09).
4128 3. Subprogram renamings are not implemented, although the XRS
4129 suffix is recognized (FIXME: hilfinger-2007-07-09). */
4131 /* If SYM encodes a renaming,
4133 <renaming> renames <renamed entity>,
4135 sets *LEN to the length of the renamed entity's name,
4136 *RENAMED_ENTITY to that name (not null-terminated), and *RENAMING_EXPR to
4137 the string describing the subcomponent selected from the renamed
4138 entity. Returns ADA_NOT_RENAMING if SYM does not encode a renaming
4139 (in which case, the values of *RENAMED_ENTITY, *LEN, and *RENAMING_EXPR
4140 are undefined). Otherwise, returns a value indicating the category
4141 of entity renamed: an object (ADA_OBJECT_RENAMING), exception
4142 (ADA_EXCEPTION_RENAMING), package (ADA_PACKAGE_RENAMING), or
4143 subprogram (ADA_SUBPROGRAM_RENAMING). Does no allocation; the
4144 strings returned in *RENAMED_ENTITY and *RENAMING_EXPR should not be
4145 deallocated. The values of RENAMED_ENTITY, LEN, or RENAMING_EXPR
4146 may be NULL, in which case they are not assigned.
4148 [Currently, however, GCC does not generate subprogram renamings.] */
4150 enum ada_renaming_category
4151 ada_parse_renaming (struct symbol
*sym
,
4152 const char **renamed_entity
, int *len
,
4153 const char **renaming_expr
)
4155 enum ada_renaming_category kind
;
4160 return ADA_NOT_RENAMING
;
4161 switch (SYMBOL_CLASS (sym
))
4164 return ADA_NOT_RENAMING
;
4168 case LOC_OPTIMIZED_OUT
:
4169 info
= strstr (sym
->linkage_name (), "___XR");
4171 return ADA_NOT_RENAMING
;
4175 kind
= ADA_OBJECT_RENAMING
;
4179 kind
= ADA_EXCEPTION_RENAMING
;
4183 kind
= ADA_PACKAGE_RENAMING
;
4187 kind
= ADA_SUBPROGRAM_RENAMING
;
4191 return ADA_NOT_RENAMING
;
4195 if (renamed_entity
!= NULL
)
4196 *renamed_entity
= info
;
4197 suffix
= strstr (info
, "___XE");
4198 if (suffix
== NULL
|| suffix
== info
)
4199 return ADA_NOT_RENAMING
;
4201 *len
= strlen (info
) - strlen (suffix
);
4203 if (renaming_expr
!= NULL
)
4204 *renaming_expr
= suffix
;
4208 /* Compute the value of the given RENAMING_SYM, which is expected to
4209 be a symbol encoding a renaming expression. BLOCK is the block
4210 used to evaluate the renaming. */
4212 static struct value
*
4213 ada_read_renaming_var_value (struct symbol
*renaming_sym
,
4214 const struct block
*block
)
4216 const char *sym_name
;
4218 sym_name
= renaming_sym
->linkage_name ();
4219 expression_up expr
= parse_exp_1 (&sym_name
, 0, block
, 0);
4220 return evaluate_expression (expr
.get ());
4224 /* Evaluation: Function Calls */
4226 /* Return an lvalue containing the value VAL. This is the identity on
4227 lvalues, and otherwise has the side-effect of allocating memory
4228 in the inferior where a copy of the value contents is copied. */
4230 static struct value
*
4231 ensure_lval (struct value
*val
)
4233 if (VALUE_LVAL (val
) == not_lval
4234 || VALUE_LVAL (val
) == lval_internalvar
)
4236 int len
= TYPE_LENGTH (ada_check_typedef (value_type (val
)));
4237 const CORE_ADDR addr
=
4238 value_as_long (value_allocate_space_in_inferior (len
));
4240 VALUE_LVAL (val
) = lval_memory
;
4241 set_value_address (val
, addr
);
4242 write_memory (addr
, value_contents (val
), len
);
4248 /* Given ARG, a value of type (pointer or reference to a)*
4249 structure/union, extract the component named NAME from the ultimate
4250 target structure/union and return it as a value with its
4253 The routine searches for NAME among all members of the structure itself
4254 and (recursively) among all members of any wrapper members
4257 If NO_ERR, then simply return NULL in case of error, rather than
4260 static struct value
*
4261 ada_value_struct_elt (struct value
*arg
, const char *name
, int no_err
)
4263 struct type
*t
, *t1
;
4268 t1
= t
= ada_check_typedef (value_type (arg
));
4269 if (t
->code () == TYPE_CODE_REF
)
4271 t1
= TYPE_TARGET_TYPE (t
);
4274 t1
= ada_check_typedef (t1
);
4275 if (t1
->code () == TYPE_CODE_PTR
)
4277 arg
= coerce_ref (arg
);
4282 while (t
->code () == TYPE_CODE_PTR
)
4284 t1
= TYPE_TARGET_TYPE (t
);
4287 t1
= ada_check_typedef (t1
);
4288 if (t1
->code () == TYPE_CODE_PTR
)
4290 arg
= value_ind (arg
);
4297 if (t1
->code () != TYPE_CODE_STRUCT
&& t1
->code () != TYPE_CODE_UNION
)
4301 v
= ada_search_struct_field (name
, arg
, 0, t
);
4304 int bit_offset
, bit_size
, byte_offset
;
4305 struct type
*field_type
;
4308 if (t
->code () == TYPE_CODE_PTR
)
4309 address
= value_address (ada_value_ind (arg
));
4311 address
= value_address (ada_coerce_ref (arg
));
4313 /* Check to see if this is a tagged type. We also need to handle
4314 the case where the type is a reference to a tagged type, but
4315 we have to be careful to exclude pointers to tagged types.
4316 The latter should be shown as usual (as a pointer), whereas
4317 a reference should mostly be transparent to the user. */
4319 if (ada_is_tagged_type (t1
, 0)
4320 || (t1
->code () == TYPE_CODE_REF
4321 && ada_is_tagged_type (TYPE_TARGET_TYPE (t1
), 0)))
4323 /* We first try to find the searched field in the current type.
4324 If not found then let's look in the fixed type. */
4326 if (!find_struct_field (name
, t1
, 0,
4327 &field_type
, &byte_offset
, &bit_offset
,
4336 /* Convert to fixed type in all cases, so that we have proper
4337 offsets to each field in unconstrained record types. */
4338 t1
= ada_to_fixed_type (ada_get_base_type (t1
), NULL
,
4339 address
, NULL
, check_tag
);
4341 if (find_struct_field (name
, t1
, 0,
4342 &field_type
, &byte_offset
, &bit_offset
,
4347 if (t
->code () == TYPE_CODE_REF
)
4348 arg
= ada_coerce_ref (arg
);
4350 arg
= ada_value_ind (arg
);
4351 v
= ada_value_primitive_packed_val (arg
, NULL
, byte_offset
,
4352 bit_offset
, bit_size
,
4356 v
= value_at_lazy (field_type
, address
+ byte_offset
);
4360 if (v
!= NULL
|| no_err
)
4363 error (_("There is no member named %s."), name
);
4369 error (_("Attempt to extract a component of "
4370 "a value that is not a record."));
4373 /* Return the value ACTUAL, converted to be an appropriate value for a
4374 formal of type FORMAL_TYPE. Use *SP as a stack pointer for
4375 allocating any necessary descriptors (fat pointers), or copies of
4376 values not residing in memory, updating it as needed. */
4379 ada_convert_actual (struct value
*actual
, struct type
*formal_type0
)
4381 struct type
*actual_type
= ada_check_typedef (value_type (actual
));
4382 struct type
*formal_type
= ada_check_typedef (formal_type0
);
4383 struct type
*formal_target
=
4384 formal_type
->code () == TYPE_CODE_PTR
4385 ? ada_check_typedef (TYPE_TARGET_TYPE (formal_type
)) : formal_type
;
4386 struct type
*actual_target
=
4387 actual_type
->code () == TYPE_CODE_PTR
4388 ? ada_check_typedef (TYPE_TARGET_TYPE (actual_type
)) : actual_type
;
4390 if (ada_is_array_descriptor_type (formal_target
)
4391 && actual_target
->code () == TYPE_CODE_ARRAY
)
4392 return make_array_descriptor (formal_type
, actual
);
4393 else if (formal_type
->code () == TYPE_CODE_PTR
4394 || formal_type
->code () == TYPE_CODE_REF
)
4396 struct value
*result
;
4398 if (formal_target
->code () == TYPE_CODE_ARRAY
4399 && ada_is_array_descriptor_type (actual_target
))
4400 result
= desc_data (actual
);
4401 else if (formal_type
->code () != TYPE_CODE_PTR
)
4403 if (VALUE_LVAL (actual
) != lval_memory
)
4407 actual_type
= ada_check_typedef (value_type (actual
));
4408 val
= allocate_value (actual_type
);
4409 memcpy ((char *) value_contents_raw (val
),
4410 (char *) value_contents (actual
),
4411 TYPE_LENGTH (actual_type
));
4412 actual
= ensure_lval (val
);
4414 result
= value_addr (actual
);
4418 return value_cast_pointers (formal_type
, result
, 0);
4420 else if (actual_type
->code () == TYPE_CODE_PTR
)
4421 return ada_value_ind (actual
);
4422 else if (ada_is_aligner_type (formal_type
))
4424 /* We need to turn this parameter into an aligner type
4426 struct value
*aligner
= allocate_value (formal_type
);
4427 struct value
*component
= ada_value_struct_elt (aligner
, "F", 0);
4429 value_assign_to_component (aligner
, component
, actual
);
4436 /* Convert VALUE (which must be an address) to a CORE_ADDR that is a pointer of
4437 type TYPE. This is usually an inefficient no-op except on some targets
4438 (such as AVR) where the representation of a pointer and an address
4442 value_pointer (struct value
*value
, struct type
*type
)
4444 struct gdbarch
*gdbarch
= get_type_arch (type
);
4445 unsigned len
= TYPE_LENGTH (type
);
4446 gdb_byte
*buf
= (gdb_byte
*) alloca (len
);
4449 addr
= value_address (value
);
4450 gdbarch_address_to_pointer (gdbarch
, type
, buf
, addr
);
4451 addr
= extract_unsigned_integer (buf
, len
, type_byte_order (type
));
4456 /* Push a descriptor of type TYPE for array value ARR on the stack at
4457 *SP, updating *SP to reflect the new descriptor. Return either
4458 an lvalue representing the new descriptor, or (if TYPE is a pointer-
4459 to-descriptor type rather than a descriptor type), a struct value *
4460 representing a pointer to this descriptor. */
4462 static struct value
*
4463 make_array_descriptor (struct type
*type
, struct value
*arr
)
4465 struct type
*bounds_type
= desc_bounds_type (type
);
4466 struct type
*desc_type
= desc_base_type (type
);
4467 struct value
*descriptor
= allocate_value (desc_type
);
4468 struct value
*bounds
= allocate_value (bounds_type
);
4471 for (i
= ada_array_arity (ada_check_typedef (value_type (arr
)));
4474 modify_field (value_type (bounds
), value_contents_writeable (bounds
),
4475 ada_array_bound (arr
, i
, 0),
4476 desc_bound_bitpos (bounds_type
, i
, 0),
4477 desc_bound_bitsize (bounds_type
, i
, 0));
4478 modify_field (value_type (bounds
), value_contents_writeable (bounds
),
4479 ada_array_bound (arr
, i
, 1),
4480 desc_bound_bitpos (bounds_type
, i
, 1),
4481 desc_bound_bitsize (bounds_type
, i
, 1));
4484 bounds
= ensure_lval (bounds
);
4486 modify_field (value_type (descriptor
),
4487 value_contents_writeable (descriptor
),
4488 value_pointer (ensure_lval (arr
),
4489 desc_type
->field (0).type ()),
4490 fat_pntr_data_bitpos (desc_type
),
4491 fat_pntr_data_bitsize (desc_type
));
4493 modify_field (value_type (descriptor
),
4494 value_contents_writeable (descriptor
),
4495 value_pointer (bounds
,
4496 desc_type
->field (1).type ()),
4497 fat_pntr_bounds_bitpos (desc_type
),
4498 fat_pntr_bounds_bitsize (desc_type
));
4500 descriptor
= ensure_lval (descriptor
);
4502 if (type
->code () == TYPE_CODE_PTR
)
4503 return value_addr (descriptor
);
4508 /* Symbol Cache Module */
4510 /* Performance measurements made as of 2010-01-15 indicate that
4511 this cache does bring some noticeable improvements. Depending
4512 on the type of entity being printed, the cache can make it as much
4513 as an order of magnitude faster than without it.
4515 The descriptive type DWARF extension has significantly reduced
4516 the need for this cache, at least when DWARF is being used. However,
4517 even in this case, some expensive name-based symbol searches are still
4518 sometimes necessary - to find an XVZ variable, mostly. */
4520 /* Initialize the contents of SYM_CACHE. */
4523 ada_init_symbol_cache (struct ada_symbol_cache
*sym_cache
)
4525 obstack_init (&sym_cache
->cache_space
);
4526 memset (sym_cache
->root
, '\000', sizeof (sym_cache
->root
));
4529 /* Free the memory used by SYM_CACHE. */
4532 ada_free_symbol_cache (struct ada_symbol_cache
*sym_cache
)
4534 obstack_free (&sym_cache
->cache_space
, NULL
);
4538 /* Return the symbol cache associated to the given program space PSPACE.
4539 If not allocated for this PSPACE yet, allocate and initialize one. */
4541 static struct ada_symbol_cache
*
4542 ada_get_symbol_cache (struct program_space
*pspace
)
4544 struct ada_pspace_data
*pspace_data
= get_ada_pspace_data (pspace
);
4546 if (pspace_data
->sym_cache
== NULL
)
4548 pspace_data
->sym_cache
= XCNEW (struct ada_symbol_cache
);
4549 ada_init_symbol_cache (pspace_data
->sym_cache
);
4552 return pspace_data
->sym_cache
;
4555 /* Clear all entries from the symbol cache. */
4558 ada_clear_symbol_cache (void)
4560 struct ada_symbol_cache
*sym_cache
4561 = ada_get_symbol_cache (current_program_space
);
4563 obstack_free (&sym_cache
->cache_space
, NULL
);
4564 ada_init_symbol_cache (sym_cache
);
4567 /* Search our cache for an entry matching NAME and DOMAIN.
4568 Return it if found, or NULL otherwise. */
4570 static struct cache_entry
**
4571 find_entry (const char *name
, domain_enum domain
)
4573 struct ada_symbol_cache
*sym_cache
4574 = ada_get_symbol_cache (current_program_space
);
4575 int h
= msymbol_hash (name
) % HASH_SIZE
;
4576 struct cache_entry
**e
;
4578 for (e
= &sym_cache
->root
[h
]; *e
!= NULL
; e
= &(*e
)->next
)
4580 if (domain
== (*e
)->domain
&& strcmp (name
, (*e
)->name
) == 0)
4586 /* Search the symbol cache for an entry matching NAME and DOMAIN.
4587 Return 1 if found, 0 otherwise.
4589 If an entry was found and SYM is not NULL, set *SYM to the entry's
4590 SYM. Same principle for BLOCK if not NULL. */
4593 lookup_cached_symbol (const char *name
, domain_enum domain
,
4594 struct symbol
**sym
, const struct block
**block
)
4596 struct cache_entry
**e
= find_entry (name
, domain
);
4603 *block
= (*e
)->block
;
4607 /* Assuming that (SYM, BLOCK) is the result of the lookup of NAME
4608 in domain DOMAIN, save this result in our symbol cache. */
4611 cache_symbol (const char *name
, domain_enum domain
, struct symbol
*sym
,
4612 const struct block
*block
)
4614 struct ada_symbol_cache
*sym_cache
4615 = ada_get_symbol_cache (current_program_space
);
4617 struct cache_entry
*e
;
4619 /* Symbols for builtin types don't have a block.
4620 For now don't cache such symbols. */
4621 if (sym
!= NULL
&& !SYMBOL_OBJFILE_OWNED (sym
))
4624 /* If the symbol is a local symbol, then do not cache it, as a search
4625 for that symbol depends on the context. To determine whether
4626 the symbol is local or not, we check the block where we found it
4627 against the global and static blocks of its associated symtab. */
4629 && BLOCKVECTOR_BLOCK (SYMTAB_BLOCKVECTOR (symbol_symtab (sym
)),
4630 GLOBAL_BLOCK
) != block
4631 && BLOCKVECTOR_BLOCK (SYMTAB_BLOCKVECTOR (symbol_symtab (sym
)),
4632 STATIC_BLOCK
) != block
)
4635 h
= msymbol_hash (name
) % HASH_SIZE
;
4636 e
= XOBNEW (&sym_cache
->cache_space
, cache_entry
);
4637 e
->next
= sym_cache
->root
[h
];
4638 sym_cache
->root
[h
] = e
;
4639 e
->name
= obstack_strdup (&sym_cache
->cache_space
, name
);
4647 /* Return the symbol name match type that should be used used when
4648 searching for all symbols matching LOOKUP_NAME.
4650 LOOKUP_NAME is expected to be a symbol name after transformation
4653 static symbol_name_match_type
4654 name_match_type_from_name (const char *lookup_name
)
4656 return (strstr (lookup_name
, "__") == NULL
4657 ? symbol_name_match_type::WILD
4658 : symbol_name_match_type::FULL
);
4661 /* Return the result of a standard (literal, C-like) lookup of NAME in
4662 given DOMAIN, visible from lexical block BLOCK. */
4664 static struct symbol
*
4665 standard_lookup (const char *name
, const struct block
*block
,
4668 /* Initialize it just to avoid a GCC false warning. */
4669 struct block_symbol sym
= {};
4671 if (lookup_cached_symbol (name
, domain
, &sym
.symbol
, NULL
))
4673 ada_lookup_encoded_symbol (name
, block
, domain
, &sym
);
4674 cache_symbol (name
, domain
, sym
.symbol
, sym
.block
);
4679 /* Non-zero iff there is at least one non-function/non-enumeral symbol
4680 in the symbol fields of SYMS[0..N-1]. We treat enumerals as functions,
4681 since they contend in overloading in the same way. */
4683 is_nonfunction (struct block_symbol syms
[], int n
)
4687 for (i
= 0; i
< n
; i
+= 1)
4688 if (SYMBOL_TYPE (syms
[i
].symbol
)->code () != TYPE_CODE_FUNC
4689 && (SYMBOL_TYPE (syms
[i
].symbol
)->code () != TYPE_CODE_ENUM
4690 || SYMBOL_CLASS (syms
[i
].symbol
) != LOC_CONST
))
4696 /* If true (non-zero), then TYPE0 and TYPE1 represent equivalent
4697 struct types. Otherwise, they may not. */
4700 equiv_types (struct type
*type0
, struct type
*type1
)
4704 if (type0
== NULL
|| type1
== NULL
4705 || type0
->code () != type1
->code ())
4707 if ((type0
->code () == TYPE_CODE_STRUCT
4708 || type0
->code () == TYPE_CODE_ENUM
)
4709 && ada_type_name (type0
) != NULL
&& ada_type_name (type1
) != NULL
4710 && strcmp (ada_type_name (type0
), ada_type_name (type1
)) == 0)
4716 /* True iff SYM0 represents the same entity as SYM1, or one that is
4717 no more defined than that of SYM1. */
4720 lesseq_defined_than (struct symbol
*sym0
, struct symbol
*sym1
)
4724 if (SYMBOL_DOMAIN (sym0
) != SYMBOL_DOMAIN (sym1
)
4725 || SYMBOL_CLASS (sym0
) != SYMBOL_CLASS (sym1
))
4728 switch (SYMBOL_CLASS (sym0
))
4734 struct type
*type0
= SYMBOL_TYPE (sym0
);
4735 struct type
*type1
= SYMBOL_TYPE (sym1
);
4736 const char *name0
= sym0
->linkage_name ();
4737 const char *name1
= sym1
->linkage_name ();
4738 int len0
= strlen (name0
);
4741 type0
->code () == type1
->code ()
4742 && (equiv_types (type0
, type1
)
4743 || (len0
< strlen (name1
) && strncmp (name0
, name1
, len0
) == 0
4744 && startswith (name1
+ len0
, "___XV")));
4747 return SYMBOL_VALUE (sym0
) == SYMBOL_VALUE (sym1
)
4748 && equiv_types (SYMBOL_TYPE (sym0
), SYMBOL_TYPE (sym1
));
4752 const char *name0
= sym0
->linkage_name ();
4753 const char *name1
= sym1
->linkage_name ();
4754 return (strcmp (name0
, name1
) == 0
4755 && SYMBOL_VALUE_ADDRESS (sym0
) == SYMBOL_VALUE_ADDRESS (sym1
));
4763 /* Append (SYM,BLOCK,SYMTAB) to the end of the array of struct block_symbol
4764 records in OBSTACKP. Do nothing if SYM is a duplicate. */
4767 add_defn_to_vec (struct obstack
*obstackp
,
4769 const struct block
*block
)
4772 struct block_symbol
*prevDefns
= defns_collected (obstackp
, 0);
4774 /* Do not try to complete stub types, as the debugger is probably
4775 already scanning all symbols matching a certain name at the
4776 time when this function is called. Trying to replace the stub
4777 type by its associated full type will cause us to restart a scan
4778 which may lead to an infinite recursion. Instead, the client
4779 collecting the matching symbols will end up collecting several
4780 matches, with at least one of them complete. It can then filter
4781 out the stub ones if needed. */
4783 for (i
= num_defns_collected (obstackp
) - 1; i
>= 0; i
-= 1)
4785 if (lesseq_defined_than (sym
, prevDefns
[i
].symbol
))
4787 else if (lesseq_defined_than (prevDefns
[i
].symbol
, sym
))
4789 prevDefns
[i
].symbol
= sym
;
4790 prevDefns
[i
].block
= block
;
4796 struct block_symbol info
;
4800 obstack_grow (obstackp
, &info
, sizeof (struct block_symbol
));
4804 /* Number of block_symbol structures currently collected in current vector in
4808 num_defns_collected (struct obstack
*obstackp
)
4810 return obstack_object_size (obstackp
) / sizeof (struct block_symbol
);
4813 /* Vector of block_symbol structures currently collected in current vector in
4814 OBSTACKP. If FINISH, close off the vector and return its final address. */
4816 static struct block_symbol
*
4817 defns_collected (struct obstack
*obstackp
, int finish
)
4820 return (struct block_symbol
*) obstack_finish (obstackp
);
4822 return (struct block_symbol
*) obstack_base (obstackp
);
4825 /* Return a bound minimal symbol matching NAME according to Ada
4826 decoding rules. Returns an invalid symbol if there is no such
4827 minimal symbol. Names prefixed with "standard__" are handled
4828 specially: "standard__" is first stripped off, and only static and
4829 global symbols are searched. */
4831 struct bound_minimal_symbol
4832 ada_lookup_simple_minsym (const char *name
)
4834 struct bound_minimal_symbol result
;
4836 memset (&result
, 0, sizeof (result
));
4838 symbol_name_match_type match_type
= name_match_type_from_name (name
);
4839 lookup_name_info
lookup_name (name
, match_type
);
4841 symbol_name_matcher_ftype
*match_name
4842 = ada_get_symbol_name_matcher (lookup_name
);
4844 for (objfile
*objfile
: current_program_space
->objfiles ())
4846 for (minimal_symbol
*msymbol
: objfile
->msymbols ())
4848 if (match_name (msymbol
->linkage_name (), lookup_name
, NULL
)
4849 && MSYMBOL_TYPE (msymbol
) != mst_solib_trampoline
)
4851 result
.minsym
= msymbol
;
4852 result
.objfile
= objfile
;
4861 /* For all subprograms that statically enclose the subprogram of the
4862 selected frame, add symbols matching identifier NAME in DOMAIN
4863 and their blocks to the list of data in OBSTACKP, as for
4864 ada_add_block_symbols (q.v.). If WILD_MATCH_P, treat as NAME
4865 with a wildcard prefix. */
4868 add_symbols_from_enclosing_procs (struct obstack
*obstackp
,
4869 const lookup_name_info
&lookup_name
,
4874 /* True if TYPE is definitely an artificial type supplied to a symbol
4875 for which no debugging information was given in the symbol file. */
4878 is_nondebugging_type (struct type
*type
)
4880 const char *name
= ada_type_name (type
);
4882 return (name
!= NULL
&& strcmp (name
, "<variable, no debug info>") == 0);
4885 /* Return nonzero if TYPE1 and TYPE2 are two enumeration types
4886 that are deemed "identical" for practical purposes.
4888 This function assumes that TYPE1 and TYPE2 are both TYPE_CODE_ENUM
4889 types and that their number of enumerals is identical (in other
4890 words, type1->num_fields () == type2->num_fields ()). */
4893 ada_identical_enum_types_p (struct type
*type1
, struct type
*type2
)
4897 /* The heuristic we use here is fairly conservative. We consider
4898 that 2 enumerate types are identical if they have the same
4899 number of enumerals and that all enumerals have the same
4900 underlying value and name. */
4902 /* All enums in the type should have an identical underlying value. */
4903 for (i
= 0; i
< type1
->num_fields (); i
++)
4904 if (TYPE_FIELD_ENUMVAL (type1
, i
) != TYPE_FIELD_ENUMVAL (type2
, i
))
4907 /* All enumerals should also have the same name (modulo any numerical
4909 for (i
= 0; i
< type1
->num_fields (); i
++)
4911 const char *name_1
= TYPE_FIELD_NAME (type1
, i
);
4912 const char *name_2
= TYPE_FIELD_NAME (type2
, i
);
4913 int len_1
= strlen (name_1
);
4914 int len_2
= strlen (name_2
);
4916 ada_remove_trailing_digits (TYPE_FIELD_NAME (type1
, i
), &len_1
);
4917 ada_remove_trailing_digits (TYPE_FIELD_NAME (type2
, i
), &len_2
);
4919 || strncmp (TYPE_FIELD_NAME (type1
, i
),
4920 TYPE_FIELD_NAME (type2
, i
),
4928 /* Return nonzero if all the symbols in SYMS are all enumeral symbols
4929 that are deemed "identical" for practical purposes. Sometimes,
4930 enumerals are not strictly identical, but their types are so similar
4931 that they can be considered identical.
4933 For instance, consider the following code:
4935 type Color is (Black, Red, Green, Blue, White);
4936 type RGB_Color is new Color range Red .. Blue;
4938 Type RGB_Color is a subrange of an implicit type which is a copy
4939 of type Color. If we call that implicit type RGB_ColorB ("B" is
4940 for "Base Type"), then type RGB_ColorB is a copy of type Color.
4941 As a result, when an expression references any of the enumeral
4942 by name (Eg. "print green"), the expression is technically
4943 ambiguous and the user should be asked to disambiguate. But
4944 doing so would only hinder the user, since it wouldn't matter
4945 what choice he makes, the outcome would always be the same.
4946 So, for practical purposes, we consider them as the same. */
4949 symbols_are_identical_enums (const std::vector
<struct block_symbol
> &syms
)
4953 /* Before performing a thorough comparison check of each type,
4954 we perform a series of inexpensive checks. We expect that these
4955 checks will quickly fail in the vast majority of cases, and thus
4956 help prevent the unnecessary use of a more expensive comparison.
4957 Said comparison also expects us to make some of these checks
4958 (see ada_identical_enum_types_p). */
4960 /* Quick check: All symbols should have an enum type. */
4961 for (i
= 0; i
< syms
.size (); i
++)
4962 if (SYMBOL_TYPE (syms
[i
].symbol
)->code () != TYPE_CODE_ENUM
)
4965 /* Quick check: They should all have the same value. */
4966 for (i
= 1; i
< syms
.size (); i
++)
4967 if (SYMBOL_VALUE (syms
[i
].symbol
) != SYMBOL_VALUE (syms
[0].symbol
))
4970 /* Quick check: They should all have the same number of enumerals. */
4971 for (i
= 1; i
< syms
.size (); i
++)
4972 if (SYMBOL_TYPE (syms
[i
].symbol
)->num_fields ()
4973 != SYMBOL_TYPE (syms
[0].symbol
)->num_fields ())
4976 /* All the sanity checks passed, so we might have a set of
4977 identical enumeration types. Perform a more complete
4978 comparison of the type of each symbol. */
4979 for (i
= 1; i
< syms
.size (); i
++)
4980 if (!ada_identical_enum_types_p (SYMBOL_TYPE (syms
[i
].symbol
),
4981 SYMBOL_TYPE (syms
[0].symbol
)))
4987 /* Remove any non-debugging symbols in SYMS that definitely
4988 duplicate other symbols in the list (The only case I know of where
4989 this happens is when object files containing stabs-in-ecoff are
4990 linked with files containing ordinary ecoff debugging symbols (or no
4991 debugging symbols)). Modifies SYMS to squeeze out deleted entries.
4992 Returns the number of items in the modified list. */
4995 remove_extra_symbols (std::vector
<struct block_symbol
> *syms
)
4999 /* We should never be called with less than 2 symbols, as there
5000 cannot be any extra symbol in that case. But it's easy to
5001 handle, since we have nothing to do in that case. */
5002 if (syms
->size () < 2)
5003 return syms
->size ();
5006 while (i
< syms
->size ())
5010 /* If two symbols have the same name and one of them is a stub type,
5011 the get rid of the stub. */
5013 if (SYMBOL_TYPE ((*syms
)[i
].symbol
)->is_stub ()
5014 && (*syms
)[i
].symbol
->linkage_name () != NULL
)
5016 for (j
= 0; j
< syms
->size (); j
++)
5019 && !SYMBOL_TYPE ((*syms
)[j
].symbol
)->is_stub ()
5020 && (*syms
)[j
].symbol
->linkage_name () != NULL
5021 && strcmp ((*syms
)[i
].symbol
->linkage_name (),
5022 (*syms
)[j
].symbol
->linkage_name ()) == 0)
5027 /* Two symbols with the same name, same class and same address
5028 should be identical. */
5030 else if ((*syms
)[i
].symbol
->linkage_name () != NULL
5031 && SYMBOL_CLASS ((*syms
)[i
].symbol
) == LOC_STATIC
5032 && is_nondebugging_type (SYMBOL_TYPE ((*syms
)[i
].symbol
)))
5034 for (j
= 0; j
< syms
->size (); j
+= 1)
5037 && (*syms
)[j
].symbol
->linkage_name () != NULL
5038 && strcmp ((*syms
)[i
].symbol
->linkage_name (),
5039 (*syms
)[j
].symbol
->linkage_name ()) == 0
5040 && SYMBOL_CLASS ((*syms
)[i
].symbol
)
5041 == SYMBOL_CLASS ((*syms
)[j
].symbol
)
5042 && SYMBOL_VALUE_ADDRESS ((*syms
)[i
].symbol
)
5043 == SYMBOL_VALUE_ADDRESS ((*syms
)[j
].symbol
))
5049 syms
->erase (syms
->begin () + i
);
5054 /* If all the remaining symbols are identical enumerals, then
5055 just keep the first one and discard the rest.
5057 Unlike what we did previously, we do not discard any entry
5058 unless they are ALL identical. This is because the symbol
5059 comparison is not a strict comparison, but rather a practical
5060 comparison. If all symbols are considered identical, then
5061 we can just go ahead and use the first one and discard the rest.
5062 But if we cannot reduce the list to a single element, we have
5063 to ask the user to disambiguate anyways. And if we have to
5064 present a multiple-choice menu, it's less confusing if the list
5065 isn't missing some choices that were identical and yet distinct. */
5066 if (symbols_are_identical_enums (*syms
))
5069 return syms
->size ();
5072 /* Given a type that corresponds to a renaming entity, use the type name
5073 to extract the scope (package name or function name, fully qualified,
5074 and following the GNAT encoding convention) where this renaming has been
5078 xget_renaming_scope (struct type
*renaming_type
)
5080 /* The renaming types adhere to the following convention:
5081 <scope>__<rename>___<XR extension>.
5082 So, to extract the scope, we search for the "___XR" extension,
5083 and then backtrack until we find the first "__". */
5085 const char *name
= renaming_type
->name ();
5086 const char *suffix
= strstr (name
, "___XR");
5089 /* Now, backtrack a bit until we find the first "__". Start looking
5090 at suffix - 3, as the <rename> part is at least one character long. */
5092 for (last
= suffix
- 3; last
> name
; last
--)
5093 if (last
[0] == '_' && last
[1] == '_')
5096 /* Make a copy of scope and return it. */
5097 return std::string (name
, last
);
5100 /* Return nonzero if NAME corresponds to a package name. */
5103 is_package_name (const char *name
)
5105 /* Here, We take advantage of the fact that no symbols are generated
5106 for packages, while symbols are generated for each function.
5107 So the condition for NAME represent a package becomes equivalent
5108 to NAME not existing in our list of symbols. There is only one
5109 small complication with library-level functions (see below). */
5111 /* If it is a function that has not been defined at library level,
5112 then we should be able to look it up in the symbols. */
5113 if (standard_lookup (name
, NULL
, VAR_DOMAIN
) != NULL
)
5116 /* Library-level function names start with "_ada_". See if function
5117 "_ada_" followed by NAME can be found. */
5119 /* Do a quick check that NAME does not contain "__", since library-level
5120 functions names cannot contain "__" in them. */
5121 if (strstr (name
, "__") != NULL
)
5124 std::string fun_name
= string_printf ("_ada_%s", name
);
5126 return (standard_lookup (fun_name
.c_str (), NULL
, VAR_DOMAIN
) == NULL
);
5129 /* Return nonzero if SYM corresponds to a renaming entity that is
5130 not visible from FUNCTION_NAME. */
5133 old_renaming_is_invisible (const struct symbol
*sym
, const char *function_name
)
5135 if (SYMBOL_CLASS (sym
) != LOC_TYPEDEF
)
5138 std::string scope
= xget_renaming_scope (SYMBOL_TYPE (sym
));
5140 /* If the rename has been defined in a package, then it is visible. */
5141 if (is_package_name (scope
.c_str ()))
5144 /* Check that the rename is in the current function scope by checking
5145 that its name starts with SCOPE. */
5147 /* If the function name starts with "_ada_", it means that it is
5148 a library-level function. Strip this prefix before doing the
5149 comparison, as the encoding for the renaming does not contain
5151 if (startswith (function_name
, "_ada_"))
5154 return !startswith (function_name
, scope
.c_str ());
5157 /* Remove entries from SYMS that corresponds to a renaming entity that
5158 is not visible from the function associated with CURRENT_BLOCK or
5159 that is superfluous due to the presence of more specific renaming
5160 information. Places surviving symbols in the initial entries of
5161 SYMS and returns the number of surviving symbols.
5164 First, in cases where an object renaming is implemented as a
5165 reference variable, GNAT may produce both the actual reference
5166 variable and the renaming encoding. In this case, we discard the
5169 Second, GNAT emits a type following a specified encoding for each renaming
5170 entity. Unfortunately, STABS currently does not support the definition
5171 of types that are local to a given lexical block, so all renamings types
5172 are emitted at library level. As a consequence, if an application
5173 contains two renaming entities using the same name, and a user tries to
5174 print the value of one of these entities, the result of the ada symbol
5175 lookup will also contain the wrong renaming type.
5177 This function partially covers for this limitation by attempting to
5178 remove from the SYMS list renaming symbols that should be visible
5179 from CURRENT_BLOCK. However, there does not seem be a 100% reliable
5180 method with the current information available. The implementation
5181 below has a couple of limitations (FIXME: brobecker-2003-05-12):
5183 - When the user tries to print a rename in a function while there
5184 is another rename entity defined in a package: Normally, the
5185 rename in the function has precedence over the rename in the
5186 package, so the latter should be removed from the list. This is
5187 currently not the case.
5189 - This function will incorrectly remove valid renames if
5190 the CURRENT_BLOCK corresponds to a function which symbol name
5191 has been changed by an "Export" pragma. As a consequence,
5192 the user will be unable to print such rename entities. */
5195 remove_irrelevant_renamings (std::vector
<struct block_symbol
> *syms
,
5196 const struct block
*current_block
)
5198 struct symbol
*current_function
;
5199 const char *current_function_name
;
5201 int is_new_style_renaming
;
5203 /* If there is both a renaming foo___XR... encoded as a variable and
5204 a simple variable foo in the same block, discard the latter.
5205 First, zero out such symbols, then compress. */
5206 is_new_style_renaming
= 0;
5207 for (i
= 0; i
< syms
->size (); i
+= 1)
5209 struct symbol
*sym
= (*syms
)[i
].symbol
;
5210 const struct block
*block
= (*syms
)[i
].block
;
5214 if (sym
== NULL
|| SYMBOL_CLASS (sym
) == LOC_TYPEDEF
)
5216 name
= sym
->linkage_name ();
5217 suffix
= strstr (name
, "___XR");
5221 int name_len
= suffix
- name
;
5224 is_new_style_renaming
= 1;
5225 for (j
= 0; j
< syms
->size (); j
+= 1)
5226 if (i
!= j
&& (*syms
)[j
].symbol
!= NULL
5227 && strncmp (name
, (*syms
)[j
].symbol
->linkage_name (),
5229 && block
== (*syms
)[j
].block
)
5230 (*syms
)[j
].symbol
= NULL
;
5233 if (is_new_style_renaming
)
5237 for (j
= k
= 0; j
< syms
->size (); j
+= 1)
5238 if ((*syms
)[j
].symbol
!= NULL
)
5240 (*syms
)[k
] = (*syms
)[j
];
5246 /* Extract the function name associated to CURRENT_BLOCK.
5247 Abort if unable to do so. */
5249 if (current_block
== NULL
)
5250 return syms
->size ();
5252 current_function
= block_linkage_function (current_block
);
5253 if (current_function
== NULL
)
5254 return syms
->size ();
5256 current_function_name
= current_function
->linkage_name ();
5257 if (current_function_name
== NULL
)
5258 return syms
->size ();
5260 /* Check each of the symbols, and remove it from the list if it is
5261 a type corresponding to a renaming that is out of the scope of
5262 the current block. */
5265 while (i
< syms
->size ())
5267 if (ada_parse_renaming ((*syms
)[i
].symbol
, NULL
, NULL
, NULL
)
5268 == ADA_OBJECT_RENAMING
5269 && old_renaming_is_invisible ((*syms
)[i
].symbol
,
5270 current_function_name
))
5271 syms
->erase (syms
->begin () + i
);
5276 return syms
->size ();
5279 /* Add to OBSTACKP all symbols from BLOCK (and its super-blocks)
5280 whose name and domain match NAME and DOMAIN respectively.
5281 If no match was found, then extend the search to "enclosing"
5282 routines (in other words, if we're inside a nested function,
5283 search the symbols defined inside the enclosing functions).
5284 If WILD_MATCH_P is nonzero, perform the naming matching in
5285 "wild" mode (see function "wild_match" for more info).
5287 Note: This function assumes that OBSTACKP has 0 (zero) element in it. */
5290 ada_add_local_symbols (struct obstack
*obstackp
,
5291 const lookup_name_info
&lookup_name
,
5292 const struct block
*block
, domain_enum domain
)
5294 int block_depth
= 0;
5296 while (block
!= NULL
)
5299 ada_add_block_symbols (obstackp
, block
, lookup_name
, domain
, NULL
);
5301 /* If we found a non-function match, assume that's the one. */
5302 if (is_nonfunction (defns_collected (obstackp
, 0),
5303 num_defns_collected (obstackp
)))
5306 block
= BLOCK_SUPERBLOCK (block
);
5309 /* If no luck so far, try to find NAME as a local symbol in some lexically
5310 enclosing subprogram. */
5311 if (num_defns_collected (obstackp
) == 0 && block_depth
> 2)
5312 add_symbols_from_enclosing_procs (obstackp
, lookup_name
, domain
);
5315 /* An object of this type is used as the user_data argument when
5316 calling the map_matching_symbols method. */
5320 struct objfile
*objfile
;
5321 struct obstack
*obstackp
;
5322 struct symbol
*arg_sym
;
5326 /* A callback for add_nonlocal_symbols that adds symbol, found in BSYM,
5327 to a list of symbols. DATA is a pointer to a struct match_data *
5328 containing the obstack that collects the symbol list, the file that SYM
5329 must come from, a flag indicating whether a non-argument symbol has
5330 been found in the current block, and the last argument symbol
5331 passed in SYM within the current block (if any). When SYM is null,
5332 marking the end of a block, the argument symbol is added if no
5333 other has been found. */
5336 aux_add_nonlocal_symbols (struct block_symbol
*bsym
,
5337 struct match_data
*data
)
5339 const struct block
*block
= bsym
->block
;
5340 struct symbol
*sym
= bsym
->symbol
;
5344 if (!data
->found_sym
&& data
->arg_sym
!= NULL
)
5345 add_defn_to_vec (data
->obstackp
,
5346 fixup_symbol_section (data
->arg_sym
, data
->objfile
),
5348 data
->found_sym
= 0;
5349 data
->arg_sym
= NULL
;
5353 if (SYMBOL_CLASS (sym
) == LOC_UNRESOLVED
)
5355 else if (SYMBOL_IS_ARGUMENT (sym
))
5356 data
->arg_sym
= sym
;
5359 data
->found_sym
= 1;
5360 add_defn_to_vec (data
->obstackp
,
5361 fixup_symbol_section (sym
, data
->objfile
),
5368 /* Helper for add_nonlocal_symbols. Find symbols in DOMAIN which are
5369 targeted by renamings matching LOOKUP_NAME in BLOCK. Add these
5370 symbols to OBSTACKP. Return whether we found such symbols. */
5373 ada_add_block_renamings (struct obstack
*obstackp
,
5374 const struct block
*block
,
5375 const lookup_name_info
&lookup_name
,
5378 struct using_direct
*renaming
;
5379 int defns_mark
= num_defns_collected (obstackp
);
5381 symbol_name_matcher_ftype
*name_match
5382 = ada_get_symbol_name_matcher (lookup_name
);
5384 for (renaming
= block_using (block
);
5386 renaming
= renaming
->next
)
5390 /* Avoid infinite recursions: skip this renaming if we are actually
5391 already traversing it.
5393 Currently, symbol lookup in Ada don't use the namespace machinery from
5394 C++/Fortran support: skip namespace imports that use them. */
5395 if (renaming
->searched
5396 || (renaming
->import_src
!= NULL
5397 && renaming
->import_src
[0] != '\0')
5398 || (renaming
->import_dest
!= NULL
5399 && renaming
->import_dest
[0] != '\0'))
5401 renaming
->searched
= 1;
5403 /* TODO: here, we perform another name-based symbol lookup, which can
5404 pull its own multiple overloads. In theory, we should be able to do
5405 better in this case since, in DWARF, DW_AT_import is a DIE reference,
5406 not a simple name. But in order to do this, we would need to enhance
5407 the DWARF reader to associate a symbol to this renaming, instead of a
5408 name. So, for now, we do something simpler: re-use the C++/Fortran
5409 namespace machinery. */
5410 r_name
= (renaming
->alias
!= NULL
5412 : renaming
->declaration
);
5413 if (name_match (r_name
, lookup_name
, NULL
))
5415 lookup_name_info
decl_lookup_name (renaming
->declaration
,
5416 lookup_name
.match_type ());
5417 ada_add_all_symbols (obstackp
, block
, decl_lookup_name
, domain
,
5420 renaming
->searched
= 0;
5422 return num_defns_collected (obstackp
) != defns_mark
;
5425 /* Implements compare_names, but only applying the comparision using
5426 the given CASING. */
5429 compare_names_with_case (const char *string1
, const char *string2
,
5430 enum case_sensitivity casing
)
5432 while (*string1
!= '\0' && *string2
!= '\0')
5436 if (isspace (*string1
) || isspace (*string2
))
5437 return strcmp_iw_ordered (string1
, string2
);
5439 if (casing
== case_sensitive_off
)
5441 c1
= tolower (*string1
);
5442 c2
= tolower (*string2
);
5459 return strcmp_iw_ordered (string1
, string2
);
5461 if (*string2
== '\0')
5463 if (is_name_suffix (string1
))
5470 if (*string2
== '(')
5471 return strcmp_iw_ordered (string1
, string2
);
5474 if (casing
== case_sensitive_off
)
5475 return tolower (*string1
) - tolower (*string2
);
5477 return *string1
- *string2
;
5482 /* Compare STRING1 to STRING2, with results as for strcmp.
5483 Compatible with strcmp_iw_ordered in that...
5485 strcmp_iw_ordered (STRING1, STRING2) <= 0
5489 compare_names (STRING1, STRING2) <= 0
5491 (they may differ as to what symbols compare equal). */
5494 compare_names (const char *string1
, const char *string2
)
5498 /* Similar to what strcmp_iw_ordered does, we need to perform
5499 a case-insensitive comparison first, and only resort to
5500 a second, case-sensitive, comparison if the first one was
5501 not sufficient to differentiate the two strings. */
5503 result
= compare_names_with_case (string1
, string2
, case_sensitive_off
);
5505 result
= compare_names_with_case (string1
, string2
, case_sensitive_on
);
5510 /* Convenience function to get at the Ada encoded lookup name for
5511 LOOKUP_NAME, as a C string. */
5514 ada_lookup_name (const lookup_name_info
&lookup_name
)
5516 return lookup_name
.ada ().lookup_name ().c_str ();
5519 /* Add to OBSTACKP all non-local symbols whose name and domain match
5520 LOOKUP_NAME and DOMAIN respectively. The search is performed on
5521 GLOBAL_BLOCK symbols if GLOBAL is non-zero, or on STATIC_BLOCK
5522 symbols otherwise. */
5525 add_nonlocal_symbols (struct obstack
*obstackp
,
5526 const lookup_name_info
&lookup_name
,
5527 domain_enum domain
, int global
)
5529 struct match_data data
;
5531 memset (&data
, 0, sizeof data
);
5532 data
.obstackp
= obstackp
;
5534 bool is_wild_match
= lookup_name
.ada ().wild_match_p ();
5536 auto callback
= [&] (struct block_symbol
*bsym
)
5538 return aux_add_nonlocal_symbols (bsym
, &data
);
5541 for (objfile
*objfile
: current_program_space
->objfiles ())
5543 data
.objfile
= objfile
;
5545 objfile
->sf
->qf
->map_matching_symbols (objfile
, lookup_name
,
5546 domain
, global
, callback
,
5548 ? NULL
: compare_names
));
5550 for (compunit_symtab
*cu
: objfile
->compunits ())
5552 const struct block
*global_block
5553 = BLOCKVECTOR_BLOCK (COMPUNIT_BLOCKVECTOR (cu
), GLOBAL_BLOCK
);
5555 if (ada_add_block_renamings (obstackp
, global_block
, lookup_name
,
5561 if (num_defns_collected (obstackp
) == 0 && global
&& !is_wild_match
)
5563 const char *name
= ada_lookup_name (lookup_name
);
5564 std::string bracket_name
= std::string ("<_ada_") + name
+ '>';
5565 lookup_name_info
name1 (bracket_name
, symbol_name_match_type::FULL
);
5567 for (objfile
*objfile
: current_program_space
->objfiles ())
5569 data
.objfile
= objfile
;
5570 objfile
->sf
->qf
->map_matching_symbols (objfile
, name1
,
5571 domain
, global
, callback
,
5577 /* Find symbols in DOMAIN matching LOOKUP_NAME, in BLOCK and, if
5578 FULL_SEARCH is non-zero, enclosing scope and in global scopes,
5579 returning the number of matches. Add these to OBSTACKP.
5581 When FULL_SEARCH is non-zero, any non-function/non-enumeral
5582 symbol match within the nest of blocks whose innermost member is BLOCK,
5583 is the one match returned (no other matches in that or
5584 enclosing blocks is returned). If there are any matches in or
5585 surrounding BLOCK, then these alone are returned.
5587 Names prefixed with "standard__" are handled specially:
5588 "standard__" is first stripped off (by the lookup_name
5589 constructor), and only static and global symbols are searched.
5591 If MADE_GLOBAL_LOOKUP_P is non-null, set it before return to whether we had
5592 to lookup global symbols. */
5595 ada_add_all_symbols (struct obstack
*obstackp
,
5596 const struct block
*block
,
5597 const lookup_name_info
&lookup_name
,
5600 int *made_global_lookup_p
)
5604 if (made_global_lookup_p
)
5605 *made_global_lookup_p
= 0;
5607 /* Special case: If the user specifies a symbol name inside package
5608 Standard, do a non-wild matching of the symbol name without
5609 the "standard__" prefix. This was primarily introduced in order
5610 to allow the user to specifically access the standard exceptions
5611 using, for instance, Standard.Constraint_Error when Constraint_Error
5612 is ambiguous (due to the user defining its own Constraint_Error
5613 entity inside its program). */
5614 if (lookup_name
.ada ().standard_p ())
5617 /* Check the non-global symbols. If we have ANY match, then we're done. */
5622 ada_add_local_symbols (obstackp
, lookup_name
, block
, domain
);
5625 /* In the !full_search case we're are being called by
5626 iterate_over_symbols, and we don't want to search
5628 ada_add_block_symbols (obstackp
, block
, lookup_name
, domain
, NULL
);
5630 if (num_defns_collected (obstackp
) > 0 || !full_search
)
5634 /* No non-global symbols found. Check our cache to see if we have
5635 already performed this search before. If we have, then return
5638 if (lookup_cached_symbol (ada_lookup_name (lookup_name
),
5639 domain
, &sym
, &block
))
5642 add_defn_to_vec (obstackp
, sym
, block
);
5646 if (made_global_lookup_p
)
5647 *made_global_lookup_p
= 1;
5649 /* Search symbols from all global blocks. */
5651 add_nonlocal_symbols (obstackp
, lookup_name
, domain
, 1);
5653 /* Now add symbols from all per-file blocks if we've gotten no hits
5654 (not strictly correct, but perhaps better than an error). */
5656 if (num_defns_collected (obstackp
) == 0)
5657 add_nonlocal_symbols (obstackp
, lookup_name
, domain
, 0);
5660 /* Find symbols in DOMAIN matching LOOKUP_NAME, in BLOCK and, if FULL_SEARCH
5661 is non-zero, enclosing scope and in global scopes, returning the number of
5663 Fills *RESULTS with (SYM,BLOCK) tuples, indicating the symbols
5664 found and the blocks and symbol tables (if any) in which they were
5667 When full_search is non-zero, any non-function/non-enumeral
5668 symbol match within the nest of blocks whose innermost member is BLOCK,
5669 is the one match returned (no other matches in that or
5670 enclosing blocks is returned). If there are any matches in or
5671 surrounding BLOCK, then these alone are returned.
5673 Names prefixed with "standard__" are handled specially: "standard__"
5674 is first stripped off, and only static and global symbols are searched. */
5677 ada_lookup_symbol_list_worker (const lookup_name_info
&lookup_name
,
5678 const struct block
*block
,
5680 std::vector
<struct block_symbol
> *results
,
5683 int syms_from_global_search
;
5685 auto_obstack obstack
;
5687 ada_add_all_symbols (&obstack
, block
, lookup_name
,
5688 domain
, full_search
, &syms_from_global_search
);
5690 ndefns
= num_defns_collected (&obstack
);
5692 struct block_symbol
*base
= defns_collected (&obstack
, 1);
5693 for (int i
= 0; i
< ndefns
; ++i
)
5694 results
->push_back (base
[i
]);
5696 ndefns
= remove_extra_symbols (results
);
5698 if (ndefns
== 0 && full_search
&& syms_from_global_search
)
5699 cache_symbol (ada_lookup_name (lookup_name
), domain
, NULL
, NULL
);
5701 if (ndefns
== 1 && full_search
&& syms_from_global_search
)
5702 cache_symbol (ada_lookup_name (lookup_name
), domain
,
5703 (*results
)[0].symbol
, (*results
)[0].block
);
5705 ndefns
= remove_irrelevant_renamings (results
, block
);
5710 /* Find symbols in DOMAIN matching NAME, in BLOCK and enclosing scope and
5711 in global scopes, returning the number of matches, and filling *RESULTS
5712 with (SYM,BLOCK) tuples.
5714 See ada_lookup_symbol_list_worker for further details. */
5717 ada_lookup_symbol_list (const char *name
, const struct block
*block
,
5719 std::vector
<struct block_symbol
> *results
)
5721 symbol_name_match_type name_match_type
= name_match_type_from_name (name
);
5722 lookup_name_info
lookup_name (name
, name_match_type
);
5724 return ada_lookup_symbol_list_worker (lookup_name
, block
, domain
, results
, 1);
5727 /* The result is as for ada_lookup_symbol_list with FULL_SEARCH set
5728 to 1, but choosing the first symbol found if there are multiple
5731 The result is stored in *INFO, which must be non-NULL.
5732 If no match is found, INFO->SYM is set to NULL. */
5735 ada_lookup_encoded_symbol (const char *name
, const struct block
*block
,
5737 struct block_symbol
*info
)
5739 /* Since we already have an encoded name, wrap it in '<>' to force a
5740 verbatim match. Otherwise, if the name happens to not look like
5741 an encoded name (because it doesn't include a "__"),
5742 ada_lookup_name_info would re-encode/fold it again, and that
5743 would e.g., incorrectly lowercase object renaming names like
5744 "R28b" -> "r28b". */
5745 std::string verbatim
= std::string ("<") + name
+ '>';
5747 gdb_assert (info
!= NULL
);
5748 *info
= ada_lookup_symbol (verbatim
.c_str (), block
, domain
);
5751 /* Return a symbol in DOMAIN matching NAME, in BLOCK0 and enclosing
5752 scope and in global scopes, or NULL if none. NAME is folded and
5753 encoded first. Otherwise, the result is as for ada_lookup_symbol_list,
5754 choosing the first symbol if there are multiple choices. */
5757 ada_lookup_symbol (const char *name
, const struct block
*block0
,
5760 std::vector
<struct block_symbol
> candidates
;
5763 n_candidates
= ada_lookup_symbol_list (name
, block0
, domain
, &candidates
);
5765 if (n_candidates
== 0)
5768 block_symbol info
= candidates
[0];
5769 info
.symbol
= fixup_symbol_section (info
.symbol
, NULL
);
5774 /* True iff STR is a possible encoded suffix of a normal Ada name
5775 that is to be ignored for matching purposes. Suffixes of parallel
5776 names (e.g., XVE) are not included here. Currently, the possible suffixes
5777 are given by any of the regular expressions:
5779 [.$][0-9]+ [nested subprogram suffix, on platforms such as GNU/Linux]
5780 ___[0-9]+ [nested subprogram suffix, on platforms such as HP/UX]
5781 TKB [subprogram suffix for task bodies]
5782 _E[0-9]+[bs]$ [protected object entry suffixes]
5783 (X[nb]*)?((\$|__)[0-9](_?[0-9]+)|___(JM|LJM|X([FDBUP].*|R[^T]?)))?$
5785 Also, any leading "__[0-9]+" sequence is skipped before the suffix
5786 match is performed. This sequence is used to differentiate homonyms,
5787 is an optional part of a valid name suffix. */
5790 is_name_suffix (const char *str
)
5793 const char *matching
;
5794 const int len
= strlen (str
);
5796 /* Skip optional leading __[0-9]+. */
5798 if (len
> 3 && str
[0] == '_' && str
[1] == '_' && isdigit (str
[2]))
5801 while (isdigit (str
[0]))
5807 if (str
[0] == '.' || str
[0] == '$')
5810 while (isdigit (matching
[0]))
5812 if (matching
[0] == '\0')
5818 if (len
> 3 && str
[0] == '_' && str
[1] == '_' && str
[2] == '_')
5821 while (isdigit (matching
[0]))
5823 if (matching
[0] == '\0')
5827 /* "TKB" suffixes are used for subprograms implementing task bodies. */
5829 if (strcmp (str
, "TKB") == 0)
5833 /* FIXME: brobecker/2005-09-23: Protected Object subprograms end
5834 with a N at the end. Unfortunately, the compiler uses the same
5835 convention for other internal types it creates. So treating
5836 all entity names that end with an "N" as a name suffix causes
5837 some regressions. For instance, consider the case of an enumerated
5838 type. To support the 'Image attribute, it creates an array whose
5840 Having a single character like this as a suffix carrying some
5841 information is a bit risky. Perhaps we should change the encoding
5842 to be something like "_N" instead. In the meantime, do not do
5843 the following check. */
5844 /* Protected Object Subprograms */
5845 if (len
== 1 && str
[0] == 'N')
5850 if (len
> 3 && str
[0] == '_' && str
[1] == 'E' && isdigit (str
[2]))
5853 while (isdigit (matching
[0]))
5855 if ((matching
[0] == 'b' || matching
[0] == 's')
5856 && matching
[1] == '\0')
5860 /* ??? We should not modify STR directly, as we are doing below. This
5861 is fine in this case, but may become problematic later if we find
5862 that this alternative did not work, and want to try matching
5863 another one from the begining of STR. Since we modified it, we
5864 won't be able to find the begining of the string anymore! */
5868 while (str
[0] != '_' && str
[0] != '\0')
5870 if (str
[0] != 'n' && str
[0] != 'b')
5876 if (str
[0] == '\000')
5881 if (str
[1] != '_' || str
[2] == '\000')
5885 if (strcmp (str
+ 3, "JM") == 0)
5887 /* FIXME: brobecker/2004-09-30: GNAT will soon stop using
5888 the LJM suffix in favor of the JM one. But we will
5889 still accept LJM as a valid suffix for a reasonable
5890 amount of time, just to allow ourselves to debug programs
5891 compiled using an older version of GNAT. */
5892 if (strcmp (str
+ 3, "LJM") == 0)
5896 if (str
[4] == 'F' || str
[4] == 'D' || str
[4] == 'B'
5897 || str
[4] == 'U' || str
[4] == 'P')
5899 if (str
[4] == 'R' && str
[5] != 'T')
5903 if (!isdigit (str
[2]))
5905 for (k
= 3; str
[k
] != '\0'; k
+= 1)
5906 if (!isdigit (str
[k
]) && str
[k
] != '_')
5910 if (str
[0] == '$' && isdigit (str
[1]))
5912 for (k
= 2; str
[k
] != '\0'; k
+= 1)
5913 if (!isdigit (str
[k
]) && str
[k
] != '_')
5920 /* Return non-zero if the string starting at NAME and ending before
5921 NAME_END contains no capital letters. */
5924 is_valid_name_for_wild_match (const char *name0
)
5926 std::string decoded_name
= ada_decode (name0
);
5929 /* If the decoded name starts with an angle bracket, it means that
5930 NAME0 does not follow the GNAT encoding format. It should then
5931 not be allowed as a possible wild match. */
5932 if (decoded_name
[0] == '<')
5935 for (i
=0; decoded_name
[i
] != '\0'; i
++)
5936 if (isalpha (decoded_name
[i
]) && !islower (decoded_name
[i
]))
5942 /* Advance *NAMEP to next occurrence of TARGET0 in the string NAME0
5943 that could start a simple name. Assumes that *NAMEP points into
5944 the string beginning at NAME0. */
5947 advance_wild_match (const char **namep
, const char *name0
, int target0
)
5949 const char *name
= *namep
;
5959 if ((t1
>= 'a' && t1
<= 'z') || (t1
>= '0' && t1
<= '9'))
5962 if (name
== name0
+ 5 && startswith (name0
, "_ada"))
5967 else if (t1
== '_' && ((name
[2] >= 'a' && name
[2] <= 'z')
5968 || name
[2] == target0
))
5976 else if ((t0
>= 'a' && t0
<= 'z') || (t0
>= '0' && t0
<= '9'))
5986 /* Return true iff NAME encodes a name of the form prefix.PATN.
5987 Ignores any informational suffixes of NAME (i.e., for which
5988 is_name_suffix is true). Assumes that PATN is a lower-cased Ada
5992 wild_match (const char *name
, const char *patn
)
5995 const char *name0
= name
;
5999 const char *match
= name
;
6003 for (name
+= 1, p
= patn
+ 1; *p
!= '\0'; name
+= 1, p
+= 1)
6006 if (*p
== '\0' && is_name_suffix (name
))
6007 return match
== name0
|| is_valid_name_for_wild_match (name0
);
6009 if (name
[-1] == '_')
6012 if (!advance_wild_match (&name
, name0
, *patn
))
6017 /* Returns true iff symbol name SYM_NAME matches SEARCH_NAME, ignoring
6018 any trailing suffixes that encode debugging information or leading
6019 _ada_ on SYM_NAME (see is_name_suffix commentary for the debugging
6020 information that is ignored). */
6023 full_match (const char *sym_name
, const char *search_name
)
6025 size_t search_name_len
= strlen (search_name
);
6027 if (strncmp (sym_name
, search_name
, search_name_len
) == 0
6028 && is_name_suffix (sym_name
+ search_name_len
))
6031 if (startswith (sym_name
, "_ada_")
6032 && strncmp (sym_name
+ 5, search_name
, search_name_len
) == 0
6033 && is_name_suffix (sym_name
+ search_name_len
+ 5))
6039 /* Add symbols from BLOCK matching LOOKUP_NAME in DOMAIN to vector
6040 *defn_symbols, updating the list of symbols in OBSTACKP (if
6041 necessary). OBJFILE is the section containing BLOCK. */
6044 ada_add_block_symbols (struct obstack
*obstackp
,
6045 const struct block
*block
,
6046 const lookup_name_info
&lookup_name
,
6047 domain_enum domain
, struct objfile
*objfile
)
6049 struct block_iterator iter
;
6050 /* A matching argument symbol, if any. */
6051 struct symbol
*arg_sym
;
6052 /* Set true when we find a matching non-argument symbol. */
6058 for (sym
= block_iter_match_first (block
, lookup_name
, &iter
);
6060 sym
= block_iter_match_next (lookup_name
, &iter
))
6062 if (symbol_matches_domain (sym
->language (), SYMBOL_DOMAIN (sym
), domain
))
6064 if (SYMBOL_CLASS (sym
) != LOC_UNRESOLVED
)
6066 if (SYMBOL_IS_ARGUMENT (sym
))
6071 add_defn_to_vec (obstackp
,
6072 fixup_symbol_section (sym
, objfile
),
6079 /* Handle renamings. */
6081 if (ada_add_block_renamings (obstackp
, block
, lookup_name
, domain
))
6084 if (!found_sym
&& arg_sym
!= NULL
)
6086 add_defn_to_vec (obstackp
,
6087 fixup_symbol_section (arg_sym
, objfile
),
6091 if (!lookup_name
.ada ().wild_match_p ())
6095 const std::string
&ada_lookup_name
= lookup_name
.ada ().lookup_name ();
6096 const char *name
= ada_lookup_name
.c_str ();
6097 size_t name_len
= ada_lookup_name
.size ();
6099 ALL_BLOCK_SYMBOLS (block
, iter
, sym
)
6101 if (symbol_matches_domain (sym
->language (),
6102 SYMBOL_DOMAIN (sym
), domain
))
6106 cmp
= (int) '_' - (int) sym
->linkage_name ()[0];
6109 cmp
= !startswith (sym
->linkage_name (), "_ada_");
6111 cmp
= strncmp (name
, sym
->linkage_name () + 5,
6116 && is_name_suffix (sym
->linkage_name () + name_len
+ 5))
6118 if (SYMBOL_CLASS (sym
) != LOC_UNRESOLVED
)
6120 if (SYMBOL_IS_ARGUMENT (sym
))
6125 add_defn_to_vec (obstackp
,
6126 fixup_symbol_section (sym
, objfile
),
6134 /* NOTE: This really shouldn't be needed for _ada_ symbols.
6135 They aren't parameters, right? */
6136 if (!found_sym
&& arg_sym
!= NULL
)
6138 add_defn_to_vec (obstackp
,
6139 fixup_symbol_section (arg_sym
, objfile
),
6146 /* Symbol Completion */
6151 ada_lookup_name_info::matches
6152 (const char *sym_name
,
6153 symbol_name_match_type match_type
,
6154 completion_match_result
*comp_match_res
) const
6157 const char *text
= m_encoded_name
.c_str ();
6158 size_t text_len
= m_encoded_name
.size ();
6160 /* First, test against the fully qualified name of the symbol. */
6162 if (strncmp (sym_name
, text
, text_len
) == 0)
6165 std::string decoded_name
= ada_decode (sym_name
);
6166 if (match
&& !m_encoded_p
)
6168 /* One needed check before declaring a positive match is to verify
6169 that iff we are doing a verbatim match, the decoded version
6170 of the symbol name starts with '<'. Otherwise, this symbol name
6171 is not a suitable completion. */
6173 bool has_angle_bracket
= (decoded_name
[0] == '<');
6174 match
= (has_angle_bracket
== m_verbatim_p
);
6177 if (match
&& !m_verbatim_p
)
6179 /* When doing non-verbatim match, another check that needs to
6180 be done is to verify that the potentially matching symbol name
6181 does not include capital letters, because the ada-mode would
6182 not be able to understand these symbol names without the
6183 angle bracket notation. */
6186 for (tmp
= sym_name
; *tmp
!= '\0' && !isupper (*tmp
); tmp
++);
6191 /* Second: Try wild matching... */
6193 if (!match
&& m_wild_match_p
)
6195 /* Since we are doing wild matching, this means that TEXT
6196 may represent an unqualified symbol name. We therefore must
6197 also compare TEXT against the unqualified name of the symbol. */
6198 sym_name
= ada_unqualified_name (decoded_name
.c_str ());
6200 if (strncmp (sym_name
, text
, text_len
) == 0)
6204 /* Finally: If we found a match, prepare the result to return. */
6209 if (comp_match_res
!= NULL
)
6211 std::string
&match_str
= comp_match_res
->match
.storage ();
6214 match_str
= ada_decode (sym_name
);
6218 match_str
= add_angle_brackets (sym_name
);
6220 match_str
= sym_name
;
6224 comp_match_res
->set_match (match_str
.c_str ());
6232 /* Return non-zero if TYPE is a pointer to the GNAT dispatch table used
6233 for tagged types. */
6236 ada_is_dispatch_table_ptr_type (struct type
*type
)
6240 if (type
->code () != TYPE_CODE_PTR
)
6243 name
= TYPE_TARGET_TYPE (type
)->name ();
6247 return (strcmp (name
, "ada__tags__dispatch_table") == 0);
6250 /* Return non-zero if TYPE is an interface tag. */
6253 ada_is_interface_tag (struct type
*type
)
6255 const char *name
= type
->name ();
6260 return (strcmp (name
, "ada__tags__interface_tag") == 0);
6263 /* True if field number FIELD_NUM in struct or union type TYPE is supposed
6264 to be invisible to users. */
6267 ada_is_ignored_field (struct type
*type
, int field_num
)
6269 if (field_num
< 0 || field_num
> type
->num_fields ())
6272 /* Check the name of that field. */
6274 const char *name
= TYPE_FIELD_NAME (type
, field_num
);
6276 /* Anonymous field names should not be printed.
6277 brobecker/2007-02-20: I don't think this can actually happen
6278 but we don't want to print the value of anonymous fields anyway. */
6282 /* Normally, fields whose name start with an underscore ("_")
6283 are fields that have been internally generated by the compiler,
6284 and thus should not be printed. The "_parent" field is special,
6285 however: This is a field internally generated by the compiler
6286 for tagged types, and it contains the components inherited from
6287 the parent type. This field should not be printed as is, but
6288 should not be ignored either. */
6289 if (name
[0] == '_' && !startswith (name
, "_parent"))
6293 /* If this is the dispatch table of a tagged type or an interface tag,
6295 if (ada_is_tagged_type (type
, 1)
6296 && (ada_is_dispatch_table_ptr_type (type
->field (field_num
).type ())
6297 || ada_is_interface_tag (type
->field (field_num
).type ())))
6300 /* Not a special field, so it should not be ignored. */
6304 /* True iff TYPE has a tag field. If REFOK, then TYPE may also be a
6305 pointer or reference type whose ultimate target has a tag field. */
6308 ada_is_tagged_type (struct type
*type
, int refok
)
6310 return (ada_lookup_struct_elt_type (type
, "_tag", refok
, 1) != NULL
);
6313 /* True iff TYPE represents the type of X'Tag */
6316 ada_is_tag_type (struct type
*type
)
6318 type
= ada_check_typedef (type
);
6320 if (type
== NULL
|| type
->code () != TYPE_CODE_PTR
)
6324 const char *name
= ada_type_name (TYPE_TARGET_TYPE (type
));
6326 return (name
!= NULL
6327 && strcmp (name
, "ada__tags__dispatch_table") == 0);
6331 /* The type of the tag on VAL. */
6333 static struct type
*
6334 ada_tag_type (struct value
*val
)
6336 return ada_lookup_struct_elt_type (value_type (val
), "_tag", 1, 0);
6339 /* Return 1 if TAG follows the old scheme for Ada tags (used for Ada 95,
6340 retired at Ada 05). */
6343 is_ada95_tag (struct value
*tag
)
6345 return ada_value_struct_elt (tag
, "tsd", 1) != NULL
;
6348 /* The value of the tag on VAL. */
6350 static struct value
*
6351 ada_value_tag (struct value
*val
)
6353 return ada_value_struct_elt (val
, "_tag", 0);
6356 /* The value of the tag on the object of type TYPE whose contents are
6357 saved at VALADDR, if it is non-null, or is at memory address
6360 static struct value
*
6361 value_tag_from_contents_and_address (struct type
*type
,
6362 const gdb_byte
*valaddr
,
6365 int tag_byte_offset
;
6366 struct type
*tag_type
;
6368 if (find_struct_field ("_tag", type
, 0, &tag_type
, &tag_byte_offset
,
6371 const gdb_byte
*valaddr1
= ((valaddr
== NULL
)
6373 : valaddr
+ tag_byte_offset
);
6374 CORE_ADDR address1
= (address
== 0) ? 0 : address
+ tag_byte_offset
;
6376 return value_from_contents_and_address (tag_type
, valaddr1
, address1
);
6381 static struct type
*
6382 type_from_tag (struct value
*tag
)
6384 gdb::unique_xmalloc_ptr
<char> type_name
= ada_tag_name (tag
);
6386 if (type_name
!= NULL
)
6387 return ada_find_any_type (ada_encode (type_name
.get ()));
6391 /* Given a value OBJ of a tagged type, return a value of this
6392 type at the base address of the object. The base address, as
6393 defined in Ada.Tags, it is the address of the primary tag of
6394 the object, and therefore where the field values of its full
6395 view can be fetched. */
6398 ada_tag_value_at_base_address (struct value
*obj
)
6401 LONGEST offset_to_top
= 0;
6402 struct type
*ptr_type
, *obj_type
;
6404 CORE_ADDR base_address
;
6406 obj_type
= value_type (obj
);
6408 /* It is the responsability of the caller to deref pointers. */
6410 if (obj_type
->code () == TYPE_CODE_PTR
|| obj_type
->code () == TYPE_CODE_REF
)
6413 tag
= ada_value_tag (obj
);
6417 /* Base addresses only appeared with Ada 05 and multiple inheritance. */
6419 if (is_ada95_tag (tag
))
6422 ptr_type
= language_lookup_primitive_type
6423 (language_def (language_ada
), target_gdbarch(), "storage_offset");
6424 ptr_type
= lookup_pointer_type (ptr_type
);
6425 val
= value_cast (ptr_type
, tag
);
6429 /* It is perfectly possible that an exception be raised while
6430 trying to determine the base address, just like for the tag;
6431 see ada_tag_name for more details. We do not print the error
6432 message for the same reason. */
6436 offset_to_top
= value_as_long (value_ind (value_ptradd (val
, -2)));
6439 catch (const gdb_exception_error
&e
)
6444 /* If offset is null, nothing to do. */
6446 if (offset_to_top
== 0)
6449 /* -1 is a special case in Ada.Tags; however, what should be done
6450 is not quite clear from the documentation. So do nothing for
6453 if (offset_to_top
== -1)
6456 /* OFFSET_TO_TOP used to be a positive value to be subtracted
6457 from the base address. This was however incompatible with
6458 C++ dispatch table: C++ uses a *negative* value to *add*
6459 to the base address. Ada's convention has therefore been
6460 changed in GNAT 19.0w 20171023: since then, C++ and Ada
6461 use the same convention. Here, we support both cases by
6462 checking the sign of OFFSET_TO_TOP. */
6464 if (offset_to_top
> 0)
6465 offset_to_top
= -offset_to_top
;
6467 base_address
= value_address (obj
) + offset_to_top
;
6468 tag
= value_tag_from_contents_and_address (obj_type
, NULL
, base_address
);
6470 /* Make sure that we have a proper tag at the new address.
6471 Otherwise, offset_to_top is bogus (which can happen when
6472 the object is not initialized yet). */
6477 obj_type
= type_from_tag (tag
);
6482 return value_from_contents_and_address (obj_type
, NULL
, base_address
);
6485 /* Return the "ada__tags__type_specific_data" type. */
6487 static struct type
*
6488 ada_get_tsd_type (struct inferior
*inf
)
6490 struct ada_inferior_data
*data
= get_ada_inferior_data (inf
);
6492 if (data
->tsd_type
== 0)
6493 data
->tsd_type
= ada_find_any_type ("ada__tags__type_specific_data");
6494 return data
->tsd_type
;
6497 /* Return the TSD (type-specific data) associated to the given TAG.
6498 TAG is assumed to be the tag of a tagged-type entity.
6500 May return NULL if we are unable to get the TSD. */
6502 static struct value
*
6503 ada_get_tsd_from_tag (struct value
*tag
)
6508 /* First option: The TSD is simply stored as a field of our TAG.
6509 Only older versions of GNAT would use this format, but we have
6510 to test it first, because there are no visible markers for
6511 the current approach except the absence of that field. */
6513 val
= ada_value_struct_elt (tag
, "tsd", 1);
6517 /* Try the second representation for the dispatch table (in which
6518 there is no explicit 'tsd' field in the referent of the tag pointer,
6519 and instead the tsd pointer is stored just before the dispatch
6522 type
= ada_get_tsd_type (current_inferior());
6525 type
= lookup_pointer_type (lookup_pointer_type (type
));
6526 val
= value_cast (type
, tag
);
6529 return value_ind (value_ptradd (val
, -1));
6532 /* Given the TSD of a tag (type-specific data), return a string
6533 containing the name of the associated type.
6535 May return NULL if we are unable to determine the tag name. */
6537 static gdb::unique_xmalloc_ptr
<char>
6538 ada_tag_name_from_tsd (struct value
*tsd
)
6543 val
= ada_value_struct_elt (tsd
, "expanded_name", 1);
6546 gdb::unique_xmalloc_ptr
<char> buffer
6547 = target_read_string (value_as_address (val
), INT_MAX
);
6548 if (buffer
== nullptr)
6551 for (p
= buffer
.get (); *p
!= '\0'; ++p
)
6560 /* The type name of the dynamic type denoted by the 'tag value TAG, as
6563 Return NULL if the TAG is not an Ada tag, or if we were unable to
6564 determine the name of that tag. */
6566 gdb::unique_xmalloc_ptr
<char>
6567 ada_tag_name (struct value
*tag
)
6569 gdb::unique_xmalloc_ptr
<char> name
;
6571 if (!ada_is_tag_type (value_type (tag
)))
6574 /* It is perfectly possible that an exception be raised while trying
6575 to determine the TAG's name, even under normal circumstances:
6576 The associated variable may be uninitialized or corrupted, for
6577 instance. We do not let any exception propagate past this point.
6578 instead we return NULL.
6580 We also do not print the error message either (which often is very
6581 low-level (Eg: "Cannot read memory at 0x[...]"), but instead let
6582 the caller print a more meaningful message if necessary. */
6585 struct value
*tsd
= ada_get_tsd_from_tag (tag
);
6588 name
= ada_tag_name_from_tsd (tsd
);
6590 catch (const gdb_exception_error
&e
)
6597 /* The parent type of TYPE, or NULL if none. */
6600 ada_parent_type (struct type
*type
)
6604 type
= ada_check_typedef (type
);
6606 if (type
== NULL
|| type
->code () != TYPE_CODE_STRUCT
)
6609 for (i
= 0; i
< type
->num_fields (); i
+= 1)
6610 if (ada_is_parent_field (type
, i
))
6612 struct type
*parent_type
= type
->field (i
).type ();
6614 /* If the _parent field is a pointer, then dereference it. */
6615 if (parent_type
->code () == TYPE_CODE_PTR
)
6616 parent_type
= TYPE_TARGET_TYPE (parent_type
);
6617 /* If there is a parallel XVS type, get the actual base type. */
6618 parent_type
= ada_get_base_type (parent_type
);
6620 return ada_check_typedef (parent_type
);
6626 /* True iff field number FIELD_NUM of structure type TYPE contains the
6627 parent-type (inherited) fields of a derived type. Assumes TYPE is
6628 a structure type with at least FIELD_NUM+1 fields. */
6631 ada_is_parent_field (struct type
*type
, int field_num
)
6633 const char *name
= TYPE_FIELD_NAME (ada_check_typedef (type
), field_num
);
6635 return (name
!= NULL
6636 && (startswith (name
, "PARENT")
6637 || startswith (name
, "_parent")));
6640 /* True iff field number FIELD_NUM of structure type TYPE is a
6641 transparent wrapper field (which should be silently traversed when doing
6642 field selection and flattened when printing). Assumes TYPE is a
6643 structure type with at least FIELD_NUM+1 fields. Such fields are always
6647 ada_is_wrapper_field (struct type
*type
, int field_num
)
6649 const char *name
= TYPE_FIELD_NAME (type
, field_num
);
6651 if (name
!= NULL
&& strcmp (name
, "RETVAL") == 0)
6653 /* This happens in functions with "out" or "in out" parameters
6654 which are passed by copy. For such functions, GNAT describes
6655 the function's return type as being a struct where the return
6656 value is in a field called RETVAL, and where the other "out"
6657 or "in out" parameters are fields of that struct. This is not
6662 return (name
!= NULL
6663 && (startswith (name
, "PARENT")
6664 || strcmp (name
, "REP") == 0
6665 || startswith (name
, "_parent")
6666 || name
[0] == 'S' || name
[0] == 'R' || name
[0] == 'O'));
6669 /* True iff field number FIELD_NUM of structure or union type TYPE
6670 is a variant wrapper. Assumes TYPE is a structure type with at least
6671 FIELD_NUM+1 fields. */
6674 ada_is_variant_part (struct type
*type
, int field_num
)
6676 /* Only Ada types are eligible. */
6677 if (!ADA_TYPE_P (type
))
6680 struct type
*field_type
= type
->field (field_num
).type ();
6682 return (field_type
->code () == TYPE_CODE_UNION
6683 || (is_dynamic_field (type
, field_num
)
6684 && (TYPE_TARGET_TYPE (field_type
)->code ()
6685 == TYPE_CODE_UNION
)));
6688 /* Assuming that VAR_TYPE is a variant wrapper (type of the variant part)
6689 whose discriminants are contained in the record type OUTER_TYPE,
6690 returns the type of the controlling discriminant for the variant.
6691 May return NULL if the type could not be found. */
6694 ada_variant_discrim_type (struct type
*var_type
, struct type
*outer_type
)
6696 const char *name
= ada_variant_discrim_name (var_type
);
6698 return ada_lookup_struct_elt_type (outer_type
, name
, 1, 1);
6701 /* Assuming that TYPE is the type of a variant wrapper, and FIELD_NUM is a
6702 valid field number within it, returns 1 iff field FIELD_NUM of TYPE
6703 represents a 'when others' clause; otherwise 0. */
6706 ada_is_others_clause (struct type
*type
, int field_num
)
6708 const char *name
= TYPE_FIELD_NAME (type
, field_num
);
6710 return (name
!= NULL
&& name
[0] == 'O');
6713 /* Assuming that TYPE0 is the type of the variant part of a record,
6714 returns the name of the discriminant controlling the variant.
6715 The value is valid until the next call to ada_variant_discrim_name. */
6718 ada_variant_discrim_name (struct type
*type0
)
6720 static char *result
= NULL
;
6721 static size_t result_len
= 0;
6724 const char *discrim_end
;
6725 const char *discrim_start
;
6727 if (type0
->code () == TYPE_CODE_PTR
)
6728 type
= TYPE_TARGET_TYPE (type0
);
6732 name
= ada_type_name (type
);
6734 if (name
== NULL
|| name
[0] == '\000')
6737 for (discrim_end
= name
+ strlen (name
) - 6; discrim_end
!= name
;
6740 if (startswith (discrim_end
, "___XVN"))
6743 if (discrim_end
== name
)
6746 for (discrim_start
= discrim_end
; discrim_start
!= name
+ 3;
6749 if (discrim_start
== name
+ 1)
6751 if ((discrim_start
> name
+ 3
6752 && startswith (discrim_start
- 3, "___"))
6753 || discrim_start
[-1] == '.')
6757 GROW_VECT (result
, result_len
, discrim_end
- discrim_start
+ 1);
6758 strncpy (result
, discrim_start
, discrim_end
- discrim_start
);
6759 result
[discrim_end
- discrim_start
] = '\0';
6763 /* Scan STR for a subtype-encoded number, beginning at position K.
6764 Put the position of the character just past the number scanned in
6765 *NEW_K, if NEW_K!=NULL. Put the scanned number in *R, if R!=NULL.
6766 Return 1 if there was a valid number at the given position, and 0
6767 otherwise. A "subtype-encoded" number consists of the absolute value
6768 in decimal, followed by the letter 'm' to indicate a negative number.
6769 Assumes 0m does not occur. */
6772 ada_scan_number (const char str
[], int k
, LONGEST
* R
, int *new_k
)
6776 if (!isdigit (str
[k
]))
6779 /* Do it the hard way so as not to make any assumption about
6780 the relationship of unsigned long (%lu scan format code) and
6783 while (isdigit (str
[k
]))
6785 RU
= RU
* 10 + (str
[k
] - '0');
6792 *R
= (-(LONGEST
) (RU
- 1)) - 1;
6798 /* NOTE on the above: Technically, C does not say what the results of
6799 - (LONGEST) RU or (LONGEST) -RU are for RU == largest positive
6800 number representable as a LONGEST (although either would probably work
6801 in most implementations). When RU>0, the locution in the then branch
6802 above is always equivalent to the negative of RU. */
6809 /* Assuming that TYPE is a variant part wrapper type (a VARIANTS field),
6810 and FIELD_NUM is a valid field number within it, returns 1 iff VAL is
6811 in the range encoded by field FIELD_NUM of TYPE; otherwise 0. */
6814 ada_in_variant (LONGEST val
, struct type
*type
, int field_num
)
6816 const char *name
= TYPE_FIELD_NAME (type
, field_num
);
6830 if (!ada_scan_number (name
, p
+ 1, &W
, &p
))
6840 if (!ada_scan_number (name
, p
+ 1, &L
, &p
)
6841 || name
[p
] != 'T' || !ada_scan_number (name
, p
+ 1, &U
, &p
))
6843 if (val
>= L
&& val
<= U
)
6855 /* FIXME: Lots of redundancy below. Try to consolidate. */
6857 /* Given a value ARG1 (offset by OFFSET bytes) of a struct or union type
6858 ARG_TYPE, extract and return the value of one of its (non-static)
6859 fields. FIELDNO says which field. Differs from value_primitive_field
6860 only in that it can handle packed values of arbitrary type. */
6863 ada_value_primitive_field (struct value
*arg1
, int offset
, int fieldno
,
6864 struct type
*arg_type
)
6868 arg_type
= ada_check_typedef (arg_type
);
6869 type
= arg_type
->field (fieldno
).type ();
6871 /* Handle packed fields. It might be that the field is not packed
6872 relative to its containing structure, but the structure itself is
6873 packed; in this case we must take the bit-field path. */
6874 if (TYPE_FIELD_BITSIZE (arg_type
, fieldno
) != 0 || value_bitpos (arg1
) != 0)
6876 int bit_pos
= TYPE_FIELD_BITPOS (arg_type
, fieldno
);
6877 int bit_size
= TYPE_FIELD_BITSIZE (arg_type
, fieldno
);
6879 return ada_value_primitive_packed_val (arg1
, value_contents (arg1
),
6880 offset
+ bit_pos
/ 8,
6881 bit_pos
% 8, bit_size
, type
);
6884 return value_primitive_field (arg1
, offset
, fieldno
, arg_type
);
6887 /* Find field with name NAME in object of type TYPE. If found,
6888 set the following for each argument that is non-null:
6889 - *FIELD_TYPE_P to the field's type;
6890 - *BYTE_OFFSET_P to OFFSET + the byte offset of the field within
6891 an object of that type;
6892 - *BIT_OFFSET_P to the bit offset modulo byte size of the field;
6893 - *BIT_SIZE_P to its size in bits if the field is packed, and
6895 If INDEX_P is non-null, increment *INDEX_P by the number of source-visible
6896 fields up to but not including the desired field, or by the total
6897 number of fields if not found. A NULL value of NAME never
6898 matches; the function just counts visible fields in this case.
6900 Notice that we need to handle when a tagged record hierarchy
6901 has some components with the same name, like in this scenario:
6903 type Top_T is tagged record
6909 type Middle_T is new Top.Top_T with record
6910 N : Character := 'a';
6914 type Bottom_T is new Middle.Middle_T with record
6916 C : Character := '5';
6918 A : Character := 'J';
6921 Let's say we now have a variable declared and initialized as follow:
6923 TC : Top_A := new Bottom_T;
6925 And then we use this variable to call this function
6927 procedure Assign (Obj: in out Top_T; TV : Integer);
6931 Assign (Top_T (B), 12);
6933 Now, we're in the debugger, and we're inside that procedure
6934 then and we want to print the value of obj.c:
6936 Usually, the tagged record or one of the parent type owns the
6937 component to print and there's no issue but in this particular
6938 case, what does it mean to ask for Obj.C? Since the actual
6939 type for object is type Bottom_T, it could mean two things: type
6940 component C from the Middle_T view, but also component C from
6941 Bottom_T. So in that "undefined" case, when the component is
6942 not found in the non-resolved type (which includes all the
6943 components of the parent type), then resolve it and see if we
6944 get better luck once expanded.
6946 In the case of homonyms in the derived tagged type, we don't
6947 guaranty anything, and pick the one that's easiest for us
6950 Returns 1 if found, 0 otherwise. */
6953 find_struct_field (const char *name
, struct type
*type
, int offset
,
6954 struct type
**field_type_p
,
6955 int *byte_offset_p
, int *bit_offset_p
, int *bit_size_p
,
6959 int parent_offset
= -1;
6961 type
= ada_check_typedef (type
);
6963 if (field_type_p
!= NULL
)
6964 *field_type_p
= NULL
;
6965 if (byte_offset_p
!= NULL
)
6967 if (bit_offset_p
!= NULL
)
6969 if (bit_size_p
!= NULL
)
6972 for (i
= 0; i
< type
->num_fields (); i
+= 1)
6974 int bit_pos
= TYPE_FIELD_BITPOS (type
, i
);
6975 int fld_offset
= offset
+ bit_pos
/ 8;
6976 const char *t_field_name
= TYPE_FIELD_NAME (type
, i
);
6978 if (t_field_name
== NULL
)
6981 else if (ada_is_parent_field (type
, i
))
6983 /* This is a field pointing us to the parent type of a tagged
6984 type. As hinted in this function's documentation, we give
6985 preference to fields in the current record first, so what
6986 we do here is just record the index of this field before
6987 we skip it. If it turns out we couldn't find our field
6988 in the current record, then we'll get back to it and search
6989 inside it whether the field might exist in the parent. */
6995 else if (name
!= NULL
&& field_name_match (t_field_name
, name
))
6997 int bit_size
= TYPE_FIELD_BITSIZE (type
, i
);
6999 if (field_type_p
!= NULL
)
7000 *field_type_p
= type
->field (i
).type ();
7001 if (byte_offset_p
!= NULL
)
7002 *byte_offset_p
= fld_offset
;
7003 if (bit_offset_p
!= NULL
)
7004 *bit_offset_p
= bit_pos
% 8;
7005 if (bit_size_p
!= NULL
)
7006 *bit_size_p
= bit_size
;
7009 else if (ada_is_wrapper_field (type
, i
))
7011 if (find_struct_field (name
, type
->field (i
).type (), fld_offset
,
7012 field_type_p
, byte_offset_p
, bit_offset_p
,
7013 bit_size_p
, index_p
))
7016 else if (ada_is_variant_part (type
, i
))
7018 /* PNH: Wait. Do we ever execute this section, or is ARG always of
7021 struct type
*field_type
7022 = ada_check_typedef (type
->field (i
).type ());
7024 for (j
= 0; j
< field_type
->num_fields (); j
+= 1)
7026 if (find_struct_field (name
, field_type
->field (j
).type (),
7028 + TYPE_FIELD_BITPOS (field_type
, j
) / 8,
7029 field_type_p
, byte_offset_p
,
7030 bit_offset_p
, bit_size_p
, index_p
))
7034 else if (index_p
!= NULL
)
7038 /* Field not found so far. If this is a tagged type which
7039 has a parent, try finding that field in the parent now. */
7041 if (parent_offset
!= -1)
7043 int bit_pos
= TYPE_FIELD_BITPOS (type
, parent_offset
);
7044 int fld_offset
= offset
+ bit_pos
/ 8;
7046 if (find_struct_field (name
, type
->field (parent_offset
).type (),
7047 fld_offset
, field_type_p
, byte_offset_p
,
7048 bit_offset_p
, bit_size_p
, index_p
))
7055 /* Number of user-visible fields in record type TYPE. */
7058 num_visible_fields (struct type
*type
)
7063 find_struct_field (NULL
, type
, 0, NULL
, NULL
, NULL
, NULL
, &n
);
7067 /* Look for a field NAME in ARG. Adjust the address of ARG by OFFSET bytes,
7068 and search in it assuming it has (class) type TYPE.
7069 If found, return value, else return NULL.
7071 Searches recursively through wrapper fields (e.g., '_parent').
7073 In the case of homonyms in the tagged types, please refer to the
7074 long explanation in find_struct_field's function documentation. */
7076 static struct value
*
7077 ada_search_struct_field (const char *name
, struct value
*arg
, int offset
,
7081 int parent_offset
= -1;
7083 type
= ada_check_typedef (type
);
7084 for (i
= 0; i
< type
->num_fields (); i
+= 1)
7086 const char *t_field_name
= TYPE_FIELD_NAME (type
, i
);
7088 if (t_field_name
== NULL
)
7091 else if (ada_is_parent_field (type
, i
))
7093 /* This is a field pointing us to the parent type of a tagged
7094 type. As hinted in this function's documentation, we give
7095 preference to fields in the current record first, so what
7096 we do here is just record the index of this field before
7097 we skip it. If it turns out we couldn't find our field
7098 in the current record, then we'll get back to it and search
7099 inside it whether the field might exist in the parent. */
7105 else if (field_name_match (t_field_name
, name
))
7106 return ada_value_primitive_field (arg
, offset
, i
, type
);
7108 else if (ada_is_wrapper_field (type
, i
))
7110 struct value
*v
= /* Do not let indent join lines here. */
7111 ada_search_struct_field (name
, arg
,
7112 offset
+ TYPE_FIELD_BITPOS (type
, i
) / 8,
7113 type
->field (i
).type ());
7119 else if (ada_is_variant_part (type
, i
))
7121 /* PNH: Do we ever get here? See find_struct_field. */
7123 struct type
*field_type
= ada_check_typedef (type
->field (i
).type ());
7124 int var_offset
= offset
+ TYPE_FIELD_BITPOS (type
, i
) / 8;
7126 for (j
= 0; j
< field_type
->num_fields (); j
+= 1)
7128 struct value
*v
= ada_search_struct_field
/* Force line
7131 var_offset
+ TYPE_FIELD_BITPOS (field_type
, j
) / 8,
7132 field_type
->field (j
).type ());
7140 /* Field not found so far. If this is a tagged type which
7141 has a parent, try finding that field in the parent now. */
7143 if (parent_offset
!= -1)
7145 struct value
*v
= ada_search_struct_field (
7146 name
, arg
, offset
+ TYPE_FIELD_BITPOS (type
, parent_offset
) / 8,
7147 type
->field (parent_offset
).type ());
7156 static struct value
*ada_index_struct_field_1 (int *, struct value
*,
7157 int, struct type
*);
7160 /* Return field #INDEX in ARG, where the index is that returned by
7161 * find_struct_field through its INDEX_P argument. Adjust the address
7162 * of ARG by OFFSET bytes, and search in it assuming it has (class) type TYPE.
7163 * If found, return value, else return NULL. */
7165 static struct value
*
7166 ada_index_struct_field (int index
, struct value
*arg
, int offset
,
7169 return ada_index_struct_field_1 (&index
, arg
, offset
, type
);
7173 /* Auxiliary function for ada_index_struct_field. Like
7174 * ada_index_struct_field, but takes index from *INDEX_P and modifies
7177 static struct value
*
7178 ada_index_struct_field_1 (int *index_p
, struct value
*arg
, int offset
,
7182 type
= ada_check_typedef (type
);
7184 for (i
= 0; i
< type
->num_fields (); i
+= 1)
7186 if (TYPE_FIELD_NAME (type
, i
) == NULL
)
7188 else if (ada_is_wrapper_field (type
, i
))
7190 struct value
*v
= /* Do not let indent join lines here. */
7191 ada_index_struct_field_1 (index_p
, arg
,
7192 offset
+ TYPE_FIELD_BITPOS (type
, i
) / 8,
7193 type
->field (i
).type ());
7199 else if (ada_is_variant_part (type
, i
))
7201 /* PNH: Do we ever get here? See ada_search_struct_field,
7202 find_struct_field. */
7203 error (_("Cannot assign this kind of variant record"));
7205 else if (*index_p
== 0)
7206 return ada_value_primitive_field (arg
, offset
, i
, type
);
7213 /* Return a string representation of type TYPE. */
7216 type_as_string (struct type
*type
)
7218 string_file tmp_stream
;
7220 type_print (type
, "", &tmp_stream
, -1);
7222 return std::move (tmp_stream
.string ());
7225 /* Given a type TYPE, look up the type of the component of type named NAME.
7226 If DISPP is non-null, add its byte displacement from the beginning of a
7227 structure (pointed to by a value) of type TYPE to *DISPP (does not
7228 work for packed fields).
7230 Matches any field whose name has NAME as a prefix, possibly
7233 TYPE can be either a struct or union. If REFOK, TYPE may also
7234 be a (pointer or reference)+ to a struct or union, and the
7235 ultimate target type will be searched.
7237 Looks recursively into variant clauses and parent types.
7239 In the case of homonyms in the tagged types, please refer to the
7240 long explanation in find_struct_field's function documentation.
7242 If NOERR is nonzero, return NULL if NAME is not suitably defined or
7243 TYPE is not a type of the right kind. */
7245 static struct type
*
7246 ada_lookup_struct_elt_type (struct type
*type
, const char *name
, int refok
,
7250 int parent_offset
= -1;
7255 if (refok
&& type
!= NULL
)
7258 type
= ada_check_typedef (type
);
7259 if (type
->code () != TYPE_CODE_PTR
&& type
->code () != TYPE_CODE_REF
)
7261 type
= TYPE_TARGET_TYPE (type
);
7265 || (type
->code () != TYPE_CODE_STRUCT
7266 && type
->code () != TYPE_CODE_UNION
))
7271 error (_("Type %s is not a structure or union type"),
7272 type
!= NULL
? type_as_string (type
).c_str () : _("(null)"));
7275 type
= to_static_fixed_type (type
);
7277 for (i
= 0; i
< type
->num_fields (); i
+= 1)
7279 const char *t_field_name
= TYPE_FIELD_NAME (type
, i
);
7282 if (t_field_name
== NULL
)
7285 else if (ada_is_parent_field (type
, i
))
7287 /* This is a field pointing us to the parent type of a tagged
7288 type. As hinted in this function's documentation, we give
7289 preference to fields in the current record first, so what
7290 we do here is just record the index of this field before
7291 we skip it. If it turns out we couldn't find our field
7292 in the current record, then we'll get back to it and search
7293 inside it whether the field might exist in the parent. */
7299 else if (field_name_match (t_field_name
, name
))
7300 return type
->field (i
).type ();
7302 else if (ada_is_wrapper_field (type
, i
))
7304 t
= ada_lookup_struct_elt_type (type
->field (i
).type (), name
,
7310 else if (ada_is_variant_part (type
, i
))
7313 struct type
*field_type
= ada_check_typedef (type
->field (i
).type ());
7315 for (j
= field_type
->num_fields () - 1; j
>= 0; j
-= 1)
7317 /* FIXME pnh 2008/01/26: We check for a field that is
7318 NOT wrapped in a struct, since the compiler sometimes
7319 generates these for unchecked variant types. Revisit
7320 if the compiler changes this practice. */
7321 const char *v_field_name
= TYPE_FIELD_NAME (field_type
, j
);
7323 if (v_field_name
!= NULL
7324 && field_name_match (v_field_name
, name
))
7325 t
= field_type
->field (j
).type ();
7327 t
= ada_lookup_struct_elt_type (field_type
->field (j
).type (),
7337 /* Field not found so far. If this is a tagged type which
7338 has a parent, try finding that field in the parent now. */
7340 if (parent_offset
!= -1)
7344 t
= ada_lookup_struct_elt_type (type
->field (parent_offset
).type (),
7353 const char *name_str
= name
!= NULL
? name
: _("<null>");
7355 error (_("Type %s has no component named %s"),
7356 type_as_string (type
).c_str (), name_str
);
7362 /* Assuming that VAR_TYPE is the type of a variant part of a record (a union),
7363 within a value of type OUTER_TYPE, return true iff VAR_TYPE
7364 represents an unchecked union (that is, the variant part of a
7365 record that is named in an Unchecked_Union pragma). */
7368 is_unchecked_variant (struct type
*var_type
, struct type
*outer_type
)
7370 const char *discrim_name
= ada_variant_discrim_name (var_type
);
7372 return (ada_lookup_struct_elt_type (outer_type
, discrim_name
, 0, 1) == NULL
);
7376 /* Assuming that VAR_TYPE is the type of a variant part of a record (a union),
7377 within OUTER, determine which variant clause (field number in VAR_TYPE,
7378 numbering from 0) is applicable. Returns -1 if none are. */
7381 ada_which_variant_applies (struct type
*var_type
, struct value
*outer
)
7385 const char *discrim_name
= ada_variant_discrim_name (var_type
);
7386 struct value
*discrim
;
7387 LONGEST discrim_val
;
7389 /* Using plain value_from_contents_and_address here causes problems
7390 because we will end up trying to resolve a type that is currently
7391 being constructed. */
7392 discrim
= ada_value_struct_elt (outer
, discrim_name
, 1);
7393 if (discrim
== NULL
)
7395 discrim_val
= value_as_long (discrim
);
7398 for (i
= 0; i
< var_type
->num_fields (); i
+= 1)
7400 if (ada_is_others_clause (var_type
, i
))
7402 else if (ada_in_variant (discrim_val
, var_type
, i
))
7406 return others_clause
;
7411 /* Dynamic-Sized Records */
7413 /* Strategy: The type ostensibly attached to a value with dynamic size
7414 (i.e., a size that is not statically recorded in the debugging
7415 data) does not accurately reflect the size or layout of the value.
7416 Our strategy is to convert these values to values with accurate,
7417 conventional types that are constructed on the fly. */
7419 /* There is a subtle and tricky problem here. In general, we cannot
7420 determine the size of dynamic records without its data. However,
7421 the 'struct value' data structure, which GDB uses to represent
7422 quantities in the inferior process (the target), requires the size
7423 of the type at the time of its allocation in order to reserve space
7424 for GDB's internal copy of the data. That's why the
7425 'to_fixed_xxx_type' routines take (target) addresses as parameters,
7426 rather than struct value*s.
7428 However, GDB's internal history variables ($1, $2, etc.) are
7429 struct value*s containing internal copies of the data that are not, in
7430 general, the same as the data at their corresponding addresses in
7431 the target. Fortunately, the types we give to these values are all
7432 conventional, fixed-size types (as per the strategy described
7433 above), so that we don't usually have to perform the
7434 'to_fixed_xxx_type' conversions to look at their values.
7435 Unfortunately, there is one exception: if one of the internal
7436 history variables is an array whose elements are unconstrained
7437 records, then we will need to create distinct fixed types for each
7438 element selected. */
7440 /* The upshot of all of this is that many routines take a (type, host
7441 address, target address) triple as arguments to represent a value.
7442 The host address, if non-null, is supposed to contain an internal
7443 copy of the relevant data; otherwise, the program is to consult the
7444 target at the target address. */
7446 /* Assuming that VAL0 represents a pointer value, the result of
7447 dereferencing it. Differs from value_ind in its treatment of
7448 dynamic-sized types. */
7451 ada_value_ind (struct value
*val0
)
7453 struct value
*val
= value_ind (val0
);
7455 if (ada_is_tagged_type (value_type (val
), 0))
7456 val
= ada_tag_value_at_base_address (val
);
7458 return ada_to_fixed_value (val
);
7461 /* The value resulting from dereferencing any "reference to"
7462 qualifiers on VAL0. */
7464 static struct value
*
7465 ada_coerce_ref (struct value
*val0
)
7467 if (value_type (val0
)->code () == TYPE_CODE_REF
)
7469 struct value
*val
= val0
;
7471 val
= coerce_ref (val
);
7473 if (ada_is_tagged_type (value_type (val
), 0))
7474 val
= ada_tag_value_at_base_address (val
);
7476 return ada_to_fixed_value (val
);
7482 /* Return the bit alignment required for field #F of template type TYPE. */
7485 field_alignment (struct type
*type
, int f
)
7487 const char *name
= TYPE_FIELD_NAME (type
, f
);
7491 /* The field name should never be null, unless the debugging information
7492 is somehow malformed. In this case, we assume the field does not
7493 require any alignment. */
7497 len
= strlen (name
);
7499 if (!isdigit (name
[len
- 1]))
7502 if (isdigit (name
[len
- 2]))
7503 align_offset
= len
- 2;
7505 align_offset
= len
- 1;
7507 if (align_offset
< 7 || !startswith (name
+ align_offset
- 6, "___XV"))
7508 return TARGET_CHAR_BIT
;
7510 return atoi (name
+ align_offset
) * TARGET_CHAR_BIT
;
7513 /* Find a typedef or tag symbol named NAME. Ignores ambiguity. */
7515 static struct symbol
*
7516 ada_find_any_type_symbol (const char *name
)
7520 sym
= standard_lookup (name
, get_selected_block (NULL
), VAR_DOMAIN
);
7521 if (sym
!= NULL
&& SYMBOL_CLASS (sym
) == LOC_TYPEDEF
)
7524 sym
= standard_lookup (name
, NULL
, STRUCT_DOMAIN
);
7528 /* Find a type named NAME. Ignores ambiguity. This routine will look
7529 solely for types defined by debug info, it will not search the GDB
7532 static struct type
*
7533 ada_find_any_type (const char *name
)
7535 struct symbol
*sym
= ada_find_any_type_symbol (name
);
7538 return SYMBOL_TYPE (sym
);
7543 /* Given NAME_SYM and an associated BLOCK, find a "renaming" symbol
7544 associated with NAME_SYM's name. NAME_SYM may itself be a renaming
7545 symbol, in which case it is returned. Otherwise, this looks for
7546 symbols whose name is that of NAME_SYM suffixed with "___XR".
7547 Return symbol if found, and NULL otherwise. */
7550 ada_is_renaming_symbol (struct symbol
*name_sym
)
7552 const char *name
= name_sym
->linkage_name ();
7553 return strstr (name
, "___XR") != NULL
;
7556 /* Because of GNAT encoding conventions, several GDB symbols may match a
7557 given type name. If the type denoted by TYPE0 is to be preferred to
7558 that of TYPE1 for purposes of type printing, return non-zero;
7559 otherwise return 0. */
7562 ada_prefer_type (struct type
*type0
, struct type
*type1
)
7566 else if (type0
== NULL
)
7568 else if (type1
->code () == TYPE_CODE_VOID
)
7570 else if (type0
->code () == TYPE_CODE_VOID
)
7572 else if (type1
->name () == NULL
&& type0
->name () != NULL
)
7574 else if (ada_is_constrained_packed_array_type (type0
))
7576 else if (ada_is_array_descriptor_type (type0
)
7577 && !ada_is_array_descriptor_type (type1
))
7581 const char *type0_name
= type0
->name ();
7582 const char *type1_name
= type1
->name ();
7584 if (type0_name
!= NULL
&& strstr (type0_name
, "___XR") != NULL
7585 && (type1_name
== NULL
|| strstr (type1_name
, "___XR") == NULL
))
7591 /* The name of TYPE, which is its TYPE_NAME. Null if TYPE is
7595 ada_type_name (struct type
*type
)
7599 return type
->name ();
7602 /* Search the list of "descriptive" types associated to TYPE for a type
7603 whose name is NAME. */
7605 static struct type
*
7606 find_parallel_type_by_descriptive_type (struct type
*type
, const char *name
)
7608 struct type
*result
, *tmp
;
7610 if (ada_ignore_descriptive_types_p
)
7613 /* If there no descriptive-type info, then there is no parallel type
7615 if (!HAVE_GNAT_AUX_INFO (type
))
7618 result
= TYPE_DESCRIPTIVE_TYPE (type
);
7619 while (result
!= NULL
)
7621 const char *result_name
= ada_type_name (result
);
7623 if (result_name
== NULL
)
7625 warning (_("unexpected null name on descriptive type"));
7629 /* If the names match, stop. */
7630 if (strcmp (result_name
, name
) == 0)
7633 /* Otherwise, look at the next item on the list, if any. */
7634 if (HAVE_GNAT_AUX_INFO (result
))
7635 tmp
= TYPE_DESCRIPTIVE_TYPE (result
);
7639 /* If not found either, try after having resolved the typedef. */
7644 result
= check_typedef (result
);
7645 if (HAVE_GNAT_AUX_INFO (result
))
7646 result
= TYPE_DESCRIPTIVE_TYPE (result
);
7652 /* If we didn't find a match, see whether this is a packed array. With
7653 older compilers, the descriptive type information is either absent or
7654 irrelevant when it comes to packed arrays so the above lookup fails.
7655 Fall back to using a parallel lookup by name in this case. */
7656 if (result
== NULL
&& ada_is_constrained_packed_array_type (type
))
7657 return ada_find_any_type (name
);
7662 /* Find a parallel type to TYPE with the specified NAME, using the
7663 descriptive type taken from the debugging information, if available,
7664 and otherwise using the (slower) name-based method. */
7666 static struct type
*
7667 ada_find_parallel_type_with_name (struct type
*type
, const char *name
)
7669 struct type
*result
= NULL
;
7671 if (HAVE_GNAT_AUX_INFO (type
))
7672 result
= find_parallel_type_by_descriptive_type (type
, name
);
7674 result
= ada_find_any_type (name
);
7679 /* Same as above, but specify the name of the parallel type by appending
7680 SUFFIX to the name of TYPE. */
7683 ada_find_parallel_type (struct type
*type
, const char *suffix
)
7686 const char *type_name
= ada_type_name (type
);
7689 if (type_name
== NULL
)
7692 len
= strlen (type_name
);
7694 name
= (char *) alloca (len
+ strlen (suffix
) + 1);
7696 strcpy (name
, type_name
);
7697 strcpy (name
+ len
, suffix
);
7699 return ada_find_parallel_type_with_name (type
, name
);
7702 /* If TYPE is a variable-size record type, return the corresponding template
7703 type describing its fields. Otherwise, return NULL. */
7705 static struct type
*
7706 dynamic_template_type (struct type
*type
)
7708 type
= ada_check_typedef (type
);
7710 if (type
== NULL
|| type
->code () != TYPE_CODE_STRUCT
7711 || ada_type_name (type
) == NULL
)
7715 int len
= strlen (ada_type_name (type
));
7717 if (len
> 6 && strcmp (ada_type_name (type
) + len
- 6, "___XVE") == 0)
7720 return ada_find_parallel_type (type
, "___XVE");
7724 /* Assuming that TEMPL_TYPE is a union or struct type, returns
7725 non-zero iff field FIELD_NUM of TEMPL_TYPE has dynamic size. */
7728 is_dynamic_field (struct type
*templ_type
, int field_num
)
7730 const char *name
= TYPE_FIELD_NAME (templ_type
, field_num
);
7733 && templ_type
->field (field_num
).type ()->code () == TYPE_CODE_PTR
7734 && strstr (name
, "___XVL") != NULL
;
7737 /* The index of the variant field of TYPE, or -1 if TYPE does not
7738 represent a variant record type. */
7741 variant_field_index (struct type
*type
)
7745 if (type
== NULL
|| type
->code () != TYPE_CODE_STRUCT
)
7748 for (f
= 0; f
< type
->num_fields (); f
+= 1)
7750 if (ada_is_variant_part (type
, f
))
7756 /* A record type with no fields. */
7758 static struct type
*
7759 empty_record (struct type
*templ
)
7761 struct type
*type
= alloc_type_copy (templ
);
7763 type
->set_code (TYPE_CODE_STRUCT
);
7764 INIT_NONE_SPECIFIC (type
);
7765 type
->set_name ("<empty>");
7766 TYPE_LENGTH (type
) = 0;
7770 /* An ordinary record type (with fixed-length fields) that describes
7771 the value of type TYPE at VALADDR or ADDRESS (see comments at
7772 the beginning of this section) VAL according to GNAT conventions.
7773 DVAL0 should describe the (portion of a) record that contains any
7774 necessary discriminants. It should be NULL if value_type (VAL) is
7775 an outer-level type (i.e., as opposed to a branch of a variant.) A
7776 variant field (unless unchecked) is replaced by a particular branch
7779 If not KEEP_DYNAMIC_FIELDS, then all fields whose position or
7780 length are not statically known are discarded. As a consequence,
7781 VALADDR, ADDRESS and DVAL0 are ignored.
7783 NOTE: Limitations: For now, we assume that dynamic fields and
7784 variants occupy whole numbers of bytes. However, they need not be
7788 ada_template_to_fixed_record_type_1 (struct type
*type
,
7789 const gdb_byte
*valaddr
,
7790 CORE_ADDR address
, struct value
*dval0
,
7791 int keep_dynamic_fields
)
7793 struct value
*mark
= value_mark ();
7796 int nfields
, bit_len
;
7802 /* Compute the number of fields in this record type that are going
7803 to be processed: unless keep_dynamic_fields, this includes only
7804 fields whose position and length are static will be processed. */
7805 if (keep_dynamic_fields
)
7806 nfields
= type
->num_fields ();
7810 while (nfields
< type
->num_fields ()
7811 && !ada_is_variant_part (type
, nfields
)
7812 && !is_dynamic_field (type
, nfields
))
7816 rtype
= alloc_type_copy (type
);
7817 rtype
->set_code (TYPE_CODE_STRUCT
);
7818 INIT_NONE_SPECIFIC (rtype
);
7819 rtype
->set_num_fields (nfields
);
7821 ((struct field
*) TYPE_ZALLOC (rtype
, nfields
* sizeof (struct field
)));
7822 rtype
->set_name (ada_type_name (type
));
7823 rtype
->set_is_fixed_instance (true);
7829 for (f
= 0; f
< nfields
; f
+= 1)
7831 off
= align_up (off
, field_alignment (type
, f
))
7832 + TYPE_FIELD_BITPOS (type
, f
);
7833 SET_FIELD_BITPOS (rtype
->field (f
), off
);
7834 TYPE_FIELD_BITSIZE (rtype
, f
) = 0;
7836 if (ada_is_variant_part (type
, f
))
7841 else if (is_dynamic_field (type
, f
))
7843 const gdb_byte
*field_valaddr
= valaddr
;
7844 CORE_ADDR field_address
= address
;
7845 struct type
*field_type
=
7846 TYPE_TARGET_TYPE (type
->field (f
).type ());
7850 /* rtype's length is computed based on the run-time
7851 value of discriminants. If the discriminants are not
7852 initialized, the type size may be completely bogus and
7853 GDB may fail to allocate a value for it. So check the
7854 size first before creating the value. */
7855 ada_ensure_varsize_limit (rtype
);
7856 /* Using plain value_from_contents_and_address here
7857 causes problems because we will end up trying to
7858 resolve a type that is currently being
7860 dval
= value_from_contents_and_address_unresolved (rtype
,
7863 rtype
= value_type (dval
);
7868 /* If the type referenced by this field is an aligner type, we need
7869 to unwrap that aligner type, because its size might not be set.
7870 Keeping the aligner type would cause us to compute the wrong
7871 size for this field, impacting the offset of the all the fields
7872 that follow this one. */
7873 if (ada_is_aligner_type (field_type
))
7875 long field_offset
= TYPE_FIELD_BITPOS (field_type
, f
);
7877 field_valaddr
= cond_offset_host (field_valaddr
, field_offset
);
7878 field_address
= cond_offset_target (field_address
, field_offset
);
7879 field_type
= ada_aligned_type (field_type
);
7882 field_valaddr
= cond_offset_host (field_valaddr
,
7883 off
/ TARGET_CHAR_BIT
);
7884 field_address
= cond_offset_target (field_address
,
7885 off
/ TARGET_CHAR_BIT
);
7887 /* Get the fixed type of the field. Note that, in this case,
7888 we do not want to get the real type out of the tag: if
7889 the current field is the parent part of a tagged record,
7890 we will get the tag of the object. Clearly wrong: the real
7891 type of the parent is not the real type of the child. We
7892 would end up in an infinite loop. */
7893 field_type
= ada_get_base_type (field_type
);
7894 field_type
= ada_to_fixed_type (field_type
, field_valaddr
,
7895 field_address
, dval
, 0);
7896 /* If the field size is already larger than the maximum
7897 object size, then the record itself will necessarily
7898 be larger than the maximum object size. We need to make
7899 this check now, because the size might be so ridiculously
7900 large (due to an uninitialized variable in the inferior)
7901 that it would cause an overflow when adding it to the
7903 ada_ensure_varsize_limit (field_type
);
7905 rtype
->field (f
).set_type (field_type
);
7906 TYPE_FIELD_NAME (rtype
, f
) = TYPE_FIELD_NAME (type
, f
);
7907 /* The multiplication can potentially overflow. But because
7908 the field length has been size-checked just above, and
7909 assuming that the maximum size is a reasonable value,
7910 an overflow should not happen in practice. So rather than
7911 adding overflow recovery code to this already complex code,
7912 we just assume that it's not going to happen. */
7914 TYPE_LENGTH (rtype
->field (f
).type ()) * TARGET_CHAR_BIT
;
7918 /* Note: If this field's type is a typedef, it is important
7919 to preserve the typedef layer.
7921 Otherwise, we might be transforming a typedef to a fat
7922 pointer (encoding a pointer to an unconstrained array),
7923 into a basic fat pointer (encoding an unconstrained
7924 array). As both types are implemented using the same
7925 structure, the typedef is the only clue which allows us
7926 to distinguish between the two options. Stripping it
7927 would prevent us from printing this field appropriately. */
7928 rtype
->field (f
).set_type (type
->field (f
).type ());
7929 TYPE_FIELD_NAME (rtype
, f
) = TYPE_FIELD_NAME (type
, f
);
7930 if (TYPE_FIELD_BITSIZE (type
, f
) > 0)
7932 TYPE_FIELD_BITSIZE (rtype
, f
) = TYPE_FIELD_BITSIZE (type
, f
);
7935 struct type
*field_type
= type
->field (f
).type ();
7937 /* We need to be careful of typedefs when computing
7938 the length of our field. If this is a typedef,
7939 get the length of the target type, not the length
7941 if (field_type
->code () == TYPE_CODE_TYPEDEF
)
7942 field_type
= ada_typedef_target_type (field_type
);
7945 TYPE_LENGTH (ada_check_typedef (field_type
)) * TARGET_CHAR_BIT
;
7948 if (off
+ fld_bit_len
> bit_len
)
7949 bit_len
= off
+ fld_bit_len
;
7951 TYPE_LENGTH (rtype
) =
7952 align_up (bit_len
, TARGET_CHAR_BIT
) / TARGET_CHAR_BIT
;
7955 /* We handle the variant part, if any, at the end because of certain
7956 odd cases in which it is re-ordered so as NOT to be the last field of
7957 the record. This can happen in the presence of representation
7959 if (variant_field
>= 0)
7961 struct type
*branch_type
;
7963 off
= TYPE_FIELD_BITPOS (rtype
, variant_field
);
7967 /* Using plain value_from_contents_and_address here causes
7968 problems because we will end up trying to resolve a type
7969 that is currently being constructed. */
7970 dval
= value_from_contents_and_address_unresolved (rtype
, valaddr
,
7972 rtype
= value_type (dval
);
7978 to_fixed_variant_branch_type
7979 (type
->field (variant_field
).type (),
7980 cond_offset_host (valaddr
, off
/ TARGET_CHAR_BIT
),
7981 cond_offset_target (address
, off
/ TARGET_CHAR_BIT
), dval
);
7982 if (branch_type
== NULL
)
7984 for (f
= variant_field
+ 1; f
< rtype
->num_fields (); f
+= 1)
7985 rtype
->field (f
- 1) = rtype
->field (f
);
7986 rtype
->set_num_fields (rtype
->num_fields () - 1);
7990 rtype
->field (variant_field
).set_type (branch_type
);
7991 TYPE_FIELD_NAME (rtype
, variant_field
) = "S";
7993 TYPE_LENGTH (rtype
->field (variant_field
).type ()) *
7995 if (off
+ fld_bit_len
> bit_len
)
7996 bit_len
= off
+ fld_bit_len
;
7997 TYPE_LENGTH (rtype
) =
7998 align_up (bit_len
, TARGET_CHAR_BIT
) / TARGET_CHAR_BIT
;
8002 /* According to exp_dbug.ads, the size of TYPE for variable-size records
8003 should contain the alignment of that record, which should be a strictly
8004 positive value. If null or negative, then something is wrong, most
8005 probably in the debug info. In that case, we don't round up the size
8006 of the resulting type. If this record is not part of another structure,
8007 the current RTYPE length might be good enough for our purposes. */
8008 if (TYPE_LENGTH (type
) <= 0)
8011 warning (_("Invalid type size for `%s' detected: %s."),
8012 rtype
->name (), pulongest (TYPE_LENGTH (type
)));
8014 warning (_("Invalid type size for <unnamed> detected: %s."),
8015 pulongest (TYPE_LENGTH (type
)));
8019 TYPE_LENGTH (rtype
) = align_up (TYPE_LENGTH (rtype
),
8020 TYPE_LENGTH (type
));
8023 value_free_to_mark (mark
);
8024 if (TYPE_LENGTH (rtype
) > varsize_limit
)
8025 error (_("record type with dynamic size is larger than varsize-limit"));
8029 /* As for ada_template_to_fixed_record_type_1 with KEEP_DYNAMIC_FIELDS
8032 static struct type
*
8033 template_to_fixed_record_type (struct type
*type
, const gdb_byte
*valaddr
,
8034 CORE_ADDR address
, struct value
*dval0
)
8036 return ada_template_to_fixed_record_type_1 (type
, valaddr
,
8040 /* An ordinary record type in which ___XVL-convention fields and
8041 ___XVU- and ___XVN-convention field types in TYPE0 are replaced with
8042 static approximations, containing all possible fields. Uses
8043 no runtime values. Useless for use in values, but that's OK,
8044 since the results are used only for type determinations. Works on both
8045 structs and unions. Representation note: to save space, we memorize
8046 the result of this function in the TYPE_TARGET_TYPE of the
8049 static struct type
*
8050 template_to_static_fixed_type (struct type
*type0
)
8056 /* No need no do anything if the input type is already fixed. */
8057 if (type0
->is_fixed_instance ())
8060 /* Likewise if we already have computed the static approximation. */
8061 if (TYPE_TARGET_TYPE (type0
) != NULL
)
8062 return TYPE_TARGET_TYPE (type0
);
8064 /* Don't clone TYPE0 until we are sure we are going to need a copy. */
8066 nfields
= type0
->num_fields ();
8068 /* Whether or not we cloned TYPE0, cache the result so that we don't do
8069 recompute all over next time. */
8070 TYPE_TARGET_TYPE (type0
) = type
;
8072 for (f
= 0; f
< nfields
; f
+= 1)
8074 struct type
*field_type
= type0
->field (f
).type ();
8075 struct type
*new_type
;
8077 if (is_dynamic_field (type0
, f
))
8079 field_type
= ada_check_typedef (field_type
);
8080 new_type
= to_static_fixed_type (TYPE_TARGET_TYPE (field_type
));
8083 new_type
= static_unwrap_type (field_type
);
8085 if (new_type
!= field_type
)
8087 /* Clone TYPE0 only the first time we get a new field type. */
8090 TYPE_TARGET_TYPE (type0
) = type
= alloc_type_copy (type0
);
8091 type
->set_code (type0
->code ());
8092 INIT_NONE_SPECIFIC (type
);
8093 type
->set_num_fields (nfields
);
8097 TYPE_ALLOC (type
, nfields
* sizeof (struct field
)));
8098 memcpy (fields
, type0
->fields (),
8099 sizeof (struct field
) * nfields
);
8100 type
->set_fields (fields
);
8102 type
->set_name (ada_type_name (type0
));
8103 type
->set_is_fixed_instance (true);
8104 TYPE_LENGTH (type
) = 0;
8106 type
->field (f
).set_type (new_type
);
8107 TYPE_FIELD_NAME (type
, f
) = TYPE_FIELD_NAME (type0
, f
);
8114 /* Given an object of type TYPE whose contents are at VALADDR and
8115 whose address in memory is ADDRESS, returns a revision of TYPE,
8116 which should be a non-dynamic-sized record, in which the variant
8117 part, if any, is replaced with the appropriate branch. Looks
8118 for discriminant values in DVAL0, which can be NULL if the record
8119 contains the necessary discriminant values. */
8121 static struct type
*
8122 to_record_with_fixed_variant_part (struct type
*type
, const gdb_byte
*valaddr
,
8123 CORE_ADDR address
, struct value
*dval0
)
8125 struct value
*mark
= value_mark ();
8128 struct type
*branch_type
;
8129 int nfields
= type
->num_fields ();
8130 int variant_field
= variant_field_index (type
);
8132 if (variant_field
== -1)
8137 dval
= value_from_contents_and_address (type
, valaddr
, address
);
8138 type
= value_type (dval
);
8143 rtype
= alloc_type_copy (type
);
8144 rtype
->set_code (TYPE_CODE_STRUCT
);
8145 INIT_NONE_SPECIFIC (rtype
);
8146 rtype
->set_num_fields (nfields
);
8149 (struct field
*) TYPE_ALLOC (rtype
, nfields
* sizeof (struct field
));
8150 memcpy (fields
, type
->fields (), sizeof (struct field
) * nfields
);
8151 rtype
->set_fields (fields
);
8153 rtype
->set_name (ada_type_name (type
));
8154 rtype
->set_is_fixed_instance (true);
8155 TYPE_LENGTH (rtype
) = TYPE_LENGTH (type
);
8157 branch_type
= to_fixed_variant_branch_type
8158 (type
->field (variant_field
).type (),
8159 cond_offset_host (valaddr
,
8160 TYPE_FIELD_BITPOS (type
, variant_field
)
8162 cond_offset_target (address
,
8163 TYPE_FIELD_BITPOS (type
, variant_field
)
8164 / TARGET_CHAR_BIT
), dval
);
8165 if (branch_type
== NULL
)
8169 for (f
= variant_field
+ 1; f
< nfields
; f
+= 1)
8170 rtype
->field (f
- 1) = rtype
->field (f
);
8171 rtype
->set_num_fields (rtype
->num_fields () - 1);
8175 rtype
->field (variant_field
).set_type (branch_type
);
8176 TYPE_FIELD_NAME (rtype
, variant_field
) = "S";
8177 TYPE_FIELD_BITSIZE (rtype
, variant_field
) = 0;
8178 TYPE_LENGTH (rtype
) += TYPE_LENGTH (branch_type
);
8180 TYPE_LENGTH (rtype
) -= TYPE_LENGTH (type
->field (variant_field
).type ());
8182 value_free_to_mark (mark
);
8186 /* An ordinary record type (with fixed-length fields) that describes
8187 the value at (TYPE0, VALADDR, ADDRESS) [see explanation at
8188 beginning of this section]. Any necessary discriminants' values
8189 should be in DVAL, a record value; it may be NULL if the object
8190 at ADDR itself contains any necessary discriminant values.
8191 Additionally, VALADDR and ADDRESS may also be NULL if no discriminant
8192 values from the record are needed. Except in the case that DVAL,
8193 VALADDR, and ADDRESS are all 0 or NULL, a variant field (unless
8194 unchecked) is replaced by a particular branch of the variant.
8196 NOTE: the case in which DVAL and VALADDR are NULL and ADDRESS is 0
8197 is questionable and may be removed. It can arise during the
8198 processing of an unconstrained-array-of-record type where all the
8199 variant branches have exactly the same size. This is because in
8200 such cases, the compiler does not bother to use the XVS convention
8201 when encoding the record. I am currently dubious of this
8202 shortcut and suspect the compiler should be altered. FIXME. */
8204 static struct type
*
8205 to_fixed_record_type (struct type
*type0
, const gdb_byte
*valaddr
,
8206 CORE_ADDR address
, struct value
*dval
)
8208 struct type
*templ_type
;
8210 if (type0
->is_fixed_instance ())
8213 templ_type
= dynamic_template_type (type0
);
8215 if (templ_type
!= NULL
)
8216 return template_to_fixed_record_type (templ_type
, valaddr
, address
, dval
);
8217 else if (variant_field_index (type0
) >= 0)
8219 if (dval
== NULL
&& valaddr
== NULL
&& address
== 0)
8221 return to_record_with_fixed_variant_part (type0
, valaddr
, address
,
8226 type0
->set_is_fixed_instance (true);
8232 /* An ordinary record type (with fixed-length fields) that describes
8233 the value at (VAR_TYPE0, VALADDR, ADDRESS), where VAR_TYPE0 is a
8234 union type. Any necessary discriminants' values should be in DVAL,
8235 a record value. That is, this routine selects the appropriate
8236 branch of the union at ADDR according to the discriminant value
8237 indicated in the union's type name. Returns VAR_TYPE0 itself if
8238 it represents a variant subject to a pragma Unchecked_Union. */
8240 static struct type
*
8241 to_fixed_variant_branch_type (struct type
*var_type0
, const gdb_byte
*valaddr
,
8242 CORE_ADDR address
, struct value
*dval
)
8245 struct type
*templ_type
;
8246 struct type
*var_type
;
8248 if (var_type0
->code () == TYPE_CODE_PTR
)
8249 var_type
= TYPE_TARGET_TYPE (var_type0
);
8251 var_type
= var_type0
;
8253 templ_type
= ada_find_parallel_type (var_type
, "___XVU");
8255 if (templ_type
!= NULL
)
8256 var_type
= templ_type
;
8258 if (is_unchecked_variant (var_type
, value_type (dval
)))
8260 which
= ada_which_variant_applies (var_type
, dval
);
8263 return empty_record (var_type
);
8264 else if (is_dynamic_field (var_type
, which
))
8265 return to_fixed_record_type
8266 (TYPE_TARGET_TYPE (var_type
->field (which
).type ()),
8267 valaddr
, address
, dval
);
8268 else if (variant_field_index (var_type
->field (which
).type ()) >= 0)
8270 to_fixed_record_type
8271 (var_type
->field (which
).type (), valaddr
, address
, dval
);
8273 return var_type
->field (which
).type ();
8276 /* Assuming RANGE_TYPE is a TYPE_CODE_RANGE, return nonzero if
8277 ENCODING_TYPE, a type following the GNAT conventions for discrete
8278 type encodings, only carries redundant information. */
8281 ada_is_redundant_range_encoding (struct type
*range_type
,
8282 struct type
*encoding_type
)
8284 const char *bounds_str
;
8288 gdb_assert (range_type
->code () == TYPE_CODE_RANGE
);
8290 if (get_base_type (range_type
)->code ()
8291 != get_base_type (encoding_type
)->code ())
8293 /* The compiler probably used a simple base type to describe
8294 the range type instead of the range's actual base type,
8295 expecting us to get the real base type from the encoding
8296 anyway. In this situation, the encoding cannot be ignored
8301 if (is_dynamic_type (range_type
))
8304 if (encoding_type
->name () == NULL
)
8307 bounds_str
= strstr (encoding_type
->name (), "___XDLU_");
8308 if (bounds_str
== NULL
)
8311 n
= 8; /* Skip "___XDLU_". */
8312 if (!ada_scan_number (bounds_str
, n
, &lo
, &n
))
8314 if (range_type
->bounds ()->low
.const_val () != lo
)
8317 n
+= 2; /* Skip the "__" separator between the two bounds. */
8318 if (!ada_scan_number (bounds_str
, n
, &hi
, &n
))
8320 if (range_type
->bounds ()->high
.const_val () != hi
)
8326 /* Given the array type ARRAY_TYPE, return nonzero if DESC_TYPE,
8327 a type following the GNAT encoding for describing array type
8328 indices, only carries redundant information. */
8331 ada_is_redundant_index_type_desc (struct type
*array_type
,
8332 struct type
*desc_type
)
8334 struct type
*this_layer
= check_typedef (array_type
);
8337 for (i
= 0; i
< desc_type
->num_fields (); i
++)
8339 if (!ada_is_redundant_range_encoding (this_layer
->index_type (),
8340 desc_type
->field (i
).type ()))
8342 this_layer
= check_typedef (TYPE_TARGET_TYPE (this_layer
));
8348 /* Assuming that TYPE0 is an array type describing the type of a value
8349 at ADDR, and that DVAL describes a record containing any
8350 discriminants used in TYPE0, returns a type for the value that
8351 contains no dynamic components (that is, no components whose sizes
8352 are determined by run-time quantities). Unless IGNORE_TOO_BIG is
8353 true, gives an error message if the resulting type's size is over
8356 static struct type
*
8357 to_fixed_array_type (struct type
*type0
, struct value
*dval
,
8360 struct type
*index_type_desc
;
8361 struct type
*result
;
8362 int constrained_packed_array_p
;
8363 static const char *xa_suffix
= "___XA";
8365 type0
= ada_check_typedef (type0
);
8366 if (type0
->is_fixed_instance ())
8369 constrained_packed_array_p
= ada_is_constrained_packed_array_type (type0
);
8370 if (constrained_packed_array_p
)
8371 type0
= decode_constrained_packed_array_type (type0
);
8373 index_type_desc
= ada_find_parallel_type (type0
, xa_suffix
);
8375 /* As mentioned in exp_dbug.ads, for non bit-packed arrays an
8376 encoding suffixed with 'P' may still be generated. If so,
8377 it should be used to find the XA type. */
8379 if (index_type_desc
== NULL
)
8381 const char *type_name
= ada_type_name (type0
);
8383 if (type_name
!= NULL
)
8385 const int len
= strlen (type_name
);
8386 char *name
= (char *) alloca (len
+ strlen (xa_suffix
));
8388 if (type_name
[len
- 1] == 'P')
8390 strcpy (name
, type_name
);
8391 strcpy (name
+ len
- 1, xa_suffix
);
8392 index_type_desc
= ada_find_parallel_type_with_name (type0
, name
);
8397 ada_fixup_array_indexes_type (index_type_desc
);
8398 if (index_type_desc
!= NULL
8399 && ada_is_redundant_index_type_desc (type0
, index_type_desc
))
8401 /* Ignore this ___XA parallel type, as it does not bring any
8402 useful information. This allows us to avoid creating fixed
8403 versions of the array's index types, which would be identical
8404 to the original ones. This, in turn, can also help avoid
8405 the creation of fixed versions of the array itself. */
8406 index_type_desc
= NULL
;
8409 if (index_type_desc
== NULL
)
8411 struct type
*elt_type0
= ada_check_typedef (TYPE_TARGET_TYPE (type0
));
8413 /* NOTE: elt_type---the fixed version of elt_type0---should never
8414 depend on the contents of the array in properly constructed
8416 /* Create a fixed version of the array element type.
8417 We're not providing the address of an element here,
8418 and thus the actual object value cannot be inspected to do
8419 the conversion. This should not be a problem, since arrays of
8420 unconstrained objects are not allowed. In particular, all
8421 the elements of an array of a tagged type should all be of
8422 the same type specified in the debugging info. No need to
8423 consult the object tag. */
8424 struct type
*elt_type
= ada_to_fixed_type (elt_type0
, 0, 0, dval
, 1);
8426 /* Make sure we always create a new array type when dealing with
8427 packed array types, since we're going to fix-up the array
8428 type length and element bitsize a little further down. */
8429 if (elt_type0
== elt_type
&& !constrained_packed_array_p
)
8432 result
= create_array_type (alloc_type_copy (type0
),
8433 elt_type
, type0
->index_type ());
8438 struct type
*elt_type0
;
8441 for (i
= index_type_desc
->num_fields (); i
> 0; i
-= 1)
8442 elt_type0
= TYPE_TARGET_TYPE (elt_type0
);
8444 /* NOTE: result---the fixed version of elt_type0---should never
8445 depend on the contents of the array in properly constructed
8447 /* Create a fixed version of the array element type.
8448 We're not providing the address of an element here,
8449 and thus the actual object value cannot be inspected to do
8450 the conversion. This should not be a problem, since arrays of
8451 unconstrained objects are not allowed. In particular, all
8452 the elements of an array of a tagged type should all be of
8453 the same type specified in the debugging info. No need to
8454 consult the object tag. */
8456 ada_to_fixed_type (ada_check_typedef (elt_type0
), 0, 0, dval
, 1);
8459 for (i
= index_type_desc
->num_fields () - 1; i
>= 0; i
-= 1)
8461 struct type
*range_type
=
8462 to_fixed_range_type (index_type_desc
->field (i
).type (), dval
);
8464 result
= create_array_type (alloc_type_copy (elt_type0
),
8465 result
, range_type
);
8466 elt_type0
= TYPE_TARGET_TYPE (elt_type0
);
8468 if (!ignore_too_big
&& TYPE_LENGTH (result
) > varsize_limit
)
8469 error (_("array type with dynamic size is larger than varsize-limit"));
8472 /* We want to preserve the type name. This can be useful when
8473 trying to get the type name of a value that has already been
8474 printed (for instance, if the user did "print VAR; whatis $". */
8475 result
->set_name (type0
->name ());
8477 if (constrained_packed_array_p
)
8479 /* So far, the resulting type has been created as if the original
8480 type was a regular (non-packed) array type. As a result, the
8481 bitsize of the array elements needs to be set again, and the array
8482 length needs to be recomputed based on that bitsize. */
8483 int len
= TYPE_LENGTH (result
) / TYPE_LENGTH (TYPE_TARGET_TYPE (result
));
8484 int elt_bitsize
= TYPE_FIELD_BITSIZE (type0
, 0);
8486 TYPE_FIELD_BITSIZE (result
, 0) = TYPE_FIELD_BITSIZE (type0
, 0);
8487 TYPE_LENGTH (result
) = len
* elt_bitsize
/ HOST_CHAR_BIT
;
8488 if (TYPE_LENGTH (result
) * HOST_CHAR_BIT
< len
* elt_bitsize
)
8489 TYPE_LENGTH (result
)++;
8492 result
->set_is_fixed_instance (true);
8497 /* A standard type (containing no dynamically sized components)
8498 corresponding to TYPE for the value (TYPE, VALADDR, ADDRESS)
8499 DVAL describes a record containing any discriminants used in TYPE0,
8500 and may be NULL if there are none, or if the object of type TYPE at
8501 ADDRESS or in VALADDR contains these discriminants.
8503 If CHECK_TAG is not null, in the case of tagged types, this function
8504 attempts to locate the object's tag and use it to compute the actual
8505 type. However, when ADDRESS is null, we cannot use it to determine the
8506 location of the tag, and therefore compute the tagged type's actual type.
8507 So we return the tagged type without consulting the tag. */
8509 static struct type
*
8510 ada_to_fixed_type_1 (struct type
*type
, const gdb_byte
*valaddr
,
8511 CORE_ADDR address
, struct value
*dval
, int check_tag
)
8513 type
= ada_check_typedef (type
);
8515 /* Only un-fixed types need to be handled here. */
8516 if (!HAVE_GNAT_AUX_INFO (type
))
8519 switch (type
->code ())
8523 case TYPE_CODE_STRUCT
:
8525 struct type
*static_type
= to_static_fixed_type (type
);
8526 struct type
*fixed_record_type
=
8527 to_fixed_record_type (type
, valaddr
, address
, NULL
);
8529 /* If STATIC_TYPE is a tagged type and we know the object's address,
8530 then we can determine its tag, and compute the object's actual
8531 type from there. Note that we have to use the fixed record
8532 type (the parent part of the record may have dynamic fields
8533 and the way the location of _tag is expressed may depend on
8536 if (check_tag
&& address
!= 0 && ada_is_tagged_type (static_type
, 0))
8539 value_tag_from_contents_and_address
8543 struct type
*real_type
= type_from_tag (tag
);
8545 value_from_contents_and_address (fixed_record_type
,
8548 fixed_record_type
= value_type (obj
);
8549 if (real_type
!= NULL
)
8550 return to_fixed_record_type
8552 value_address (ada_tag_value_at_base_address (obj
)), NULL
);
8555 /* Check to see if there is a parallel ___XVZ variable.
8556 If there is, then it provides the actual size of our type. */
8557 else if (ada_type_name (fixed_record_type
) != NULL
)
8559 const char *name
= ada_type_name (fixed_record_type
);
8561 = (char *) alloca (strlen (name
) + 7 /* "___XVZ\0" */);
8562 bool xvz_found
= false;
8565 xsnprintf (xvz_name
, strlen (name
) + 7, "%s___XVZ", name
);
8568 xvz_found
= get_int_var_value (xvz_name
, size
);
8570 catch (const gdb_exception_error
&except
)
8572 /* We found the variable, but somehow failed to read
8573 its value. Rethrow the same error, but with a little
8574 bit more information, to help the user understand
8575 what went wrong (Eg: the variable might have been
8577 throw_error (except
.error
,
8578 _("unable to read value of %s (%s)"),
8579 xvz_name
, except
.what ());
8582 if (xvz_found
&& TYPE_LENGTH (fixed_record_type
) != size
)
8584 fixed_record_type
= copy_type (fixed_record_type
);
8585 TYPE_LENGTH (fixed_record_type
) = size
;
8587 /* The FIXED_RECORD_TYPE may have be a stub. We have
8588 observed this when the debugging info is STABS, and
8589 apparently it is something that is hard to fix.
8591 In practice, we don't need the actual type definition
8592 at all, because the presence of the XVZ variable allows us
8593 to assume that there must be a XVS type as well, which we
8594 should be able to use later, when we need the actual type
8597 In the meantime, pretend that the "fixed" type we are
8598 returning is NOT a stub, because this can cause trouble
8599 when using this type to create new types targeting it.
8600 Indeed, the associated creation routines often check
8601 whether the target type is a stub and will try to replace
8602 it, thus using a type with the wrong size. This, in turn,
8603 might cause the new type to have the wrong size too.
8604 Consider the case of an array, for instance, where the size
8605 of the array is computed from the number of elements in
8606 our array multiplied by the size of its element. */
8607 fixed_record_type
->set_is_stub (false);
8610 return fixed_record_type
;
8612 case TYPE_CODE_ARRAY
:
8613 return to_fixed_array_type (type
, dval
, 1);
8614 case TYPE_CODE_UNION
:
8618 return to_fixed_variant_branch_type (type
, valaddr
, address
, dval
);
8622 /* The same as ada_to_fixed_type_1, except that it preserves the type
8623 if it is a TYPE_CODE_TYPEDEF of a type that is already fixed.
8625 The typedef layer needs be preserved in order to differentiate between
8626 arrays and array pointers when both types are implemented using the same
8627 fat pointer. In the array pointer case, the pointer is encoded as
8628 a typedef of the pointer type. For instance, considering:
8630 type String_Access is access String;
8631 S1 : String_Access := null;
8633 To the debugger, S1 is defined as a typedef of type String. But
8634 to the user, it is a pointer. So if the user tries to print S1,
8635 we should not dereference the array, but print the array address
8638 If we didn't preserve the typedef layer, we would lose the fact that
8639 the type is to be presented as a pointer (needs de-reference before
8640 being printed). And we would also use the source-level type name. */
8643 ada_to_fixed_type (struct type
*type
, const gdb_byte
*valaddr
,
8644 CORE_ADDR address
, struct value
*dval
, int check_tag
)
8647 struct type
*fixed_type
=
8648 ada_to_fixed_type_1 (type
, valaddr
, address
, dval
, check_tag
);
8650 /* If TYPE is a typedef and its target type is the same as the FIXED_TYPE,
8651 then preserve the typedef layer.
8653 Implementation note: We can only check the main-type portion of
8654 the TYPE and FIXED_TYPE, because eliminating the typedef layer
8655 from TYPE now returns a type that has the same instance flags
8656 as TYPE. For instance, if TYPE is a "typedef const", and its
8657 target type is a "struct", then the typedef elimination will return
8658 a "const" version of the target type. See check_typedef for more
8659 details about how the typedef layer elimination is done.
8661 brobecker/2010-11-19: It seems to me that the only case where it is
8662 useful to preserve the typedef layer is when dealing with fat pointers.
8663 Perhaps, we could add a check for that and preserve the typedef layer
8664 only in that situation. But this seems unnecessary so far, probably
8665 because we call check_typedef/ada_check_typedef pretty much everywhere.
8667 if (type
->code () == TYPE_CODE_TYPEDEF
8668 && (TYPE_MAIN_TYPE (ada_typedef_target_type (type
))
8669 == TYPE_MAIN_TYPE (fixed_type
)))
8675 /* A standard (static-sized) type corresponding as well as possible to
8676 TYPE0, but based on no runtime data. */
8678 static struct type
*
8679 to_static_fixed_type (struct type
*type0
)
8686 if (type0
->is_fixed_instance ())
8689 type0
= ada_check_typedef (type0
);
8691 switch (type0
->code ())
8695 case TYPE_CODE_STRUCT
:
8696 type
= dynamic_template_type (type0
);
8698 return template_to_static_fixed_type (type
);
8700 return template_to_static_fixed_type (type0
);
8701 case TYPE_CODE_UNION
:
8702 type
= ada_find_parallel_type (type0
, "___XVU");
8704 return template_to_static_fixed_type (type
);
8706 return template_to_static_fixed_type (type0
);
8710 /* A static approximation of TYPE with all type wrappers removed. */
8712 static struct type
*
8713 static_unwrap_type (struct type
*type
)
8715 if (ada_is_aligner_type (type
))
8717 struct type
*type1
= ada_check_typedef (type
)->field (0).type ();
8718 if (ada_type_name (type1
) == NULL
)
8719 type1
->set_name (ada_type_name (type
));
8721 return static_unwrap_type (type1
);
8725 struct type
*raw_real_type
= ada_get_base_type (type
);
8727 if (raw_real_type
== type
)
8730 return to_static_fixed_type (raw_real_type
);
8734 /* In some cases, incomplete and private types require
8735 cross-references that are not resolved as records (for example,
8737 type FooP is access Foo;
8739 type Foo is array ...;
8740 ). In these cases, since there is no mechanism for producing
8741 cross-references to such types, we instead substitute for FooP a
8742 stub enumeration type that is nowhere resolved, and whose tag is
8743 the name of the actual type. Call these types "non-record stubs". */
8745 /* A type equivalent to TYPE that is not a non-record stub, if one
8746 exists, otherwise TYPE. */
8749 ada_check_typedef (struct type
*type
)
8754 /* If our type is an access to an unconstrained array, which is encoded
8755 as a TYPE_CODE_TYPEDEF of a fat pointer, then we're done.
8756 We don't want to strip the TYPE_CODE_TYPDEF layer, because this is
8757 what allows us to distinguish between fat pointers that represent
8758 array types, and fat pointers that represent array access types
8759 (in both cases, the compiler implements them as fat pointers). */
8760 if (ada_is_access_to_unconstrained_array (type
))
8763 type
= check_typedef (type
);
8764 if (type
== NULL
|| type
->code () != TYPE_CODE_ENUM
8765 || !type
->is_stub ()
8766 || type
->name () == NULL
)
8770 const char *name
= type
->name ();
8771 struct type
*type1
= ada_find_any_type (name
);
8776 /* TYPE1 might itself be a TYPE_CODE_TYPEDEF (this can happen with
8777 stubs pointing to arrays, as we don't create symbols for array
8778 types, only for the typedef-to-array types). If that's the case,
8779 strip the typedef layer. */
8780 if (type1
->code () == TYPE_CODE_TYPEDEF
)
8781 type1
= ada_check_typedef (type1
);
8787 /* A value representing the data at VALADDR/ADDRESS as described by
8788 type TYPE0, but with a standard (static-sized) type that correctly
8789 describes it. If VAL0 is not NULL and TYPE0 already is a standard
8790 type, then return VAL0 [this feature is simply to avoid redundant
8791 creation of struct values]. */
8793 static struct value
*
8794 ada_to_fixed_value_create (struct type
*type0
, CORE_ADDR address
,
8797 struct type
*type
= ada_to_fixed_type (type0
, 0, address
, NULL
, 1);
8799 if (type
== type0
&& val0
!= NULL
)
8802 if (VALUE_LVAL (val0
) != lval_memory
)
8804 /* Our value does not live in memory; it could be a convenience
8805 variable, for instance. Create a not_lval value using val0's
8807 return value_from_contents (type
, value_contents (val0
));
8810 return value_from_contents_and_address (type
, 0, address
);
8813 /* A value representing VAL, but with a standard (static-sized) type
8814 that correctly describes it. Does not necessarily create a new
8818 ada_to_fixed_value (struct value
*val
)
8820 val
= unwrap_value (val
);
8821 val
= ada_to_fixed_value_create (value_type (val
), value_address (val
), val
);
8828 /* Table mapping attribute numbers to names.
8829 NOTE: Keep up to date with enum ada_attribute definition in ada-lang.h. */
8831 static const char * const attribute_names
[] = {
8849 ada_attribute_name (enum exp_opcode n
)
8851 if (n
>= OP_ATR_FIRST
&& n
<= (int) OP_ATR_VAL
)
8852 return attribute_names
[n
- OP_ATR_FIRST
+ 1];
8854 return attribute_names
[0];
8857 /* Evaluate the 'POS attribute applied to ARG. */
8860 pos_atr (struct value
*arg
)
8862 struct value
*val
= coerce_ref (arg
);
8863 struct type
*type
= value_type (val
);
8866 if (!discrete_type_p (type
))
8867 error (_("'POS only defined on discrete types"));
8869 if (!discrete_position (type
, value_as_long (val
), &result
))
8870 error (_("enumeration value is invalid: can't find 'POS"));
8875 static struct value
*
8876 value_pos_atr (struct type
*type
, struct value
*arg
)
8878 return value_from_longest (type
, pos_atr (arg
));
8881 /* Evaluate the TYPE'VAL attribute applied to ARG. */
8883 static struct value
*
8884 val_atr (struct type
*type
, LONGEST val
)
8886 gdb_assert (discrete_type_p (type
));
8887 if (type
->code () == TYPE_CODE_RANGE
)
8888 type
= TYPE_TARGET_TYPE (type
);
8889 if (type
->code () == TYPE_CODE_ENUM
)
8891 if (val
< 0 || val
>= type
->num_fields ())
8892 error (_("argument to 'VAL out of range"));
8893 val
= TYPE_FIELD_ENUMVAL (type
, val
);
8895 return value_from_longest (type
, val
);
8898 static struct value
*
8899 value_val_atr (struct type
*type
, struct value
*arg
)
8901 if (!discrete_type_p (type
))
8902 error (_("'VAL only defined on discrete types"));
8903 if (!integer_type_p (value_type (arg
)))
8904 error (_("'VAL requires integral argument"));
8906 return val_atr (type
, value_as_long (arg
));
8912 /* True if TYPE appears to be an Ada character type.
8913 [At the moment, this is true only for Character and Wide_Character;
8914 It is a heuristic test that could stand improvement]. */
8917 ada_is_character_type (struct type
*type
)
8921 /* If the type code says it's a character, then assume it really is,
8922 and don't check any further. */
8923 if (type
->code () == TYPE_CODE_CHAR
)
8926 /* Otherwise, assume it's a character type iff it is a discrete type
8927 with a known character type name. */
8928 name
= ada_type_name (type
);
8929 return (name
!= NULL
8930 && (type
->code () == TYPE_CODE_INT
8931 || type
->code () == TYPE_CODE_RANGE
)
8932 && (strcmp (name
, "character") == 0
8933 || strcmp (name
, "wide_character") == 0
8934 || strcmp (name
, "wide_wide_character") == 0
8935 || strcmp (name
, "unsigned char") == 0));
8938 /* True if TYPE appears to be an Ada string type. */
8941 ada_is_string_type (struct type
*type
)
8943 type
= ada_check_typedef (type
);
8945 && type
->code () != TYPE_CODE_PTR
8946 && (ada_is_simple_array_type (type
)
8947 || ada_is_array_descriptor_type (type
))
8948 && ada_array_arity (type
) == 1)
8950 struct type
*elttype
= ada_array_element_type (type
, 1);
8952 return ada_is_character_type (elttype
);
8958 /* The compiler sometimes provides a parallel XVS type for a given
8959 PAD type. Normally, it is safe to follow the PAD type directly,
8960 but older versions of the compiler have a bug that causes the offset
8961 of its "F" field to be wrong. Following that field in that case
8962 would lead to incorrect results, but this can be worked around
8963 by ignoring the PAD type and using the associated XVS type instead.
8965 Set to True if the debugger should trust the contents of PAD types.
8966 Otherwise, ignore the PAD type if there is a parallel XVS type. */
8967 static bool trust_pad_over_xvs
= true;
8969 /* True if TYPE is a struct type introduced by the compiler to force the
8970 alignment of a value. Such types have a single field with a
8971 distinctive name. */
8974 ada_is_aligner_type (struct type
*type
)
8976 type
= ada_check_typedef (type
);
8978 if (!trust_pad_over_xvs
&& ada_find_parallel_type (type
, "___XVS") != NULL
)
8981 return (type
->code () == TYPE_CODE_STRUCT
8982 && type
->num_fields () == 1
8983 && strcmp (TYPE_FIELD_NAME (type
, 0), "F") == 0);
8986 /* If there is an ___XVS-convention type parallel to SUBTYPE, return
8987 the parallel type. */
8990 ada_get_base_type (struct type
*raw_type
)
8992 struct type
*real_type_namer
;
8993 struct type
*raw_real_type
;
8995 if (raw_type
== NULL
|| raw_type
->code () != TYPE_CODE_STRUCT
)
8998 if (ada_is_aligner_type (raw_type
))
8999 /* The encoding specifies that we should always use the aligner type.
9000 So, even if this aligner type has an associated XVS type, we should
9003 According to the compiler gurus, an XVS type parallel to an aligner
9004 type may exist because of a stabs limitation. In stabs, aligner
9005 types are empty because the field has a variable-sized type, and
9006 thus cannot actually be used as an aligner type. As a result,
9007 we need the associated parallel XVS type to decode the type.
9008 Since the policy in the compiler is to not change the internal
9009 representation based on the debugging info format, we sometimes
9010 end up having a redundant XVS type parallel to the aligner type. */
9013 real_type_namer
= ada_find_parallel_type (raw_type
, "___XVS");
9014 if (real_type_namer
== NULL
9015 || real_type_namer
->code () != TYPE_CODE_STRUCT
9016 || real_type_namer
->num_fields () != 1)
9019 if (real_type_namer
->field (0).type ()->code () != TYPE_CODE_REF
)
9021 /* This is an older encoding form where the base type needs to be
9022 looked up by name. We prefer the newer encoding because it is
9024 raw_real_type
= ada_find_any_type (TYPE_FIELD_NAME (real_type_namer
, 0));
9025 if (raw_real_type
== NULL
)
9028 return raw_real_type
;
9031 /* The field in our XVS type is a reference to the base type. */
9032 return TYPE_TARGET_TYPE (real_type_namer
->field (0).type ());
9035 /* The type of value designated by TYPE, with all aligners removed. */
9038 ada_aligned_type (struct type
*type
)
9040 if (ada_is_aligner_type (type
))
9041 return ada_aligned_type (type
->field (0).type ());
9043 return ada_get_base_type (type
);
9047 /* The address of the aligned value in an object at address VALADDR
9048 having type TYPE. Assumes ada_is_aligner_type (TYPE). */
9051 ada_aligned_value_addr (struct type
*type
, const gdb_byte
*valaddr
)
9053 if (ada_is_aligner_type (type
))
9054 return ada_aligned_value_addr (type
->field (0).type (),
9056 TYPE_FIELD_BITPOS (type
,
9057 0) / TARGET_CHAR_BIT
);
9064 /* The printed representation of an enumeration literal with encoded
9065 name NAME. The value is good to the next call of ada_enum_name. */
9067 ada_enum_name (const char *name
)
9069 static char *result
;
9070 static size_t result_len
= 0;
9073 /* First, unqualify the enumeration name:
9074 1. Search for the last '.' character. If we find one, then skip
9075 all the preceding characters, the unqualified name starts
9076 right after that dot.
9077 2. Otherwise, we may be debugging on a target where the compiler
9078 translates dots into "__". Search forward for double underscores,
9079 but stop searching when we hit an overloading suffix, which is
9080 of the form "__" followed by digits. */
9082 tmp
= strrchr (name
, '.');
9087 while ((tmp
= strstr (name
, "__")) != NULL
)
9089 if (isdigit (tmp
[2]))
9100 if (name
[1] == 'U' || name
[1] == 'W')
9102 if (sscanf (name
+ 2, "%x", &v
) != 1)
9105 else if (((name
[1] >= '0' && name
[1] <= '9')
9106 || (name
[1] >= 'a' && name
[1] <= 'z'))
9109 GROW_VECT (result
, result_len
, 4);
9110 xsnprintf (result
, result_len
, "'%c'", name
[1]);
9116 GROW_VECT (result
, result_len
, 16);
9117 if (isascii (v
) && isprint (v
))
9118 xsnprintf (result
, result_len
, "'%c'", v
);
9119 else if (name
[1] == 'U')
9120 xsnprintf (result
, result_len
, "[\"%02x\"]", v
);
9122 xsnprintf (result
, result_len
, "[\"%04x\"]", v
);
9128 tmp
= strstr (name
, "__");
9130 tmp
= strstr (name
, "$");
9133 GROW_VECT (result
, result_len
, tmp
- name
+ 1);
9134 strncpy (result
, name
, tmp
- name
);
9135 result
[tmp
- name
] = '\0';
9143 /* Evaluate the subexpression of EXP starting at *POS as for
9144 evaluate_type, updating *POS to point just past the evaluated
9147 static struct value
*
9148 evaluate_subexp_type (struct expression
*exp
, int *pos
)
9150 return evaluate_subexp (nullptr, exp
, pos
, EVAL_AVOID_SIDE_EFFECTS
);
9153 /* If VAL is wrapped in an aligner or subtype wrapper, return the
9156 static struct value
*
9157 unwrap_value (struct value
*val
)
9159 struct type
*type
= ada_check_typedef (value_type (val
));
9161 if (ada_is_aligner_type (type
))
9163 struct value
*v
= ada_value_struct_elt (val
, "F", 0);
9164 struct type
*val_type
= ada_check_typedef (value_type (v
));
9166 if (ada_type_name (val_type
) == NULL
)
9167 val_type
->set_name (ada_type_name (type
));
9169 return unwrap_value (v
);
9173 struct type
*raw_real_type
=
9174 ada_check_typedef (ada_get_base_type (type
));
9176 /* If there is no parallel XVS or XVE type, then the value is
9177 already unwrapped. Return it without further modification. */
9178 if ((type
== raw_real_type
)
9179 && ada_find_parallel_type (type
, "___XVE") == NULL
)
9183 coerce_unspec_val_to_type
9184 (val
, ada_to_fixed_type (raw_real_type
, 0,
9185 value_address (val
),
9190 static struct value
*
9191 cast_from_fixed (struct type
*type
, struct value
*arg
)
9193 struct value
*scale
= ada_scaling_factor (value_type (arg
));
9194 arg
= value_cast (value_type (scale
), arg
);
9196 arg
= value_binop (arg
, scale
, BINOP_MUL
);
9197 return value_cast (type
, arg
);
9200 static struct value
*
9201 cast_to_fixed (struct type
*type
, struct value
*arg
)
9203 if (type
== value_type (arg
))
9206 struct value
*scale
= ada_scaling_factor (type
);
9207 if (ada_is_gnat_encoded_fixed_point_type (value_type (arg
)))
9208 arg
= cast_from_fixed (value_type (scale
), arg
);
9210 arg
= value_cast (value_type (scale
), arg
);
9212 arg
= value_binop (arg
, scale
, BINOP_DIV
);
9213 return value_cast (type
, arg
);
9216 /* Given two array types T1 and T2, return nonzero iff both arrays
9217 contain the same number of elements. */
9220 ada_same_array_size_p (struct type
*t1
, struct type
*t2
)
9222 LONGEST lo1
, hi1
, lo2
, hi2
;
9224 /* Get the array bounds in order to verify that the size of
9225 the two arrays match. */
9226 if (!get_array_bounds (t1
, &lo1
, &hi1
)
9227 || !get_array_bounds (t2
, &lo2
, &hi2
))
9228 error (_("unable to determine array bounds"));
9230 /* To make things easier for size comparison, normalize a bit
9231 the case of empty arrays by making sure that the difference
9232 between upper bound and lower bound is always -1. */
9238 return (hi1
- lo1
== hi2
- lo2
);
9241 /* Assuming that VAL is an array of integrals, and TYPE represents
9242 an array with the same number of elements, but with wider integral
9243 elements, return an array "casted" to TYPE. In practice, this
9244 means that the returned array is built by casting each element
9245 of the original array into TYPE's (wider) element type. */
9247 static struct value
*
9248 ada_promote_array_of_integrals (struct type
*type
, struct value
*val
)
9250 struct type
*elt_type
= TYPE_TARGET_TYPE (type
);
9255 /* Verify that both val and type are arrays of scalars, and
9256 that the size of val's elements is smaller than the size
9257 of type's element. */
9258 gdb_assert (type
->code () == TYPE_CODE_ARRAY
);
9259 gdb_assert (is_integral_type (TYPE_TARGET_TYPE (type
)));
9260 gdb_assert (value_type (val
)->code () == TYPE_CODE_ARRAY
);
9261 gdb_assert (is_integral_type (TYPE_TARGET_TYPE (value_type (val
))));
9262 gdb_assert (TYPE_LENGTH (TYPE_TARGET_TYPE (type
))
9263 > TYPE_LENGTH (TYPE_TARGET_TYPE (value_type (val
))));
9265 if (!get_array_bounds (type
, &lo
, &hi
))
9266 error (_("unable to determine array bounds"));
9268 res
= allocate_value (type
);
9270 /* Promote each array element. */
9271 for (i
= 0; i
< hi
- lo
+ 1; i
++)
9273 struct value
*elt
= value_cast (elt_type
, value_subscript (val
, lo
+ i
));
9275 memcpy (value_contents_writeable (res
) + (i
* TYPE_LENGTH (elt_type
)),
9276 value_contents_all (elt
), TYPE_LENGTH (elt_type
));
9282 /* Coerce VAL as necessary for assignment to an lval of type TYPE, and
9283 return the converted value. */
9285 static struct value
*
9286 coerce_for_assign (struct type
*type
, struct value
*val
)
9288 struct type
*type2
= value_type (val
);
9293 type2
= ada_check_typedef (type2
);
9294 type
= ada_check_typedef (type
);
9296 if (type2
->code () == TYPE_CODE_PTR
9297 && type
->code () == TYPE_CODE_ARRAY
)
9299 val
= ada_value_ind (val
);
9300 type2
= value_type (val
);
9303 if (type2
->code () == TYPE_CODE_ARRAY
9304 && type
->code () == TYPE_CODE_ARRAY
)
9306 if (!ada_same_array_size_p (type
, type2
))
9307 error (_("cannot assign arrays of different length"));
9309 if (is_integral_type (TYPE_TARGET_TYPE (type
))
9310 && is_integral_type (TYPE_TARGET_TYPE (type2
))
9311 && TYPE_LENGTH (TYPE_TARGET_TYPE (type2
))
9312 < TYPE_LENGTH (TYPE_TARGET_TYPE (type
)))
9314 /* Allow implicit promotion of the array elements to
9316 return ada_promote_array_of_integrals (type
, val
);
9319 if (TYPE_LENGTH (TYPE_TARGET_TYPE (type2
))
9320 != TYPE_LENGTH (TYPE_TARGET_TYPE (type
)))
9321 error (_("Incompatible types in assignment"));
9322 deprecated_set_value_type (val
, type
);
9327 static struct value
*
9328 ada_value_binop (struct value
*arg1
, struct value
*arg2
, enum exp_opcode op
)
9331 struct type
*type1
, *type2
;
9334 arg1
= coerce_ref (arg1
);
9335 arg2
= coerce_ref (arg2
);
9336 type1
= get_base_type (ada_check_typedef (value_type (arg1
)));
9337 type2
= get_base_type (ada_check_typedef (value_type (arg2
)));
9339 if (type1
->code () != TYPE_CODE_INT
9340 || type2
->code () != TYPE_CODE_INT
)
9341 return value_binop (arg1
, arg2
, op
);
9350 return value_binop (arg1
, arg2
, op
);
9353 v2
= value_as_long (arg2
);
9355 error (_("second operand of %s must not be zero."), op_string (op
));
9357 if (type1
->is_unsigned () || op
== BINOP_MOD
)
9358 return value_binop (arg1
, arg2
, op
);
9360 v1
= value_as_long (arg1
);
9365 if (!TRUNCATION_TOWARDS_ZERO
&& v1
* (v1
% v2
) < 0)
9366 v
+= v
> 0 ? -1 : 1;
9374 /* Should not reach this point. */
9378 val
= allocate_value (type1
);
9379 store_unsigned_integer (value_contents_raw (val
),
9380 TYPE_LENGTH (value_type (val
)),
9381 type_byte_order (type1
), v
);
9386 ada_value_equal (struct value
*arg1
, struct value
*arg2
)
9388 if (ada_is_direct_array_type (value_type (arg1
))
9389 || ada_is_direct_array_type (value_type (arg2
)))
9391 struct type
*arg1_type
, *arg2_type
;
9393 /* Automatically dereference any array reference before
9394 we attempt to perform the comparison. */
9395 arg1
= ada_coerce_ref (arg1
);
9396 arg2
= ada_coerce_ref (arg2
);
9398 arg1
= ada_coerce_to_simple_array (arg1
);
9399 arg2
= ada_coerce_to_simple_array (arg2
);
9401 arg1_type
= ada_check_typedef (value_type (arg1
));
9402 arg2_type
= ada_check_typedef (value_type (arg2
));
9404 if (arg1_type
->code () != TYPE_CODE_ARRAY
9405 || arg2_type
->code () != TYPE_CODE_ARRAY
)
9406 error (_("Attempt to compare array with non-array"));
9407 /* FIXME: The following works only for types whose
9408 representations use all bits (no padding or undefined bits)
9409 and do not have user-defined equality. */
9410 return (TYPE_LENGTH (arg1_type
) == TYPE_LENGTH (arg2_type
)
9411 && memcmp (value_contents (arg1
), value_contents (arg2
),
9412 TYPE_LENGTH (arg1_type
)) == 0);
9414 return value_equal (arg1
, arg2
);
9417 /* Total number of component associations in the aggregate starting at
9418 index PC in EXP. Assumes that index PC is the start of an
9422 num_component_specs (struct expression
*exp
, int pc
)
9426 m
= exp
->elts
[pc
+ 1].longconst
;
9429 for (i
= 0; i
< m
; i
+= 1)
9431 switch (exp
->elts
[pc
].opcode
)
9437 n
+= exp
->elts
[pc
+ 1].longconst
;
9440 ada_evaluate_subexp (NULL
, exp
, &pc
, EVAL_SKIP
);
9445 /* Assign the result of evaluating EXP starting at *POS to the INDEXth
9446 component of LHS (a simple array or a record), updating *POS past
9447 the expression, assuming that LHS is contained in CONTAINER. Does
9448 not modify the inferior's memory, nor does it modify LHS (unless
9449 LHS == CONTAINER). */
9452 assign_component (struct value
*container
, struct value
*lhs
, LONGEST index
,
9453 struct expression
*exp
, int *pos
)
9455 struct value
*mark
= value_mark ();
9457 struct type
*lhs_type
= check_typedef (value_type (lhs
));
9459 if (lhs_type
->code () == TYPE_CODE_ARRAY
)
9461 struct type
*index_type
= builtin_type (exp
->gdbarch
)->builtin_int
;
9462 struct value
*index_val
= value_from_longest (index_type
, index
);
9464 elt
= unwrap_value (ada_value_subscript (lhs
, 1, &index_val
));
9468 elt
= ada_index_struct_field (index
, lhs
, 0, value_type (lhs
));
9469 elt
= ada_to_fixed_value (elt
);
9472 if (exp
->elts
[*pos
].opcode
== OP_AGGREGATE
)
9473 assign_aggregate (container
, elt
, exp
, pos
, EVAL_NORMAL
);
9475 value_assign_to_component (container
, elt
,
9476 ada_evaluate_subexp (NULL
, exp
, pos
,
9479 value_free_to_mark (mark
);
9482 /* Assuming that LHS represents an lvalue having a record or array
9483 type, and EXP->ELTS[*POS] is an OP_AGGREGATE, evaluate an assignment
9484 of that aggregate's value to LHS, advancing *POS past the
9485 aggregate. NOSIDE is as for evaluate_subexp. CONTAINER is an
9486 lvalue containing LHS (possibly LHS itself). Does not modify
9487 the inferior's memory, nor does it modify the contents of
9488 LHS (unless == CONTAINER). Returns the modified CONTAINER. */
9490 static struct value
*
9491 assign_aggregate (struct value
*container
,
9492 struct value
*lhs
, struct expression
*exp
,
9493 int *pos
, enum noside noside
)
9495 struct type
*lhs_type
;
9496 int n
= exp
->elts
[*pos
+1].longconst
;
9497 LONGEST low_index
, high_index
;
9500 int max_indices
, num_indices
;
9504 if (noside
!= EVAL_NORMAL
)
9506 for (i
= 0; i
< n
; i
+= 1)
9507 ada_evaluate_subexp (NULL
, exp
, pos
, noside
);
9511 container
= ada_coerce_ref (container
);
9512 if (ada_is_direct_array_type (value_type (container
)))
9513 container
= ada_coerce_to_simple_array (container
);
9514 lhs
= ada_coerce_ref (lhs
);
9515 if (!deprecated_value_modifiable (lhs
))
9516 error (_("Left operand of assignment is not a modifiable lvalue."));
9518 lhs_type
= check_typedef (value_type (lhs
));
9519 if (ada_is_direct_array_type (lhs_type
))
9521 lhs
= ada_coerce_to_simple_array (lhs
);
9522 lhs_type
= check_typedef (value_type (lhs
));
9523 low_index
= lhs_type
->bounds ()->low
.const_val ();
9524 high_index
= lhs_type
->bounds ()->high
.const_val ();
9526 else if (lhs_type
->code () == TYPE_CODE_STRUCT
)
9529 high_index
= num_visible_fields (lhs_type
) - 1;
9532 error (_("Left-hand side must be array or record."));
9534 num_specs
= num_component_specs (exp
, *pos
- 3);
9535 max_indices
= 4 * num_specs
+ 4;
9536 indices
= XALLOCAVEC (LONGEST
, max_indices
);
9537 indices
[0] = indices
[1] = low_index
- 1;
9538 indices
[2] = indices
[3] = high_index
+ 1;
9541 for (i
= 0; i
< n
; i
+= 1)
9543 switch (exp
->elts
[*pos
].opcode
)
9546 aggregate_assign_from_choices (container
, lhs
, exp
, pos
, indices
,
9547 &num_indices
, max_indices
,
9548 low_index
, high_index
);
9551 aggregate_assign_positional (container
, lhs
, exp
, pos
, indices
,
9552 &num_indices
, max_indices
,
9553 low_index
, high_index
);
9557 error (_("Misplaced 'others' clause"));
9558 aggregate_assign_others (container
, lhs
, exp
, pos
, indices
,
9559 num_indices
, low_index
, high_index
);
9562 error (_("Internal error: bad aggregate clause"));
9569 /* Assign into the component of LHS indexed by the OP_POSITIONAL
9570 construct at *POS, updating *POS past the construct, given that
9571 the positions are relative to lower bound LOW, where HIGH is the
9572 upper bound. Record the position in INDICES[0 .. MAX_INDICES-1]
9573 updating *NUM_INDICES as needed. CONTAINER is as for
9574 assign_aggregate. */
9576 aggregate_assign_positional (struct value
*container
,
9577 struct value
*lhs
, struct expression
*exp
,
9578 int *pos
, LONGEST
*indices
, int *num_indices
,
9579 int max_indices
, LONGEST low
, LONGEST high
)
9581 LONGEST ind
= longest_to_int (exp
->elts
[*pos
+ 1].longconst
) + low
;
9583 if (ind
- 1 == high
)
9584 warning (_("Extra components in aggregate ignored."));
9587 add_component_interval (ind
, ind
, indices
, num_indices
, max_indices
);
9589 assign_component (container
, lhs
, ind
, exp
, pos
);
9592 ada_evaluate_subexp (NULL
, exp
, pos
, EVAL_SKIP
);
9595 /* Assign into the components of LHS indexed by the OP_CHOICES
9596 construct at *POS, updating *POS past the construct, given that
9597 the allowable indices are LOW..HIGH. Record the indices assigned
9598 to in INDICES[0 .. MAX_INDICES-1], updating *NUM_INDICES as
9599 needed. CONTAINER is as for assign_aggregate. */
9601 aggregate_assign_from_choices (struct value
*container
,
9602 struct value
*lhs
, struct expression
*exp
,
9603 int *pos
, LONGEST
*indices
, int *num_indices
,
9604 int max_indices
, LONGEST low
, LONGEST high
)
9607 int n_choices
= longest_to_int (exp
->elts
[*pos
+1].longconst
);
9608 int choice_pos
, expr_pc
;
9609 int is_array
= ada_is_direct_array_type (value_type (lhs
));
9611 choice_pos
= *pos
+= 3;
9613 for (j
= 0; j
< n_choices
; j
+= 1)
9614 ada_evaluate_subexp (NULL
, exp
, pos
, EVAL_SKIP
);
9616 ada_evaluate_subexp (NULL
, exp
, pos
, EVAL_SKIP
);
9618 for (j
= 0; j
< n_choices
; j
+= 1)
9620 LONGEST lower
, upper
;
9621 enum exp_opcode op
= exp
->elts
[choice_pos
].opcode
;
9623 if (op
== OP_DISCRETE_RANGE
)
9626 lower
= value_as_long (ada_evaluate_subexp (NULL
, exp
, pos
,
9628 upper
= value_as_long (ada_evaluate_subexp (NULL
, exp
, pos
,
9633 lower
= value_as_long (ada_evaluate_subexp (NULL
, exp
, &choice_pos
,
9645 name
= &exp
->elts
[choice_pos
+ 2].string
;
9648 name
= exp
->elts
[choice_pos
+ 2].symbol
->natural_name ();
9651 error (_("Invalid record component association."));
9653 ada_evaluate_subexp (NULL
, exp
, &choice_pos
, EVAL_SKIP
);
9655 if (! find_struct_field (name
, value_type (lhs
), 0,
9656 NULL
, NULL
, NULL
, NULL
, &ind
))
9657 error (_("Unknown component name: %s."), name
);
9658 lower
= upper
= ind
;
9661 if (lower
<= upper
&& (lower
< low
|| upper
> high
))
9662 error (_("Index in component association out of bounds."));
9664 add_component_interval (lower
, upper
, indices
, num_indices
,
9666 while (lower
<= upper
)
9671 assign_component (container
, lhs
, lower
, exp
, &pos1
);
9677 /* Assign the value of the expression in the OP_OTHERS construct in
9678 EXP at *POS into the components of LHS indexed from LOW .. HIGH that
9679 have not been previously assigned. The index intervals already assigned
9680 are in INDICES[0 .. NUM_INDICES-1]. Updates *POS to after the
9681 OP_OTHERS clause. CONTAINER is as for assign_aggregate. */
9683 aggregate_assign_others (struct value
*container
,
9684 struct value
*lhs
, struct expression
*exp
,
9685 int *pos
, LONGEST
*indices
, int num_indices
,
9686 LONGEST low
, LONGEST high
)
9689 int expr_pc
= *pos
+ 1;
9691 for (i
= 0; i
< num_indices
- 2; i
+= 2)
9695 for (ind
= indices
[i
+ 1] + 1; ind
< indices
[i
+ 2]; ind
+= 1)
9700 assign_component (container
, lhs
, ind
, exp
, &localpos
);
9703 ada_evaluate_subexp (NULL
, exp
, pos
, EVAL_SKIP
);
9706 /* Add the interval [LOW .. HIGH] to the sorted set of intervals
9707 [ INDICES[0] .. INDICES[1] ],..., [ INDICES[*SIZE-2] .. INDICES[*SIZE-1] ],
9708 modifying *SIZE as needed. It is an error if *SIZE exceeds
9709 MAX_SIZE. The resulting intervals do not overlap. */
9711 add_component_interval (LONGEST low
, LONGEST high
,
9712 LONGEST
* indices
, int *size
, int max_size
)
9716 for (i
= 0; i
< *size
; i
+= 2) {
9717 if (high
>= indices
[i
] && low
<= indices
[i
+ 1])
9721 for (kh
= i
+ 2; kh
< *size
; kh
+= 2)
9722 if (high
< indices
[kh
])
9724 if (low
< indices
[i
])
9726 indices
[i
+ 1] = indices
[kh
- 1];
9727 if (high
> indices
[i
+ 1])
9728 indices
[i
+ 1] = high
;
9729 memcpy (indices
+ i
+ 2, indices
+ kh
, *size
- kh
);
9730 *size
-= kh
- i
- 2;
9733 else if (high
< indices
[i
])
9737 if (*size
== max_size
)
9738 error (_("Internal error: miscounted aggregate components."));
9740 for (j
= *size
-1; j
>= i
+2; j
-= 1)
9741 indices
[j
] = indices
[j
- 2];
9743 indices
[i
+ 1] = high
;
9746 /* Perform and Ada cast of ARG2 to type TYPE if the type of ARG2
9749 static struct value
*
9750 ada_value_cast (struct type
*type
, struct value
*arg2
)
9752 if (type
== ada_check_typedef (value_type (arg2
)))
9755 if (ada_is_gnat_encoded_fixed_point_type (type
))
9756 return cast_to_fixed (type
, arg2
);
9758 if (ada_is_gnat_encoded_fixed_point_type (value_type (arg2
)))
9759 return cast_from_fixed (type
, arg2
);
9761 return value_cast (type
, arg2
);
9764 /* Evaluating Ada expressions, and printing their result.
9765 ------------------------------------------------------
9770 We usually evaluate an Ada expression in order to print its value.
9771 We also evaluate an expression in order to print its type, which
9772 happens during the EVAL_AVOID_SIDE_EFFECTS phase of the evaluation,
9773 but we'll focus mostly on the EVAL_NORMAL phase. In practice, the
9774 EVAL_AVOID_SIDE_EFFECTS phase allows us to simplify certain aspects of
9775 the evaluation compared to the EVAL_NORMAL, but is otherwise very
9778 Evaluating expressions is a little more complicated for Ada entities
9779 than it is for entities in languages such as C. The main reason for
9780 this is that Ada provides types whose definition might be dynamic.
9781 One example of such types is variant records. Or another example
9782 would be an array whose bounds can only be known at run time.
9784 The following description is a general guide as to what should be
9785 done (and what should NOT be done) in order to evaluate an expression
9786 involving such types, and when. This does not cover how the semantic
9787 information is encoded by GNAT as this is covered separatly. For the
9788 document used as the reference for the GNAT encoding, see exp_dbug.ads
9789 in the GNAT sources.
9791 Ideally, we should embed each part of this description next to its
9792 associated code. Unfortunately, the amount of code is so vast right
9793 now that it's hard to see whether the code handling a particular
9794 situation might be duplicated or not. One day, when the code is
9795 cleaned up, this guide might become redundant with the comments
9796 inserted in the code, and we might want to remove it.
9798 2. ``Fixing'' an Entity, the Simple Case:
9799 -----------------------------------------
9801 When evaluating Ada expressions, the tricky issue is that they may
9802 reference entities whose type contents and size are not statically
9803 known. Consider for instance a variant record:
9805 type Rec (Empty : Boolean := True) is record
9808 when False => Value : Integer;
9811 Yes : Rec := (Empty => False, Value => 1);
9812 No : Rec := (empty => True);
9814 The size and contents of that record depends on the value of the
9815 descriminant (Rec.Empty). At this point, neither the debugging
9816 information nor the associated type structure in GDB are able to
9817 express such dynamic types. So what the debugger does is to create
9818 "fixed" versions of the type that applies to the specific object.
9819 We also informally refer to this operation as "fixing" an object,
9820 which means creating its associated fixed type.
9822 Example: when printing the value of variable "Yes" above, its fixed
9823 type would look like this:
9830 On the other hand, if we printed the value of "No", its fixed type
9837 Things become a little more complicated when trying to fix an entity
9838 with a dynamic type that directly contains another dynamic type,
9839 such as an array of variant records, for instance. There are
9840 two possible cases: Arrays, and records.
9842 3. ``Fixing'' Arrays:
9843 ---------------------
9845 The type structure in GDB describes an array in terms of its bounds,
9846 and the type of its elements. By design, all elements in the array
9847 have the same type and we cannot represent an array of variant elements
9848 using the current type structure in GDB. When fixing an array,
9849 we cannot fix the array element, as we would potentially need one
9850 fixed type per element of the array. As a result, the best we can do
9851 when fixing an array is to produce an array whose bounds and size
9852 are correct (allowing us to read it from memory), but without having
9853 touched its element type. Fixing each element will be done later,
9854 when (if) necessary.
9856 Arrays are a little simpler to handle than records, because the same
9857 amount of memory is allocated for each element of the array, even if
9858 the amount of space actually used by each element differs from element
9859 to element. Consider for instance the following array of type Rec:
9861 type Rec_Array is array (1 .. 2) of Rec;
9863 The actual amount of memory occupied by each element might be different
9864 from element to element, depending on the value of their discriminant.
9865 But the amount of space reserved for each element in the array remains
9866 fixed regardless. So we simply need to compute that size using
9867 the debugging information available, from which we can then determine
9868 the array size (we multiply the number of elements of the array by
9869 the size of each element).
9871 The simplest case is when we have an array of a constrained element
9872 type. For instance, consider the following type declarations:
9874 type Bounded_String (Max_Size : Integer) is
9876 Buffer : String (1 .. Max_Size);
9878 type Bounded_String_Array is array (1 ..2) of Bounded_String (80);
9880 In this case, the compiler describes the array as an array of
9881 variable-size elements (identified by its XVS suffix) for which
9882 the size can be read in the parallel XVZ variable.
9884 In the case of an array of an unconstrained element type, the compiler
9885 wraps the array element inside a private PAD type. This type should not
9886 be shown to the user, and must be "unwrap"'ed before printing. Note
9887 that we also use the adjective "aligner" in our code to designate
9888 these wrapper types.
9890 In some cases, the size allocated for each element is statically
9891 known. In that case, the PAD type already has the correct size,
9892 and the array element should remain unfixed.
9894 But there are cases when this size is not statically known.
9895 For instance, assuming that "Five" is an integer variable:
9897 type Dynamic is array (1 .. Five) of Integer;
9898 type Wrapper (Has_Length : Boolean := False) is record
9901 when True => Length : Integer;
9905 type Wrapper_Array is array (1 .. 2) of Wrapper;
9907 Hello : Wrapper_Array := (others => (Has_Length => True,
9908 Data => (others => 17),
9912 The debugging info would describe variable Hello as being an
9913 array of a PAD type. The size of that PAD type is not statically
9914 known, but can be determined using a parallel XVZ variable.
9915 In that case, a copy of the PAD type with the correct size should
9916 be used for the fixed array.
9918 3. ``Fixing'' record type objects:
9919 ----------------------------------
9921 Things are slightly different from arrays in the case of dynamic
9922 record types. In this case, in order to compute the associated
9923 fixed type, we need to determine the size and offset of each of
9924 its components. This, in turn, requires us to compute the fixed
9925 type of each of these components.
9927 Consider for instance the example:
9929 type Bounded_String (Max_Size : Natural) is record
9930 Str : String (1 .. Max_Size);
9933 My_String : Bounded_String (Max_Size => 10);
9935 In that case, the position of field "Length" depends on the size
9936 of field Str, which itself depends on the value of the Max_Size
9937 discriminant. In order to fix the type of variable My_String,
9938 we need to fix the type of field Str. Therefore, fixing a variant
9939 record requires us to fix each of its components.
9941 However, if a component does not have a dynamic size, the component
9942 should not be fixed. In particular, fields that use a PAD type
9943 should not fixed. Here is an example where this might happen
9944 (assuming type Rec above):
9946 type Container (Big : Boolean) is record
9950 when True => Another : Integer;
9954 My_Container : Container := (Big => False,
9955 First => (Empty => True),
9958 In that example, the compiler creates a PAD type for component First,
9959 whose size is constant, and then positions the component After just
9960 right after it. The offset of component After is therefore constant
9963 The debugger computes the position of each field based on an algorithm
9964 that uses, among other things, the actual position and size of the field
9965 preceding it. Let's now imagine that the user is trying to print
9966 the value of My_Container. If the type fixing was recursive, we would
9967 end up computing the offset of field After based on the size of the
9968 fixed version of field First. And since in our example First has
9969 only one actual field, the size of the fixed type is actually smaller
9970 than the amount of space allocated to that field, and thus we would
9971 compute the wrong offset of field After.
9973 To make things more complicated, we need to watch out for dynamic
9974 components of variant records (identified by the ___XVL suffix in
9975 the component name). Even if the target type is a PAD type, the size
9976 of that type might not be statically known. So the PAD type needs
9977 to be unwrapped and the resulting type needs to be fixed. Otherwise,
9978 we might end up with the wrong size for our component. This can be
9979 observed with the following type declarations:
9981 type Octal is new Integer range 0 .. 7;
9982 type Octal_Array is array (Positive range <>) of Octal;
9983 pragma Pack (Octal_Array);
9985 type Octal_Buffer (Size : Positive) is record
9986 Buffer : Octal_Array (1 .. Size);
9990 In that case, Buffer is a PAD type whose size is unset and needs
9991 to be computed by fixing the unwrapped type.
9993 4. When to ``Fix'' un-``Fixed'' sub-elements of an entity:
9994 ----------------------------------------------------------
9996 Lastly, when should the sub-elements of an entity that remained unfixed
9997 thus far, be actually fixed?
9999 The answer is: Only when referencing that element. For instance
10000 when selecting one component of a record, this specific component
10001 should be fixed at that point in time. Or when printing the value
10002 of a record, each component should be fixed before its value gets
10003 printed. Similarly for arrays, the element of the array should be
10004 fixed when printing each element of the array, or when extracting
10005 one element out of that array. On the other hand, fixing should
10006 not be performed on the elements when taking a slice of an array!
10008 Note that one of the side effects of miscomputing the offset and
10009 size of each field is that we end up also miscomputing the size
10010 of the containing type. This can have adverse results when computing
10011 the value of an entity. GDB fetches the value of an entity based
10012 on the size of its type, and thus a wrong size causes GDB to fetch
10013 the wrong amount of memory. In the case where the computed size is
10014 too small, GDB fetches too little data to print the value of our
10015 entity. Results in this case are unpredictable, as we usually read
10016 past the buffer containing the data =:-o. */
10018 /* Evaluate a subexpression of EXP, at index *POS, and return a value
10019 for that subexpression cast to TO_TYPE. Advance *POS over the
10023 ada_evaluate_subexp_for_cast (expression
*exp
, int *pos
,
10024 enum noside noside
, struct type
*to_type
)
10028 if (exp
->elts
[pc
].opcode
== OP_VAR_MSYM_VALUE
10029 || exp
->elts
[pc
].opcode
== OP_VAR_VALUE
)
10034 if (exp
->elts
[pc
].opcode
== OP_VAR_MSYM_VALUE
)
10036 if (noside
== EVAL_AVOID_SIDE_EFFECTS
)
10037 return value_zero (to_type
, not_lval
);
10039 val
= evaluate_var_msym_value (noside
,
10040 exp
->elts
[pc
+ 1].objfile
,
10041 exp
->elts
[pc
+ 2].msymbol
);
10044 val
= evaluate_var_value (noside
,
10045 exp
->elts
[pc
+ 1].block
,
10046 exp
->elts
[pc
+ 2].symbol
);
10048 if (noside
== EVAL_SKIP
)
10049 return eval_skip_value (exp
);
10051 val
= ada_value_cast (to_type
, val
);
10053 /* Follow the Ada language semantics that do not allow taking
10054 an address of the result of a cast (view conversion in Ada). */
10055 if (VALUE_LVAL (val
) == lval_memory
)
10057 if (value_lazy (val
))
10058 value_fetch_lazy (val
);
10059 VALUE_LVAL (val
) = not_lval
;
10064 value
*val
= evaluate_subexp (to_type
, exp
, pos
, noside
);
10065 if (noside
== EVAL_SKIP
)
10066 return eval_skip_value (exp
);
10067 return ada_value_cast (to_type
, val
);
10070 /* Implement the evaluate_exp routine in the exp_descriptor structure
10071 for the Ada language. */
10073 static struct value
*
10074 ada_evaluate_subexp (struct type
*expect_type
, struct expression
*exp
,
10075 int *pos
, enum noside noside
)
10077 enum exp_opcode op
;
10081 struct value
*arg1
= NULL
, *arg2
= NULL
, *arg3
;
10084 struct value
**argvec
;
10088 op
= exp
->elts
[pc
].opcode
;
10094 arg1
= evaluate_subexp_standard (expect_type
, exp
, pos
, noside
);
10096 if (noside
== EVAL_NORMAL
)
10097 arg1
= unwrap_value (arg1
);
10099 /* If evaluating an OP_FLOAT and an EXPECT_TYPE was provided,
10100 then we need to perform the conversion manually, because
10101 evaluate_subexp_standard doesn't do it. This conversion is
10102 necessary in Ada because the different kinds of float/fixed
10103 types in Ada have different representations.
10105 Similarly, we need to perform the conversion from OP_LONG
10107 if ((op
== OP_FLOAT
|| op
== OP_LONG
) && expect_type
!= NULL
)
10108 arg1
= ada_value_cast (expect_type
, arg1
);
10114 struct value
*result
;
10117 result
= evaluate_subexp_standard (expect_type
, exp
, pos
, noside
);
10118 /* The result type will have code OP_STRING, bashed there from
10119 OP_ARRAY. Bash it back. */
10120 if (value_type (result
)->code () == TYPE_CODE_STRING
)
10121 value_type (result
)->set_code (TYPE_CODE_ARRAY
);
10127 type
= exp
->elts
[pc
+ 1].type
;
10128 return ada_evaluate_subexp_for_cast (exp
, pos
, noside
, type
);
10132 type
= exp
->elts
[pc
+ 1].type
;
10133 return ada_evaluate_subexp (type
, exp
, pos
, noside
);
10136 arg1
= evaluate_subexp (nullptr, exp
, pos
, noside
);
10137 if (exp
->elts
[*pos
].opcode
== OP_AGGREGATE
)
10139 arg1
= assign_aggregate (arg1
, arg1
, exp
, pos
, noside
);
10140 if (noside
== EVAL_SKIP
|| noside
== EVAL_AVOID_SIDE_EFFECTS
)
10142 return ada_value_assign (arg1
, arg1
);
10144 /* Force the evaluation of the rhs ARG2 to the type of the lhs ARG1,
10145 except if the lhs of our assignment is a convenience variable.
10146 In the case of assigning to a convenience variable, the lhs
10147 should be exactly the result of the evaluation of the rhs. */
10148 type
= value_type (arg1
);
10149 if (VALUE_LVAL (arg1
) == lval_internalvar
)
10151 arg2
= evaluate_subexp (type
, exp
, pos
, noside
);
10152 if (noside
== EVAL_SKIP
|| noside
== EVAL_AVOID_SIDE_EFFECTS
)
10154 if (VALUE_LVAL (arg1
) == lval_internalvar
)
10158 else if (ada_is_gnat_encoded_fixed_point_type (value_type (arg1
)))
10159 arg2
= cast_to_fixed (value_type (arg1
), arg2
);
10160 else if (ada_is_gnat_encoded_fixed_point_type (value_type (arg2
)))
10162 (_("Fixed-point values must be assigned to fixed-point variables"));
10164 arg2
= coerce_for_assign (value_type (arg1
), arg2
);
10165 return ada_value_assign (arg1
, arg2
);
10168 arg1
= evaluate_subexp_with_coercion (exp
, pos
, noside
);
10169 arg2
= evaluate_subexp_with_coercion (exp
, pos
, noside
);
10170 if (noside
== EVAL_SKIP
)
10172 if (value_type (arg1
)->code () == TYPE_CODE_PTR
)
10173 return (value_from_longest
10174 (value_type (arg1
),
10175 value_as_long (arg1
) + value_as_long (arg2
)));
10176 if (value_type (arg2
)->code () == TYPE_CODE_PTR
)
10177 return (value_from_longest
10178 (value_type (arg2
),
10179 value_as_long (arg1
) + value_as_long (arg2
)));
10180 if ((ada_is_gnat_encoded_fixed_point_type (value_type (arg1
))
10181 || ada_is_gnat_encoded_fixed_point_type (value_type (arg2
)))
10182 && value_type (arg1
) != value_type (arg2
))
10183 error (_("Operands of fixed-point addition must have the same type"));
10184 /* Do the addition, and cast the result to the type of the first
10185 argument. We cannot cast the result to a reference type, so if
10186 ARG1 is a reference type, find its underlying type. */
10187 type
= value_type (arg1
);
10188 while (type
->code () == TYPE_CODE_REF
)
10189 type
= TYPE_TARGET_TYPE (type
);
10190 binop_promote (exp
->language_defn
, exp
->gdbarch
, &arg1
, &arg2
);
10191 return value_cast (type
, value_binop (arg1
, arg2
, BINOP_ADD
));
10194 arg1
= evaluate_subexp_with_coercion (exp
, pos
, noside
);
10195 arg2
= evaluate_subexp_with_coercion (exp
, pos
, noside
);
10196 if (noside
== EVAL_SKIP
)
10198 if (value_type (arg1
)->code () == TYPE_CODE_PTR
)
10199 return (value_from_longest
10200 (value_type (arg1
),
10201 value_as_long (arg1
) - value_as_long (arg2
)));
10202 if (value_type (arg2
)->code () == TYPE_CODE_PTR
)
10203 return (value_from_longest
10204 (value_type (arg2
),
10205 value_as_long (arg1
) - value_as_long (arg2
)));
10206 if ((ada_is_gnat_encoded_fixed_point_type (value_type (arg1
))
10207 || ada_is_gnat_encoded_fixed_point_type (value_type (arg2
)))
10208 && value_type (arg1
) != value_type (arg2
))
10209 error (_("Operands of fixed-point subtraction "
10210 "must have the same type"));
10211 /* Do the substraction, and cast the result to the type of the first
10212 argument. We cannot cast the result to a reference type, so if
10213 ARG1 is a reference type, find its underlying type. */
10214 type
= value_type (arg1
);
10215 while (type
->code () == TYPE_CODE_REF
)
10216 type
= TYPE_TARGET_TYPE (type
);
10217 binop_promote (exp
->language_defn
, exp
->gdbarch
, &arg1
, &arg2
);
10218 return value_cast (type
, value_binop (arg1
, arg2
, BINOP_SUB
));
10224 arg1
= evaluate_subexp (nullptr, exp
, pos
, noside
);
10225 arg2
= evaluate_subexp (nullptr, exp
, pos
, noside
);
10226 if (noside
== EVAL_SKIP
)
10228 else if (noside
== EVAL_AVOID_SIDE_EFFECTS
)
10230 binop_promote (exp
->language_defn
, exp
->gdbarch
, &arg1
, &arg2
);
10231 return value_zero (value_type (arg1
), not_lval
);
10235 type
= builtin_type (exp
->gdbarch
)->builtin_double
;
10236 if (ada_is_gnat_encoded_fixed_point_type (value_type (arg1
)))
10237 arg1
= cast_from_fixed (type
, arg1
);
10238 if (ada_is_gnat_encoded_fixed_point_type (value_type (arg2
)))
10239 arg2
= cast_from_fixed (type
, arg2
);
10240 binop_promote (exp
->language_defn
, exp
->gdbarch
, &arg1
, &arg2
);
10241 return ada_value_binop (arg1
, arg2
, op
);
10245 case BINOP_NOTEQUAL
:
10246 arg1
= evaluate_subexp (nullptr, exp
, pos
, noside
);
10247 arg2
= evaluate_subexp (value_type (arg1
), exp
, pos
, noside
);
10248 if (noside
== EVAL_SKIP
)
10250 if (noside
== EVAL_AVOID_SIDE_EFFECTS
)
10254 binop_promote (exp
->language_defn
, exp
->gdbarch
, &arg1
, &arg2
);
10255 tem
= ada_value_equal (arg1
, arg2
);
10257 if (op
== BINOP_NOTEQUAL
)
10259 type
= language_bool_type (exp
->language_defn
, exp
->gdbarch
);
10260 return value_from_longest (type
, (LONGEST
) tem
);
10263 arg1
= evaluate_subexp (nullptr, exp
, pos
, noside
);
10264 if (noside
== EVAL_SKIP
)
10266 else if (ada_is_gnat_encoded_fixed_point_type (value_type (arg1
)))
10267 return value_cast (value_type (arg1
), value_neg (arg1
));
10270 unop_promote (exp
->language_defn
, exp
->gdbarch
, &arg1
);
10271 return value_neg (arg1
);
10274 case BINOP_LOGICAL_AND
:
10275 case BINOP_LOGICAL_OR
:
10276 case UNOP_LOGICAL_NOT
:
10281 val
= evaluate_subexp_standard (expect_type
, exp
, pos
, noside
);
10282 type
= language_bool_type (exp
->language_defn
, exp
->gdbarch
);
10283 return value_cast (type
, val
);
10286 case BINOP_BITWISE_AND
:
10287 case BINOP_BITWISE_IOR
:
10288 case BINOP_BITWISE_XOR
:
10292 arg1
= evaluate_subexp (nullptr, exp
, pos
, EVAL_AVOID_SIDE_EFFECTS
);
10294 val
= evaluate_subexp_standard (expect_type
, exp
, pos
, noside
);
10296 return value_cast (value_type (arg1
), val
);
10302 if (noside
== EVAL_SKIP
)
10308 if (SYMBOL_DOMAIN (exp
->elts
[pc
+ 2].symbol
) == UNDEF_DOMAIN
)
10309 /* Only encountered when an unresolved symbol occurs in a
10310 context other than a function call, in which case, it is
10312 error (_("Unexpected unresolved symbol, %s, during evaluation"),
10313 exp
->elts
[pc
+ 2].symbol
->print_name ());
10315 if (noside
== EVAL_AVOID_SIDE_EFFECTS
)
10317 type
= static_unwrap_type (SYMBOL_TYPE (exp
->elts
[pc
+ 2].symbol
));
10318 /* Check to see if this is a tagged type. We also need to handle
10319 the case where the type is a reference to a tagged type, but
10320 we have to be careful to exclude pointers to tagged types.
10321 The latter should be shown as usual (as a pointer), whereas
10322 a reference should mostly be transparent to the user. */
10323 if (ada_is_tagged_type (type
, 0)
10324 || (type
->code () == TYPE_CODE_REF
10325 && ada_is_tagged_type (TYPE_TARGET_TYPE (type
), 0)))
10327 /* Tagged types are a little special in the fact that the real
10328 type is dynamic and can only be determined by inspecting the
10329 object's tag. This means that we need to get the object's
10330 value first (EVAL_NORMAL) and then extract the actual object
10333 Note that we cannot skip the final step where we extract
10334 the object type from its tag, because the EVAL_NORMAL phase
10335 results in dynamic components being resolved into fixed ones.
10336 This can cause problems when trying to print the type
10337 description of tagged types whose parent has a dynamic size:
10338 We use the type name of the "_parent" component in order
10339 to print the name of the ancestor type in the type description.
10340 If that component had a dynamic size, the resolution into
10341 a fixed type would result in the loss of that type name,
10342 thus preventing us from printing the name of the ancestor
10343 type in the type description. */
10344 arg1
= evaluate_subexp (nullptr, exp
, pos
, EVAL_NORMAL
);
10346 if (type
->code () != TYPE_CODE_REF
)
10348 struct type
*actual_type
;
10350 actual_type
= type_from_tag (ada_value_tag (arg1
));
10351 if (actual_type
== NULL
)
10352 /* If, for some reason, we were unable to determine
10353 the actual type from the tag, then use the static
10354 approximation that we just computed as a fallback.
10355 This can happen if the debugging information is
10356 incomplete, for instance. */
10357 actual_type
= type
;
10358 return value_zero (actual_type
, not_lval
);
10362 /* In the case of a ref, ada_coerce_ref takes care
10363 of determining the actual type. But the evaluation
10364 should return a ref as it should be valid to ask
10365 for its address; so rebuild a ref after coerce. */
10366 arg1
= ada_coerce_ref (arg1
);
10367 return value_ref (arg1
, TYPE_CODE_REF
);
10371 /* Records and unions for which GNAT encodings have been
10372 generated need to be statically fixed as well.
10373 Otherwise, non-static fixing produces a type where
10374 all dynamic properties are removed, which prevents "ptype"
10375 from being able to completely describe the type.
10376 For instance, a case statement in a variant record would be
10377 replaced by the relevant components based on the actual
10378 value of the discriminants. */
10379 if ((type
->code () == TYPE_CODE_STRUCT
10380 && dynamic_template_type (type
) != NULL
)
10381 || (type
->code () == TYPE_CODE_UNION
10382 && ada_find_parallel_type (type
, "___XVU") != NULL
))
10385 return value_zero (to_static_fixed_type (type
), not_lval
);
10389 arg1
= evaluate_subexp_standard (expect_type
, exp
, pos
, noside
);
10390 return ada_to_fixed_value (arg1
);
10395 /* Allocate arg vector, including space for the function to be
10396 called in argvec[0] and a terminating NULL. */
10397 nargs
= longest_to_int (exp
->elts
[pc
+ 1].longconst
);
10398 argvec
= XALLOCAVEC (struct value
*, nargs
+ 2);
10400 if (exp
->elts
[*pos
].opcode
== OP_VAR_VALUE
10401 && SYMBOL_DOMAIN (exp
->elts
[pc
+ 5].symbol
) == UNDEF_DOMAIN
)
10402 error (_("Unexpected unresolved symbol, %s, during evaluation"),
10403 exp
->elts
[pc
+ 5].symbol
->print_name ());
10406 for (tem
= 0; tem
<= nargs
; tem
+= 1)
10407 argvec
[tem
] = evaluate_subexp (nullptr, exp
, pos
, noside
);
10410 if (noside
== EVAL_SKIP
)
10414 if (ada_is_constrained_packed_array_type
10415 (desc_base_type (value_type (argvec
[0]))))
10416 argvec
[0] = ada_coerce_to_simple_array (argvec
[0]);
10417 else if (value_type (argvec
[0])->code () == TYPE_CODE_ARRAY
10418 && TYPE_FIELD_BITSIZE (value_type (argvec
[0]), 0) != 0)
10419 /* This is a packed array that has already been fixed, and
10420 therefore already coerced to a simple array. Nothing further
10423 else if (value_type (argvec
[0])->code () == TYPE_CODE_REF
)
10425 /* Make sure we dereference references so that all the code below
10426 feels like it's really handling the referenced value. Wrapping
10427 types (for alignment) may be there, so make sure we strip them as
10429 argvec
[0] = ada_to_fixed_value (coerce_ref (argvec
[0]));
10431 else if (value_type (argvec
[0])->code () == TYPE_CODE_ARRAY
10432 && VALUE_LVAL (argvec
[0]) == lval_memory
)
10433 argvec
[0] = value_addr (argvec
[0]);
10435 type
= ada_check_typedef (value_type (argvec
[0]));
10437 /* Ada allows us to implicitly dereference arrays when subscripting
10438 them. So, if this is an array typedef (encoding use for array
10439 access types encoded as fat pointers), strip it now. */
10440 if (type
->code () == TYPE_CODE_TYPEDEF
)
10441 type
= ada_typedef_target_type (type
);
10443 if (type
->code () == TYPE_CODE_PTR
)
10445 switch (ada_check_typedef (TYPE_TARGET_TYPE (type
))->code ())
10447 case TYPE_CODE_FUNC
:
10448 type
= ada_check_typedef (TYPE_TARGET_TYPE (type
));
10450 case TYPE_CODE_ARRAY
:
10452 case TYPE_CODE_STRUCT
:
10453 if (noside
!= EVAL_AVOID_SIDE_EFFECTS
)
10454 argvec
[0] = ada_value_ind (argvec
[0]);
10455 type
= ada_check_typedef (TYPE_TARGET_TYPE (type
));
10458 error (_("cannot subscript or call something of type `%s'"),
10459 ada_type_name (value_type (argvec
[0])));
10464 switch (type
->code ())
10466 case TYPE_CODE_FUNC
:
10467 if (noside
== EVAL_AVOID_SIDE_EFFECTS
)
10469 if (TYPE_TARGET_TYPE (type
) == NULL
)
10470 error_call_unknown_return_type (NULL
);
10471 return allocate_value (TYPE_TARGET_TYPE (type
));
10473 return call_function_by_hand (argvec
[0], NULL
,
10474 gdb::make_array_view (argvec
+ 1,
10476 case TYPE_CODE_INTERNAL_FUNCTION
:
10477 if (noside
== EVAL_AVOID_SIDE_EFFECTS
)
10478 /* We don't know anything about what the internal
10479 function might return, but we have to return
10481 return value_zero (builtin_type (exp
->gdbarch
)->builtin_int
,
10484 return call_internal_function (exp
->gdbarch
, exp
->language_defn
,
10485 argvec
[0], nargs
, argvec
+ 1);
10487 case TYPE_CODE_STRUCT
:
10491 arity
= ada_array_arity (type
);
10492 type
= ada_array_element_type (type
, nargs
);
10494 error (_("cannot subscript or call a record"));
10495 if (arity
!= nargs
)
10496 error (_("wrong number of subscripts; expecting %d"), arity
);
10497 if (noside
== EVAL_AVOID_SIDE_EFFECTS
)
10498 return value_zero (ada_aligned_type (type
), lval_memory
);
10500 unwrap_value (ada_value_subscript
10501 (argvec
[0], nargs
, argvec
+ 1));
10503 case TYPE_CODE_ARRAY
:
10504 if (noside
== EVAL_AVOID_SIDE_EFFECTS
)
10506 type
= ada_array_element_type (type
, nargs
);
10508 error (_("element type of array unknown"));
10510 return value_zero (ada_aligned_type (type
), lval_memory
);
10513 unwrap_value (ada_value_subscript
10514 (ada_coerce_to_simple_array (argvec
[0]),
10515 nargs
, argvec
+ 1));
10516 case TYPE_CODE_PTR
: /* Pointer to array */
10517 if (noside
== EVAL_AVOID_SIDE_EFFECTS
)
10519 type
= to_fixed_array_type (TYPE_TARGET_TYPE (type
), NULL
, 1);
10520 type
= ada_array_element_type (type
, nargs
);
10522 error (_("element type of array unknown"));
10524 return value_zero (ada_aligned_type (type
), lval_memory
);
10527 unwrap_value (ada_value_ptr_subscript (argvec
[0],
10528 nargs
, argvec
+ 1));
10531 error (_("Attempt to index or call something other than an "
10532 "array or function"));
10537 struct value
*array
= evaluate_subexp (nullptr, exp
, pos
, noside
);
10538 struct value
*low_bound_val
10539 = evaluate_subexp (nullptr, exp
, pos
, noside
);
10540 struct value
*high_bound_val
10541 = evaluate_subexp (nullptr, exp
, pos
, noside
);
10543 LONGEST high_bound
;
10545 low_bound_val
= coerce_ref (low_bound_val
);
10546 high_bound_val
= coerce_ref (high_bound_val
);
10547 low_bound
= value_as_long (low_bound_val
);
10548 high_bound
= value_as_long (high_bound_val
);
10550 if (noside
== EVAL_SKIP
)
10553 /* If this is a reference to an aligner type, then remove all
10555 if (value_type (array
)->code () == TYPE_CODE_REF
10556 && ada_is_aligner_type (TYPE_TARGET_TYPE (value_type (array
))))
10557 TYPE_TARGET_TYPE (value_type (array
)) =
10558 ada_aligned_type (TYPE_TARGET_TYPE (value_type (array
)));
10560 if (ada_is_constrained_packed_array_type (value_type (array
)))
10561 error (_("cannot slice a packed array"));
10563 /* If this is a reference to an array or an array lvalue,
10564 convert to a pointer. */
10565 if (value_type (array
)->code () == TYPE_CODE_REF
10566 || (value_type (array
)->code () == TYPE_CODE_ARRAY
10567 && VALUE_LVAL (array
) == lval_memory
))
10568 array
= value_addr (array
);
10570 if (noside
== EVAL_AVOID_SIDE_EFFECTS
10571 && ada_is_array_descriptor_type (ada_check_typedef
10572 (value_type (array
))))
10573 return empty_array (ada_type_of_array (array
, 0), low_bound
,
10576 array
= ada_coerce_to_simple_array_ptr (array
);
10578 /* If we have more than one level of pointer indirection,
10579 dereference the value until we get only one level. */
10580 while (value_type (array
)->code () == TYPE_CODE_PTR
10581 && (TYPE_TARGET_TYPE (value_type (array
))->code ()
10583 array
= value_ind (array
);
10585 /* Make sure we really do have an array type before going further,
10586 to avoid a SEGV when trying to get the index type or the target
10587 type later down the road if the debug info generated by
10588 the compiler is incorrect or incomplete. */
10589 if (!ada_is_simple_array_type (value_type (array
)))
10590 error (_("cannot take slice of non-array"));
10592 if (ada_check_typedef (value_type (array
))->code ()
10595 struct type
*type0
= ada_check_typedef (value_type (array
));
10597 if (high_bound
< low_bound
|| noside
== EVAL_AVOID_SIDE_EFFECTS
)
10598 return empty_array (TYPE_TARGET_TYPE (type0
), low_bound
, high_bound
);
10601 struct type
*arr_type0
=
10602 to_fixed_array_type (TYPE_TARGET_TYPE (type0
), NULL
, 1);
10604 return ada_value_slice_from_ptr (array
, arr_type0
,
10605 longest_to_int (low_bound
),
10606 longest_to_int (high_bound
));
10609 else if (noside
== EVAL_AVOID_SIDE_EFFECTS
)
10611 else if (high_bound
< low_bound
)
10612 return empty_array (value_type (array
), low_bound
, high_bound
);
10614 return ada_value_slice (array
, longest_to_int (low_bound
),
10615 longest_to_int (high_bound
));
10618 case UNOP_IN_RANGE
:
10620 arg1
= evaluate_subexp (nullptr, exp
, pos
, noside
);
10621 type
= check_typedef (exp
->elts
[pc
+ 1].type
);
10623 if (noside
== EVAL_SKIP
)
10626 switch (type
->code ())
10629 lim_warning (_("Membership test incompletely implemented; "
10630 "always returns true"));
10631 type
= language_bool_type (exp
->language_defn
, exp
->gdbarch
);
10632 return value_from_longest (type
, (LONGEST
) 1);
10634 case TYPE_CODE_RANGE
:
10635 arg2
= value_from_longest (type
,
10636 type
->bounds ()->low
.const_val ());
10637 arg3
= value_from_longest (type
,
10638 type
->bounds ()->high
.const_val ());
10639 binop_promote (exp
->language_defn
, exp
->gdbarch
, &arg1
, &arg2
);
10640 binop_promote (exp
->language_defn
, exp
->gdbarch
, &arg1
, &arg3
);
10641 type
= language_bool_type (exp
->language_defn
, exp
->gdbarch
);
10643 value_from_longest (type
,
10644 (value_less (arg1
, arg3
)
10645 || value_equal (arg1
, arg3
))
10646 && (value_less (arg2
, arg1
)
10647 || value_equal (arg2
, arg1
)));
10650 case BINOP_IN_BOUNDS
:
10652 arg1
= evaluate_subexp (nullptr, exp
, pos
, noside
);
10653 arg2
= evaluate_subexp (nullptr, exp
, pos
, noside
);
10655 if (noside
== EVAL_SKIP
)
10658 if (noside
== EVAL_AVOID_SIDE_EFFECTS
)
10660 type
= language_bool_type (exp
->language_defn
, exp
->gdbarch
);
10661 return value_zero (type
, not_lval
);
10664 tem
= longest_to_int (exp
->elts
[pc
+ 1].longconst
);
10666 type
= ada_index_type (value_type (arg2
), tem
, "range");
10668 type
= value_type (arg1
);
10670 arg3
= value_from_longest (type
, ada_array_bound (arg2
, tem
, 1));
10671 arg2
= value_from_longest (type
, ada_array_bound (arg2
, tem
, 0));
10673 binop_promote (exp
->language_defn
, exp
->gdbarch
, &arg1
, &arg2
);
10674 binop_promote (exp
->language_defn
, exp
->gdbarch
, &arg1
, &arg3
);
10675 type
= language_bool_type (exp
->language_defn
, exp
->gdbarch
);
10677 value_from_longest (type
,
10678 (value_less (arg1
, arg3
)
10679 || value_equal (arg1
, arg3
))
10680 && (value_less (arg2
, arg1
)
10681 || value_equal (arg2
, arg1
)));
10683 case TERNOP_IN_RANGE
:
10684 arg1
= evaluate_subexp (nullptr, exp
, pos
, noside
);
10685 arg2
= evaluate_subexp (nullptr, exp
, pos
, noside
);
10686 arg3
= evaluate_subexp (nullptr, exp
, pos
, noside
);
10688 if (noside
== EVAL_SKIP
)
10691 binop_promote (exp
->language_defn
, exp
->gdbarch
, &arg1
, &arg2
);
10692 binop_promote (exp
->language_defn
, exp
->gdbarch
, &arg1
, &arg3
);
10693 type
= language_bool_type (exp
->language_defn
, exp
->gdbarch
);
10695 value_from_longest (type
,
10696 (value_less (arg1
, arg3
)
10697 || value_equal (arg1
, arg3
))
10698 && (value_less (arg2
, arg1
)
10699 || value_equal (arg2
, arg1
)));
10703 case OP_ATR_LENGTH
:
10705 struct type
*type_arg
;
10707 if (exp
->elts
[*pos
].opcode
== OP_TYPE
)
10709 evaluate_subexp (nullptr, exp
, pos
, EVAL_SKIP
);
10711 type_arg
= check_typedef (exp
->elts
[pc
+ 2].type
);
10715 arg1
= evaluate_subexp (nullptr, exp
, pos
, noside
);
10719 if (exp
->elts
[*pos
].opcode
!= OP_LONG
)
10720 error (_("Invalid operand to '%s"), ada_attribute_name (op
));
10721 tem
= longest_to_int (exp
->elts
[*pos
+ 2].longconst
);
10724 if (noside
== EVAL_SKIP
)
10726 else if (noside
== EVAL_AVOID_SIDE_EFFECTS
)
10728 if (type_arg
== NULL
)
10729 type_arg
= value_type (arg1
);
10731 if (ada_is_constrained_packed_array_type (type_arg
))
10732 type_arg
= decode_constrained_packed_array_type (type_arg
);
10734 if (!discrete_type_p (type_arg
))
10738 default: /* Should never happen. */
10739 error (_("unexpected attribute encountered"));
10742 type_arg
= ada_index_type (type_arg
, tem
,
10743 ada_attribute_name (op
));
10745 case OP_ATR_LENGTH
:
10746 type_arg
= builtin_type (exp
->gdbarch
)->builtin_int
;
10751 return value_zero (type_arg
, not_lval
);
10753 else if (type_arg
== NULL
)
10755 arg1
= ada_coerce_ref (arg1
);
10757 if (ada_is_constrained_packed_array_type (value_type (arg1
)))
10758 arg1
= ada_coerce_to_simple_array (arg1
);
10760 if (op
== OP_ATR_LENGTH
)
10761 type
= builtin_type (exp
->gdbarch
)->builtin_int
;
10764 type
= ada_index_type (value_type (arg1
), tem
,
10765 ada_attribute_name (op
));
10767 type
= builtin_type (exp
->gdbarch
)->builtin_int
;
10772 default: /* Should never happen. */
10773 error (_("unexpected attribute encountered"));
10775 return value_from_longest
10776 (type
, ada_array_bound (arg1
, tem
, 0));
10778 return value_from_longest
10779 (type
, ada_array_bound (arg1
, tem
, 1));
10780 case OP_ATR_LENGTH
:
10781 return value_from_longest
10782 (type
, ada_array_length (arg1
, tem
));
10785 else if (discrete_type_p (type_arg
))
10787 struct type
*range_type
;
10788 const char *name
= ada_type_name (type_arg
);
10791 if (name
!= NULL
&& type_arg
->code () != TYPE_CODE_ENUM
)
10792 range_type
= to_fixed_range_type (type_arg
, NULL
);
10793 if (range_type
== NULL
)
10794 range_type
= type_arg
;
10798 error (_("unexpected attribute encountered"));
10800 return value_from_longest
10801 (range_type
, ada_discrete_type_low_bound (range_type
));
10803 return value_from_longest
10804 (range_type
, ada_discrete_type_high_bound (range_type
));
10805 case OP_ATR_LENGTH
:
10806 error (_("the 'length attribute applies only to array types"));
10809 else if (type_arg
->code () == TYPE_CODE_FLT
)
10810 error (_("unimplemented type attribute"));
10815 if (ada_is_constrained_packed_array_type (type_arg
))
10816 type_arg
= decode_constrained_packed_array_type (type_arg
);
10818 if (op
== OP_ATR_LENGTH
)
10819 type
= builtin_type (exp
->gdbarch
)->builtin_int
;
10822 type
= ada_index_type (type_arg
, tem
, ada_attribute_name (op
));
10824 type
= builtin_type (exp
->gdbarch
)->builtin_int
;
10830 error (_("unexpected attribute encountered"));
10832 low
= ada_array_bound_from_type (type_arg
, tem
, 0);
10833 return value_from_longest (type
, low
);
10835 high
= ada_array_bound_from_type (type_arg
, tem
, 1);
10836 return value_from_longest (type
, high
);
10837 case OP_ATR_LENGTH
:
10838 low
= ada_array_bound_from_type (type_arg
, tem
, 0);
10839 high
= ada_array_bound_from_type (type_arg
, tem
, 1);
10840 return value_from_longest (type
, high
- low
+ 1);
10846 arg1
= evaluate_subexp (nullptr, exp
, pos
, noside
);
10847 if (noside
== EVAL_SKIP
)
10850 if (noside
== EVAL_AVOID_SIDE_EFFECTS
)
10851 return value_zero (ada_tag_type (arg1
), not_lval
);
10853 return ada_value_tag (arg1
);
10857 evaluate_subexp (nullptr, exp
, pos
, EVAL_SKIP
);
10858 arg1
= evaluate_subexp (nullptr, exp
, pos
, noside
);
10859 arg2
= evaluate_subexp (nullptr, exp
, pos
, noside
);
10860 if (noside
== EVAL_SKIP
)
10862 else if (noside
== EVAL_AVOID_SIDE_EFFECTS
)
10863 return value_zero (value_type (arg1
), not_lval
);
10866 binop_promote (exp
->language_defn
, exp
->gdbarch
, &arg1
, &arg2
);
10867 return value_binop (arg1
, arg2
,
10868 op
== OP_ATR_MIN
? BINOP_MIN
: BINOP_MAX
);
10871 case OP_ATR_MODULUS
:
10873 struct type
*type_arg
= check_typedef (exp
->elts
[pc
+ 2].type
);
10875 evaluate_subexp (nullptr, exp
, pos
, EVAL_SKIP
);
10876 if (noside
== EVAL_SKIP
)
10879 if (!ada_is_modular_type (type_arg
))
10880 error (_("'modulus must be applied to modular type"));
10882 return value_from_longest (TYPE_TARGET_TYPE (type_arg
),
10883 ada_modulus (type_arg
));
10888 evaluate_subexp (nullptr, exp
, pos
, EVAL_SKIP
);
10889 arg1
= evaluate_subexp (nullptr, exp
, pos
, noside
);
10890 if (noside
== EVAL_SKIP
)
10892 type
= builtin_type (exp
->gdbarch
)->builtin_int
;
10893 if (noside
== EVAL_AVOID_SIDE_EFFECTS
)
10894 return value_zero (type
, not_lval
);
10896 return value_pos_atr (type
, arg1
);
10899 arg1
= evaluate_subexp (nullptr, exp
, pos
, noside
);
10900 type
= value_type (arg1
);
10902 /* If the argument is a reference, then dereference its type, since
10903 the user is really asking for the size of the actual object,
10904 not the size of the pointer. */
10905 if (type
->code () == TYPE_CODE_REF
)
10906 type
= TYPE_TARGET_TYPE (type
);
10908 if (noside
== EVAL_SKIP
)
10910 else if (noside
== EVAL_AVOID_SIDE_EFFECTS
)
10911 return value_zero (builtin_type (exp
->gdbarch
)->builtin_int
, not_lval
);
10913 return value_from_longest (builtin_type (exp
->gdbarch
)->builtin_int
,
10914 TARGET_CHAR_BIT
* TYPE_LENGTH (type
));
10917 evaluate_subexp (nullptr, exp
, pos
, EVAL_SKIP
);
10918 arg1
= evaluate_subexp (nullptr, exp
, pos
, noside
);
10919 type
= exp
->elts
[pc
+ 2].type
;
10920 if (noside
== EVAL_SKIP
)
10922 else if (noside
== EVAL_AVOID_SIDE_EFFECTS
)
10923 return value_zero (type
, not_lval
);
10925 return value_val_atr (type
, arg1
);
10928 arg1
= evaluate_subexp (nullptr, exp
, pos
, noside
);
10929 arg2
= evaluate_subexp (nullptr, exp
, pos
, noside
);
10930 if (noside
== EVAL_SKIP
)
10932 else if (noside
== EVAL_AVOID_SIDE_EFFECTS
)
10933 return value_zero (value_type (arg1
), not_lval
);
10936 /* For integer exponentiation operations,
10937 only promote the first argument. */
10938 if (is_integral_type (value_type (arg2
)))
10939 unop_promote (exp
->language_defn
, exp
->gdbarch
, &arg1
);
10941 binop_promote (exp
->language_defn
, exp
->gdbarch
, &arg1
, &arg2
);
10943 return value_binop (arg1
, arg2
, op
);
10947 arg1
= evaluate_subexp (nullptr, exp
, pos
, noside
);
10948 if (noside
== EVAL_SKIP
)
10954 arg1
= evaluate_subexp (nullptr, exp
, pos
, noside
);
10955 if (noside
== EVAL_SKIP
)
10957 unop_promote (exp
->language_defn
, exp
->gdbarch
, &arg1
);
10958 if (value_less (arg1
, value_zero (value_type (arg1
), not_lval
)))
10959 return value_neg (arg1
);
10964 preeval_pos
= *pos
;
10965 arg1
= evaluate_subexp (nullptr, exp
, pos
, noside
);
10966 if (noside
== EVAL_SKIP
)
10968 type
= ada_check_typedef (value_type (arg1
));
10969 if (noside
== EVAL_AVOID_SIDE_EFFECTS
)
10971 if (ada_is_array_descriptor_type (type
))
10972 /* GDB allows dereferencing GNAT array descriptors. */
10974 struct type
*arrType
= ada_type_of_array (arg1
, 0);
10976 if (arrType
== NULL
)
10977 error (_("Attempt to dereference null array pointer."));
10978 return value_at_lazy (arrType
, 0);
10980 else if (type
->code () == TYPE_CODE_PTR
10981 || type
->code () == TYPE_CODE_REF
10982 /* In C you can dereference an array to get the 1st elt. */
10983 || type
->code () == TYPE_CODE_ARRAY
)
10985 /* As mentioned in the OP_VAR_VALUE case, tagged types can
10986 only be determined by inspecting the object's tag.
10987 This means that we need to evaluate completely the
10988 expression in order to get its type. */
10990 if ((type
->code () == TYPE_CODE_REF
10991 || type
->code () == TYPE_CODE_PTR
)
10992 && ada_is_tagged_type (TYPE_TARGET_TYPE (type
), 0))
10995 = evaluate_subexp (nullptr, exp
, &preeval_pos
, EVAL_NORMAL
);
10996 type
= value_type (ada_value_ind (arg1
));
11000 type
= to_static_fixed_type
11002 (ada_check_typedef (TYPE_TARGET_TYPE (type
))));
11004 ada_ensure_varsize_limit (type
);
11005 return value_zero (type
, lval_memory
);
11007 else if (type
->code () == TYPE_CODE_INT
)
11009 /* GDB allows dereferencing an int. */
11010 if (expect_type
== NULL
)
11011 return value_zero (builtin_type (exp
->gdbarch
)->builtin_int
,
11016 to_static_fixed_type (ada_aligned_type (expect_type
));
11017 return value_zero (expect_type
, lval_memory
);
11021 error (_("Attempt to take contents of a non-pointer value."));
11023 arg1
= ada_coerce_ref (arg1
); /* FIXME: What is this for?? */
11024 type
= ada_check_typedef (value_type (arg1
));
11026 if (type
->code () == TYPE_CODE_INT
)
11027 /* GDB allows dereferencing an int. If we were given
11028 the expect_type, then use that as the target type.
11029 Otherwise, assume that the target type is an int. */
11031 if (expect_type
!= NULL
)
11032 return ada_value_ind (value_cast (lookup_pointer_type (expect_type
),
11035 return value_at_lazy (builtin_type (exp
->gdbarch
)->builtin_int
,
11036 (CORE_ADDR
) value_as_address (arg1
));
11039 if (ada_is_array_descriptor_type (type
))
11040 /* GDB allows dereferencing GNAT array descriptors. */
11041 return ada_coerce_to_simple_array (arg1
);
11043 return ada_value_ind (arg1
);
11045 case STRUCTOP_STRUCT
:
11046 tem
= longest_to_int (exp
->elts
[pc
+ 1].longconst
);
11047 (*pos
) += 3 + BYTES_TO_EXP_ELEM (tem
+ 1);
11048 preeval_pos
= *pos
;
11049 arg1
= evaluate_subexp (nullptr, exp
, pos
, noside
);
11050 if (noside
== EVAL_SKIP
)
11052 if (noside
== EVAL_AVOID_SIDE_EFFECTS
)
11054 struct type
*type1
= value_type (arg1
);
11056 if (ada_is_tagged_type (type1
, 1))
11058 type
= ada_lookup_struct_elt_type (type1
,
11059 &exp
->elts
[pc
+ 2].string
,
11062 /* If the field is not found, check if it exists in the
11063 extension of this object's type. This means that we
11064 need to evaluate completely the expression. */
11069 = evaluate_subexp (nullptr, exp
, &preeval_pos
, EVAL_NORMAL
);
11070 arg1
= ada_value_struct_elt (arg1
,
11071 &exp
->elts
[pc
+ 2].string
,
11073 arg1
= unwrap_value (arg1
);
11074 type
= value_type (ada_to_fixed_value (arg1
));
11079 ada_lookup_struct_elt_type (type1
, &exp
->elts
[pc
+ 2].string
, 1,
11082 return value_zero (ada_aligned_type (type
), lval_memory
);
11086 arg1
= ada_value_struct_elt (arg1
, &exp
->elts
[pc
+ 2].string
, 0);
11087 arg1
= unwrap_value (arg1
);
11088 return ada_to_fixed_value (arg1
);
11092 /* The value is not supposed to be used. This is here to make it
11093 easier to accommodate expressions that contain types. */
11095 if (noside
== EVAL_SKIP
)
11097 else if (noside
== EVAL_AVOID_SIDE_EFFECTS
)
11098 return allocate_value (exp
->elts
[pc
+ 1].type
);
11100 error (_("Attempt to use a type name as an expression"));
11105 case OP_DISCRETE_RANGE
:
11106 case OP_POSITIONAL
:
11108 if (noside
== EVAL_NORMAL
)
11112 error (_("Undefined name, ambiguous name, or renaming used in "
11113 "component association: %s."), &exp
->elts
[pc
+2].string
);
11115 error (_("Aggregates only allowed on the right of an assignment"));
11117 internal_error (__FILE__
, __LINE__
,
11118 _("aggregate apparently mangled"));
11121 ada_forward_operator_length (exp
, pc
, &oplen
, &nargs
);
11123 for (tem
= 0; tem
< nargs
; tem
+= 1)
11124 ada_evaluate_subexp (NULL
, exp
, pos
, noside
);
11129 return eval_skip_value (exp
);
11135 /* If TYPE encodes an Ada fixed-point type, return the suffix of the
11136 type name that encodes the 'small and 'delta information.
11137 Otherwise, return NULL. */
11139 static const char *
11140 gnat_encoded_fixed_type_info (struct type
*type
)
11142 const char *name
= ada_type_name (type
);
11143 enum type_code code
= (type
== NULL
) ? TYPE_CODE_UNDEF
: type
->code ();
11145 if ((code
== TYPE_CODE_INT
|| code
== TYPE_CODE_RANGE
) && name
!= NULL
)
11147 const char *tail
= strstr (name
, "___XF_");
11154 else if (code
== TYPE_CODE_RANGE
&& TYPE_TARGET_TYPE (type
) != type
)
11155 return gnat_encoded_fixed_type_info (TYPE_TARGET_TYPE (type
));
11160 /* Returns non-zero iff TYPE represents an Ada fixed-point type. */
11163 ada_is_gnat_encoded_fixed_point_type (struct type
*type
)
11165 return gnat_encoded_fixed_type_info (type
) != NULL
;
11168 /* Return non-zero iff TYPE represents a System.Address type. */
11171 ada_is_system_address_type (struct type
*type
)
11173 return (type
->name () && strcmp (type
->name (), "system__address") == 0);
11176 /* Assuming that TYPE is the representation of an Ada fixed-point
11177 type, return the target floating-point type to be used to represent
11178 of this type during internal computation. */
11180 static struct type
*
11181 ada_scaling_type (struct type
*type
)
11183 return builtin_type (get_type_arch (type
))->builtin_long_double
;
11186 /* Assuming that TYPE is the representation of an Ada fixed-point
11187 type, return its delta, or NULL if the type is malformed and the
11188 delta cannot be determined. */
11191 gnat_encoded_fixed_point_delta (struct type
*type
)
11193 const char *encoding
= gnat_encoded_fixed_type_info (type
);
11194 struct type
*scale_type
= ada_scaling_type (type
);
11196 long long num
, den
;
11198 if (sscanf (encoding
, "_%lld_%lld", &num
, &den
) < 2)
11201 return value_binop (value_from_longest (scale_type
, num
),
11202 value_from_longest (scale_type
, den
), BINOP_DIV
);
11205 /* Assuming that ada_is_gnat_encoded_fixed_point_type (TYPE), return
11206 the scaling factor ('SMALL value) associated with the type. */
11209 ada_scaling_factor (struct type
*type
)
11211 const char *encoding
= gnat_encoded_fixed_type_info (type
);
11212 struct type
*scale_type
= ada_scaling_type (type
);
11214 long long num0
, den0
, num1
, den1
;
11217 n
= sscanf (encoding
, "_%lld_%lld_%lld_%lld",
11218 &num0
, &den0
, &num1
, &den1
);
11221 return value_from_longest (scale_type
, 1);
11223 return value_binop (value_from_longest (scale_type
, num1
),
11224 value_from_longest (scale_type
, den1
), BINOP_DIV
);
11226 return value_binop (value_from_longest (scale_type
, num0
),
11227 value_from_longest (scale_type
, den0
), BINOP_DIV
);
11234 /* Scan STR beginning at position K for a discriminant name, and
11235 return the value of that discriminant field of DVAL in *PX. If
11236 PNEW_K is not null, put the position of the character beyond the
11237 name scanned in *PNEW_K. Return 1 if successful; return 0 and do
11238 not alter *PX and *PNEW_K if unsuccessful. */
11241 scan_discrim_bound (const char *str
, int k
, struct value
*dval
, LONGEST
* px
,
11244 static char *bound_buffer
= NULL
;
11245 static size_t bound_buffer_len
= 0;
11246 const char *pstart
, *pend
, *bound
;
11247 struct value
*bound_val
;
11249 if (dval
== NULL
|| str
== NULL
|| str
[k
] == '\0')
11253 pend
= strstr (pstart
, "__");
11257 k
+= strlen (bound
);
11261 int len
= pend
- pstart
;
11263 /* Strip __ and beyond. */
11264 GROW_VECT (bound_buffer
, bound_buffer_len
, len
+ 1);
11265 strncpy (bound_buffer
, pstart
, len
);
11266 bound_buffer
[len
] = '\0';
11268 bound
= bound_buffer
;
11272 bound_val
= ada_search_struct_field (bound
, dval
, 0, value_type (dval
));
11273 if (bound_val
== NULL
)
11276 *px
= value_as_long (bound_val
);
11277 if (pnew_k
!= NULL
)
11282 /* Value of variable named NAME in the current environment. If
11283 no such variable found, then if ERR_MSG is null, returns 0, and
11284 otherwise causes an error with message ERR_MSG. */
11286 static struct value
*
11287 get_var_value (const char *name
, const char *err_msg
)
11289 lookup_name_info
lookup_name (name
, symbol_name_match_type::FULL
);
11291 std::vector
<struct block_symbol
> syms
;
11292 int nsyms
= ada_lookup_symbol_list_worker (lookup_name
,
11293 get_selected_block (0),
11294 VAR_DOMAIN
, &syms
, 1);
11298 if (err_msg
== NULL
)
11301 error (("%s"), err_msg
);
11304 return value_of_variable (syms
[0].symbol
, syms
[0].block
);
11307 /* Value of integer variable named NAME in the current environment.
11308 If no such variable is found, returns false. Otherwise, sets VALUE
11309 to the variable's value and returns true. */
11312 get_int_var_value (const char *name
, LONGEST
&value
)
11314 struct value
*var_val
= get_var_value (name
, 0);
11319 value
= value_as_long (var_val
);
11324 /* Return a range type whose base type is that of the range type named
11325 NAME in the current environment, and whose bounds are calculated
11326 from NAME according to the GNAT range encoding conventions.
11327 Extract discriminant values, if needed, from DVAL. ORIG_TYPE is the
11328 corresponding range type from debug information; fall back to using it
11329 if symbol lookup fails. If a new type must be created, allocate it
11330 like ORIG_TYPE was. The bounds information, in general, is encoded
11331 in NAME, the base type given in the named range type. */
11333 static struct type
*
11334 to_fixed_range_type (struct type
*raw_type
, struct value
*dval
)
11337 struct type
*base_type
;
11338 const char *subtype_info
;
11340 gdb_assert (raw_type
!= NULL
);
11341 gdb_assert (raw_type
->name () != NULL
);
11343 if (raw_type
->code () == TYPE_CODE_RANGE
)
11344 base_type
= TYPE_TARGET_TYPE (raw_type
);
11346 base_type
= raw_type
;
11348 name
= raw_type
->name ();
11349 subtype_info
= strstr (name
, "___XD");
11350 if (subtype_info
== NULL
)
11352 LONGEST L
= ada_discrete_type_low_bound (raw_type
);
11353 LONGEST U
= ada_discrete_type_high_bound (raw_type
);
11355 if (L
< INT_MIN
|| U
> INT_MAX
)
11358 return create_static_range_type (alloc_type_copy (raw_type
), raw_type
,
11363 static char *name_buf
= NULL
;
11364 static size_t name_len
= 0;
11365 int prefix_len
= subtype_info
- name
;
11368 const char *bounds_str
;
11371 GROW_VECT (name_buf
, name_len
, prefix_len
+ 5);
11372 strncpy (name_buf
, name
, prefix_len
);
11373 name_buf
[prefix_len
] = '\0';
11376 bounds_str
= strchr (subtype_info
, '_');
11379 if (*subtype_info
== 'L')
11381 if (!ada_scan_number (bounds_str
, n
, &L
, &n
)
11382 && !scan_discrim_bound (bounds_str
, n
, dval
, &L
, &n
))
11384 if (bounds_str
[n
] == '_')
11386 else if (bounds_str
[n
] == '.') /* FIXME? SGI Workshop kludge. */
11392 strcpy (name_buf
+ prefix_len
, "___L");
11393 if (!get_int_var_value (name_buf
, L
))
11395 lim_warning (_("Unknown lower bound, using 1."));
11400 if (*subtype_info
== 'U')
11402 if (!ada_scan_number (bounds_str
, n
, &U
, &n
)
11403 && !scan_discrim_bound (bounds_str
, n
, dval
, &U
, &n
))
11408 strcpy (name_buf
+ prefix_len
, "___U");
11409 if (!get_int_var_value (name_buf
, U
))
11411 lim_warning (_("Unknown upper bound, using %ld."), (long) L
);
11416 type
= create_static_range_type (alloc_type_copy (raw_type
),
11418 /* create_static_range_type alters the resulting type's length
11419 to match the size of the base_type, which is not what we want.
11420 Set it back to the original range type's length. */
11421 TYPE_LENGTH (type
) = TYPE_LENGTH (raw_type
);
11422 type
->set_name (name
);
11427 /* True iff NAME is the name of a range type. */
11430 ada_is_range_type_name (const char *name
)
11432 return (name
!= NULL
&& strstr (name
, "___XD"));
11436 /* Modular types */
11438 /* True iff TYPE is an Ada modular type. */
11441 ada_is_modular_type (struct type
*type
)
11443 struct type
*subranged_type
= get_base_type (type
);
11445 return (subranged_type
!= NULL
&& type
->code () == TYPE_CODE_RANGE
11446 && subranged_type
->code () == TYPE_CODE_INT
11447 && subranged_type
->is_unsigned ());
11450 /* Assuming ada_is_modular_type (TYPE), the modulus of TYPE. */
11453 ada_modulus (struct type
*type
)
11455 const dynamic_prop
&high
= type
->bounds ()->high
;
11457 if (high
.kind () == PROP_CONST
)
11458 return (ULONGEST
) high
.const_val () + 1;
11460 /* If TYPE is unresolved, the high bound might be a location list. Return
11461 0, for lack of a better value to return. */
11466 /* Ada exception catchpoint support:
11467 ---------------------------------
11469 We support 3 kinds of exception catchpoints:
11470 . catchpoints on Ada exceptions
11471 . catchpoints on unhandled Ada exceptions
11472 . catchpoints on failed assertions
11474 Exceptions raised during failed assertions, or unhandled exceptions
11475 could perfectly be caught with the general catchpoint on Ada exceptions.
11476 However, we can easily differentiate these two special cases, and having
11477 the option to distinguish these two cases from the rest can be useful
11478 to zero-in on certain situations.
11480 Exception catchpoints are a specialized form of breakpoint,
11481 since they rely on inserting breakpoints inside known routines
11482 of the GNAT runtime. The implementation therefore uses a standard
11483 breakpoint structure of the BP_BREAKPOINT type, but with its own set
11486 Support in the runtime for exception catchpoints have been changed
11487 a few times already, and these changes affect the implementation
11488 of these catchpoints. In order to be able to support several
11489 variants of the runtime, we use a sniffer that will determine
11490 the runtime variant used by the program being debugged. */
11492 /* Ada's standard exceptions.
11494 The Ada 83 standard also defined Numeric_Error. But there so many
11495 situations where it was unclear from the Ada 83 Reference Manual
11496 (RM) whether Constraint_Error or Numeric_Error should be raised,
11497 that the ARG (Ada Rapporteur Group) eventually issued a Binding
11498 Interpretation saying that anytime the RM says that Numeric_Error
11499 should be raised, the implementation may raise Constraint_Error.
11500 Ada 95 went one step further and pretty much removed Numeric_Error
11501 from the list of standard exceptions (it made it a renaming of
11502 Constraint_Error, to help preserve compatibility when compiling
11503 an Ada83 compiler). As such, we do not include Numeric_Error from
11504 this list of standard exceptions. */
11506 static const char * const standard_exc
[] = {
11507 "constraint_error",
11513 typedef CORE_ADDR (ada_unhandled_exception_name_addr_ftype
) (void);
11515 /* A structure that describes how to support exception catchpoints
11516 for a given executable. */
11518 struct exception_support_info
11520 /* The name of the symbol to break on in order to insert
11521 a catchpoint on exceptions. */
11522 const char *catch_exception_sym
;
11524 /* The name of the symbol to break on in order to insert
11525 a catchpoint on unhandled exceptions. */
11526 const char *catch_exception_unhandled_sym
;
11528 /* The name of the symbol to break on in order to insert
11529 a catchpoint on failed assertions. */
11530 const char *catch_assert_sym
;
11532 /* The name of the symbol to break on in order to insert
11533 a catchpoint on exception handling. */
11534 const char *catch_handlers_sym
;
11536 /* Assuming that the inferior just triggered an unhandled exception
11537 catchpoint, this function is responsible for returning the address
11538 in inferior memory where the name of that exception is stored.
11539 Return zero if the address could not be computed. */
11540 ada_unhandled_exception_name_addr_ftype
*unhandled_exception_name_addr
;
11543 static CORE_ADDR
ada_unhandled_exception_name_addr (void);
11544 static CORE_ADDR
ada_unhandled_exception_name_addr_from_raise (void);
11546 /* The following exception support info structure describes how to
11547 implement exception catchpoints with the latest version of the
11548 Ada runtime (as of 2019-08-??). */
11550 static const struct exception_support_info default_exception_support_info
=
11552 "__gnat_debug_raise_exception", /* catch_exception_sym */
11553 "__gnat_unhandled_exception", /* catch_exception_unhandled_sym */
11554 "__gnat_debug_raise_assert_failure", /* catch_assert_sym */
11555 "__gnat_begin_handler_v1", /* catch_handlers_sym */
11556 ada_unhandled_exception_name_addr
11559 /* The following exception support info structure describes how to
11560 implement exception catchpoints with an earlier version of the
11561 Ada runtime (as of 2007-03-06) using v0 of the EH ABI. */
11563 static const struct exception_support_info exception_support_info_v0
=
11565 "__gnat_debug_raise_exception", /* catch_exception_sym */
11566 "__gnat_unhandled_exception", /* catch_exception_unhandled_sym */
11567 "__gnat_debug_raise_assert_failure", /* catch_assert_sym */
11568 "__gnat_begin_handler", /* catch_handlers_sym */
11569 ada_unhandled_exception_name_addr
11572 /* The following exception support info structure describes how to
11573 implement exception catchpoints with a slightly older version
11574 of the Ada runtime. */
11576 static const struct exception_support_info exception_support_info_fallback
=
11578 "__gnat_raise_nodefer_with_msg", /* catch_exception_sym */
11579 "__gnat_unhandled_exception", /* catch_exception_unhandled_sym */
11580 "system__assertions__raise_assert_failure", /* catch_assert_sym */
11581 "__gnat_begin_handler", /* catch_handlers_sym */
11582 ada_unhandled_exception_name_addr_from_raise
11585 /* Return nonzero if we can detect the exception support routines
11586 described in EINFO.
11588 This function errors out if an abnormal situation is detected
11589 (for instance, if we find the exception support routines, but
11590 that support is found to be incomplete). */
11593 ada_has_this_exception_support (const struct exception_support_info
*einfo
)
11595 struct symbol
*sym
;
11597 /* The symbol we're looking up is provided by a unit in the GNAT runtime
11598 that should be compiled with debugging information. As a result, we
11599 expect to find that symbol in the symtabs. */
11601 sym
= standard_lookup (einfo
->catch_exception_sym
, NULL
, VAR_DOMAIN
);
11604 /* Perhaps we did not find our symbol because the Ada runtime was
11605 compiled without debugging info, or simply stripped of it.
11606 It happens on some GNU/Linux distributions for instance, where
11607 users have to install a separate debug package in order to get
11608 the runtime's debugging info. In that situation, let the user
11609 know why we cannot insert an Ada exception catchpoint.
11611 Note: Just for the purpose of inserting our Ada exception
11612 catchpoint, we could rely purely on the associated minimal symbol.
11613 But we would be operating in degraded mode anyway, since we are
11614 still lacking the debugging info needed later on to extract
11615 the name of the exception being raised (this name is printed in
11616 the catchpoint message, and is also used when trying to catch
11617 a specific exception). We do not handle this case for now. */
11618 struct bound_minimal_symbol msym
11619 = lookup_minimal_symbol (einfo
->catch_exception_sym
, NULL
, NULL
);
11621 if (msym
.minsym
&& MSYMBOL_TYPE (msym
.minsym
) != mst_solib_trampoline
)
11622 error (_("Your Ada runtime appears to be missing some debugging "
11623 "information.\nCannot insert Ada exception catchpoint "
11624 "in this configuration."));
11629 /* Make sure that the symbol we found corresponds to a function. */
11631 if (SYMBOL_CLASS (sym
) != LOC_BLOCK
)
11633 error (_("Symbol \"%s\" is not a function (class = %d)"),
11634 sym
->linkage_name (), SYMBOL_CLASS (sym
));
11638 sym
= standard_lookup (einfo
->catch_handlers_sym
, NULL
, VAR_DOMAIN
);
11641 struct bound_minimal_symbol msym
11642 = lookup_minimal_symbol (einfo
->catch_handlers_sym
, NULL
, NULL
);
11644 if (msym
.minsym
&& MSYMBOL_TYPE (msym
.minsym
) != mst_solib_trampoline
)
11645 error (_("Your Ada runtime appears to be missing some debugging "
11646 "information.\nCannot insert Ada exception catchpoint "
11647 "in this configuration."));
11652 /* Make sure that the symbol we found corresponds to a function. */
11654 if (SYMBOL_CLASS (sym
) != LOC_BLOCK
)
11656 error (_("Symbol \"%s\" is not a function (class = %d)"),
11657 sym
->linkage_name (), SYMBOL_CLASS (sym
));
11664 /* Inspect the Ada runtime and determine which exception info structure
11665 should be used to provide support for exception catchpoints.
11667 This function will always set the per-inferior exception_info,
11668 or raise an error. */
11671 ada_exception_support_info_sniffer (void)
11673 struct ada_inferior_data
*data
= get_ada_inferior_data (current_inferior ());
11675 /* If the exception info is already known, then no need to recompute it. */
11676 if (data
->exception_info
!= NULL
)
11679 /* Check the latest (default) exception support info. */
11680 if (ada_has_this_exception_support (&default_exception_support_info
))
11682 data
->exception_info
= &default_exception_support_info
;
11686 /* Try the v0 exception suport info. */
11687 if (ada_has_this_exception_support (&exception_support_info_v0
))
11689 data
->exception_info
= &exception_support_info_v0
;
11693 /* Try our fallback exception suport info. */
11694 if (ada_has_this_exception_support (&exception_support_info_fallback
))
11696 data
->exception_info
= &exception_support_info_fallback
;
11700 /* Sometimes, it is normal for us to not be able to find the routine
11701 we are looking for. This happens when the program is linked with
11702 the shared version of the GNAT runtime, and the program has not been
11703 started yet. Inform the user of these two possible causes if
11706 if (ada_update_initial_language (language_unknown
) != language_ada
)
11707 error (_("Unable to insert catchpoint. Is this an Ada main program?"));
11709 /* If the symbol does not exist, then check that the program is
11710 already started, to make sure that shared libraries have been
11711 loaded. If it is not started, this may mean that the symbol is
11712 in a shared library. */
11714 if (inferior_ptid
.pid () == 0)
11715 error (_("Unable to insert catchpoint. Try to start the program first."));
11717 /* At this point, we know that we are debugging an Ada program and
11718 that the inferior has been started, but we still are not able to
11719 find the run-time symbols. That can mean that we are in
11720 configurable run time mode, or that a-except as been optimized
11721 out by the linker... In any case, at this point it is not worth
11722 supporting this feature. */
11724 error (_("Cannot insert Ada exception catchpoints in this configuration."));
11727 /* True iff FRAME is very likely to be that of a function that is
11728 part of the runtime system. This is all very heuristic, but is
11729 intended to be used as advice as to what frames are uninteresting
11733 is_known_support_routine (struct frame_info
*frame
)
11735 enum language func_lang
;
11737 const char *fullname
;
11739 /* If this code does not have any debugging information (no symtab),
11740 This cannot be any user code. */
11742 symtab_and_line sal
= find_frame_sal (frame
);
11743 if (sal
.symtab
== NULL
)
11746 /* If there is a symtab, but the associated source file cannot be
11747 located, then assume this is not user code: Selecting a frame
11748 for which we cannot display the code would not be very helpful
11749 for the user. This should also take care of case such as VxWorks
11750 where the kernel has some debugging info provided for a few units. */
11752 fullname
= symtab_to_fullname (sal
.symtab
);
11753 if (access (fullname
, R_OK
) != 0)
11756 /* Check the unit filename against the Ada runtime file naming.
11757 We also check the name of the objfile against the name of some
11758 known system libraries that sometimes come with debugging info
11761 for (i
= 0; known_runtime_file_name_patterns
[i
] != NULL
; i
+= 1)
11763 re_comp (known_runtime_file_name_patterns
[i
]);
11764 if (re_exec (lbasename (sal
.symtab
->filename
)))
11766 if (SYMTAB_OBJFILE (sal
.symtab
) != NULL
11767 && re_exec (objfile_name (SYMTAB_OBJFILE (sal
.symtab
))))
11771 /* Check whether the function is a GNAT-generated entity. */
11773 gdb::unique_xmalloc_ptr
<char> func_name
11774 = find_frame_funname (frame
, &func_lang
, NULL
);
11775 if (func_name
== NULL
)
11778 for (i
= 0; known_auxiliary_function_name_patterns
[i
] != NULL
; i
+= 1)
11780 re_comp (known_auxiliary_function_name_patterns
[i
]);
11781 if (re_exec (func_name
.get ()))
11788 /* Find the first frame that contains debugging information and that is not
11789 part of the Ada run-time, starting from FI and moving upward. */
11792 ada_find_printable_frame (struct frame_info
*fi
)
11794 for (; fi
!= NULL
; fi
= get_prev_frame (fi
))
11796 if (!is_known_support_routine (fi
))
11805 /* Assuming that the inferior just triggered an unhandled exception
11806 catchpoint, return the address in inferior memory where the name
11807 of the exception is stored.
11809 Return zero if the address could not be computed. */
11812 ada_unhandled_exception_name_addr (void)
11814 return parse_and_eval_address ("e.full_name");
11817 /* Same as ada_unhandled_exception_name_addr, except that this function
11818 should be used when the inferior uses an older version of the runtime,
11819 where the exception name needs to be extracted from a specific frame
11820 several frames up in the callstack. */
11823 ada_unhandled_exception_name_addr_from_raise (void)
11826 struct frame_info
*fi
;
11827 struct ada_inferior_data
*data
= get_ada_inferior_data (current_inferior ());
11829 /* To determine the name of this exception, we need to select
11830 the frame corresponding to RAISE_SYM_NAME. This frame is
11831 at least 3 levels up, so we simply skip the first 3 frames
11832 without checking the name of their associated function. */
11833 fi
= get_current_frame ();
11834 for (frame_level
= 0; frame_level
< 3; frame_level
+= 1)
11836 fi
= get_prev_frame (fi
);
11840 enum language func_lang
;
11842 gdb::unique_xmalloc_ptr
<char> func_name
11843 = find_frame_funname (fi
, &func_lang
, NULL
);
11844 if (func_name
!= NULL
)
11846 if (strcmp (func_name
.get (),
11847 data
->exception_info
->catch_exception_sym
) == 0)
11848 break; /* We found the frame we were looking for... */
11850 fi
= get_prev_frame (fi
);
11857 return parse_and_eval_address ("id.full_name");
11860 /* Assuming the inferior just triggered an Ada exception catchpoint
11861 (of any type), return the address in inferior memory where the name
11862 of the exception is stored, if applicable.
11864 Assumes the selected frame is the current frame.
11866 Return zero if the address could not be computed, or if not relevant. */
11869 ada_exception_name_addr_1 (enum ada_exception_catchpoint_kind ex
,
11870 struct breakpoint
*b
)
11872 struct ada_inferior_data
*data
= get_ada_inferior_data (current_inferior ());
11876 case ada_catch_exception
:
11877 return (parse_and_eval_address ("e.full_name"));
11880 case ada_catch_exception_unhandled
:
11881 return data
->exception_info
->unhandled_exception_name_addr ();
11884 case ada_catch_handlers
:
11885 return 0; /* The runtimes does not provide access to the exception
11889 case ada_catch_assert
:
11890 return 0; /* Exception name is not relevant in this case. */
11894 internal_error (__FILE__
, __LINE__
, _("unexpected catchpoint type"));
11898 return 0; /* Should never be reached. */
11901 /* Assuming the inferior is stopped at an exception catchpoint,
11902 return the message which was associated to the exception, if
11903 available. Return NULL if the message could not be retrieved.
11905 Note: The exception message can be associated to an exception
11906 either through the use of the Raise_Exception function, or
11907 more simply (Ada 2005 and later), via:
11909 raise Exception_Name with "exception message";
11913 static gdb::unique_xmalloc_ptr
<char>
11914 ada_exception_message_1 (void)
11916 struct value
*e_msg_val
;
11919 /* For runtimes that support this feature, the exception message
11920 is passed as an unbounded string argument called "message". */
11921 e_msg_val
= parse_and_eval ("message");
11922 if (e_msg_val
== NULL
)
11923 return NULL
; /* Exception message not supported. */
11925 e_msg_val
= ada_coerce_to_simple_array (e_msg_val
);
11926 gdb_assert (e_msg_val
!= NULL
);
11927 e_msg_len
= TYPE_LENGTH (value_type (e_msg_val
));
11929 /* If the message string is empty, then treat it as if there was
11930 no exception message. */
11931 if (e_msg_len
<= 0)
11934 gdb::unique_xmalloc_ptr
<char> e_msg ((char *) xmalloc (e_msg_len
+ 1));
11935 read_memory (value_address (e_msg_val
), (gdb_byte
*) e_msg
.get (),
11937 e_msg
.get ()[e_msg_len
] = '\0';
11942 /* Same as ada_exception_message_1, except that all exceptions are
11943 contained here (returning NULL instead). */
11945 static gdb::unique_xmalloc_ptr
<char>
11946 ada_exception_message (void)
11948 gdb::unique_xmalloc_ptr
<char> e_msg
;
11952 e_msg
= ada_exception_message_1 ();
11954 catch (const gdb_exception_error
&e
)
11956 e_msg
.reset (nullptr);
11962 /* Same as ada_exception_name_addr_1, except that it intercepts and contains
11963 any error that ada_exception_name_addr_1 might cause to be thrown.
11964 When an error is intercepted, a warning with the error message is printed,
11965 and zero is returned. */
11968 ada_exception_name_addr (enum ada_exception_catchpoint_kind ex
,
11969 struct breakpoint
*b
)
11971 CORE_ADDR result
= 0;
11975 result
= ada_exception_name_addr_1 (ex
, b
);
11978 catch (const gdb_exception_error
&e
)
11980 warning (_("failed to get exception name: %s"), e
.what ());
11987 static std::string ada_exception_catchpoint_cond_string
11988 (const char *excep_string
,
11989 enum ada_exception_catchpoint_kind ex
);
11991 /* Ada catchpoints.
11993 In the case of catchpoints on Ada exceptions, the catchpoint will
11994 stop the target on every exception the program throws. When a user
11995 specifies the name of a specific exception, we translate this
11996 request into a condition expression (in text form), and then parse
11997 it into an expression stored in each of the catchpoint's locations.
11998 We then use this condition to check whether the exception that was
11999 raised is the one the user is interested in. If not, then the
12000 target is resumed again. We store the name of the requested
12001 exception, in order to be able to re-set the condition expression
12002 when symbols change. */
12004 /* An instance of this type is used to represent an Ada catchpoint
12005 breakpoint location. */
12007 class ada_catchpoint_location
: public bp_location
12010 ada_catchpoint_location (breakpoint
*owner
)
12011 : bp_location (owner
, bp_loc_software_breakpoint
)
12014 /* The condition that checks whether the exception that was raised
12015 is the specific exception the user specified on catchpoint
12017 expression_up excep_cond_expr
;
12020 /* An instance of this type is used to represent an Ada catchpoint. */
12022 struct ada_catchpoint
: public breakpoint
12024 explicit ada_catchpoint (enum ada_exception_catchpoint_kind kind
)
12029 /* The name of the specific exception the user specified. */
12030 std::string excep_string
;
12032 /* What kind of catchpoint this is. */
12033 enum ada_exception_catchpoint_kind m_kind
;
12036 /* Parse the exception condition string in the context of each of the
12037 catchpoint's locations, and store them for later evaluation. */
12040 create_excep_cond_exprs (struct ada_catchpoint
*c
,
12041 enum ada_exception_catchpoint_kind ex
)
12043 struct bp_location
*bl
;
12045 /* Nothing to do if there's no specific exception to catch. */
12046 if (c
->excep_string
.empty ())
12049 /* Same if there are no locations... */
12050 if (c
->loc
== NULL
)
12053 /* Compute the condition expression in text form, from the specific
12054 expection we want to catch. */
12055 std::string cond_string
12056 = ada_exception_catchpoint_cond_string (c
->excep_string
.c_str (), ex
);
12058 /* Iterate over all the catchpoint's locations, and parse an
12059 expression for each. */
12060 for (bl
= c
->loc
; bl
!= NULL
; bl
= bl
->next
)
12062 struct ada_catchpoint_location
*ada_loc
12063 = (struct ada_catchpoint_location
*) bl
;
12066 if (!bl
->shlib_disabled
)
12070 s
= cond_string
.c_str ();
12073 exp
= parse_exp_1 (&s
, bl
->address
,
12074 block_for_pc (bl
->address
),
12077 catch (const gdb_exception_error
&e
)
12079 warning (_("failed to reevaluate internal exception condition "
12080 "for catchpoint %d: %s"),
12081 c
->number
, e
.what ());
12085 ada_loc
->excep_cond_expr
= std::move (exp
);
12089 /* Implement the ALLOCATE_LOCATION method in the breakpoint_ops
12090 structure for all exception catchpoint kinds. */
12092 static struct bp_location
*
12093 allocate_location_exception (struct breakpoint
*self
)
12095 return new ada_catchpoint_location (self
);
12098 /* Implement the RE_SET method in the breakpoint_ops structure for all
12099 exception catchpoint kinds. */
12102 re_set_exception (struct breakpoint
*b
)
12104 struct ada_catchpoint
*c
= (struct ada_catchpoint
*) b
;
12106 /* Call the base class's method. This updates the catchpoint's
12108 bkpt_breakpoint_ops
.re_set (b
);
12110 /* Reparse the exception conditional expressions. One for each
12112 create_excep_cond_exprs (c
, c
->m_kind
);
12115 /* Returns true if we should stop for this breakpoint hit. If the
12116 user specified a specific exception, we only want to cause a stop
12117 if the program thrown that exception. */
12120 should_stop_exception (const struct bp_location
*bl
)
12122 struct ada_catchpoint
*c
= (struct ada_catchpoint
*) bl
->owner
;
12123 const struct ada_catchpoint_location
*ada_loc
12124 = (const struct ada_catchpoint_location
*) bl
;
12127 struct internalvar
*var
= lookup_internalvar ("_ada_exception");
12128 if (c
->m_kind
== ada_catch_assert
)
12129 clear_internalvar (var
);
12136 if (c
->m_kind
== ada_catch_handlers
)
12137 expr
= ("GNAT_GCC_exception_Access(gcc_exception)"
12138 ".all.occurrence.id");
12142 struct value
*exc
= parse_and_eval (expr
);
12143 set_internalvar (var
, exc
);
12145 catch (const gdb_exception_error
&ex
)
12147 clear_internalvar (var
);
12151 /* With no specific exception, should always stop. */
12152 if (c
->excep_string
.empty ())
12155 if (ada_loc
->excep_cond_expr
== NULL
)
12157 /* We will have a NULL expression if back when we were creating
12158 the expressions, this location's had failed to parse. */
12165 struct value
*mark
;
12167 mark
= value_mark ();
12168 stop
= value_true (evaluate_expression (ada_loc
->excep_cond_expr
.get ()));
12169 value_free_to_mark (mark
);
12171 catch (const gdb_exception
&ex
)
12173 exception_fprintf (gdb_stderr
, ex
,
12174 _("Error in testing exception condition:\n"));
12180 /* Implement the CHECK_STATUS method in the breakpoint_ops structure
12181 for all exception catchpoint kinds. */
12184 check_status_exception (bpstat bs
)
12186 bs
->stop
= should_stop_exception (bs
->bp_location_at
);
12189 /* Implement the PRINT_IT method in the breakpoint_ops structure
12190 for all exception catchpoint kinds. */
12192 static enum print_stop_action
12193 print_it_exception (bpstat bs
)
12195 struct ui_out
*uiout
= current_uiout
;
12196 struct breakpoint
*b
= bs
->breakpoint_at
;
12198 annotate_catchpoint (b
->number
);
12200 if (uiout
->is_mi_like_p ())
12202 uiout
->field_string ("reason",
12203 async_reason_lookup (EXEC_ASYNC_BREAKPOINT_HIT
));
12204 uiout
->field_string ("disp", bpdisp_text (b
->disposition
));
12207 uiout
->text (b
->disposition
== disp_del
12208 ? "\nTemporary catchpoint " : "\nCatchpoint ");
12209 uiout
->field_signed ("bkptno", b
->number
);
12210 uiout
->text (", ");
12212 /* ada_exception_name_addr relies on the selected frame being the
12213 current frame. Need to do this here because this function may be
12214 called more than once when printing a stop, and below, we'll
12215 select the first frame past the Ada run-time (see
12216 ada_find_printable_frame). */
12217 select_frame (get_current_frame ());
12219 struct ada_catchpoint
*c
= (struct ada_catchpoint
*) b
;
12222 case ada_catch_exception
:
12223 case ada_catch_exception_unhandled
:
12224 case ada_catch_handlers
:
12226 const CORE_ADDR addr
= ada_exception_name_addr (c
->m_kind
, b
);
12227 char exception_name
[256];
12231 read_memory (addr
, (gdb_byte
*) exception_name
,
12232 sizeof (exception_name
) - 1);
12233 exception_name
[sizeof (exception_name
) - 1] = '\0';
12237 /* For some reason, we were unable to read the exception
12238 name. This could happen if the Runtime was compiled
12239 without debugging info, for instance. In that case,
12240 just replace the exception name by the generic string
12241 "exception" - it will read as "an exception" in the
12242 notification we are about to print. */
12243 memcpy (exception_name
, "exception", sizeof ("exception"));
12245 /* In the case of unhandled exception breakpoints, we print
12246 the exception name as "unhandled EXCEPTION_NAME", to make
12247 it clearer to the user which kind of catchpoint just got
12248 hit. We used ui_out_text to make sure that this extra
12249 info does not pollute the exception name in the MI case. */
12250 if (c
->m_kind
== ada_catch_exception_unhandled
)
12251 uiout
->text ("unhandled ");
12252 uiout
->field_string ("exception-name", exception_name
);
12255 case ada_catch_assert
:
12256 /* In this case, the name of the exception is not really
12257 important. Just print "failed assertion" to make it clearer
12258 that his program just hit an assertion-failure catchpoint.
12259 We used ui_out_text because this info does not belong in
12261 uiout
->text ("failed assertion");
12265 gdb::unique_xmalloc_ptr
<char> exception_message
= ada_exception_message ();
12266 if (exception_message
!= NULL
)
12268 uiout
->text (" (");
12269 uiout
->field_string ("exception-message", exception_message
.get ());
12273 uiout
->text (" at ");
12274 ada_find_printable_frame (get_current_frame ());
12276 return PRINT_SRC_AND_LOC
;
12279 /* Implement the PRINT_ONE method in the breakpoint_ops structure
12280 for all exception catchpoint kinds. */
12283 print_one_exception (struct breakpoint
*b
, struct bp_location
**last_loc
)
12285 struct ui_out
*uiout
= current_uiout
;
12286 struct ada_catchpoint
*c
= (struct ada_catchpoint
*) b
;
12287 struct value_print_options opts
;
12289 get_user_print_options (&opts
);
12291 if (opts
.addressprint
)
12292 uiout
->field_skip ("addr");
12294 annotate_field (5);
12297 case ada_catch_exception
:
12298 if (!c
->excep_string
.empty ())
12300 std::string msg
= string_printf (_("`%s' Ada exception"),
12301 c
->excep_string
.c_str ());
12303 uiout
->field_string ("what", msg
);
12306 uiout
->field_string ("what", "all Ada exceptions");
12310 case ada_catch_exception_unhandled
:
12311 uiout
->field_string ("what", "unhandled Ada exceptions");
12314 case ada_catch_handlers
:
12315 if (!c
->excep_string
.empty ())
12317 uiout
->field_fmt ("what",
12318 _("`%s' Ada exception handlers"),
12319 c
->excep_string
.c_str ());
12322 uiout
->field_string ("what", "all Ada exceptions handlers");
12325 case ada_catch_assert
:
12326 uiout
->field_string ("what", "failed Ada assertions");
12330 internal_error (__FILE__
, __LINE__
, _("unexpected catchpoint type"));
12335 /* Implement the PRINT_MENTION method in the breakpoint_ops structure
12336 for all exception catchpoint kinds. */
12339 print_mention_exception (struct breakpoint
*b
)
12341 struct ada_catchpoint
*c
= (struct ada_catchpoint
*) b
;
12342 struct ui_out
*uiout
= current_uiout
;
12344 uiout
->text (b
->disposition
== disp_del
? _("Temporary catchpoint ")
12345 : _("Catchpoint "));
12346 uiout
->field_signed ("bkptno", b
->number
);
12347 uiout
->text (": ");
12351 case ada_catch_exception
:
12352 if (!c
->excep_string
.empty ())
12354 std::string info
= string_printf (_("`%s' Ada exception"),
12355 c
->excep_string
.c_str ());
12356 uiout
->text (info
.c_str ());
12359 uiout
->text (_("all Ada exceptions"));
12362 case ada_catch_exception_unhandled
:
12363 uiout
->text (_("unhandled Ada exceptions"));
12366 case ada_catch_handlers
:
12367 if (!c
->excep_string
.empty ())
12370 = string_printf (_("`%s' Ada exception handlers"),
12371 c
->excep_string
.c_str ());
12372 uiout
->text (info
.c_str ());
12375 uiout
->text (_("all Ada exceptions handlers"));
12378 case ada_catch_assert
:
12379 uiout
->text (_("failed Ada assertions"));
12383 internal_error (__FILE__
, __LINE__
, _("unexpected catchpoint type"));
12388 /* Implement the PRINT_RECREATE method in the breakpoint_ops structure
12389 for all exception catchpoint kinds. */
12392 print_recreate_exception (struct breakpoint
*b
, struct ui_file
*fp
)
12394 struct ada_catchpoint
*c
= (struct ada_catchpoint
*) b
;
12398 case ada_catch_exception
:
12399 fprintf_filtered (fp
, "catch exception");
12400 if (!c
->excep_string
.empty ())
12401 fprintf_filtered (fp
, " %s", c
->excep_string
.c_str ());
12404 case ada_catch_exception_unhandled
:
12405 fprintf_filtered (fp
, "catch exception unhandled");
12408 case ada_catch_handlers
:
12409 fprintf_filtered (fp
, "catch handlers");
12412 case ada_catch_assert
:
12413 fprintf_filtered (fp
, "catch assert");
12417 internal_error (__FILE__
, __LINE__
, _("unexpected catchpoint type"));
12419 print_recreate_thread (b
, fp
);
12422 /* Virtual tables for various breakpoint types. */
12423 static struct breakpoint_ops catch_exception_breakpoint_ops
;
12424 static struct breakpoint_ops catch_exception_unhandled_breakpoint_ops
;
12425 static struct breakpoint_ops catch_assert_breakpoint_ops
;
12426 static struct breakpoint_ops catch_handlers_breakpoint_ops
;
12428 /* See ada-lang.h. */
12431 is_ada_exception_catchpoint (breakpoint
*bp
)
12433 return (bp
->ops
== &catch_exception_breakpoint_ops
12434 || bp
->ops
== &catch_exception_unhandled_breakpoint_ops
12435 || bp
->ops
== &catch_assert_breakpoint_ops
12436 || bp
->ops
== &catch_handlers_breakpoint_ops
);
12439 /* Split the arguments specified in a "catch exception" command.
12440 Set EX to the appropriate catchpoint type.
12441 Set EXCEP_STRING to the name of the specific exception if
12442 specified by the user.
12443 IS_CATCH_HANDLERS_CMD: True if the arguments are for a
12444 "catch handlers" command. False otherwise.
12445 If a condition is found at the end of the arguments, the condition
12446 expression is stored in COND_STRING (memory must be deallocated
12447 after use). Otherwise COND_STRING is set to NULL. */
12450 catch_ada_exception_command_split (const char *args
,
12451 bool is_catch_handlers_cmd
,
12452 enum ada_exception_catchpoint_kind
*ex
,
12453 std::string
*excep_string
,
12454 std::string
*cond_string
)
12456 std::string exception_name
;
12458 exception_name
= extract_arg (&args
);
12459 if (exception_name
== "if")
12461 /* This is not an exception name; this is the start of a condition
12462 expression for a catchpoint on all exceptions. So, "un-get"
12463 this token, and set exception_name to NULL. */
12464 exception_name
.clear ();
12468 /* Check to see if we have a condition. */
12470 args
= skip_spaces (args
);
12471 if (startswith (args
, "if")
12472 && (isspace (args
[2]) || args
[2] == '\0'))
12475 args
= skip_spaces (args
);
12477 if (args
[0] == '\0')
12478 error (_("Condition missing after `if' keyword"));
12479 *cond_string
= args
;
12481 args
+= strlen (args
);
12484 /* Check that we do not have any more arguments. Anything else
12487 if (args
[0] != '\0')
12488 error (_("Junk at end of expression"));
12490 if (is_catch_handlers_cmd
)
12492 /* Catch handling of exceptions. */
12493 *ex
= ada_catch_handlers
;
12494 *excep_string
= exception_name
;
12496 else if (exception_name
.empty ())
12498 /* Catch all exceptions. */
12499 *ex
= ada_catch_exception
;
12500 excep_string
->clear ();
12502 else if (exception_name
== "unhandled")
12504 /* Catch unhandled exceptions. */
12505 *ex
= ada_catch_exception_unhandled
;
12506 excep_string
->clear ();
12510 /* Catch a specific exception. */
12511 *ex
= ada_catch_exception
;
12512 *excep_string
= exception_name
;
12516 /* Return the name of the symbol on which we should break in order to
12517 implement a catchpoint of the EX kind. */
12519 static const char *
12520 ada_exception_sym_name (enum ada_exception_catchpoint_kind ex
)
12522 struct ada_inferior_data
*data
= get_ada_inferior_data (current_inferior ());
12524 gdb_assert (data
->exception_info
!= NULL
);
12528 case ada_catch_exception
:
12529 return (data
->exception_info
->catch_exception_sym
);
12531 case ada_catch_exception_unhandled
:
12532 return (data
->exception_info
->catch_exception_unhandled_sym
);
12534 case ada_catch_assert
:
12535 return (data
->exception_info
->catch_assert_sym
);
12537 case ada_catch_handlers
:
12538 return (data
->exception_info
->catch_handlers_sym
);
12541 internal_error (__FILE__
, __LINE__
,
12542 _("unexpected catchpoint kind (%d)"), ex
);
12546 /* Return the breakpoint ops "virtual table" used for catchpoints
12549 static const struct breakpoint_ops
*
12550 ada_exception_breakpoint_ops (enum ada_exception_catchpoint_kind ex
)
12554 case ada_catch_exception
:
12555 return (&catch_exception_breakpoint_ops
);
12557 case ada_catch_exception_unhandled
:
12558 return (&catch_exception_unhandled_breakpoint_ops
);
12560 case ada_catch_assert
:
12561 return (&catch_assert_breakpoint_ops
);
12563 case ada_catch_handlers
:
12564 return (&catch_handlers_breakpoint_ops
);
12567 internal_error (__FILE__
, __LINE__
,
12568 _("unexpected catchpoint kind (%d)"), ex
);
12572 /* Return the condition that will be used to match the current exception
12573 being raised with the exception that the user wants to catch. This
12574 assumes that this condition is used when the inferior just triggered
12575 an exception catchpoint.
12576 EX: the type of catchpoints used for catching Ada exceptions. */
12579 ada_exception_catchpoint_cond_string (const char *excep_string
,
12580 enum ada_exception_catchpoint_kind ex
)
12583 bool is_standard_exc
= false;
12584 std::string result
;
12586 if (ex
== ada_catch_handlers
)
12588 /* For exception handlers catchpoints, the condition string does
12589 not use the same parameter as for the other exceptions. */
12590 result
= ("long_integer (GNAT_GCC_exception_Access"
12591 "(gcc_exception).all.occurrence.id)");
12594 result
= "long_integer (e)";
12596 /* The standard exceptions are a special case. They are defined in
12597 runtime units that have been compiled without debugging info; if
12598 EXCEP_STRING is the not-fully-qualified name of a standard
12599 exception (e.g. "constraint_error") then, during the evaluation
12600 of the condition expression, the symbol lookup on this name would
12601 *not* return this standard exception. The catchpoint condition
12602 may then be set only on user-defined exceptions which have the
12603 same not-fully-qualified name (e.g. my_package.constraint_error).
12605 To avoid this unexcepted behavior, these standard exceptions are
12606 systematically prefixed by "standard". This means that "catch
12607 exception constraint_error" is rewritten into "catch exception
12608 standard.constraint_error".
12610 If an exception named constraint_error is defined in another package of
12611 the inferior program, then the only way to specify this exception as a
12612 breakpoint condition is to use its fully-qualified named:
12613 e.g. my_package.constraint_error. */
12615 for (i
= 0; i
< sizeof (standard_exc
) / sizeof (char *); i
++)
12617 if (strcmp (standard_exc
[i
], excep_string
) == 0)
12619 is_standard_exc
= true;
12626 if (is_standard_exc
)
12627 string_appendf (result
, "long_integer (&standard.%s)", excep_string
);
12629 string_appendf (result
, "long_integer (&%s)", excep_string
);
12634 /* Return the symtab_and_line that should be used to insert an exception
12635 catchpoint of the TYPE kind.
12637 ADDR_STRING returns the name of the function where the real
12638 breakpoint that implements the catchpoints is set, depending on the
12639 type of catchpoint we need to create. */
12641 static struct symtab_and_line
12642 ada_exception_sal (enum ada_exception_catchpoint_kind ex
,
12643 std::string
*addr_string
, const struct breakpoint_ops
**ops
)
12645 const char *sym_name
;
12646 struct symbol
*sym
;
12648 /* First, find out which exception support info to use. */
12649 ada_exception_support_info_sniffer ();
12651 /* Then lookup the function on which we will break in order to catch
12652 the Ada exceptions requested by the user. */
12653 sym_name
= ada_exception_sym_name (ex
);
12654 sym
= standard_lookup (sym_name
, NULL
, VAR_DOMAIN
);
12657 error (_("Catchpoint symbol not found: %s"), sym_name
);
12659 if (SYMBOL_CLASS (sym
) != LOC_BLOCK
)
12660 error (_("Unable to insert catchpoint. %s is not a function."), sym_name
);
12662 /* Set ADDR_STRING. */
12663 *addr_string
= sym_name
;
12666 *ops
= ada_exception_breakpoint_ops (ex
);
12668 return find_function_start_sal (sym
, 1);
12671 /* Create an Ada exception catchpoint.
12673 EX_KIND is the kind of exception catchpoint to be created.
12675 If EXCEPT_STRING is empty, this catchpoint is expected to trigger
12676 for all exceptions. Otherwise, EXCEPT_STRING indicates the name
12677 of the exception to which this catchpoint applies.
12679 COND_STRING, if not empty, is the catchpoint condition.
12681 TEMPFLAG, if nonzero, means that the underlying breakpoint
12682 should be temporary.
12684 FROM_TTY is the usual argument passed to all commands implementations. */
12687 create_ada_exception_catchpoint (struct gdbarch
*gdbarch
,
12688 enum ada_exception_catchpoint_kind ex_kind
,
12689 const std::string
&excep_string
,
12690 const std::string
&cond_string
,
12695 std::string addr_string
;
12696 const struct breakpoint_ops
*ops
= NULL
;
12697 struct symtab_and_line sal
= ada_exception_sal (ex_kind
, &addr_string
, &ops
);
12699 std::unique_ptr
<ada_catchpoint
> c (new ada_catchpoint (ex_kind
));
12700 init_ada_exception_breakpoint (c
.get (), gdbarch
, sal
, addr_string
.c_str (),
12701 ops
, tempflag
, disabled
, from_tty
);
12702 c
->excep_string
= excep_string
;
12703 create_excep_cond_exprs (c
.get (), ex_kind
);
12704 if (!cond_string
.empty ())
12705 set_breakpoint_condition (c
.get (), cond_string
.c_str (), from_tty
);
12706 install_breakpoint (0, std::move (c
), 1);
12709 /* Implement the "catch exception" command. */
12712 catch_ada_exception_command (const char *arg_entry
, int from_tty
,
12713 struct cmd_list_element
*command
)
12715 const char *arg
= arg_entry
;
12716 struct gdbarch
*gdbarch
= get_current_arch ();
12718 enum ada_exception_catchpoint_kind ex_kind
;
12719 std::string excep_string
;
12720 std::string cond_string
;
12722 tempflag
= get_cmd_context (command
) == CATCH_TEMPORARY
;
12726 catch_ada_exception_command_split (arg
, false, &ex_kind
, &excep_string
,
12728 create_ada_exception_catchpoint (gdbarch
, ex_kind
,
12729 excep_string
, cond_string
,
12730 tempflag
, 1 /* enabled */,
12734 /* Implement the "catch handlers" command. */
12737 catch_ada_handlers_command (const char *arg_entry
, int from_tty
,
12738 struct cmd_list_element
*command
)
12740 const char *arg
= arg_entry
;
12741 struct gdbarch
*gdbarch
= get_current_arch ();
12743 enum ada_exception_catchpoint_kind ex_kind
;
12744 std::string excep_string
;
12745 std::string cond_string
;
12747 tempflag
= get_cmd_context (command
) == CATCH_TEMPORARY
;
12751 catch_ada_exception_command_split (arg
, true, &ex_kind
, &excep_string
,
12753 create_ada_exception_catchpoint (gdbarch
, ex_kind
,
12754 excep_string
, cond_string
,
12755 tempflag
, 1 /* enabled */,
12759 /* Completion function for the Ada "catch" commands. */
12762 catch_ada_completer (struct cmd_list_element
*cmd
, completion_tracker
&tracker
,
12763 const char *text
, const char *word
)
12765 std::vector
<ada_exc_info
> exceptions
= ada_exceptions_list (NULL
);
12767 for (const ada_exc_info
&info
: exceptions
)
12769 if (startswith (info
.name
, word
))
12770 tracker
.add_completion (make_unique_xstrdup (info
.name
));
12774 /* Split the arguments specified in a "catch assert" command.
12776 ARGS contains the command's arguments (or the empty string if
12777 no arguments were passed).
12779 If ARGS contains a condition, set COND_STRING to that condition
12780 (the memory needs to be deallocated after use). */
12783 catch_ada_assert_command_split (const char *args
, std::string
&cond_string
)
12785 args
= skip_spaces (args
);
12787 /* Check whether a condition was provided. */
12788 if (startswith (args
, "if")
12789 && (isspace (args
[2]) || args
[2] == '\0'))
12792 args
= skip_spaces (args
);
12793 if (args
[0] == '\0')
12794 error (_("condition missing after `if' keyword"));
12795 cond_string
.assign (args
);
12798 /* Otherwise, there should be no other argument at the end of
12800 else if (args
[0] != '\0')
12801 error (_("Junk at end of arguments."));
12804 /* Implement the "catch assert" command. */
12807 catch_assert_command (const char *arg_entry
, int from_tty
,
12808 struct cmd_list_element
*command
)
12810 const char *arg
= arg_entry
;
12811 struct gdbarch
*gdbarch
= get_current_arch ();
12813 std::string cond_string
;
12815 tempflag
= get_cmd_context (command
) == CATCH_TEMPORARY
;
12819 catch_ada_assert_command_split (arg
, cond_string
);
12820 create_ada_exception_catchpoint (gdbarch
, ada_catch_assert
,
12822 tempflag
, 1 /* enabled */,
12826 /* Return non-zero if the symbol SYM is an Ada exception object. */
12829 ada_is_exception_sym (struct symbol
*sym
)
12831 const char *type_name
= SYMBOL_TYPE (sym
)->name ();
12833 return (SYMBOL_CLASS (sym
) != LOC_TYPEDEF
12834 && SYMBOL_CLASS (sym
) != LOC_BLOCK
12835 && SYMBOL_CLASS (sym
) != LOC_CONST
12836 && SYMBOL_CLASS (sym
) != LOC_UNRESOLVED
12837 && type_name
!= NULL
&& strcmp (type_name
, "exception") == 0);
12840 /* Given a global symbol SYM, return non-zero iff SYM is a non-standard
12841 Ada exception object. This matches all exceptions except the ones
12842 defined by the Ada language. */
12845 ada_is_non_standard_exception_sym (struct symbol
*sym
)
12849 if (!ada_is_exception_sym (sym
))
12852 for (i
= 0; i
< ARRAY_SIZE (standard_exc
); i
++)
12853 if (strcmp (sym
->linkage_name (), standard_exc
[i
]) == 0)
12854 return 0; /* A standard exception. */
12856 /* Numeric_Error is also a standard exception, so exclude it.
12857 See the STANDARD_EXC description for more details as to why
12858 this exception is not listed in that array. */
12859 if (strcmp (sym
->linkage_name (), "numeric_error") == 0)
12865 /* A helper function for std::sort, comparing two struct ada_exc_info
12868 The comparison is determined first by exception name, and then
12869 by exception address. */
12872 ada_exc_info::operator< (const ada_exc_info
&other
) const
12876 result
= strcmp (name
, other
.name
);
12879 if (result
== 0 && addr
< other
.addr
)
12885 ada_exc_info::operator== (const ada_exc_info
&other
) const
12887 return addr
== other
.addr
&& strcmp (name
, other
.name
) == 0;
12890 /* Sort EXCEPTIONS using compare_ada_exception_info as the comparison
12891 routine, but keeping the first SKIP elements untouched.
12893 All duplicates are also removed. */
12896 sort_remove_dups_ada_exceptions_list (std::vector
<ada_exc_info
> *exceptions
,
12899 std::sort (exceptions
->begin () + skip
, exceptions
->end ());
12900 exceptions
->erase (std::unique (exceptions
->begin () + skip
, exceptions
->end ()),
12901 exceptions
->end ());
12904 /* Add all exceptions defined by the Ada standard whose name match
12905 a regular expression.
12907 If PREG is not NULL, then this regexp_t object is used to
12908 perform the symbol name matching. Otherwise, no name-based
12909 filtering is performed.
12911 EXCEPTIONS is a vector of exceptions to which matching exceptions
12915 ada_add_standard_exceptions (compiled_regex
*preg
,
12916 std::vector
<ada_exc_info
> *exceptions
)
12920 for (i
= 0; i
< ARRAY_SIZE (standard_exc
); i
++)
12923 || preg
->exec (standard_exc
[i
], 0, NULL
, 0) == 0)
12925 struct bound_minimal_symbol msymbol
12926 = ada_lookup_simple_minsym (standard_exc
[i
]);
12928 if (msymbol
.minsym
!= NULL
)
12930 struct ada_exc_info info
12931 = {standard_exc
[i
], BMSYMBOL_VALUE_ADDRESS (msymbol
)};
12933 exceptions
->push_back (info
);
12939 /* Add all Ada exceptions defined locally and accessible from the given
12942 If PREG is not NULL, then this regexp_t object is used to
12943 perform the symbol name matching. Otherwise, no name-based
12944 filtering is performed.
12946 EXCEPTIONS is a vector of exceptions to which matching exceptions
12950 ada_add_exceptions_from_frame (compiled_regex
*preg
,
12951 struct frame_info
*frame
,
12952 std::vector
<ada_exc_info
> *exceptions
)
12954 const struct block
*block
= get_frame_block (frame
, 0);
12958 struct block_iterator iter
;
12959 struct symbol
*sym
;
12961 ALL_BLOCK_SYMBOLS (block
, iter
, sym
)
12963 switch (SYMBOL_CLASS (sym
))
12970 if (ada_is_exception_sym (sym
))
12972 struct ada_exc_info info
= {sym
->print_name (),
12973 SYMBOL_VALUE_ADDRESS (sym
)};
12975 exceptions
->push_back (info
);
12979 if (BLOCK_FUNCTION (block
) != NULL
)
12981 block
= BLOCK_SUPERBLOCK (block
);
12985 /* Return true if NAME matches PREG or if PREG is NULL. */
12988 name_matches_regex (const char *name
, compiled_regex
*preg
)
12990 return (preg
== NULL
12991 || preg
->exec (ada_decode (name
).c_str (), 0, NULL
, 0) == 0);
12994 /* Add all exceptions defined globally whose name name match
12995 a regular expression, excluding standard exceptions.
12997 The reason we exclude standard exceptions is that they need
12998 to be handled separately: Standard exceptions are defined inside
12999 a runtime unit which is normally not compiled with debugging info,
13000 and thus usually do not show up in our symbol search. However,
13001 if the unit was in fact built with debugging info, we need to
13002 exclude them because they would duplicate the entry we found
13003 during the special loop that specifically searches for those
13004 standard exceptions.
13006 If PREG is not NULL, then this regexp_t object is used to
13007 perform the symbol name matching. Otherwise, no name-based
13008 filtering is performed.
13010 EXCEPTIONS is a vector of exceptions to which matching exceptions
13014 ada_add_global_exceptions (compiled_regex
*preg
,
13015 std::vector
<ada_exc_info
> *exceptions
)
13017 /* In Ada, the symbol "search name" is a linkage name, whereas the
13018 regular expression used to do the matching refers to the natural
13019 name. So match against the decoded name. */
13020 expand_symtabs_matching (NULL
,
13021 lookup_name_info::match_any (),
13022 [&] (const char *search_name
)
13024 std::string decoded
= ada_decode (search_name
);
13025 return name_matches_regex (decoded
.c_str (), preg
);
13030 for (objfile
*objfile
: current_program_space
->objfiles ())
13032 for (compunit_symtab
*s
: objfile
->compunits ())
13034 const struct blockvector
*bv
= COMPUNIT_BLOCKVECTOR (s
);
13037 for (i
= GLOBAL_BLOCK
; i
<= STATIC_BLOCK
; i
++)
13039 const struct block
*b
= BLOCKVECTOR_BLOCK (bv
, i
);
13040 struct block_iterator iter
;
13041 struct symbol
*sym
;
13043 ALL_BLOCK_SYMBOLS (b
, iter
, sym
)
13044 if (ada_is_non_standard_exception_sym (sym
)
13045 && name_matches_regex (sym
->natural_name (), preg
))
13047 struct ada_exc_info info
13048 = {sym
->print_name (), SYMBOL_VALUE_ADDRESS (sym
)};
13050 exceptions
->push_back (info
);
13057 /* Implements ada_exceptions_list with the regular expression passed
13058 as a regex_t, rather than a string.
13060 If not NULL, PREG is used to filter out exceptions whose names
13061 do not match. Otherwise, all exceptions are listed. */
13063 static std::vector
<ada_exc_info
>
13064 ada_exceptions_list_1 (compiled_regex
*preg
)
13066 std::vector
<ada_exc_info
> result
;
13069 /* First, list the known standard exceptions. These exceptions
13070 need to be handled separately, as they are usually defined in
13071 runtime units that have been compiled without debugging info. */
13073 ada_add_standard_exceptions (preg
, &result
);
13075 /* Next, find all exceptions whose scope is local and accessible
13076 from the currently selected frame. */
13078 if (has_stack_frames ())
13080 prev_len
= result
.size ();
13081 ada_add_exceptions_from_frame (preg
, get_selected_frame (NULL
),
13083 if (result
.size () > prev_len
)
13084 sort_remove_dups_ada_exceptions_list (&result
, prev_len
);
13087 /* Add all exceptions whose scope is global. */
13089 prev_len
= result
.size ();
13090 ada_add_global_exceptions (preg
, &result
);
13091 if (result
.size () > prev_len
)
13092 sort_remove_dups_ada_exceptions_list (&result
, prev_len
);
13097 /* Return a vector of ada_exc_info.
13099 If REGEXP is NULL, all exceptions are included in the result.
13100 Otherwise, it should contain a valid regular expression,
13101 and only the exceptions whose names match that regular expression
13102 are included in the result.
13104 The exceptions are sorted in the following order:
13105 - Standard exceptions (defined by the Ada language), in
13106 alphabetical order;
13107 - Exceptions only visible from the current frame, in
13108 alphabetical order;
13109 - Exceptions whose scope is global, in alphabetical order. */
13111 std::vector
<ada_exc_info
>
13112 ada_exceptions_list (const char *regexp
)
13114 if (regexp
== NULL
)
13115 return ada_exceptions_list_1 (NULL
);
13117 compiled_regex
reg (regexp
, REG_NOSUB
, _("invalid regular expression"));
13118 return ada_exceptions_list_1 (®
);
13121 /* Implement the "info exceptions" command. */
13124 info_exceptions_command (const char *regexp
, int from_tty
)
13126 struct gdbarch
*gdbarch
= get_current_arch ();
13128 std::vector
<ada_exc_info
> exceptions
= ada_exceptions_list (regexp
);
13130 if (regexp
!= NULL
)
13132 (_("All Ada exceptions matching regular expression \"%s\":\n"), regexp
);
13134 printf_filtered (_("All defined Ada exceptions:\n"));
13136 for (const ada_exc_info
&info
: exceptions
)
13137 printf_filtered ("%s: %s\n", info
.name
, paddress (gdbarch
, info
.addr
));
13141 /* Information about operators given special treatment in functions
13143 /* Format: OP_DEFN (<operator>, <operator length>, <# args>, <binop>). */
13145 #define ADA_OPERATORS \
13146 OP_DEFN (OP_VAR_VALUE, 4, 0, 0) \
13147 OP_DEFN (BINOP_IN_BOUNDS, 3, 2, 0) \
13148 OP_DEFN (TERNOP_IN_RANGE, 1, 3, 0) \
13149 OP_DEFN (OP_ATR_FIRST, 1, 2, 0) \
13150 OP_DEFN (OP_ATR_LAST, 1, 2, 0) \
13151 OP_DEFN (OP_ATR_LENGTH, 1, 2, 0) \
13152 OP_DEFN (OP_ATR_IMAGE, 1, 2, 0) \
13153 OP_DEFN (OP_ATR_MAX, 1, 3, 0) \
13154 OP_DEFN (OP_ATR_MIN, 1, 3, 0) \
13155 OP_DEFN (OP_ATR_MODULUS, 1, 1, 0) \
13156 OP_DEFN (OP_ATR_POS, 1, 2, 0) \
13157 OP_DEFN (OP_ATR_SIZE, 1, 1, 0) \
13158 OP_DEFN (OP_ATR_TAG, 1, 1, 0) \
13159 OP_DEFN (OP_ATR_VAL, 1, 2, 0) \
13160 OP_DEFN (UNOP_QUAL, 3, 1, 0) \
13161 OP_DEFN (UNOP_IN_RANGE, 3, 1, 0) \
13162 OP_DEFN (OP_OTHERS, 1, 1, 0) \
13163 OP_DEFN (OP_POSITIONAL, 3, 1, 0) \
13164 OP_DEFN (OP_DISCRETE_RANGE, 1, 2, 0)
13167 ada_operator_length (const struct expression
*exp
, int pc
, int *oplenp
,
13170 switch (exp
->elts
[pc
- 1].opcode
)
13173 operator_length_standard (exp
, pc
, oplenp
, argsp
);
13176 #define OP_DEFN(op, len, args, binop) \
13177 case op: *oplenp = len; *argsp = args; break;
13183 *argsp
= longest_to_int (exp
->elts
[pc
- 2].longconst
);
13188 *argsp
= longest_to_int (exp
->elts
[pc
- 2].longconst
) + 1;
13193 /* Implementation of the exp_descriptor method operator_check. */
13196 ada_operator_check (struct expression
*exp
, int pos
,
13197 int (*objfile_func
) (struct objfile
*objfile
, void *data
),
13200 const union exp_element
*const elts
= exp
->elts
;
13201 struct type
*type
= NULL
;
13203 switch (elts
[pos
].opcode
)
13205 case UNOP_IN_RANGE
:
13207 type
= elts
[pos
+ 1].type
;
13211 return operator_check_standard (exp
, pos
, objfile_func
, data
);
13214 /* Invoke callbacks for TYPE and OBJFILE if they were set as non-NULL. */
13216 if (type
&& TYPE_OBJFILE (type
)
13217 && (*objfile_func
) (TYPE_OBJFILE (type
), data
))
13223 static const char *
13224 ada_op_name (enum exp_opcode opcode
)
13229 return op_name_standard (opcode
);
13231 #define OP_DEFN(op, len, args, binop) case op: return #op;
13236 return "OP_AGGREGATE";
13238 return "OP_CHOICES";
13244 /* As for operator_length, but assumes PC is pointing at the first
13245 element of the operator, and gives meaningful results only for the
13246 Ada-specific operators, returning 0 for *OPLENP and *ARGSP otherwise. */
13249 ada_forward_operator_length (struct expression
*exp
, int pc
,
13250 int *oplenp
, int *argsp
)
13252 switch (exp
->elts
[pc
].opcode
)
13255 *oplenp
= *argsp
= 0;
13258 #define OP_DEFN(op, len, args, binop) \
13259 case op: *oplenp = len; *argsp = args; break;
13265 *argsp
= longest_to_int (exp
->elts
[pc
+ 1].longconst
);
13270 *argsp
= longest_to_int (exp
->elts
[pc
+ 1].longconst
) + 1;
13276 int len
= longest_to_int (exp
->elts
[pc
+ 1].longconst
);
13278 *oplenp
= 4 + BYTES_TO_EXP_ELEM (len
+ 1);
13286 ada_dump_subexp_body (struct expression
*exp
, struct ui_file
*stream
, int elt
)
13288 enum exp_opcode op
= exp
->elts
[elt
].opcode
;
13293 ada_forward_operator_length (exp
, elt
, &oplen
, &nargs
);
13297 /* Ada attributes ('Foo). */
13300 case OP_ATR_LENGTH
:
13304 case OP_ATR_MODULUS
:
13311 case UNOP_IN_RANGE
:
13313 /* XXX: gdb_sprint_host_address, type_sprint */
13314 fprintf_filtered (stream
, _("Type @"));
13315 gdb_print_host_address (exp
->elts
[pc
+ 1].type
, stream
);
13316 fprintf_filtered (stream
, " (");
13317 type_print (exp
->elts
[pc
+ 1].type
, NULL
, stream
, 0);
13318 fprintf_filtered (stream
, ")");
13320 case BINOP_IN_BOUNDS
:
13321 fprintf_filtered (stream
, " (%d)",
13322 longest_to_int (exp
->elts
[pc
+ 2].longconst
));
13324 case TERNOP_IN_RANGE
:
13329 case OP_DISCRETE_RANGE
:
13330 case OP_POSITIONAL
:
13337 char *name
= &exp
->elts
[elt
+ 2].string
;
13338 int len
= longest_to_int (exp
->elts
[elt
+ 1].longconst
);
13340 fprintf_filtered (stream
, "Text: `%.*s'", len
, name
);
13345 return dump_subexp_body_standard (exp
, stream
, elt
);
13349 for (i
= 0; i
< nargs
; i
+= 1)
13350 elt
= dump_subexp (exp
, stream
, elt
);
13355 /* The Ada extension of print_subexp (q.v.). */
13358 ada_print_subexp (struct expression
*exp
, int *pos
,
13359 struct ui_file
*stream
, enum precedence prec
)
13361 int oplen
, nargs
, i
;
13363 enum exp_opcode op
= exp
->elts
[pc
].opcode
;
13365 ada_forward_operator_length (exp
, pc
, &oplen
, &nargs
);
13372 print_subexp_standard (exp
, pos
, stream
, prec
);
13376 fputs_filtered (exp
->elts
[pc
+ 2].symbol
->natural_name (), stream
);
13379 case BINOP_IN_BOUNDS
:
13380 /* XXX: sprint_subexp */
13381 print_subexp (exp
, pos
, stream
, PREC_SUFFIX
);
13382 fputs_filtered (" in ", stream
);
13383 print_subexp (exp
, pos
, stream
, PREC_SUFFIX
);
13384 fputs_filtered ("'range", stream
);
13385 if (exp
->elts
[pc
+ 1].longconst
> 1)
13386 fprintf_filtered (stream
, "(%ld)",
13387 (long) exp
->elts
[pc
+ 1].longconst
);
13390 case TERNOP_IN_RANGE
:
13391 if (prec
>= PREC_EQUAL
)
13392 fputs_filtered ("(", stream
);
13393 /* XXX: sprint_subexp */
13394 print_subexp (exp
, pos
, stream
, PREC_SUFFIX
);
13395 fputs_filtered (" in ", stream
);
13396 print_subexp (exp
, pos
, stream
, PREC_EQUAL
);
13397 fputs_filtered (" .. ", stream
);
13398 print_subexp (exp
, pos
, stream
, PREC_EQUAL
);
13399 if (prec
>= PREC_EQUAL
)
13400 fputs_filtered (")", stream
);
13405 case OP_ATR_LENGTH
:
13409 case OP_ATR_MODULUS
:
13414 if (exp
->elts
[*pos
].opcode
== OP_TYPE
)
13416 if (exp
->elts
[*pos
+ 1].type
->code () != TYPE_CODE_VOID
)
13417 LA_PRINT_TYPE (exp
->elts
[*pos
+ 1].type
, "", stream
, 0, 0,
13418 &type_print_raw_options
);
13422 print_subexp (exp
, pos
, stream
, PREC_SUFFIX
);
13423 fprintf_filtered (stream
, "'%s", ada_attribute_name (op
));
13428 for (tem
= 1; tem
< nargs
; tem
+= 1)
13430 fputs_filtered ((tem
== 1) ? " (" : ", ", stream
);
13431 print_subexp (exp
, pos
, stream
, PREC_ABOVE_COMMA
);
13433 fputs_filtered (")", stream
);
13438 type_print (exp
->elts
[pc
+ 1].type
, "", stream
, 0);
13439 fputs_filtered ("'(", stream
);
13440 print_subexp (exp
, pos
, stream
, PREC_PREFIX
);
13441 fputs_filtered (")", stream
);
13444 case UNOP_IN_RANGE
:
13445 /* XXX: sprint_subexp */
13446 print_subexp (exp
, pos
, stream
, PREC_SUFFIX
);
13447 fputs_filtered (" in ", stream
);
13448 LA_PRINT_TYPE (exp
->elts
[pc
+ 1].type
, "", stream
, 1, 0,
13449 &type_print_raw_options
);
13452 case OP_DISCRETE_RANGE
:
13453 print_subexp (exp
, pos
, stream
, PREC_SUFFIX
);
13454 fputs_filtered ("..", stream
);
13455 print_subexp (exp
, pos
, stream
, PREC_SUFFIX
);
13459 fputs_filtered ("others => ", stream
);
13460 print_subexp (exp
, pos
, stream
, PREC_SUFFIX
);
13464 for (i
= 0; i
< nargs
-1; i
+= 1)
13467 fputs_filtered ("|", stream
);
13468 print_subexp (exp
, pos
, stream
, PREC_SUFFIX
);
13470 fputs_filtered (" => ", stream
);
13471 print_subexp (exp
, pos
, stream
, PREC_SUFFIX
);
13474 case OP_POSITIONAL
:
13475 print_subexp (exp
, pos
, stream
, PREC_SUFFIX
);
13479 fputs_filtered ("(", stream
);
13480 for (i
= 0; i
< nargs
; i
+= 1)
13483 fputs_filtered (", ", stream
);
13484 print_subexp (exp
, pos
, stream
, PREC_SUFFIX
);
13486 fputs_filtered (")", stream
);
13491 /* Table mapping opcodes into strings for printing operators
13492 and precedences of the operators. */
13494 static const struct op_print ada_op_print_tab
[] = {
13495 {":=", BINOP_ASSIGN
, PREC_ASSIGN
, 1},
13496 {"or else", BINOP_LOGICAL_OR
, PREC_LOGICAL_OR
, 0},
13497 {"and then", BINOP_LOGICAL_AND
, PREC_LOGICAL_AND
, 0},
13498 {"or", BINOP_BITWISE_IOR
, PREC_BITWISE_IOR
, 0},
13499 {"xor", BINOP_BITWISE_XOR
, PREC_BITWISE_XOR
, 0},
13500 {"and", BINOP_BITWISE_AND
, PREC_BITWISE_AND
, 0},
13501 {"=", BINOP_EQUAL
, PREC_EQUAL
, 0},
13502 {"/=", BINOP_NOTEQUAL
, PREC_EQUAL
, 0},
13503 {"<=", BINOP_LEQ
, PREC_ORDER
, 0},
13504 {">=", BINOP_GEQ
, PREC_ORDER
, 0},
13505 {">", BINOP_GTR
, PREC_ORDER
, 0},
13506 {"<", BINOP_LESS
, PREC_ORDER
, 0},
13507 {">>", BINOP_RSH
, PREC_SHIFT
, 0},
13508 {"<<", BINOP_LSH
, PREC_SHIFT
, 0},
13509 {"+", BINOP_ADD
, PREC_ADD
, 0},
13510 {"-", BINOP_SUB
, PREC_ADD
, 0},
13511 {"&", BINOP_CONCAT
, PREC_ADD
, 0},
13512 {"*", BINOP_MUL
, PREC_MUL
, 0},
13513 {"/", BINOP_DIV
, PREC_MUL
, 0},
13514 {"rem", BINOP_REM
, PREC_MUL
, 0},
13515 {"mod", BINOP_MOD
, PREC_MUL
, 0},
13516 {"**", BINOP_EXP
, PREC_REPEAT
, 0},
13517 {"@", BINOP_REPEAT
, PREC_REPEAT
, 0},
13518 {"-", UNOP_NEG
, PREC_PREFIX
, 0},
13519 {"+", UNOP_PLUS
, PREC_PREFIX
, 0},
13520 {"not ", UNOP_LOGICAL_NOT
, PREC_PREFIX
, 0},
13521 {"not ", UNOP_COMPLEMENT
, PREC_PREFIX
, 0},
13522 {"abs ", UNOP_ABS
, PREC_PREFIX
, 0},
13523 {".all", UNOP_IND
, PREC_SUFFIX
, 1},
13524 {"'access", UNOP_ADDR
, PREC_SUFFIX
, 1},
13525 {"'size", OP_ATR_SIZE
, PREC_SUFFIX
, 1},
13526 {NULL
, OP_NULL
, PREC_SUFFIX
, 0}
13529 enum ada_primitive_types
{
13530 ada_primitive_type_int
,
13531 ada_primitive_type_long
,
13532 ada_primitive_type_short
,
13533 ada_primitive_type_char
,
13534 ada_primitive_type_float
,
13535 ada_primitive_type_double
,
13536 ada_primitive_type_void
,
13537 ada_primitive_type_long_long
,
13538 ada_primitive_type_long_double
,
13539 ada_primitive_type_natural
,
13540 ada_primitive_type_positive
,
13541 ada_primitive_type_system_address
,
13542 ada_primitive_type_storage_offset
,
13543 nr_ada_primitive_types
13547 /* Language vector */
13549 static const struct exp_descriptor ada_exp_descriptor
= {
13551 ada_operator_length
,
13552 ada_operator_check
,
13554 ada_dump_subexp_body
,
13555 ada_evaluate_subexp
13558 /* symbol_name_matcher_ftype adapter for wild_match. */
13561 do_wild_match (const char *symbol_search_name
,
13562 const lookup_name_info
&lookup_name
,
13563 completion_match_result
*comp_match_res
)
13565 return wild_match (symbol_search_name
, ada_lookup_name (lookup_name
));
13568 /* symbol_name_matcher_ftype adapter for full_match. */
13571 do_full_match (const char *symbol_search_name
,
13572 const lookup_name_info
&lookup_name
,
13573 completion_match_result
*comp_match_res
)
13575 return full_match (symbol_search_name
, ada_lookup_name (lookup_name
));
13578 /* symbol_name_matcher_ftype for exact (verbatim) matches. */
13581 do_exact_match (const char *symbol_search_name
,
13582 const lookup_name_info
&lookup_name
,
13583 completion_match_result
*comp_match_res
)
13585 return strcmp (symbol_search_name
, ada_lookup_name (lookup_name
)) == 0;
13588 /* Build the Ada lookup name for LOOKUP_NAME. */
13590 ada_lookup_name_info::ada_lookup_name_info (const lookup_name_info
&lookup_name
)
13592 gdb::string_view user_name
= lookup_name
.name ();
13594 if (user_name
[0] == '<')
13596 if (user_name
.back () == '>')
13598 = gdb::to_string (user_name
.substr (1, user_name
.size () - 2));
13601 = gdb::to_string (user_name
.substr (1, user_name
.size () - 1));
13602 m_encoded_p
= true;
13603 m_verbatim_p
= true;
13604 m_wild_match_p
= false;
13605 m_standard_p
= false;
13609 m_verbatim_p
= false;
13611 m_encoded_p
= user_name
.find ("__") != gdb::string_view::npos
;
13615 const char *folded
= ada_fold_name (user_name
);
13616 const char *encoded
= ada_encode_1 (folded
, false);
13617 if (encoded
!= NULL
)
13618 m_encoded_name
= encoded
;
13620 m_encoded_name
= gdb::to_string (user_name
);
13623 m_encoded_name
= gdb::to_string (user_name
);
13625 /* Handle the 'package Standard' special case. See description
13626 of m_standard_p. */
13627 if (startswith (m_encoded_name
.c_str (), "standard__"))
13629 m_encoded_name
= m_encoded_name
.substr (sizeof ("standard__") - 1);
13630 m_standard_p
= true;
13633 m_standard_p
= false;
13635 /* If the name contains a ".", then the user is entering a fully
13636 qualified entity name, and the match must not be done in wild
13637 mode. Similarly, if the user wants to complete what looks
13638 like an encoded name, the match must not be done in wild
13639 mode. Also, in the standard__ special case always do
13640 non-wild matching. */
13642 = (lookup_name
.match_type () != symbol_name_match_type::FULL
13645 && user_name
.find ('.') == std::string::npos
);
13649 /* symbol_name_matcher_ftype method for Ada. This only handles
13650 completion mode. */
13653 ada_symbol_name_matches (const char *symbol_search_name
,
13654 const lookup_name_info
&lookup_name
,
13655 completion_match_result
*comp_match_res
)
13657 return lookup_name
.ada ().matches (symbol_search_name
,
13658 lookup_name
.match_type (),
13662 /* A name matcher that matches the symbol name exactly, with
13666 literal_symbol_name_matcher (const char *symbol_search_name
,
13667 const lookup_name_info
&lookup_name
,
13668 completion_match_result
*comp_match_res
)
13670 gdb::string_view name_view
= lookup_name
.name ();
13672 if (lookup_name
.completion_mode ()
13673 ? (strncmp (symbol_search_name
, name_view
.data (),
13674 name_view
.size ()) == 0)
13675 : symbol_search_name
== name_view
)
13677 if (comp_match_res
!= NULL
)
13678 comp_match_res
->set_match (symbol_search_name
);
13685 /* Implement the "get_symbol_name_matcher" language_defn method for
13688 static symbol_name_matcher_ftype
*
13689 ada_get_symbol_name_matcher (const lookup_name_info
&lookup_name
)
13691 if (lookup_name
.match_type () == symbol_name_match_type::SEARCH_NAME
)
13692 return literal_symbol_name_matcher
;
13694 if (lookup_name
.completion_mode ())
13695 return ada_symbol_name_matches
;
13698 if (lookup_name
.ada ().wild_match_p ())
13699 return do_wild_match
;
13700 else if (lookup_name
.ada ().verbatim_p ())
13701 return do_exact_match
;
13703 return do_full_match
;
13707 /* Constant data that describes the Ada language. */
13709 extern const struct language_data ada_language_data
=
13713 case_sensitive_on
, /* Yes, Ada is case-insensitive, but
13714 that's not quite what this means. */
13716 macro_expansion_no
,
13717 &ada_exp_descriptor
,
13718 true, /* la_store_sym_names_in_linkage_form_p */
13719 ada_op_print_tab
, /* expression operators for printing */
13720 0, /* c-style arrays */
13721 1, /* String lower bound */
13725 /* Class representing the Ada language. */
13727 class ada_language
: public language_defn
13731 : language_defn (language_ada
, ada_language_data
)
13734 /* See language.h. */
13736 const char *name () const override
13739 /* See language.h. */
13741 const char *natural_name () const override
13744 /* See language.h. */
13746 const std::vector
<const char *> &filename_extensions () const override
13748 static const std::vector
<const char *> extensions
13749 = { ".adb", ".ads", ".a", ".ada", ".dg" };
13753 /* Print an array element index using the Ada syntax. */
13755 void print_array_index (struct type
*index_type
,
13757 struct ui_file
*stream
,
13758 const value_print_options
*options
) const override
13760 struct value
*index_value
= val_atr (index_type
, index
);
13762 LA_VALUE_PRINT (index_value
, stream
, options
);
13763 fprintf_filtered (stream
, " => ");
13766 /* Implement the "read_var_value" language_defn method for Ada. */
13768 struct value
*read_var_value (struct symbol
*var
,
13769 const struct block
*var_block
,
13770 struct frame_info
*frame
) const override
13772 /* The only case where default_read_var_value is not sufficient
13773 is when VAR is a renaming... */
13774 if (frame
!= nullptr)
13776 const struct block
*frame_block
= get_frame_block (frame
, NULL
);
13777 if (frame_block
!= nullptr && ada_is_renaming_symbol (var
))
13778 return ada_read_renaming_var_value (var
, frame_block
);
13781 /* This is a typical case where we expect the default_read_var_value
13782 function to work. */
13783 return language_defn::read_var_value (var
, var_block
, frame
);
13786 /* See language.h. */
13787 void language_arch_info (struct gdbarch
*gdbarch
,
13788 struct language_arch_info
*lai
) const override
13790 const struct builtin_type
*builtin
= builtin_type (gdbarch
);
13792 lai
->primitive_type_vector
13793 = GDBARCH_OBSTACK_CALLOC (gdbarch
, nr_ada_primitive_types
+ 1,
13796 lai
->primitive_type_vector
[ada_primitive_type_int
]
13797 = arch_integer_type (gdbarch
, gdbarch_int_bit (gdbarch
),
13799 lai
->primitive_type_vector
[ada_primitive_type_long
]
13800 = arch_integer_type (gdbarch
, gdbarch_long_bit (gdbarch
),
13801 0, "long_integer");
13802 lai
->primitive_type_vector
[ada_primitive_type_short
]
13803 = arch_integer_type (gdbarch
, gdbarch_short_bit (gdbarch
),
13804 0, "short_integer");
13805 lai
->string_char_type
13806 = lai
->primitive_type_vector
[ada_primitive_type_char
]
13807 = arch_character_type (gdbarch
, TARGET_CHAR_BIT
, 0, "character");
13808 lai
->primitive_type_vector
[ada_primitive_type_float
]
13809 = arch_float_type (gdbarch
, gdbarch_float_bit (gdbarch
),
13810 "float", gdbarch_float_format (gdbarch
));
13811 lai
->primitive_type_vector
[ada_primitive_type_double
]
13812 = arch_float_type (gdbarch
, gdbarch_double_bit (gdbarch
),
13813 "long_float", gdbarch_double_format (gdbarch
));
13814 lai
->primitive_type_vector
[ada_primitive_type_long_long
]
13815 = arch_integer_type (gdbarch
, gdbarch_long_long_bit (gdbarch
),
13816 0, "long_long_integer");
13817 lai
->primitive_type_vector
[ada_primitive_type_long_double
]
13818 = arch_float_type (gdbarch
, gdbarch_long_double_bit (gdbarch
),
13819 "long_long_float", gdbarch_long_double_format (gdbarch
));
13820 lai
->primitive_type_vector
[ada_primitive_type_natural
]
13821 = arch_integer_type (gdbarch
, gdbarch_int_bit (gdbarch
),
13823 lai
->primitive_type_vector
[ada_primitive_type_positive
]
13824 = arch_integer_type (gdbarch
, gdbarch_int_bit (gdbarch
),
13826 lai
->primitive_type_vector
[ada_primitive_type_void
]
13827 = builtin
->builtin_void
;
13829 lai
->primitive_type_vector
[ada_primitive_type_system_address
]
13830 = lookup_pointer_type (arch_type (gdbarch
, TYPE_CODE_VOID
, TARGET_CHAR_BIT
,
13832 lai
->primitive_type_vector
[ada_primitive_type_system_address
]
13833 ->set_name ("system__address");
13835 /* Create the equivalent of the System.Storage_Elements.Storage_Offset
13836 type. This is a signed integral type whose size is the same as
13837 the size of addresses. */
13839 unsigned int addr_length
= TYPE_LENGTH
13840 (lai
->primitive_type_vector
[ada_primitive_type_system_address
]);
13842 lai
->primitive_type_vector
[ada_primitive_type_storage_offset
]
13843 = arch_integer_type (gdbarch
, addr_length
* HOST_CHAR_BIT
, 0,
13847 lai
->bool_type_symbol
= NULL
;
13848 lai
->bool_type_default
= builtin
->builtin_bool
;
13851 /* See language.h. */
13853 bool iterate_over_symbols
13854 (const struct block
*block
, const lookup_name_info
&name
,
13855 domain_enum domain
,
13856 gdb::function_view
<symbol_found_callback_ftype
> callback
) const override
13858 std::vector
<struct block_symbol
> results
;
13860 ada_lookup_symbol_list_worker (name
, block
, domain
, &results
, 0);
13861 for (block_symbol
&sym
: results
)
13863 if (!callback (&sym
))
13870 /* See language.h. */
13871 bool sniff_from_mangled_name (const char *mangled
,
13872 char **out
) const override
13874 std::string demangled
= ada_decode (mangled
);
13878 if (demangled
!= mangled
&& demangled
[0] != '<')
13880 /* Set the gsymbol language to Ada, but still return 0.
13881 Two reasons for that:
13883 1. For Ada, we prefer computing the symbol's decoded name
13884 on the fly rather than pre-compute it, in order to save
13885 memory (Ada projects are typically very large).
13887 2. There are some areas in the definition of the GNAT
13888 encoding where, with a bit of bad luck, we might be able
13889 to decode a non-Ada symbol, generating an incorrect
13890 demangled name (Eg: names ending with "TB" for instance
13891 are identified as task bodies and so stripped from
13892 the decoded name returned).
13894 Returning true, here, but not setting *DEMANGLED, helps us get
13895 a little bit of the best of both worlds. Because we're last,
13896 we should not affect any of the other languages that were
13897 able to demangle the symbol before us; we get to correctly
13898 tag Ada symbols as such; and even if we incorrectly tagged a
13899 non-Ada symbol, which should be rare, any routing through the
13900 Ada language should be transparent (Ada tries to behave much
13901 like C/C++ with non-Ada symbols). */
13908 /* See language.h. */
13910 char *demangle (const char *mangled
, int options
) const override
13912 return ada_la_decode (mangled
, options
);
13915 /* See language.h. */
13917 void print_type (struct type
*type
, const char *varstring
,
13918 struct ui_file
*stream
, int show
, int level
,
13919 const struct type_print_options
*flags
) const override
13921 ada_print_type (type
, varstring
, stream
, show
, level
, flags
);
13924 /* See language.h. */
13926 const char *word_break_characters (void) const override
13928 return ada_completer_word_break_characters
;
13931 /* See language.h. */
13933 void collect_symbol_completion_matches (completion_tracker
&tracker
,
13934 complete_symbol_mode mode
,
13935 symbol_name_match_type name_match_type
,
13936 const char *text
, const char *word
,
13937 enum type_code code
) const override
13939 struct symbol
*sym
;
13940 const struct block
*b
, *surrounding_static_block
= 0;
13941 struct block_iterator iter
;
13943 gdb_assert (code
== TYPE_CODE_UNDEF
);
13945 lookup_name_info
lookup_name (text
, name_match_type
, true);
13947 /* First, look at the partial symtab symbols. */
13948 expand_symtabs_matching (NULL
,
13954 /* At this point scan through the misc symbol vectors and add each
13955 symbol you find to the list. Eventually we want to ignore
13956 anything that isn't a text symbol (everything else will be
13957 handled by the psymtab code above). */
13959 for (objfile
*objfile
: current_program_space
->objfiles ())
13961 for (minimal_symbol
*msymbol
: objfile
->msymbols ())
13965 if (completion_skip_symbol (mode
, msymbol
))
13968 language symbol_language
= msymbol
->language ();
13970 /* Ada minimal symbols won't have their language set to Ada. If
13971 we let completion_list_add_name compare using the
13972 default/C-like matcher, then when completing e.g., symbols in a
13973 package named "pck", we'd match internal Ada symbols like
13974 "pckS", which are invalid in an Ada expression, unless you wrap
13975 them in '<' '>' to request a verbatim match.
13977 Unfortunately, some Ada encoded names successfully demangle as
13978 C++ symbols (using an old mangling scheme), such as "name__2Xn"
13979 -> "Xn::name(void)" and thus some Ada minimal symbols end up
13980 with the wrong language set. Paper over that issue here. */
13981 if (symbol_language
== language_auto
13982 || symbol_language
== language_cplus
)
13983 symbol_language
= language_ada
;
13985 completion_list_add_name (tracker
,
13987 msymbol
->linkage_name (),
13988 lookup_name
, text
, word
);
13992 /* Search upwards from currently selected frame (so that we can
13993 complete on local vars. */
13995 for (b
= get_selected_block (0); b
!= NULL
; b
= BLOCK_SUPERBLOCK (b
))
13997 if (!BLOCK_SUPERBLOCK (b
))
13998 surrounding_static_block
= b
; /* For elmin of dups */
14000 ALL_BLOCK_SYMBOLS (b
, iter
, sym
)
14002 if (completion_skip_symbol (mode
, sym
))
14005 completion_list_add_name (tracker
,
14007 sym
->linkage_name (),
14008 lookup_name
, text
, word
);
14012 /* Go through the symtabs and check the externs and statics for
14013 symbols which match. */
14015 for (objfile
*objfile
: current_program_space
->objfiles ())
14017 for (compunit_symtab
*s
: objfile
->compunits ())
14020 b
= BLOCKVECTOR_BLOCK (COMPUNIT_BLOCKVECTOR (s
), GLOBAL_BLOCK
);
14021 ALL_BLOCK_SYMBOLS (b
, iter
, sym
)
14023 if (completion_skip_symbol (mode
, sym
))
14026 completion_list_add_name (tracker
,
14028 sym
->linkage_name (),
14029 lookup_name
, text
, word
);
14034 for (objfile
*objfile
: current_program_space
->objfiles ())
14036 for (compunit_symtab
*s
: objfile
->compunits ())
14039 b
= BLOCKVECTOR_BLOCK (COMPUNIT_BLOCKVECTOR (s
), STATIC_BLOCK
);
14040 /* Don't do this block twice. */
14041 if (b
== surrounding_static_block
)
14043 ALL_BLOCK_SYMBOLS (b
, iter
, sym
)
14045 if (completion_skip_symbol (mode
, sym
))
14048 completion_list_add_name (tracker
,
14050 sym
->linkage_name (),
14051 lookup_name
, text
, word
);
14057 /* See language.h. */
14059 gdb::unique_xmalloc_ptr
<char> watch_location_expression
14060 (struct type
*type
, CORE_ADDR addr
) const override
14062 type
= check_typedef (TYPE_TARGET_TYPE (check_typedef (type
)));
14063 std::string name
= type_to_string (type
);
14064 return gdb::unique_xmalloc_ptr
<char>
14065 (xstrprintf ("{%s} %s", name
.c_str (), core_addr_to_string (addr
)));
14068 /* See language.h. */
14070 void value_print (struct value
*val
, struct ui_file
*stream
,
14071 const struct value_print_options
*options
) const override
14073 return ada_value_print (val
, stream
, options
);
14076 /* See language.h. */
14078 void value_print_inner
14079 (struct value
*val
, struct ui_file
*stream
, int recurse
,
14080 const struct value_print_options
*options
) const override
14082 return ada_value_print_inner (val
, stream
, recurse
, options
);
14085 /* See language.h. */
14087 struct block_symbol lookup_symbol_nonlocal
14088 (const char *name
, const struct block
*block
,
14089 const domain_enum domain
) const override
14091 struct block_symbol sym
;
14093 sym
= ada_lookup_symbol (name
, block_static_block (block
), domain
);
14094 if (sym
.symbol
!= NULL
)
14097 /* If we haven't found a match at this point, try the primitive
14098 types. In other languages, this search is performed before
14099 searching for global symbols in order to short-circuit that
14100 global-symbol search if it happens that the name corresponds
14101 to a primitive type. But we cannot do the same in Ada, because
14102 it is perfectly legitimate for a program to declare a type which
14103 has the same name as a standard type. If looking up a type in
14104 that situation, we have traditionally ignored the primitive type
14105 in favor of user-defined types. This is why, unlike most other
14106 languages, we search the primitive types this late and only after
14107 having searched the global symbols without success. */
14109 if (domain
== VAR_DOMAIN
)
14111 struct gdbarch
*gdbarch
;
14114 gdbarch
= target_gdbarch ();
14116 gdbarch
= block_gdbarch (block
);
14118 = language_lookup_primitive_type_as_symbol (this, gdbarch
, name
);
14119 if (sym
.symbol
!= NULL
)
14126 /* See language.h. */
14128 int parser (struct parser_state
*ps
) const override
14130 warnings_issued
= 0;
14131 return ada_parse (ps
);
14136 Same as evaluate_type (*EXP), but resolves ambiguous symbol references
14137 (marked by OP_VAR_VALUE nodes in which the symbol has an undefined
14138 namespace) and converts operators that are user-defined into
14139 appropriate function calls. If CONTEXT_TYPE is non-null, it provides
14140 a preferred result type [at the moment, only type void has any
14141 effect---causing procedures to be preferred over functions in calls].
14142 A null CONTEXT_TYPE indicates that a non-void return type is
14143 preferred. May change (expand) *EXP. */
14145 void post_parser (expression_up
*expp
, int void_context_p
, int completing
,
14146 innermost_block_tracker
*tracker
) const override
14148 struct type
*context_type
= NULL
;
14151 if (void_context_p
)
14152 context_type
= builtin_type ((*expp
)->gdbarch
)->builtin_void
;
14154 resolve_subexp (expp
, &pc
, 1, context_type
, completing
, tracker
);
14157 /* See language.h. */
14159 void emitchar (int ch
, struct type
*chtype
,
14160 struct ui_file
*stream
, int quoter
) const override
14162 ada_emit_char (ch
, chtype
, stream
, quoter
, 1);
14165 /* See language.h. */
14167 void printchar (int ch
, struct type
*chtype
,
14168 struct ui_file
*stream
) const override
14170 ada_printchar (ch
, chtype
, stream
);
14173 /* See language.h. */
14175 void printstr (struct ui_file
*stream
, struct type
*elttype
,
14176 const gdb_byte
*string
, unsigned int length
,
14177 const char *encoding
, int force_ellipses
,
14178 const struct value_print_options
*options
) const override
14180 ada_printstr (stream
, elttype
, string
, length
, encoding
,
14181 force_ellipses
, options
);
14184 /* See language.h. */
14186 void print_typedef (struct type
*type
, struct symbol
*new_symbol
,
14187 struct ui_file
*stream
) const override
14189 ada_print_typedef (type
, new_symbol
, stream
);
14192 /* See language.h. */
14194 bool is_string_type_p (struct type
*type
) const override
14196 return ada_is_string_type (type
);
14199 /* See language.h. */
14201 const char *struct_too_deep_ellipsis () const override
14202 { return "(...)"; }
14205 /* See language.h. */
14207 symbol_name_matcher_ftype
*get_symbol_name_matcher_inner
14208 (const lookup_name_info
&lookup_name
) const override
14210 return ada_get_symbol_name_matcher (lookup_name
);
14214 /* Single instance of the Ada language class. */
14216 static ada_language ada_language_defn
;
14218 /* Command-list for the "set/show ada" prefix command. */
14219 static struct cmd_list_element
*set_ada_list
;
14220 static struct cmd_list_element
*show_ada_list
;
14223 initialize_ada_catchpoint_ops (void)
14225 struct breakpoint_ops
*ops
;
14227 initialize_breakpoint_ops ();
14229 ops
= &catch_exception_breakpoint_ops
;
14230 *ops
= bkpt_breakpoint_ops
;
14231 ops
->allocate_location
= allocate_location_exception
;
14232 ops
->re_set
= re_set_exception
;
14233 ops
->check_status
= check_status_exception
;
14234 ops
->print_it
= print_it_exception
;
14235 ops
->print_one
= print_one_exception
;
14236 ops
->print_mention
= print_mention_exception
;
14237 ops
->print_recreate
= print_recreate_exception
;
14239 ops
= &catch_exception_unhandled_breakpoint_ops
;
14240 *ops
= bkpt_breakpoint_ops
;
14241 ops
->allocate_location
= allocate_location_exception
;
14242 ops
->re_set
= re_set_exception
;
14243 ops
->check_status
= check_status_exception
;
14244 ops
->print_it
= print_it_exception
;
14245 ops
->print_one
= print_one_exception
;
14246 ops
->print_mention
= print_mention_exception
;
14247 ops
->print_recreate
= print_recreate_exception
;
14249 ops
= &catch_assert_breakpoint_ops
;
14250 *ops
= bkpt_breakpoint_ops
;
14251 ops
->allocate_location
= allocate_location_exception
;
14252 ops
->re_set
= re_set_exception
;
14253 ops
->check_status
= check_status_exception
;
14254 ops
->print_it
= print_it_exception
;
14255 ops
->print_one
= print_one_exception
;
14256 ops
->print_mention
= print_mention_exception
;
14257 ops
->print_recreate
= print_recreate_exception
;
14259 ops
= &catch_handlers_breakpoint_ops
;
14260 *ops
= bkpt_breakpoint_ops
;
14261 ops
->allocate_location
= allocate_location_exception
;
14262 ops
->re_set
= re_set_exception
;
14263 ops
->check_status
= check_status_exception
;
14264 ops
->print_it
= print_it_exception
;
14265 ops
->print_one
= print_one_exception
;
14266 ops
->print_mention
= print_mention_exception
;
14267 ops
->print_recreate
= print_recreate_exception
;
14270 /* This module's 'new_objfile' observer. */
14273 ada_new_objfile_observer (struct objfile
*objfile
)
14275 ada_clear_symbol_cache ();
14278 /* This module's 'free_objfile' observer. */
14281 ada_free_objfile_observer (struct objfile
*objfile
)
14283 ada_clear_symbol_cache ();
14286 void _initialize_ada_language ();
14288 _initialize_ada_language ()
14290 initialize_ada_catchpoint_ops ();
14292 add_basic_prefix_cmd ("ada", no_class
,
14293 _("Prefix command for changing Ada-specific settings."),
14294 &set_ada_list
, "set ada ", 0, &setlist
);
14296 add_show_prefix_cmd ("ada", no_class
,
14297 _("Generic command for showing Ada-specific settings."),
14298 &show_ada_list
, "show ada ", 0, &showlist
);
14300 add_setshow_boolean_cmd ("trust-PAD-over-XVS", class_obscure
,
14301 &trust_pad_over_xvs
, _("\
14302 Enable or disable an optimization trusting PAD types over XVS types."), _("\
14303 Show whether an optimization trusting PAD types over XVS types is activated."),
14305 This is related to the encoding used by the GNAT compiler. The debugger\n\
14306 should normally trust the contents of PAD types, but certain older versions\n\
14307 of GNAT have a bug that sometimes causes the information in the PAD type\n\
14308 to be incorrect. Turning this setting \"off\" allows the debugger to\n\
14309 work around this bug. It is always safe to turn this option \"off\", but\n\
14310 this incurs a slight performance penalty, so it is recommended to NOT change\n\
14311 this option to \"off\" unless necessary."),
14312 NULL
, NULL
, &set_ada_list
, &show_ada_list
);
14314 add_setshow_boolean_cmd ("print-signatures", class_vars
,
14315 &print_signatures
, _("\
14316 Enable or disable the output of formal and return types for functions in the \
14317 overloads selection menu."), _("\
14318 Show whether the output of formal and return types for functions in the \
14319 overloads selection menu is activated."),
14320 NULL
, NULL
, NULL
, &set_ada_list
, &show_ada_list
);
14322 add_catch_command ("exception", _("\
14323 Catch Ada exceptions, when raised.\n\
14324 Usage: catch exception [ARG] [if CONDITION]\n\
14325 Without any argument, stop when any Ada exception is raised.\n\
14326 If ARG is \"unhandled\" (without the quotes), only stop when the exception\n\
14327 being raised does not have a handler (and will therefore lead to the task's\n\
14329 Otherwise, the catchpoint only stops when the name of the exception being\n\
14330 raised is the same as ARG.\n\
14331 CONDITION is a boolean expression that is evaluated to see whether the\n\
14332 exception should cause a stop."),
14333 catch_ada_exception_command
,
14334 catch_ada_completer
,
14338 add_catch_command ("handlers", _("\
14339 Catch Ada exceptions, when handled.\n\
14340 Usage: catch handlers [ARG] [if CONDITION]\n\
14341 Without any argument, stop when any Ada exception is handled.\n\
14342 With an argument, catch only exceptions with the given name.\n\
14343 CONDITION is a boolean expression that is evaluated to see whether the\n\
14344 exception should cause a stop."),
14345 catch_ada_handlers_command
,
14346 catch_ada_completer
,
14349 add_catch_command ("assert", _("\
14350 Catch failed Ada assertions, when raised.\n\
14351 Usage: catch assert [if CONDITION]\n\
14352 CONDITION is a boolean expression that is evaluated to see whether the\n\
14353 exception should cause a stop."),
14354 catch_assert_command
,
14359 varsize_limit
= 65536;
14360 add_setshow_uinteger_cmd ("varsize-limit", class_support
,
14361 &varsize_limit
, _("\
14362 Set the maximum number of bytes allowed in a variable-size object."), _("\
14363 Show the maximum number of bytes allowed in a variable-size object."), _("\
14364 Attempts to access an object whose size is not a compile-time constant\n\
14365 and exceeds this limit will cause an error."),
14366 NULL
, NULL
, &setlist
, &showlist
);
14368 add_info ("exceptions", info_exceptions_command
,
14370 List all Ada exception names.\n\
14371 Usage: info exceptions [REGEXP]\n\
14372 If a regular expression is passed as an argument, only those matching\n\
14373 the regular expression are listed."));
14375 add_basic_prefix_cmd ("ada", class_maintenance
,
14376 _("Set Ada maintenance-related variables."),
14377 &maint_set_ada_cmdlist
, "maintenance set ada ",
14378 0/*allow-unknown*/, &maintenance_set_cmdlist
);
14380 add_show_prefix_cmd ("ada", class_maintenance
,
14381 _("Show Ada maintenance-related variables."),
14382 &maint_show_ada_cmdlist
, "maintenance show ada ",
14383 0/*allow-unknown*/, &maintenance_show_cmdlist
);
14385 add_setshow_boolean_cmd
14386 ("ignore-descriptive-types", class_maintenance
,
14387 &ada_ignore_descriptive_types_p
,
14388 _("Set whether descriptive types generated by GNAT should be ignored."),
14389 _("Show whether descriptive types generated by GNAT should be ignored."),
14391 When enabled, the debugger will stop using the DW_AT_GNAT_descriptive_type\n\
14392 DWARF attribute."),
14393 NULL
, NULL
, &maint_set_ada_cmdlist
, &maint_show_ada_cmdlist
);
14395 decoded_names_store
= htab_create_alloc (256, htab_hash_string
, streq_hash
,
14396 NULL
, xcalloc
, xfree
);
14398 /* The ada-lang observers. */
14399 gdb::observers::new_objfile
.attach (ada_new_objfile_observer
);
14400 gdb::observers::free_objfile
.attach (ada_free_objfile_observer
);
14401 gdb::observers::inferior_exit
.attach (ada_inferior_exit
);