AArch64: Close sequences at the end of sections
[deliverable/binutils-gdb.git] / gdb / ada-tasks.c
1 /* Copyright (C) 1992-2018 Free Software Foundation, Inc.
2
3 This file is part of GDB.
4
5 This program is free software; you can redistribute it and/or modify
6 it under the terms of the GNU General Public License as published by
7 the Free Software Foundation; either version 3 of the License, or
8 (at your option) any later version.
9
10 This program is distributed in the hope that it will be useful,
11 but WITHOUT ANY WARRANTY; without even the implied warranty of
12 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
13 GNU General Public License for more details.
14
15 You should have received a copy of the GNU General Public License
16 along with this program. If not, see <http://www.gnu.org/licenses/>. */
17
18 #include "defs.h"
19 #include "observable.h"
20 #include "gdbcmd.h"
21 #include "target.h"
22 #include "ada-lang.h"
23 #include "gdbcore.h"
24 #include "inferior.h"
25 #include "gdbthread.h"
26 #include "progspace.h"
27 #include "objfiles.h"
28
29 /* The name of the array in the GNAT runtime where the Ada Task Control
30 Block of each task is stored. */
31 #define KNOWN_TASKS_NAME "system__tasking__debug__known_tasks"
32
33 /* The maximum number of tasks known to the Ada runtime. */
34 static const int MAX_NUMBER_OF_KNOWN_TASKS = 1000;
35
36 /* The name of the variable in the GNAT runtime where the head of a task
37 chain is saved. This is an alternate mechanism to find the list of known
38 tasks. */
39 #define KNOWN_TASKS_LIST "system__tasking__debug__first_task"
40
41 enum task_states
42 {
43 Unactivated,
44 Runnable,
45 Terminated,
46 Activator_Sleep,
47 Acceptor_Sleep,
48 Entry_Caller_Sleep,
49 Async_Select_Sleep,
50 Delay_Sleep,
51 Master_Completion_Sleep,
52 Master_Phase_2_Sleep,
53 Interrupt_Server_Idle_Sleep,
54 Interrupt_Server_Blocked_Interrupt_Sleep,
55 Timer_Server_Sleep,
56 AST_Server_Sleep,
57 Asynchronous_Hold,
58 Interrupt_Server_Blocked_On_Event_Flag,
59 Activating,
60 Acceptor_Delay_Sleep
61 };
62
63 /* A short description corresponding to each possible task state. */
64 static const char *task_states[] = {
65 N_("Unactivated"),
66 N_("Runnable"),
67 N_("Terminated"),
68 N_("Child Activation Wait"),
69 N_("Accept or Select Term"),
70 N_("Waiting on entry call"),
71 N_("Async Select Wait"),
72 N_("Delay Sleep"),
73 N_("Child Termination Wait"),
74 N_("Wait Child in Term Alt"),
75 "",
76 "",
77 "",
78 "",
79 N_("Asynchronous Hold"),
80 "",
81 N_("Activating"),
82 N_("Selective Wait")
83 };
84
85 /* A longer description corresponding to each possible task state. */
86 static const char *long_task_states[] = {
87 N_("Unactivated"),
88 N_("Runnable"),
89 N_("Terminated"),
90 N_("Waiting for child activation"),
91 N_("Blocked in accept or select with terminate"),
92 N_("Waiting on entry call"),
93 N_("Asynchronous Selective Wait"),
94 N_("Delay Sleep"),
95 N_("Waiting for children termination"),
96 N_("Waiting for children in terminate alternative"),
97 "",
98 "",
99 "",
100 "",
101 N_("Asynchronous Hold"),
102 "",
103 N_("Activating"),
104 N_("Blocked in selective wait statement")
105 };
106
107 /* The index of certain important fields in the Ada Task Control Block
108 record and sub-records. */
109
110 struct atcb_fieldnos
111 {
112 /* Fields in record Ada_Task_Control_Block. */
113 int common;
114 int entry_calls;
115 int atc_nesting_level;
116
117 /* Fields in record Common_ATCB. */
118 int state;
119 int parent;
120 int priority;
121 int image;
122 int image_len; /* This field may be missing. */
123 int activation_link;
124 int call;
125 int ll;
126 int base_cpu;
127
128 /* Fields in Task_Primitives.Private_Data. */
129 int ll_thread;
130 int ll_lwp; /* This field may be missing. */
131
132 /* Fields in Common_ATCB.Call.all. */
133 int call_self;
134 };
135
136 /* This module's per-program-space data. */
137
138 struct ada_tasks_pspace_data
139 {
140 /* Nonzero if the data has been initialized. If set to zero,
141 it means that the data has either not been initialized, or
142 has potentially become stale. */
143 int initialized_p;
144
145 /* The ATCB record type. */
146 struct type *atcb_type;
147
148 /* The ATCB "Common" component type. */
149 struct type *atcb_common_type;
150
151 /* The type of the "ll" field, from the atcb_common_type. */
152 struct type *atcb_ll_type;
153
154 /* The type of the "call" field, from the atcb_common_type. */
155 struct type *atcb_call_type;
156
157 /* The index of various fields in the ATCB record and sub-records. */
158 struct atcb_fieldnos atcb_fieldno;
159 };
160
161 /* Key to our per-program-space data. */
162 static const struct program_space_data *ada_tasks_pspace_data_handle;
163
164 /* The kind of data structure used by the runtime to store the list
165 of Ada tasks. */
166
167 enum ada_known_tasks_kind
168 {
169 /* Use this value when we haven't determined which kind of structure
170 is being used, or when we need to recompute it.
171
172 We set the value of this enumerate to zero on purpose: This allows
173 us to use this enumerate in a structure where setting all fields
174 to zero will result in this kind being set to unknown. */
175 ADA_TASKS_UNKNOWN = 0,
176
177 /* This value means that we did not find any task list. Unless
178 there is a bug somewhere, this means that the inferior does not
179 use tasking. */
180 ADA_TASKS_NOT_FOUND,
181
182 /* This value means that the task list is stored as an array.
183 This is the usual method, as it causes very little overhead.
184 But this method is not always used, as it does use a certain
185 amount of memory, which might be scarse in certain environments. */
186 ADA_TASKS_ARRAY,
187
188 /* This value means that the task list is stored as a linked list.
189 This has more runtime overhead than the array approach, but
190 also require less memory when the number of tasks is small. */
191 ADA_TASKS_LIST,
192 };
193
194 /* This module's per-inferior data. */
195
196 struct ada_tasks_inferior_data
197 {
198 /* The type of data structure used by the runtime to store
199 the list of Ada tasks. The value of this field influences
200 the interpretation of the known_tasks_addr field below:
201 - ADA_TASKS_UNKNOWN: The value of known_tasks_addr hasn't
202 been determined yet;
203 - ADA_TASKS_NOT_FOUND: The program probably does not use tasking
204 and the known_tasks_addr is irrelevant;
205 - ADA_TASKS_ARRAY: The known_tasks is an array;
206 - ADA_TASKS_LIST: The known_tasks is a list. */
207 enum ada_known_tasks_kind known_tasks_kind = ADA_TASKS_UNKNOWN;
208
209 /* The address of the known_tasks structure. This is where
210 the runtime stores the information for all Ada tasks.
211 The interpretation of this field depends on KNOWN_TASKS_KIND
212 above. */
213 CORE_ADDR known_tasks_addr = 0;
214
215 /* Type of elements of the known task. Usually a pointer. */
216 struct type *known_tasks_element = nullptr;
217
218 /* Number of elements in the known tasks array. */
219 unsigned int known_tasks_length = 0;
220
221 /* When nonzero, this flag indicates that the task_list field
222 below is up to date. When set to zero, the list has either
223 not been initialized, or has potentially become stale. */
224 int task_list_valid_p = 0;
225
226 /* The list of Ada tasks.
227
228 Note: To each task we associate a number that the user can use to
229 reference it - this number is printed beside each task in the tasks
230 info listing displayed by "info tasks". This number is equal to
231 its index in the vector + 1. Reciprocally, to compute the index
232 of a task in the vector, we need to substract 1 from its number. */
233 std::vector<ada_task_info> task_list;
234 };
235
236 /* Key to our per-inferior data. */
237 static const struct inferior_data *ada_tasks_inferior_data_handle;
238
239 /* Return the ada-tasks module's data for the given program space (PSPACE).
240 If none is found, add a zero'ed one now.
241
242 This function always returns a valid object. */
243
244 static struct ada_tasks_pspace_data *
245 get_ada_tasks_pspace_data (struct program_space *pspace)
246 {
247 struct ada_tasks_pspace_data *data;
248
249 data = ((struct ada_tasks_pspace_data *)
250 program_space_data (pspace, ada_tasks_pspace_data_handle));
251 if (data == NULL)
252 {
253 data = XCNEW (struct ada_tasks_pspace_data);
254 set_program_space_data (pspace, ada_tasks_pspace_data_handle, data);
255 }
256
257 return data;
258 }
259
260 /* Return the ada-tasks module's data for the given inferior (INF).
261 If none is found, add a zero'ed one now.
262
263 This function always returns a valid object.
264
265 Note that we could use an observer of the inferior-created event
266 to make sure that the ada-tasks per-inferior data always exists.
267 But we prefered this approach, as it avoids this entirely as long
268 as the user does not use any of the tasking features. This is
269 quite possible, particularly in the case where the inferior does
270 not use tasking. */
271
272 static struct ada_tasks_inferior_data *
273 get_ada_tasks_inferior_data (struct inferior *inf)
274 {
275 struct ada_tasks_inferior_data *data;
276
277 data = ((struct ada_tasks_inferior_data *)
278 inferior_data (inf, ada_tasks_inferior_data_handle));
279 if (data == NULL)
280 {
281 data = new ada_tasks_inferior_data;
282 set_inferior_data (inf, ada_tasks_inferior_data_handle, data);
283 }
284
285 return data;
286 }
287
288 /* Return the task number of the task whose thread is THREAD, or zero
289 if the task could not be found. */
290
291 int
292 ada_get_task_number (thread_info *thread)
293 {
294 struct inferior *inf = thread->inf;
295 struct ada_tasks_inferior_data *data;
296
297 gdb_assert (inf != NULL);
298 data = get_ada_tasks_inferior_data (inf);
299
300 for (int i = 0; i < data->task_list.size (); i++)
301 if (data->task_list[i].ptid == thread->ptid)
302 return i + 1;
303
304 return 0; /* No matching task found. */
305 }
306
307 /* Return the task number of the task running in inferior INF which
308 matches TASK_ID , or zero if the task could not be found. */
309
310 static int
311 get_task_number_from_id (CORE_ADDR task_id, struct inferior *inf)
312 {
313 struct ada_tasks_inferior_data *data = get_ada_tasks_inferior_data (inf);
314
315 for (int i = 0; i < data->task_list.size (); i++)
316 {
317 if (data->task_list[i].task_id == task_id)
318 return i + 1;
319 }
320
321 /* Task not found. Return 0. */
322 return 0;
323 }
324
325 /* Return non-zero if TASK_NUM is a valid task number. */
326
327 int
328 valid_task_id (int task_num)
329 {
330 struct ada_tasks_inferior_data *data;
331
332 ada_build_task_list ();
333 data = get_ada_tasks_inferior_data (current_inferior ());
334 return task_num > 0 && task_num <= data->task_list.size ();
335 }
336
337 /* Return non-zero iff the task STATE corresponds to a non-terminated
338 task state. */
339
340 static int
341 ada_task_is_alive (struct ada_task_info *task_info)
342 {
343 return (task_info->state != Terminated);
344 }
345
346 /* Search through the list of known tasks for the one whose ptid is
347 PTID, and return it. Return NULL if the task was not found. */
348
349 struct ada_task_info *
350 ada_get_task_info_from_ptid (ptid_t ptid)
351 {
352 struct ada_tasks_inferior_data *data;
353
354 ada_build_task_list ();
355 data = get_ada_tasks_inferior_data (current_inferior ());
356
357 for (ada_task_info &task : data->task_list)
358 {
359 if (task.ptid == ptid)
360 return &task;
361 }
362
363 return NULL;
364 }
365
366 /* Call the ITERATOR function once for each Ada task that hasn't been
367 terminated yet. */
368
369 void
370 iterate_over_live_ada_tasks (ada_task_list_iterator_ftype *iterator)
371 {
372 struct ada_tasks_inferior_data *data;
373
374 ada_build_task_list ();
375 data = get_ada_tasks_inferior_data (current_inferior ());
376
377 for (ada_task_info &task : data->task_list)
378 {
379 if (!ada_task_is_alive (&task))
380 continue;
381 iterator (&task);
382 }
383 }
384
385 /* Extract the contents of the value as a string whose length is LENGTH,
386 and store the result in DEST. */
387
388 static void
389 value_as_string (char *dest, struct value *val, int length)
390 {
391 memcpy (dest, value_contents (val), length);
392 dest[length] = '\0';
393 }
394
395 /* Extract the string image from the fat string corresponding to VAL,
396 and store it in DEST. If the string length is greater than MAX_LEN,
397 then truncate the result to the first MAX_LEN characters of the fat
398 string. */
399
400 static void
401 read_fat_string_value (char *dest, struct value *val, int max_len)
402 {
403 struct value *array_val;
404 struct value *bounds_val;
405 int len;
406
407 /* The following variables are made static to avoid recomputing them
408 each time this function is called. */
409 static int initialize_fieldnos = 1;
410 static int array_fieldno;
411 static int bounds_fieldno;
412 static int upper_bound_fieldno;
413
414 /* Get the index of the fields that we will need to read in order
415 to extract the string from the fat string. */
416 if (initialize_fieldnos)
417 {
418 struct type *type = value_type (val);
419 struct type *bounds_type;
420
421 array_fieldno = ada_get_field_index (type, "P_ARRAY", 0);
422 bounds_fieldno = ada_get_field_index (type, "P_BOUNDS", 0);
423
424 bounds_type = TYPE_FIELD_TYPE (type, bounds_fieldno);
425 if (TYPE_CODE (bounds_type) == TYPE_CODE_PTR)
426 bounds_type = TYPE_TARGET_TYPE (bounds_type);
427 if (TYPE_CODE (bounds_type) != TYPE_CODE_STRUCT)
428 error (_("Unknown task name format. Aborting"));
429 upper_bound_fieldno = ada_get_field_index (bounds_type, "UB0", 0);
430
431 initialize_fieldnos = 0;
432 }
433
434 /* Get the size of the task image by checking the value of the bounds.
435 The lower bound is always 1, so we only need to read the upper bound. */
436 bounds_val = value_ind (value_field (val, bounds_fieldno));
437 len = value_as_long (value_field (bounds_val, upper_bound_fieldno));
438
439 /* Make sure that we do not read more than max_len characters... */
440 if (len > max_len)
441 len = max_len;
442
443 /* Extract LEN characters from the fat string. */
444 array_val = value_ind (value_field (val, array_fieldno));
445 read_memory (value_address (array_val), (gdb_byte *) dest, len);
446
447 /* Add the NUL character to close the string. */
448 dest[len] = '\0';
449 }
450
451 /* Get, from the debugging information, the type description of all types
452 related to the Ada Task Control Block that are needed in order to
453 read the list of known tasks in the Ada runtime. If all of the info
454 needed to do so is found, then save that info in the module's per-
455 program-space data, and return NULL. Otherwise, if any information
456 cannot be found, leave the per-program-space data untouched, and
457 return an error message explaining what was missing (that error
458 message does NOT need to be deallocated). */
459
460 const char *
461 ada_get_tcb_types_info (void)
462 {
463 struct type *type;
464 struct type *common_type;
465 struct type *ll_type;
466 struct type *call_type;
467 struct atcb_fieldnos fieldnos;
468 struct ada_tasks_pspace_data *pspace_data;
469
470 const char *atcb_name = "system__tasking__ada_task_control_block___XVE";
471 const char *atcb_name_fixed = "system__tasking__ada_task_control_block";
472 const char *common_atcb_name = "system__tasking__common_atcb";
473 const char *private_data_name = "system__task_primitives__private_data";
474 const char *entry_call_record_name = "system__tasking__entry_call_record";
475
476 /* ATCB symbols may be found in several compilation units. As we
477 are only interested in one instance, use standard (literal,
478 C-like) lookups to get the first match. */
479
480 struct symbol *atcb_sym =
481 lookup_symbol_in_language (atcb_name, NULL, STRUCT_DOMAIN,
482 language_c, NULL).symbol;
483 const struct symbol *common_atcb_sym =
484 lookup_symbol_in_language (common_atcb_name, NULL, STRUCT_DOMAIN,
485 language_c, NULL).symbol;
486 const struct symbol *private_data_sym =
487 lookup_symbol_in_language (private_data_name, NULL, STRUCT_DOMAIN,
488 language_c, NULL).symbol;
489 const struct symbol *entry_call_record_sym =
490 lookup_symbol_in_language (entry_call_record_name, NULL, STRUCT_DOMAIN,
491 language_c, NULL).symbol;
492
493 if (atcb_sym == NULL || atcb_sym->type == NULL)
494 {
495 /* In Ravenscar run-time libs, the ATCB does not have a dynamic
496 size, so the symbol name differs. */
497 atcb_sym = lookup_symbol_in_language (atcb_name_fixed, NULL,
498 STRUCT_DOMAIN, language_c,
499 NULL).symbol;
500
501 if (atcb_sym == NULL || atcb_sym->type == NULL)
502 return _("Cannot find Ada_Task_Control_Block type");
503
504 type = atcb_sym->type;
505 }
506 else
507 {
508 /* Get a static representation of the type record
509 Ada_Task_Control_Block. */
510 type = atcb_sym->type;
511 type = ada_template_to_fixed_record_type_1 (type, NULL, 0, NULL, 0);
512 }
513
514 if (common_atcb_sym == NULL || common_atcb_sym->type == NULL)
515 return _("Cannot find Common_ATCB type");
516 if (private_data_sym == NULL || private_data_sym->type == NULL)
517 return _("Cannot find Private_Data type");
518 if (entry_call_record_sym == NULL || entry_call_record_sym->type == NULL)
519 return _("Cannot find Entry_Call_Record type");
520
521 /* Get the type for Ada_Task_Control_Block.Common. */
522 common_type = common_atcb_sym->type;
523
524 /* Get the type for Ada_Task_Control_Bloc.Common.Call.LL. */
525 ll_type = private_data_sym->type;
526
527 /* Get the type for Common_ATCB.Call.all. */
528 call_type = entry_call_record_sym->type;
529
530 /* Get the field indices. */
531 fieldnos.common = ada_get_field_index (type, "common", 0);
532 fieldnos.entry_calls = ada_get_field_index (type, "entry_calls", 1);
533 fieldnos.atc_nesting_level =
534 ada_get_field_index (type, "atc_nesting_level", 1);
535 fieldnos.state = ada_get_field_index (common_type, "state", 0);
536 fieldnos.parent = ada_get_field_index (common_type, "parent", 1);
537 fieldnos.priority = ada_get_field_index (common_type, "base_priority", 0);
538 fieldnos.image = ada_get_field_index (common_type, "task_image", 1);
539 fieldnos.image_len = ada_get_field_index (common_type, "task_image_len", 1);
540 fieldnos.activation_link = ada_get_field_index (common_type,
541 "activation_link", 1);
542 fieldnos.call = ada_get_field_index (common_type, "call", 1);
543 fieldnos.ll = ada_get_field_index (common_type, "ll", 0);
544 fieldnos.base_cpu = ada_get_field_index (common_type, "base_cpu", 0);
545 fieldnos.ll_thread = ada_get_field_index (ll_type, "thread", 0);
546 fieldnos.ll_lwp = ada_get_field_index (ll_type, "lwp", 1);
547 fieldnos.call_self = ada_get_field_index (call_type, "self", 0);
548
549 /* On certain platforms such as x86-windows, the "lwp" field has been
550 named "thread_id". This field will likely be renamed in the future,
551 but we need to support both possibilities to avoid an unnecessary
552 dependency on a recent compiler. We therefore try locating the
553 "thread_id" field in place of the "lwp" field if we did not find
554 the latter. */
555 if (fieldnos.ll_lwp < 0)
556 fieldnos.ll_lwp = ada_get_field_index (ll_type, "thread_id", 1);
557
558 /* Set all the out parameters all at once, now that we are certain
559 that there are no potential error() anymore. */
560 pspace_data = get_ada_tasks_pspace_data (current_program_space);
561 pspace_data->initialized_p = 1;
562 pspace_data->atcb_type = type;
563 pspace_data->atcb_common_type = common_type;
564 pspace_data->atcb_ll_type = ll_type;
565 pspace_data->atcb_call_type = call_type;
566 pspace_data->atcb_fieldno = fieldnos;
567 return NULL;
568 }
569
570 /* Build the PTID of the task from its COMMON_VALUE, which is the "Common"
571 component of its ATCB record. This PTID needs to match the PTID used
572 by the thread layer. */
573
574 static ptid_t
575 ptid_from_atcb_common (struct value *common_value)
576 {
577 long thread = 0;
578 CORE_ADDR lwp = 0;
579 struct value *ll_value;
580 ptid_t ptid;
581 const struct ada_tasks_pspace_data *pspace_data
582 = get_ada_tasks_pspace_data (current_program_space);
583
584 ll_value = value_field (common_value, pspace_data->atcb_fieldno.ll);
585
586 if (pspace_data->atcb_fieldno.ll_lwp >= 0)
587 lwp = value_as_address (value_field (ll_value,
588 pspace_data->atcb_fieldno.ll_lwp));
589 thread = value_as_long (value_field (ll_value,
590 pspace_data->atcb_fieldno.ll_thread));
591
592 ptid = target_get_ada_task_ptid (lwp, thread);
593
594 return ptid;
595 }
596
597 /* Read the ATCB data of a given task given its TASK_ID (which is in practice
598 the address of its assocated ATCB record), and store the result inside
599 TASK_INFO. */
600
601 static void
602 read_atcb (CORE_ADDR task_id, struct ada_task_info *task_info)
603 {
604 struct value *tcb_value;
605 struct value *common_value;
606 struct value *atc_nesting_level_value;
607 struct value *entry_calls_value;
608 struct value *entry_calls_value_element;
609 int called_task_fieldno = -1;
610 static const char ravenscar_task_name[] = "Ravenscar task";
611 const struct ada_tasks_pspace_data *pspace_data
612 = get_ada_tasks_pspace_data (current_program_space);
613
614 if (!pspace_data->initialized_p)
615 {
616 const char *err_msg = ada_get_tcb_types_info ();
617
618 if (err_msg != NULL)
619 error (_("%s. Aborting"), err_msg);
620 }
621
622 tcb_value = value_from_contents_and_address (pspace_data->atcb_type,
623 NULL, task_id);
624 common_value = value_field (tcb_value, pspace_data->atcb_fieldno.common);
625
626 /* Fill in the task_id. */
627
628 task_info->task_id = task_id;
629
630 /* Compute the name of the task.
631
632 Depending on the GNAT version used, the task image is either a fat
633 string, or a thin array of characters. Older versions of GNAT used
634 to use fat strings, and therefore did not need an extra field in
635 the ATCB to store the string length. For efficiency reasons, newer
636 versions of GNAT replaced the fat string by a static buffer, but this
637 also required the addition of a new field named "Image_Len" containing
638 the length of the task name. The method used to extract the task name
639 is selected depending on the existence of this field.
640
641 In some run-time libs (e.g. Ravenscar), the name is not in the ATCB;
642 we may want to get it from the first user frame of the stack. For now,
643 we just give a dummy name. */
644
645 if (pspace_data->atcb_fieldno.image_len == -1)
646 {
647 if (pspace_data->atcb_fieldno.image >= 0)
648 read_fat_string_value (task_info->name,
649 value_field (common_value,
650 pspace_data->atcb_fieldno.image),
651 sizeof (task_info->name) - 1);
652 else
653 {
654 struct bound_minimal_symbol msym;
655
656 msym = lookup_minimal_symbol_by_pc (task_id);
657 if (msym.minsym)
658 {
659 const char *full_name = MSYMBOL_LINKAGE_NAME (msym.minsym);
660 const char *task_name = full_name;
661 const char *p;
662
663 /* Strip the prefix. */
664 for (p = full_name; *p; p++)
665 if (p[0] == '_' && p[1] == '_')
666 task_name = p + 2;
667
668 /* Copy the task name. */
669 strncpy (task_info->name, task_name, sizeof (task_info->name));
670 task_info->name[sizeof (task_info->name) - 1] = 0;
671 }
672 else
673 {
674 /* No symbol found. Use a default name. */
675 strcpy (task_info->name, ravenscar_task_name);
676 }
677 }
678 }
679 else
680 {
681 int len = value_as_long
682 (value_field (common_value,
683 pspace_data->atcb_fieldno.image_len));
684
685 value_as_string (task_info->name,
686 value_field (common_value,
687 pspace_data->atcb_fieldno.image),
688 len);
689 }
690
691 /* Compute the task state and priority. */
692
693 task_info->state =
694 value_as_long (value_field (common_value,
695 pspace_data->atcb_fieldno.state));
696 task_info->priority =
697 value_as_long (value_field (common_value,
698 pspace_data->atcb_fieldno.priority));
699
700 /* If the ATCB contains some information about the parent task,
701 then compute it as well. Otherwise, zero. */
702
703 if (pspace_data->atcb_fieldno.parent >= 0)
704 task_info->parent =
705 value_as_address (value_field (common_value,
706 pspace_data->atcb_fieldno.parent));
707 else
708 task_info->parent = 0;
709
710
711 /* If the ATCB contains some information about entry calls, then
712 compute the "called_task" as well. Otherwise, zero. */
713
714 if (pspace_data->atcb_fieldno.atc_nesting_level > 0
715 && pspace_data->atcb_fieldno.entry_calls > 0)
716 {
717 /* Let My_ATCB be the Ada task control block of a task calling the
718 entry of another task; then the Task_Id of the called task is
719 in My_ATCB.Entry_Calls (My_ATCB.ATC_Nesting_Level).Called_Task. */
720 atc_nesting_level_value =
721 value_field (tcb_value, pspace_data->atcb_fieldno.atc_nesting_level);
722 entry_calls_value =
723 ada_coerce_to_simple_array_ptr
724 (value_field (tcb_value, pspace_data->atcb_fieldno.entry_calls));
725 entry_calls_value_element =
726 value_subscript (entry_calls_value,
727 value_as_long (atc_nesting_level_value));
728 called_task_fieldno =
729 ada_get_field_index (value_type (entry_calls_value_element),
730 "called_task", 0);
731 task_info->called_task =
732 value_as_address (value_field (entry_calls_value_element,
733 called_task_fieldno));
734 }
735 else
736 {
737 task_info->called_task = 0;
738 }
739
740 /* If the ATCB cotnains some information about RV callers,
741 then compute the "caller_task". Otherwise, zero. */
742
743 task_info->caller_task = 0;
744 if (pspace_data->atcb_fieldno.call >= 0)
745 {
746 /* Get the ID of the caller task from Common_ATCB.Call.all.Self.
747 If Common_ATCB.Call is null, then there is no caller. */
748 const CORE_ADDR call =
749 value_as_address (value_field (common_value,
750 pspace_data->atcb_fieldno.call));
751 struct value *call_val;
752
753 if (call != 0)
754 {
755 call_val =
756 value_from_contents_and_address (pspace_data->atcb_call_type,
757 NULL, call);
758 task_info->caller_task =
759 value_as_address
760 (value_field (call_val, pspace_data->atcb_fieldno.call_self));
761 }
762 }
763
764 task_info->base_cpu
765 = value_as_long (value_field (common_value,
766 pspace_data->atcb_fieldno.base_cpu));
767
768 /* And finally, compute the task ptid. Note that there is not point
769 in computing it if the task is no longer alive, in which case
770 it is good enough to set its ptid to the null_ptid. */
771 if (ada_task_is_alive (task_info))
772 task_info->ptid = ptid_from_atcb_common (common_value);
773 else
774 task_info->ptid = null_ptid;
775 }
776
777 /* Read the ATCB info of the given task (identified by TASK_ID), and
778 add the result to the given inferior's TASK_LIST. */
779
780 static void
781 add_ada_task (CORE_ADDR task_id, struct inferior *inf)
782 {
783 struct ada_task_info task_info;
784 struct ada_tasks_inferior_data *data = get_ada_tasks_inferior_data (inf);
785
786 read_atcb (task_id, &task_info);
787 data->task_list.push_back (task_info);
788 }
789
790 /* Read the Known_Tasks array from the inferior memory, and store
791 it in the current inferior's TASK_LIST. Return non-zero upon success. */
792
793 static int
794 read_known_tasks_array (struct ada_tasks_inferior_data *data)
795 {
796 const int target_ptr_byte = TYPE_LENGTH (data->known_tasks_element);
797 const int known_tasks_size = target_ptr_byte * data->known_tasks_length;
798 gdb_byte *known_tasks = (gdb_byte *) alloca (known_tasks_size);
799 int i;
800
801 /* Build a new list by reading the ATCBs from the Known_Tasks array
802 in the Ada runtime. */
803 read_memory (data->known_tasks_addr, known_tasks, known_tasks_size);
804 for (i = 0; i < data->known_tasks_length; i++)
805 {
806 CORE_ADDR task_id =
807 extract_typed_address (known_tasks + i * target_ptr_byte,
808 data->known_tasks_element);
809
810 if (task_id != 0)
811 add_ada_task (task_id, current_inferior ());
812 }
813
814 return 1;
815 }
816
817 /* Read the known tasks from the inferior memory, and store it in
818 the current inferior's TASK_LIST. Return non-zero upon success. */
819
820 static int
821 read_known_tasks_list (struct ada_tasks_inferior_data *data)
822 {
823 const int target_ptr_byte = TYPE_LENGTH (data->known_tasks_element);
824 gdb_byte *known_tasks = (gdb_byte *) alloca (target_ptr_byte);
825 CORE_ADDR task_id;
826 const struct ada_tasks_pspace_data *pspace_data
827 = get_ada_tasks_pspace_data (current_program_space);
828
829 /* Sanity check. */
830 if (pspace_data->atcb_fieldno.activation_link < 0)
831 return 0;
832
833 /* Build a new list by reading the ATCBs. Read head of the list. */
834 read_memory (data->known_tasks_addr, known_tasks, target_ptr_byte);
835 task_id = extract_typed_address (known_tasks, data->known_tasks_element);
836 while (task_id != 0)
837 {
838 struct value *tcb_value;
839 struct value *common_value;
840
841 add_ada_task (task_id, current_inferior ());
842
843 /* Read the chain. */
844 tcb_value = value_from_contents_and_address (pspace_data->atcb_type,
845 NULL, task_id);
846 common_value = value_field (tcb_value, pspace_data->atcb_fieldno.common);
847 task_id = value_as_address
848 (value_field (common_value,
849 pspace_data->atcb_fieldno.activation_link));
850 }
851
852 return 1;
853 }
854
855 /* Set all fields of the current inferior ada-tasks data pointed by DATA.
856 Do nothing if those fields are already set and still up to date. */
857
858 static void
859 ada_tasks_inferior_data_sniffer (struct ada_tasks_inferior_data *data)
860 {
861 struct bound_minimal_symbol msym;
862 struct symbol *sym;
863
864 /* Return now if already set. */
865 if (data->known_tasks_kind != ADA_TASKS_UNKNOWN)
866 return;
867
868 /* Try array. */
869
870 msym = lookup_minimal_symbol (KNOWN_TASKS_NAME, NULL, NULL);
871 if (msym.minsym != NULL)
872 {
873 data->known_tasks_kind = ADA_TASKS_ARRAY;
874 data->known_tasks_addr = BMSYMBOL_VALUE_ADDRESS (msym);
875
876 /* Try to get pointer type and array length from the symtab. */
877 sym = lookup_symbol_in_language (KNOWN_TASKS_NAME, NULL, VAR_DOMAIN,
878 language_c, NULL).symbol;
879 if (sym != NULL)
880 {
881 /* Validate. */
882 struct type *type = check_typedef (SYMBOL_TYPE (sym));
883 struct type *eltype = NULL;
884 struct type *idxtype = NULL;
885
886 if (TYPE_CODE (type) == TYPE_CODE_ARRAY)
887 eltype = check_typedef (TYPE_TARGET_TYPE (type));
888 if (eltype != NULL
889 && TYPE_CODE (eltype) == TYPE_CODE_PTR)
890 idxtype = check_typedef (TYPE_INDEX_TYPE (type));
891 if (idxtype != NULL
892 && !TYPE_LOW_BOUND_UNDEFINED (idxtype)
893 && !TYPE_HIGH_BOUND_UNDEFINED (idxtype))
894 {
895 data->known_tasks_element = eltype;
896 data->known_tasks_length =
897 TYPE_HIGH_BOUND (idxtype) - TYPE_LOW_BOUND (idxtype) + 1;
898 return;
899 }
900 }
901
902 /* Fallback to default values. The runtime may have been stripped (as
903 in some distributions), but it is likely that the executable still
904 contains debug information on the task type (due to implicit with of
905 Ada.Tasking). */
906 data->known_tasks_element =
907 builtin_type (target_gdbarch ())->builtin_data_ptr;
908 data->known_tasks_length = MAX_NUMBER_OF_KNOWN_TASKS;
909 return;
910 }
911
912
913 /* Try list. */
914
915 msym = lookup_minimal_symbol (KNOWN_TASKS_LIST, NULL, NULL);
916 if (msym.minsym != NULL)
917 {
918 data->known_tasks_kind = ADA_TASKS_LIST;
919 data->known_tasks_addr = BMSYMBOL_VALUE_ADDRESS (msym);
920 data->known_tasks_length = 1;
921
922 sym = lookup_symbol_in_language (KNOWN_TASKS_LIST, NULL, VAR_DOMAIN,
923 language_c, NULL).symbol;
924 if (sym != NULL && SYMBOL_VALUE_ADDRESS (sym) != 0)
925 {
926 /* Validate. */
927 struct type *type = check_typedef (SYMBOL_TYPE (sym));
928
929 if (TYPE_CODE (type) == TYPE_CODE_PTR)
930 {
931 data->known_tasks_element = type;
932 return;
933 }
934 }
935
936 /* Fallback to default values. */
937 data->known_tasks_element =
938 builtin_type (target_gdbarch ())->builtin_data_ptr;
939 data->known_tasks_length = 1;
940 return;
941 }
942
943 /* Can't find tasks. */
944
945 data->known_tasks_kind = ADA_TASKS_NOT_FOUND;
946 data->known_tasks_addr = 0;
947 }
948
949 /* Read the known tasks from the current inferior's memory, and store it
950 in the current inferior's data TASK_LIST.
951 Return non-zero upon success. */
952
953 static int
954 read_known_tasks (void)
955 {
956 struct ada_tasks_inferior_data *data =
957 get_ada_tasks_inferior_data (current_inferior ());
958
959 /* Step 1: Clear the current list, if necessary. */
960 data->task_list.clear ();
961
962 /* Step 2: do the real work.
963 If the application does not use task, then no more needs to be done.
964 It is important to have the task list cleared (see above) before we
965 return, as we don't want a stale task list to be used... This can
966 happen for instance when debugging a non-multitasking program after
967 having debugged a multitasking one. */
968 ada_tasks_inferior_data_sniffer (data);
969 gdb_assert (data->known_tasks_kind != ADA_TASKS_UNKNOWN);
970
971 switch (data->known_tasks_kind)
972 {
973 case ADA_TASKS_NOT_FOUND: /* Tasking not in use in inferior. */
974 return 0;
975 case ADA_TASKS_ARRAY:
976 return read_known_tasks_array (data);
977 case ADA_TASKS_LIST:
978 return read_known_tasks_list (data);
979 }
980
981 /* Step 3: Set task_list_valid_p, to avoid re-reading the Known_Tasks
982 array unless needed. Then report a success. */
983 data->task_list_valid_p = 1;
984
985 return 1;
986 }
987
988 /* Build the task_list by reading the Known_Tasks array from
989 the inferior, and return the number of tasks in that list
990 (zero means that the program is not using tasking at all). */
991
992 int
993 ada_build_task_list (void)
994 {
995 struct ada_tasks_inferior_data *data;
996
997 if (!target_has_stack)
998 error (_("Cannot inspect Ada tasks when program is not running"));
999
1000 data = get_ada_tasks_inferior_data (current_inferior ());
1001 if (!data->task_list_valid_p)
1002 read_known_tasks ();
1003
1004 return data->task_list.size ();
1005 }
1006
1007 /* Print a table providing a short description of all Ada tasks
1008 running inside inferior INF. If ARG_STR is set, it will be
1009 interpreted as a task number, and the table will be limited to
1010 that task only. */
1011
1012 void
1013 print_ada_task_info (struct ui_out *uiout,
1014 char *arg_str,
1015 struct inferior *inf)
1016 {
1017 struct ada_tasks_inferior_data *data;
1018 int taskno, nb_tasks;
1019 int taskno_arg = 0;
1020 int nb_columns;
1021
1022 if (ada_build_task_list () == 0)
1023 {
1024 uiout->message (_("Your application does not use any Ada tasks.\n"));
1025 return;
1026 }
1027
1028 if (arg_str != NULL && arg_str[0] != '\0')
1029 taskno_arg = value_as_long (parse_and_eval (arg_str));
1030
1031 if (uiout->is_mi_like_p ())
1032 /* In GDB/MI mode, we want to provide the thread ID corresponding
1033 to each task. This allows clients to quickly find the thread
1034 associated to any task, which is helpful for commands that
1035 take a --thread argument. However, in order to be able to
1036 provide that thread ID, the thread list must be up to date
1037 first. */
1038 target_update_thread_list ();
1039
1040 data = get_ada_tasks_inferior_data (inf);
1041
1042 /* Compute the number of tasks that are going to be displayed
1043 in the output. If an argument was given, there will be
1044 at most 1 entry. Otherwise, there will be as many entries
1045 as we have tasks. */
1046 if (taskno_arg)
1047 {
1048 if (taskno_arg > 0 && taskno_arg <= data->task_list.size ())
1049 nb_tasks = 1;
1050 else
1051 nb_tasks = 0;
1052 }
1053 else
1054 nb_tasks = data->task_list.size ();
1055
1056 nb_columns = uiout->is_mi_like_p () ? 8 : 7;
1057 ui_out_emit_table table_emitter (uiout, nb_columns, nb_tasks, "tasks");
1058 uiout->table_header (1, ui_left, "current", "");
1059 uiout->table_header (3, ui_right, "id", "ID");
1060 uiout->table_header (9, ui_right, "task-id", "TID");
1061 /* The following column is provided in GDB/MI mode only because
1062 it is only really useful in that mode, and also because it
1063 allows us to keep the CLI output shorter and more compact. */
1064 if (uiout->is_mi_like_p ())
1065 uiout->table_header (4, ui_right, "thread-id", "");
1066 uiout->table_header (4, ui_right, "parent-id", "P-ID");
1067 uiout->table_header (3, ui_right, "priority", "Pri");
1068 uiout->table_header (22, ui_left, "state", "State");
1069 /* Use ui_noalign for the last column, to prevent the CLI uiout
1070 from printing an extra space at the end of each row. This
1071 is a bit of a hack, but does get the job done. */
1072 uiout->table_header (1, ui_noalign, "name", "Name");
1073 uiout->table_body ();
1074
1075 for (taskno = 1; taskno <= data->task_list.size (); taskno++)
1076 {
1077 const struct ada_task_info *const task_info =
1078 &data->task_list[taskno - 1];
1079 int parent_id;
1080
1081 gdb_assert (task_info != NULL);
1082
1083 /* If the user asked for the output to be restricted
1084 to one task only, and this is not the task, skip
1085 to the next one. */
1086 if (taskno_arg && taskno != taskno_arg)
1087 continue;
1088
1089 ui_out_emit_tuple tuple_emitter (uiout, NULL);
1090
1091 /* Print a star if this task is the current task (or the task
1092 currently selected). */
1093 if (task_info->ptid == inferior_ptid)
1094 uiout->field_string ("current", "*");
1095 else
1096 uiout->field_skip ("current");
1097
1098 /* Print the task number. */
1099 uiout->field_int ("id", taskno);
1100
1101 /* Print the Task ID. */
1102 uiout->field_fmt ("task-id", "%9lx", (long) task_info->task_id);
1103
1104 /* Print the associated Thread ID. */
1105 if (uiout->is_mi_like_p ())
1106 {
1107 thread_info *thread = find_thread_ptid (task_info->ptid);
1108
1109 if (thread != NULL)
1110 uiout->field_int ("thread-id", thread->global_num);
1111 else
1112 /* This should never happen unless there is a bug somewhere,
1113 but be resilient when that happens. */
1114 uiout->field_skip ("thread-id");
1115 }
1116
1117 /* Print the ID of the parent task. */
1118 parent_id = get_task_number_from_id (task_info->parent, inf);
1119 if (parent_id)
1120 uiout->field_int ("parent-id", parent_id);
1121 else
1122 uiout->field_skip ("parent-id");
1123
1124 /* Print the base priority of the task. */
1125 uiout->field_int ("priority", task_info->priority);
1126
1127 /* Print the task current state. */
1128 if (task_info->caller_task)
1129 uiout->field_fmt ("state",
1130 _("Accepting RV with %-4d"),
1131 get_task_number_from_id (task_info->caller_task,
1132 inf));
1133 else if (task_info->state == Entry_Caller_Sleep
1134 && task_info->called_task)
1135 uiout->field_fmt ("state",
1136 _("Waiting on RV with %-3d"),
1137 get_task_number_from_id (task_info->called_task,
1138 inf));
1139 else
1140 uiout->field_string ("state", task_states[task_info->state]);
1141
1142 /* Finally, print the task name. */
1143 uiout->field_fmt ("name",
1144 "%s",
1145 task_info->name[0] != '\0' ? task_info->name
1146 : _("<no name>"));
1147
1148 uiout->text ("\n");
1149 }
1150 }
1151
1152 /* Print a detailed description of the Ada task whose ID is TASKNO_STR
1153 for the given inferior (INF). */
1154
1155 static void
1156 info_task (struct ui_out *uiout, const char *taskno_str, struct inferior *inf)
1157 {
1158 const int taskno = value_as_long (parse_and_eval (taskno_str));
1159 struct ada_task_info *task_info;
1160 int parent_taskno = 0;
1161 struct ada_tasks_inferior_data *data = get_ada_tasks_inferior_data (inf);
1162
1163 if (ada_build_task_list () == 0)
1164 {
1165 uiout->message (_("Your application does not use any Ada tasks.\n"));
1166 return;
1167 }
1168
1169 if (taskno <= 0 || taskno > data->task_list.size ())
1170 error (_("Task ID %d not known. Use the \"info tasks\" command to\n"
1171 "see the IDs of currently known tasks"), taskno);
1172 task_info = &data->task_list[taskno - 1];
1173
1174 /* Print the Ada task ID. */
1175 printf_filtered (_("Ada Task: %s\n"),
1176 paddress (target_gdbarch (), task_info->task_id));
1177
1178 /* Print the name of the task. */
1179 if (task_info->name[0] != '\0')
1180 printf_filtered (_("Name: %s\n"), task_info->name);
1181 else
1182 printf_filtered (_("<no name>\n"));
1183
1184 /* Print the TID and LWP. */
1185 printf_filtered (_("Thread: %#lx\n"), task_info->ptid.tid ());
1186 printf_filtered (_("LWP: %#lx\n"), task_info->ptid.lwp ());
1187
1188 /* If set, print the base CPU. */
1189 if (task_info->base_cpu != 0)
1190 printf_filtered (_("Base CPU: %d\n"), task_info->base_cpu);
1191
1192 /* Print who is the parent (if any). */
1193 if (task_info->parent != 0)
1194 parent_taskno = get_task_number_from_id (task_info->parent, inf);
1195 if (parent_taskno)
1196 {
1197 struct ada_task_info *parent = &data->task_list[parent_taskno - 1];
1198
1199 printf_filtered (_("Parent: %d"), parent_taskno);
1200 if (parent->name[0] != '\0')
1201 printf_filtered (" (%s)", parent->name);
1202 printf_filtered ("\n");
1203 }
1204 else
1205 printf_filtered (_("No parent\n"));
1206
1207 /* Print the base priority. */
1208 printf_filtered (_("Base Priority: %d\n"), task_info->priority);
1209
1210 /* print the task current state. */
1211 {
1212 int target_taskno = 0;
1213
1214 if (task_info->caller_task)
1215 {
1216 target_taskno = get_task_number_from_id (task_info->caller_task, inf);
1217 printf_filtered (_("State: Accepting rendezvous with %d"),
1218 target_taskno);
1219 }
1220 else if (task_info->state == Entry_Caller_Sleep && task_info->called_task)
1221 {
1222 target_taskno = get_task_number_from_id (task_info->called_task, inf);
1223 printf_filtered (_("State: Waiting on task %d's entry"),
1224 target_taskno);
1225 }
1226 else
1227 printf_filtered (_("State: %s"), _(long_task_states[task_info->state]));
1228
1229 if (target_taskno)
1230 {
1231 ada_task_info *target_task_info = &data->task_list[target_taskno - 1];
1232
1233 if (target_task_info->name[0] != '\0')
1234 printf_filtered (" (%s)", target_task_info->name);
1235 }
1236
1237 printf_filtered ("\n");
1238 }
1239 }
1240
1241 /* If ARG is empty or null, then print a list of all Ada tasks.
1242 Otherwise, print detailed information about the task whose ID
1243 is ARG.
1244
1245 Does nothing if the program doesn't use Ada tasking. */
1246
1247 static void
1248 info_tasks_command (const char *arg, int from_tty)
1249 {
1250 struct ui_out *uiout = current_uiout;
1251
1252 if (arg == NULL || *arg == '\0')
1253 print_ada_task_info (uiout, NULL, current_inferior ());
1254 else
1255 info_task (uiout, arg, current_inferior ());
1256 }
1257
1258 /* Print a message telling the user id of the current task.
1259 This function assumes that tasking is in use in the inferior. */
1260
1261 static void
1262 display_current_task_id (void)
1263 {
1264 const int current_task = ada_get_task_number (inferior_thread ());
1265
1266 if (current_task == 0)
1267 printf_filtered (_("[Current task is unknown]\n"));
1268 else
1269 printf_filtered (_("[Current task is %d]\n"), current_task);
1270 }
1271
1272 /* Parse and evaluate TIDSTR into a task id, and try to switch to
1273 that task. Print an error message if the task switch failed. */
1274
1275 static void
1276 task_command_1 (const char *taskno_str, int from_tty, struct inferior *inf)
1277 {
1278 const int taskno = value_as_long (parse_and_eval (taskno_str));
1279 struct ada_task_info *task_info;
1280 struct ada_tasks_inferior_data *data = get_ada_tasks_inferior_data (inf);
1281
1282 if (taskno <= 0 || taskno > data->task_list.size ())
1283 error (_("Task ID %d not known. Use the \"info tasks\" command to\n"
1284 "see the IDs of currently known tasks"), taskno);
1285 task_info = &data->task_list[taskno - 1];
1286
1287 if (!ada_task_is_alive (task_info))
1288 error (_("Cannot switch to task %d: Task is no longer running"), taskno);
1289
1290 /* On some platforms, the thread list is not updated until the user
1291 performs a thread-related operation (by using the "info threads"
1292 command, for instance). So this thread list may not be up to date
1293 when the user attempts this task switch. Since we cannot switch
1294 to the thread associated to our task if GDB does not know about
1295 that thread, we need to make sure that any new threads gets added
1296 to the thread list. */
1297 target_update_thread_list ();
1298
1299 /* Verify that the ptid of the task we want to switch to is valid
1300 (in other words, a ptid that GDB knows about). Otherwise, we will
1301 cause an assertion failure later on, when we try to determine
1302 the ptid associated thread_info data. We should normally never
1303 encounter such an error, but the wrong ptid can actually easily be
1304 computed if target_get_ada_task_ptid has not been implemented for
1305 our target (yet). Rather than cause an assertion error in that case,
1306 it's nicer for the user to just refuse to perform the task switch. */
1307 thread_info *tp = find_thread_ptid (task_info->ptid);
1308 if (tp == NULL)
1309 error (_("Unable to compute thread ID for task %d.\n"
1310 "Cannot switch to this task."),
1311 taskno);
1312
1313 switch_to_thread (tp);
1314 ada_find_printable_frame (get_selected_frame (NULL));
1315 printf_filtered (_("[Switching to task %d]\n"), taskno);
1316 print_stack_frame (get_selected_frame (NULL),
1317 frame_relative_level (get_selected_frame (NULL)),
1318 SRC_AND_LOC, 1);
1319 }
1320
1321
1322 /* Print the ID of the current task if TASKNO_STR is empty or NULL.
1323 Otherwise, switch to the task indicated by TASKNO_STR. */
1324
1325 static void
1326 task_command (const char *taskno_str, int from_tty)
1327 {
1328 struct ui_out *uiout = current_uiout;
1329
1330 if (ada_build_task_list () == 0)
1331 {
1332 uiout->message (_("Your application does not use any Ada tasks.\n"));
1333 return;
1334 }
1335
1336 if (taskno_str == NULL || taskno_str[0] == '\0')
1337 display_current_task_id ();
1338 else
1339 task_command_1 (taskno_str, from_tty, current_inferior ());
1340 }
1341
1342 /* Indicate that the given inferior's task list may have changed,
1343 so invalidate the cache. */
1344
1345 static void
1346 ada_task_list_changed (struct inferior *inf)
1347 {
1348 struct ada_tasks_inferior_data *data = get_ada_tasks_inferior_data (inf);
1349
1350 data->task_list_valid_p = 0;
1351 }
1352
1353 /* Invalidate the per-program-space data. */
1354
1355 static void
1356 ada_tasks_invalidate_pspace_data (struct program_space *pspace)
1357 {
1358 get_ada_tasks_pspace_data (pspace)->initialized_p = 0;
1359 }
1360
1361 /* Invalidate the per-inferior data. */
1362
1363 static void
1364 ada_tasks_invalidate_inferior_data (struct inferior *inf)
1365 {
1366 struct ada_tasks_inferior_data *data = get_ada_tasks_inferior_data (inf);
1367
1368 data->known_tasks_kind = ADA_TASKS_UNKNOWN;
1369 data->task_list_valid_p = 0;
1370 }
1371
1372 /* The 'normal_stop' observer notification callback. */
1373
1374 static void
1375 ada_tasks_normal_stop_observer (struct bpstats *unused_args, int unused_args2)
1376 {
1377 /* The inferior has been resumed, and just stopped. This means that
1378 our task_list needs to be recomputed before it can be used again. */
1379 ada_task_list_changed (current_inferior ());
1380 }
1381
1382 /* A routine to be called when the objfiles have changed. */
1383
1384 static void
1385 ada_tasks_new_objfile_observer (struct objfile *objfile)
1386 {
1387 struct inferior *inf;
1388
1389 /* Invalidate the relevant data in our program-space data. */
1390
1391 if (objfile == NULL)
1392 {
1393 /* All objfiles are being cleared, so we should clear all
1394 our caches for all program spaces. */
1395 struct program_space *pspace;
1396
1397 for (pspace = program_spaces; pspace != NULL; pspace = pspace->next)
1398 ada_tasks_invalidate_pspace_data (pspace);
1399 }
1400 else
1401 {
1402 /* The associated program-space data might have changed after
1403 this objfile was added. Invalidate all cached data. */
1404 ada_tasks_invalidate_pspace_data (objfile->pspace);
1405 }
1406
1407 /* Invalidate the per-inferior cache for all inferiors using
1408 this objfile (or, in other words, for all inferiors who have
1409 the same program-space as the objfile's program space).
1410 If all objfiles are being cleared (OBJFILE is NULL), then
1411 clear the caches for all inferiors. */
1412
1413 for (inf = inferior_list; inf != NULL; inf = inf->next)
1414 if (objfile == NULL || inf->pspace == objfile->pspace)
1415 ada_tasks_invalidate_inferior_data (inf);
1416 }
1417
1418 void
1419 _initialize_tasks (void)
1420 {
1421 ada_tasks_pspace_data_handle = register_program_space_data ();
1422 ada_tasks_inferior_data_handle = register_inferior_data ();
1423
1424 /* Attach various observers. */
1425 gdb::observers::normal_stop.attach (ada_tasks_normal_stop_observer);
1426 gdb::observers::new_objfile.attach (ada_tasks_new_objfile_observer);
1427
1428 /* Some new commands provided by this module. */
1429 add_info ("tasks", info_tasks_command,
1430 _("Provide information about all known Ada tasks"));
1431 add_cmd ("task", class_run, task_command,
1432 _("Use this command to switch between Ada tasks.\n\
1433 Without argument, this command simply prints the current task ID"),
1434 &cmdlist);
1435 }
This page took 0.058349 seconds and 4 git commands to generate.