ccabc63104080e553308be4e52bebb632998c08e
[deliverable/binutils-gdb.git] / gdb / ada-tasks.c
1 /* Copyright (C) 1992-2019 Free Software Foundation, Inc.
2
3 This file is part of GDB.
4
5 This program is free software; you can redistribute it and/or modify
6 it under the terms of the GNU General Public License as published by
7 the Free Software Foundation; either version 3 of the License, or
8 (at your option) any later version.
9
10 This program is distributed in the hope that it will be useful,
11 but WITHOUT ANY WARRANTY; without even the implied warranty of
12 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
13 GNU General Public License for more details.
14
15 You should have received a copy of the GNU General Public License
16 along with this program. If not, see <http://www.gnu.org/licenses/>. */
17
18 #include "defs.h"
19 #include "observable.h"
20 #include "gdbcmd.h"
21 #include "target.h"
22 #include "ada-lang.h"
23 #include "gdbcore.h"
24 #include "inferior.h"
25 #include "gdbthread.h"
26 #include "progspace.h"
27 #include "objfiles.h"
28
29 static int ada_build_task_list ();
30
31 /* The name of the array in the GNAT runtime where the Ada Task Control
32 Block of each task is stored. */
33 #define KNOWN_TASKS_NAME "system__tasking__debug__known_tasks"
34
35 /* The maximum number of tasks known to the Ada runtime. */
36 static const int MAX_NUMBER_OF_KNOWN_TASKS = 1000;
37
38 /* The name of the variable in the GNAT runtime where the head of a task
39 chain is saved. This is an alternate mechanism to find the list of known
40 tasks. */
41 #define KNOWN_TASKS_LIST "system__tasking__debug__first_task"
42
43 enum task_states
44 {
45 Unactivated,
46 Runnable,
47 Terminated,
48 Activator_Sleep,
49 Acceptor_Sleep,
50 Entry_Caller_Sleep,
51 Async_Select_Sleep,
52 Delay_Sleep,
53 Master_Completion_Sleep,
54 Master_Phase_2_Sleep,
55 Interrupt_Server_Idle_Sleep,
56 Interrupt_Server_Blocked_Interrupt_Sleep,
57 Timer_Server_Sleep,
58 AST_Server_Sleep,
59 Asynchronous_Hold,
60 Interrupt_Server_Blocked_On_Event_Flag,
61 Activating,
62 Acceptor_Delay_Sleep
63 };
64
65 /* A short description corresponding to each possible task state. */
66 static const char *task_states[] = {
67 N_("Unactivated"),
68 N_("Runnable"),
69 N_("Terminated"),
70 N_("Child Activation Wait"),
71 N_("Accept or Select Term"),
72 N_("Waiting on entry call"),
73 N_("Async Select Wait"),
74 N_("Delay Sleep"),
75 N_("Child Termination Wait"),
76 N_("Wait Child in Term Alt"),
77 "",
78 "",
79 "",
80 "",
81 N_("Asynchronous Hold"),
82 "",
83 N_("Activating"),
84 N_("Selective Wait")
85 };
86
87 /* A longer description corresponding to each possible task state. */
88 static const char *long_task_states[] = {
89 N_("Unactivated"),
90 N_("Runnable"),
91 N_("Terminated"),
92 N_("Waiting for child activation"),
93 N_("Blocked in accept or select with terminate"),
94 N_("Waiting on entry call"),
95 N_("Asynchronous Selective Wait"),
96 N_("Delay Sleep"),
97 N_("Waiting for children termination"),
98 N_("Waiting for children in terminate alternative"),
99 "",
100 "",
101 "",
102 "",
103 N_("Asynchronous Hold"),
104 "",
105 N_("Activating"),
106 N_("Blocked in selective wait statement")
107 };
108
109 /* The index of certain important fields in the Ada Task Control Block
110 record and sub-records. */
111
112 struct atcb_fieldnos
113 {
114 /* Fields in record Ada_Task_Control_Block. */
115 int common;
116 int entry_calls;
117 int atc_nesting_level;
118
119 /* Fields in record Common_ATCB. */
120 int state;
121 int parent;
122 int priority;
123 int image;
124 int image_len; /* This field may be missing. */
125 int activation_link;
126 int call;
127 int ll;
128 int base_cpu;
129
130 /* Fields in Task_Primitives.Private_Data. */
131 int ll_thread;
132 int ll_lwp; /* This field may be missing. */
133
134 /* Fields in Common_ATCB.Call.all. */
135 int call_self;
136 };
137
138 /* This module's per-program-space data. */
139
140 struct ada_tasks_pspace_data
141 {
142 /* Nonzero if the data has been initialized. If set to zero,
143 it means that the data has either not been initialized, or
144 has potentially become stale. */
145 int initialized_p;
146
147 /* The ATCB record type. */
148 struct type *atcb_type;
149
150 /* The ATCB "Common" component type. */
151 struct type *atcb_common_type;
152
153 /* The type of the "ll" field, from the atcb_common_type. */
154 struct type *atcb_ll_type;
155
156 /* The type of the "call" field, from the atcb_common_type. */
157 struct type *atcb_call_type;
158
159 /* The index of various fields in the ATCB record and sub-records. */
160 struct atcb_fieldnos atcb_fieldno;
161 };
162
163 /* Key to our per-program-space data. */
164 static const struct program_space_data *ada_tasks_pspace_data_handle;
165
166 /* A cleanup routine for our per-program-space data. */
167 static void
168 ada_tasks_pspace_data_cleanup (struct program_space *pspace, void *arg)
169 {
170 struct ada_tasks_pspace_data *data
171 = (struct ada_tasks_pspace_data *) arg;
172 xfree (data);
173 }
174
175 /* The kind of data structure used by the runtime to store the list
176 of Ada tasks. */
177
178 enum ada_known_tasks_kind
179 {
180 /* Use this value when we haven't determined which kind of structure
181 is being used, or when we need to recompute it.
182
183 We set the value of this enumerate to zero on purpose: This allows
184 us to use this enumerate in a structure where setting all fields
185 to zero will result in this kind being set to unknown. */
186 ADA_TASKS_UNKNOWN = 0,
187
188 /* This value means that we did not find any task list. Unless
189 there is a bug somewhere, this means that the inferior does not
190 use tasking. */
191 ADA_TASKS_NOT_FOUND,
192
193 /* This value means that the task list is stored as an array.
194 This is the usual method, as it causes very little overhead.
195 But this method is not always used, as it does use a certain
196 amount of memory, which might be scarse in certain environments. */
197 ADA_TASKS_ARRAY,
198
199 /* This value means that the task list is stored as a linked list.
200 This has more runtime overhead than the array approach, but
201 also require less memory when the number of tasks is small. */
202 ADA_TASKS_LIST,
203 };
204
205 /* This module's per-inferior data. */
206
207 struct ada_tasks_inferior_data
208 {
209 /* The type of data structure used by the runtime to store
210 the list of Ada tasks. The value of this field influences
211 the interpretation of the known_tasks_addr field below:
212 - ADA_TASKS_UNKNOWN: The value of known_tasks_addr hasn't
213 been determined yet;
214 - ADA_TASKS_NOT_FOUND: The program probably does not use tasking
215 and the known_tasks_addr is irrelevant;
216 - ADA_TASKS_ARRAY: The known_tasks is an array;
217 - ADA_TASKS_LIST: The known_tasks is a list. */
218 enum ada_known_tasks_kind known_tasks_kind = ADA_TASKS_UNKNOWN;
219
220 /* The address of the known_tasks structure. This is where
221 the runtime stores the information for all Ada tasks.
222 The interpretation of this field depends on KNOWN_TASKS_KIND
223 above. */
224 CORE_ADDR known_tasks_addr = 0;
225
226 /* Type of elements of the known task. Usually a pointer. */
227 struct type *known_tasks_element = nullptr;
228
229 /* Number of elements in the known tasks array. */
230 unsigned int known_tasks_length = 0;
231
232 /* When nonzero, this flag indicates that the task_list field
233 below is up to date. When set to zero, the list has either
234 not been initialized, or has potentially become stale. */
235 bool task_list_valid_p = false;
236
237 /* The list of Ada tasks.
238
239 Note: To each task we associate a number that the user can use to
240 reference it - this number is printed beside each task in the tasks
241 info listing displayed by "info tasks". This number is equal to
242 its index in the vector + 1. Reciprocally, to compute the index
243 of a task in the vector, we need to substract 1 from its number. */
244 std::vector<ada_task_info> task_list;
245 };
246
247 /* Key to our per-inferior data. */
248 static const struct inferior_data *ada_tasks_inferior_data_handle;
249
250 /* Return the ada-tasks module's data for the given program space (PSPACE).
251 If none is found, add a zero'ed one now.
252
253 This function always returns a valid object. */
254
255 static struct ada_tasks_pspace_data *
256 get_ada_tasks_pspace_data (struct program_space *pspace)
257 {
258 struct ada_tasks_pspace_data *data;
259
260 data = ((struct ada_tasks_pspace_data *)
261 program_space_data (pspace, ada_tasks_pspace_data_handle));
262 if (data == NULL)
263 {
264 data = XCNEW (struct ada_tasks_pspace_data);
265 set_program_space_data (pspace, ada_tasks_pspace_data_handle, data);
266 }
267
268 return data;
269 }
270
271 /* Return the ada-tasks module's data for the given inferior (INF).
272 If none is found, add a zero'ed one now.
273
274 This function always returns a valid object.
275
276 Note that we could use an observer of the inferior-created event
277 to make sure that the ada-tasks per-inferior data always exists.
278 But we prefered this approach, as it avoids this entirely as long
279 as the user does not use any of the tasking features. This is
280 quite possible, particularly in the case where the inferior does
281 not use tasking. */
282
283 static struct ada_tasks_inferior_data *
284 get_ada_tasks_inferior_data (struct inferior *inf)
285 {
286 struct ada_tasks_inferior_data *data;
287
288 data = ((struct ada_tasks_inferior_data *)
289 inferior_data (inf, ada_tasks_inferior_data_handle));
290 if (data == NULL)
291 {
292 data = new ada_tasks_inferior_data;
293 set_inferior_data (inf, ada_tasks_inferior_data_handle, data);
294 }
295
296 return data;
297 }
298
299 /* A cleanup routine for our per-inferior data. */
300 static void
301 ada_tasks_inferior_data_cleanup (struct inferior *inf, void *arg)
302 {
303 struct ada_tasks_inferior_data *data
304 = (struct ada_tasks_inferior_data *) arg;
305 delete data;
306 }
307
308 /* Return the task number of the task whose thread is THREAD, or zero
309 if the task could not be found. */
310
311 int
312 ada_get_task_number (thread_info *thread)
313 {
314 struct inferior *inf = thread->inf;
315 struct ada_tasks_inferior_data *data;
316
317 gdb_assert (inf != NULL);
318 data = get_ada_tasks_inferior_data (inf);
319
320 for (int i = 0; i < data->task_list.size (); i++)
321 if (data->task_list[i].ptid == thread->ptid)
322 return i + 1;
323
324 return 0; /* No matching task found. */
325 }
326
327 /* Return the task number of the task running in inferior INF which
328 matches TASK_ID , or zero if the task could not be found. */
329
330 static int
331 get_task_number_from_id (CORE_ADDR task_id, struct inferior *inf)
332 {
333 struct ada_tasks_inferior_data *data = get_ada_tasks_inferior_data (inf);
334
335 for (int i = 0; i < data->task_list.size (); i++)
336 {
337 if (data->task_list[i].task_id == task_id)
338 return i + 1;
339 }
340
341 /* Task not found. Return 0. */
342 return 0;
343 }
344
345 /* Return non-zero if TASK_NUM is a valid task number. */
346
347 int
348 valid_task_id (int task_num)
349 {
350 struct ada_tasks_inferior_data *data;
351
352 ada_build_task_list ();
353 data = get_ada_tasks_inferior_data (current_inferior ());
354 return task_num > 0 && task_num <= data->task_list.size ();
355 }
356
357 /* Return non-zero iff the task STATE corresponds to a non-terminated
358 task state. */
359
360 static int
361 ada_task_is_alive (struct ada_task_info *task_info)
362 {
363 return (task_info->state != Terminated);
364 }
365
366 /* Search through the list of known tasks for the one whose ptid is
367 PTID, and return it. Return NULL if the task was not found. */
368
369 struct ada_task_info *
370 ada_get_task_info_from_ptid (ptid_t ptid)
371 {
372 struct ada_tasks_inferior_data *data;
373
374 ada_build_task_list ();
375 data = get_ada_tasks_inferior_data (current_inferior ());
376
377 for (ada_task_info &task : data->task_list)
378 {
379 if (task.ptid == ptid)
380 return &task;
381 }
382
383 return NULL;
384 }
385
386 /* Call the ITERATOR function once for each Ada task that hasn't been
387 terminated yet. */
388
389 void
390 iterate_over_live_ada_tasks (ada_task_list_iterator_ftype *iterator)
391 {
392 struct ada_tasks_inferior_data *data;
393
394 ada_build_task_list ();
395 data = get_ada_tasks_inferior_data (current_inferior ());
396
397 for (ada_task_info &task : data->task_list)
398 {
399 if (!ada_task_is_alive (&task))
400 continue;
401 iterator (&task);
402 }
403 }
404
405 /* Extract the contents of the value as a string whose length is LENGTH,
406 and store the result in DEST. */
407
408 static void
409 value_as_string (char *dest, struct value *val, int length)
410 {
411 memcpy (dest, value_contents (val), length);
412 dest[length] = '\0';
413 }
414
415 /* Extract the string image from the fat string corresponding to VAL,
416 and store it in DEST. If the string length is greater than MAX_LEN,
417 then truncate the result to the first MAX_LEN characters of the fat
418 string. */
419
420 static void
421 read_fat_string_value (char *dest, struct value *val, int max_len)
422 {
423 struct value *array_val;
424 struct value *bounds_val;
425 int len;
426
427 /* The following variables are made static to avoid recomputing them
428 each time this function is called. */
429 static int initialize_fieldnos = 1;
430 static int array_fieldno;
431 static int bounds_fieldno;
432 static int upper_bound_fieldno;
433
434 /* Get the index of the fields that we will need to read in order
435 to extract the string from the fat string. */
436 if (initialize_fieldnos)
437 {
438 struct type *type = value_type (val);
439 struct type *bounds_type;
440
441 array_fieldno = ada_get_field_index (type, "P_ARRAY", 0);
442 bounds_fieldno = ada_get_field_index (type, "P_BOUNDS", 0);
443
444 bounds_type = TYPE_FIELD_TYPE (type, bounds_fieldno);
445 if (TYPE_CODE (bounds_type) == TYPE_CODE_PTR)
446 bounds_type = TYPE_TARGET_TYPE (bounds_type);
447 if (TYPE_CODE (bounds_type) != TYPE_CODE_STRUCT)
448 error (_("Unknown task name format. Aborting"));
449 upper_bound_fieldno = ada_get_field_index (bounds_type, "UB0", 0);
450
451 initialize_fieldnos = 0;
452 }
453
454 /* Get the size of the task image by checking the value of the bounds.
455 The lower bound is always 1, so we only need to read the upper bound. */
456 bounds_val = value_ind (value_field (val, bounds_fieldno));
457 len = value_as_long (value_field (bounds_val, upper_bound_fieldno));
458
459 /* Make sure that we do not read more than max_len characters... */
460 if (len > max_len)
461 len = max_len;
462
463 /* Extract LEN characters from the fat string. */
464 array_val = value_ind (value_field (val, array_fieldno));
465 read_memory (value_address (array_val), (gdb_byte *) dest, len);
466
467 /* Add the NUL character to close the string. */
468 dest[len] = '\0';
469 }
470
471 /* Get, from the debugging information, the type description of all types
472 related to the Ada Task Control Block that are needed in order to
473 read the list of known tasks in the Ada runtime. If all of the info
474 needed to do so is found, then save that info in the module's per-
475 program-space data, and return NULL. Otherwise, if any information
476 cannot be found, leave the per-program-space data untouched, and
477 return an error message explaining what was missing (that error
478 message does NOT need to be deallocated). */
479
480 const char *
481 ada_get_tcb_types_info (void)
482 {
483 struct type *type;
484 struct type *common_type;
485 struct type *ll_type;
486 struct type *call_type;
487 struct atcb_fieldnos fieldnos;
488 struct ada_tasks_pspace_data *pspace_data;
489
490 const char *atcb_name = "system__tasking__ada_task_control_block___XVE";
491 const char *atcb_name_fixed = "system__tasking__ada_task_control_block";
492 const char *common_atcb_name = "system__tasking__common_atcb";
493 const char *private_data_name = "system__task_primitives__private_data";
494 const char *entry_call_record_name = "system__tasking__entry_call_record";
495
496 /* ATCB symbols may be found in several compilation units. As we
497 are only interested in one instance, use standard (literal,
498 C-like) lookups to get the first match. */
499
500 struct symbol *atcb_sym =
501 lookup_symbol_in_language (atcb_name, NULL, STRUCT_DOMAIN,
502 language_c, NULL).symbol;
503 const struct symbol *common_atcb_sym =
504 lookup_symbol_in_language (common_atcb_name, NULL, STRUCT_DOMAIN,
505 language_c, NULL).symbol;
506 const struct symbol *private_data_sym =
507 lookup_symbol_in_language (private_data_name, NULL, STRUCT_DOMAIN,
508 language_c, NULL).symbol;
509 const struct symbol *entry_call_record_sym =
510 lookup_symbol_in_language (entry_call_record_name, NULL, STRUCT_DOMAIN,
511 language_c, NULL).symbol;
512
513 if (atcb_sym == NULL || atcb_sym->type == NULL)
514 {
515 /* In Ravenscar run-time libs, the ATCB does not have a dynamic
516 size, so the symbol name differs. */
517 atcb_sym = lookup_symbol_in_language (atcb_name_fixed, NULL,
518 STRUCT_DOMAIN, language_c,
519 NULL).symbol;
520
521 if (atcb_sym == NULL || atcb_sym->type == NULL)
522 return _("Cannot find Ada_Task_Control_Block type");
523
524 type = atcb_sym->type;
525 }
526 else
527 {
528 /* Get a static representation of the type record
529 Ada_Task_Control_Block. */
530 type = atcb_sym->type;
531 type = ada_template_to_fixed_record_type_1 (type, NULL, 0, NULL, 0);
532 }
533
534 if (common_atcb_sym == NULL || common_atcb_sym->type == NULL)
535 return _("Cannot find Common_ATCB type");
536 if (private_data_sym == NULL || private_data_sym->type == NULL)
537 return _("Cannot find Private_Data type");
538 if (entry_call_record_sym == NULL || entry_call_record_sym->type == NULL)
539 return _("Cannot find Entry_Call_Record type");
540
541 /* Get the type for Ada_Task_Control_Block.Common. */
542 common_type = common_atcb_sym->type;
543
544 /* Get the type for Ada_Task_Control_Bloc.Common.Call.LL. */
545 ll_type = private_data_sym->type;
546
547 /* Get the type for Common_ATCB.Call.all. */
548 call_type = entry_call_record_sym->type;
549
550 /* Get the field indices. */
551 fieldnos.common = ada_get_field_index (type, "common", 0);
552 fieldnos.entry_calls = ada_get_field_index (type, "entry_calls", 1);
553 fieldnos.atc_nesting_level =
554 ada_get_field_index (type, "atc_nesting_level", 1);
555 fieldnos.state = ada_get_field_index (common_type, "state", 0);
556 fieldnos.parent = ada_get_field_index (common_type, "parent", 1);
557 fieldnos.priority = ada_get_field_index (common_type, "base_priority", 0);
558 fieldnos.image = ada_get_field_index (common_type, "task_image", 1);
559 fieldnos.image_len = ada_get_field_index (common_type, "task_image_len", 1);
560 fieldnos.activation_link = ada_get_field_index (common_type,
561 "activation_link", 1);
562 fieldnos.call = ada_get_field_index (common_type, "call", 1);
563 fieldnos.ll = ada_get_field_index (common_type, "ll", 0);
564 fieldnos.base_cpu = ada_get_field_index (common_type, "base_cpu", 0);
565 fieldnos.ll_thread = ada_get_field_index (ll_type, "thread", 0);
566 fieldnos.ll_lwp = ada_get_field_index (ll_type, "lwp", 1);
567 fieldnos.call_self = ada_get_field_index (call_type, "self", 0);
568
569 /* On certain platforms such as x86-windows, the "lwp" field has been
570 named "thread_id". This field will likely be renamed in the future,
571 but we need to support both possibilities to avoid an unnecessary
572 dependency on a recent compiler. We therefore try locating the
573 "thread_id" field in place of the "lwp" field if we did not find
574 the latter. */
575 if (fieldnos.ll_lwp < 0)
576 fieldnos.ll_lwp = ada_get_field_index (ll_type, "thread_id", 1);
577
578 /* Set all the out parameters all at once, now that we are certain
579 that there are no potential error() anymore. */
580 pspace_data = get_ada_tasks_pspace_data (current_program_space);
581 pspace_data->initialized_p = 1;
582 pspace_data->atcb_type = type;
583 pspace_data->atcb_common_type = common_type;
584 pspace_data->atcb_ll_type = ll_type;
585 pspace_data->atcb_call_type = call_type;
586 pspace_data->atcb_fieldno = fieldnos;
587 return NULL;
588 }
589
590 /* Build the PTID of the task from its COMMON_VALUE, which is the "Common"
591 component of its ATCB record. This PTID needs to match the PTID used
592 by the thread layer. */
593
594 static ptid_t
595 ptid_from_atcb_common (struct value *common_value)
596 {
597 long thread = 0;
598 CORE_ADDR lwp = 0;
599 struct value *ll_value;
600 ptid_t ptid;
601 const struct ada_tasks_pspace_data *pspace_data
602 = get_ada_tasks_pspace_data (current_program_space);
603
604 ll_value = value_field (common_value, pspace_data->atcb_fieldno.ll);
605
606 if (pspace_data->atcb_fieldno.ll_lwp >= 0)
607 lwp = value_as_address (value_field (ll_value,
608 pspace_data->atcb_fieldno.ll_lwp));
609 thread = value_as_long (value_field (ll_value,
610 pspace_data->atcb_fieldno.ll_thread));
611
612 ptid = target_get_ada_task_ptid (lwp, thread);
613
614 return ptid;
615 }
616
617 /* Read the ATCB data of a given task given its TASK_ID (which is in practice
618 the address of its assocated ATCB record), and store the result inside
619 TASK_INFO. */
620
621 static void
622 read_atcb (CORE_ADDR task_id, struct ada_task_info *task_info)
623 {
624 struct value *tcb_value;
625 struct value *common_value;
626 struct value *atc_nesting_level_value;
627 struct value *entry_calls_value;
628 struct value *entry_calls_value_element;
629 int called_task_fieldno = -1;
630 static const char ravenscar_task_name[] = "Ravenscar task";
631 const struct ada_tasks_pspace_data *pspace_data
632 = get_ada_tasks_pspace_data (current_program_space);
633
634 /* Clear the whole structure to start with, so that everything
635 is always initialized the same. */
636 memset (task_info, 0, sizeof (struct ada_task_info));
637
638 if (!pspace_data->initialized_p)
639 {
640 const char *err_msg = ada_get_tcb_types_info ();
641
642 if (err_msg != NULL)
643 error (_("%s. Aborting"), err_msg);
644 }
645
646 tcb_value = value_from_contents_and_address (pspace_data->atcb_type,
647 NULL, task_id);
648 common_value = value_field (tcb_value, pspace_data->atcb_fieldno.common);
649
650 /* Fill in the task_id. */
651
652 task_info->task_id = task_id;
653
654 /* Compute the name of the task.
655
656 Depending on the GNAT version used, the task image is either a fat
657 string, or a thin array of characters. Older versions of GNAT used
658 to use fat strings, and therefore did not need an extra field in
659 the ATCB to store the string length. For efficiency reasons, newer
660 versions of GNAT replaced the fat string by a static buffer, but this
661 also required the addition of a new field named "Image_Len" containing
662 the length of the task name. The method used to extract the task name
663 is selected depending on the existence of this field.
664
665 In some run-time libs (e.g. Ravenscar), the name is not in the ATCB;
666 we may want to get it from the first user frame of the stack. For now,
667 we just give a dummy name. */
668
669 if (pspace_data->atcb_fieldno.image_len == -1)
670 {
671 if (pspace_data->atcb_fieldno.image >= 0)
672 read_fat_string_value (task_info->name,
673 value_field (common_value,
674 pspace_data->atcb_fieldno.image),
675 sizeof (task_info->name) - 1);
676 else
677 {
678 struct bound_minimal_symbol msym;
679
680 msym = lookup_minimal_symbol_by_pc (task_id);
681 if (msym.minsym)
682 {
683 const char *full_name = MSYMBOL_LINKAGE_NAME (msym.minsym);
684 const char *task_name = full_name;
685 const char *p;
686
687 /* Strip the prefix. */
688 for (p = full_name; *p; p++)
689 if (p[0] == '_' && p[1] == '_')
690 task_name = p + 2;
691
692 /* Copy the task name. */
693 strncpy (task_info->name, task_name, sizeof (task_info->name));
694 task_info->name[sizeof (task_info->name) - 1] = 0;
695 }
696 else
697 {
698 /* No symbol found. Use a default name. */
699 strcpy (task_info->name, ravenscar_task_name);
700 }
701 }
702 }
703 else
704 {
705 int len = value_as_long
706 (value_field (common_value,
707 pspace_data->atcb_fieldno.image_len));
708
709 value_as_string (task_info->name,
710 value_field (common_value,
711 pspace_data->atcb_fieldno.image),
712 len);
713 }
714
715 /* Compute the task state and priority. */
716
717 task_info->state =
718 value_as_long (value_field (common_value,
719 pspace_data->atcb_fieldno.state));
720 task_info->priority =
721 value_as_long (value_field (common_value,
722 pspace_data->atcb_fieldno.priority));
723
724 /* If the ATCB contains some information about the parent task,
725 then compute it as well. Otherwise, zero. */
726
727 if (pspace_data->atcb_fieldno.parent >= 0)
728 task_info->parent =
729 value_as_address (value_field (common_value,
730 pspace_data->atcb_fieldno.parent));
731
732 /* If the task is in an entry call waiting for another task,
733 then determine which task it is. */
734
735 if (task_info->state == Entry_Caller_Sleep
736 && pspace_data->atcb_fieldno.atc_nesting_level > 0
737 && pspace_data->atcb_fieldno.entry_calls > 0)
738 {
739 /* Let My_ATCB be the Ada task control block of a task calling the
740 entry of another task; then the Task_Id of the called task is
741 in My_ATCB.Entry_Calls (My_ATCB.ATC_Nesting_Level).Called_Task. */
742 atc_nesting_level_value =
743 value_field (tcb_value, pspace_data->atcb_fieldno.atc_nesting_level);
744 entry_calls_value =
745 ada_coerce_to_simple_array_ptr
746 (value_field (tcb_value, pspace_data->atcb_fieldno.entry_calls));
747 entry_calls_value_element =
748 value_subscript (entry_calls_value,
749 value_as_long (atc_nesting_level_value));
750 called_task_fieldno =
751 ada_get_field_index (value_type (entry_calls_value_element),
752 "called_task", 0);
753 task_info->called_task =
754 value_as_address (value_field (entry_calls_value_element,
755 called_task_fieldno));
756 }
757
758 /* If the ATCB cotnains some information about RV callers, then
759 compute the "caller_task". Otherwise, leave it as zero. */
760
761 if (pspace_data->atcb_fieldno.call >= 0)
762 {
763 /* Get the ID of the caller task from Common_ATCB.Call.all.Self.
764 If Common_ATCB.Call is null, then there is no caller. */
765 const CORE_ADDR call =
766 value_as_address (value_field (common_value,
767 pspace_data->atcb_fieldno.call));
768 struct value *call_val;
769
770 if (call != 0)
771 {
772 call_val =
773 value_from_contents_and_address (pspace_data->atcb_call_type,
774 NULL, call);
775 task_info->caller_task =
776 value_as_address
777 (value_field (call_val, pspace_data->atcb_fieldno.call_self));
778 }
779 }
780
781 task_info->base_cpu
782 = value_as_long (value_field (common_value,
783 pspace_data->atcb_fieldno.base_cpu));
784
785 /* And finally, compute the task ptid. Note that there is not point
786 in computing it if the task is no longer alive, in which case
787 it is good enough to set its ptid to the null_ptid. */
788 if (ada_task_is_alive (task_info))
789 task_info->ptid = ptid_from_atcb_common (common_value);
790 else
791 task_info->ptid = null_ptid;
792 }
793
794 /* Read the ATCB info of the given task (identified by TASK_ID), and
795 add the result to the given inferior's TASK_LIST. */
796
797 static void
798 add_ada_task (CORE_ADDR task_id, struct inferior *inf)
799 {
800 struct ada_task_info task_info;
801 struct ada_tasks_inferior_data *data = get_ada_tasks_inferior_data (inf);
802
803 read_atcb (task_id, &task_info);
804 data->task_list.push_back (task_info);
805 }
806
807 /* Read the Known_Tasks array from the inferior memory, and store
808 it in the current inferior's TASK_LIST. Return true upon success. */
809
810 static bool
811 read_known_tasks_array (struct ada_tasks_inferior_data *data)
812 {
813 const int target_ptr_byte = TYPE_LENGTH (data->known_tasks_element);
814 const int known_tasks_size = target_ptr_byte * data->known_tasks_length;
815 gdb_byte *known_tasks = (gdb_byte *) alloca (known_tasks_size);
816 int i;
817
818 /* Build a new list by reading the ATCBs from the Known_Tasks array
819 in the Ada runtime. */
820 read_memory (data->known_tasks_addr, known_tasks, known_tasks_size);
821 for (i = 0; i < data->known_tasks_length; i++)
822 {
823 CORE_ADDR task_id =
824 extract_typed_address (known_tasks + i * target_ptr_byte,
825 data->known_tasks_element);
826
827 if (task_id != 0)
828 add_ada_task (task_id, current_inferior ());
829 }
830
831 return true;
832 }
833
834 /* Read the known tasks from the inferior memory, and store it in
835 the current inferior's TASK_LIST. Return true upon success. */
836
837 static bool
838 read_known_tasks_list (struct ada_tasks_inferior_data *data)
839 {
840 const int target_ptr_byte = TYPE_LENGTH (data->known_tasks_element);
841 gdb_byte *known_tasks = (gdb_byte *) alloca (target_ptr_byte);
842 CORE_ADDR task_id;
843 const struct ada_tasks_pspace_data *pspace_data
844 = get_ada_tasks_pspace_data (current_program_space);
845
846 /* Sanity check. */
847 if (pspace_data->atcb_fieldno.activation_link < 0)
848 return false;
849
850 /* Build a new list by reading the ATCBs. Read head of the list. */
851 read_memory (data->known_tasks_addr, known_tasks, target_ptr_byte);
852 task_id = extract_typed_address (known_tasks, data->known_tasks_element);
853 while (task_id != 0)
854 {
855 struct value *tcb_value;
856 struct value *common_value;
857
858 add_ada_task (task_id, current_inferior ());
859
860 /* Read the chain. */
861 tcb_value = value_from_contents_and_address (pspace_data->atcb_type,
862 NULL, task_id);
863 common_value = value_field (tcb_value, pspace_data->atcb_fieldno.common);
864 task_id = value_as_address
865 (value_field (common_value,
866 pspace_data->atcb_fieldno.activation_link));
867 }
868
869 return true;
870 }
871
872 /* Set all fields of the current inferior ada-tasks data pointed by DATA.
873 Do nothing if those fields are already set and still up to date. */
874
875 static void
876 ada_tasks_inferior_data_sniffer (struct ada_tasks_inferior_data *data)
877 {
878 struct bound_minimal_symbol msym;
879 struct symbol *sym;
880
881 /* Return now if already set. */
882 if (data->known_tasks_kind != ADA_TASKS_UNKNOWN)
883 return;
884
885 /* Try array. */
886
887 msym = lookup_minimal_symbol (KNOWN_TASKS_NAME, NULL, NULL);
888 if (msym.minsym != NULL)
889 {
890 data->known_tasks_kind = ADA_TASKS_ARRAY;
891 data->known_tasks_addr = BMSYMBOL_VALUE_ADDRESS (msym);
892
893 /* Try to get pointer type and array length from the symtab. */
894 sym = lookup_symbol_in_language (KNOWN_TASKS_NAME, NULL, VAR_DOMAIN,
895 language_c, NULL).symbol;
896 if (sym != NULL)
897 {
898 /* Validate. */
899 struct type *type = check_typedef (SYMBOL_TYPE (sym));
900 struct type *eltype = NULL;
901 struct type *idxtype = NULL;
902
903 if (TYPE_CODE (type) == TYPE_CODE_ARRAY)
904 eltype = check_typedef (TYPE_TARGET_TYPE (type));
905 if (eltype != NULL
906 && TYPE_CODE (eltype) == TYPE_CODE_PTR)
907 idxtype = check_typedef (TYPE_INDEX_TYPE (type));
908 if (idxtype != NULL
909 && !TYPE_LOW_BOUND_UNDEFINED (idxtype)
910 && !TYPE_HIGH_BOUND_UNDEFINED (idxtype))
911 {
912 data->known_tasks_element = eltype;
913 data->known_tasks_length =
914 TYPE_HIGH_BOUND (idxtype) - TYPE_LOW_BOUND (idxtype) + 1;
915 return;
916 }
917 }
918
919 /* Fallback to default values. The runtime may have been stripped (as
920 in some distributions), but it is likely that the executable still
921 contains debug information on the task type (due to implicit with of
922 Ada.Tasking). */
923 data->known_tasks_element =
924 builtin_type (target_gdbarch ())->builtin_data_ptr;
925 data->known_tasks_length = MAX_NUMBER_OF_KNOWN_TASKS;
926 return;
927 }
928
929
930 /* Try list. */
931
932 msym = lookup_minimal_symbol (KNOWN_TASKS_LIST, NULL, NULL);
933 if (msym.minsym != NULL)
934 {
935 data->known_tasks_kind = ADA_TASKS_LIST;
936 data->known_tasks_addr = BMSYMBOL_VALUE_ADDRESS (msym);
937 data->known_tasks_length = 1;
938
939 sym = lookup_symbol_in_language (KNOWN_TASKS_LIST, NULL, VAR_DOMAIN,
940 language_c, NULL).symbol;
941 if (sym != NULL && SYMBOL_VALUE_ADDRESS (sym) != 0)
942 {
943 /* Validate. */
944 struct type *type = check_typedef (SYMBOL_TYPE (sym));
945
946 if (TYPE_CODE (type) == TYPE_CODE_PTR)
947 {
948 data->known_tasks_element = type;
949 return;
950 }
951 }
952
953 /* Fallback to default values. */
954 data->known_tasks_element =
955 builtin_type (target_gdbarch ())->builtin_data_ptr;
956 data->known_tasks_length = 1;
957 return;
958 }
959
960 /* Can't find tasks. */
961
962 data->known_tasks_kind = ADA_TASKS_NOT_FOUND;
963 data->known_tasks_addr = 0;
964 }
965
966 /* Read the known tasks from the current inferior's memory, and store it
967 in the current inferior's data TASK_LIST. */
968
969 static void
970 read_known_tasks ()
971 {
972 struct ada_tasks_inferior_data *data =
973 get_ada_tasks_inferior_data (current_inferior ());
974
975 /* Step 1: Clear the current list, if necessary. */
976 data->task_list.clear ();
977
978 /* Step 2: do the real work.
979 If the application does not use task, then no more needs to be done.
980 It is important to have the task list cleared (see above) before we
981 return, as we don't want a stale task list to be used... This can
982 happen for instance when debugging a non-multitasking program after
983 having debugged a multitasking one. */
984 ada_tasks_inferior_data_sniffer (data);
985 gdb_assert (data->known_tasks_kind != ADA_TASKS_UNKNOWN);
986
987 /* Step 3: Set task_list_valid_p, to avoid re-reading the Known_Tasks
988 array unless needed. */
989 switch (data->known_tasks_kind)
990 {
991 case ADA_TASKS_NOT_FOUND: /* Tasking not in use in inferior. */
992 break;
993 case ADA_TASKS_ARRAY:
994 data->task_list_valid_p = read_known_tasks_array (data);
995 break;
996 case ADA_TASKS_LIST:
997 data->task_list_valid_p = read_known_tasks_list (data);
998 break;
999 }
1000 }
1001
1002 /* Build the task_list by reading the Known_Tasks array from
1003 the inferior, and return the number of tasks in that list
1004 (zero means that the program is not using tasking at all). */
1005
1006 static int
1007 ada_build_task_list ()
1008 {
1009 struct ada_tasks_inferior_data *data;
1010
1011 if (!target_has_stack)
1012 error (_("Cannot inspect Ada tasks when program is not running"));
1013
1014 data = get_ada_tasks_inferior_data (current_inferior ());
1015 if (!data->task_list_valid_p)
1016 read_known_tasks ();
1017
1018 return data->task_list.size ();
1019 }
1020
1021 /* Print a table providing a short description of all Ada tasks
1022 running inside inferior INF. If ARG_STR is set, it will be
1023 interpreted as a task number, and the table will be limited to
1024 that task only. */
1025
1026 void
1027 print_ada_task_info (struct ui_out *uiout,
1028 char *arg_str,
1029 struct inferior *inf)
1030 {
1031 struct ada_tasks_inferior_data *data;
1032 int taskno, nb_tasks;
1033 int taskno_arg = 0;
1034 int nb_columns;
1035
1036 if (ada_build_task_list () == 0)
1037 {
1038 uiout->message (_("Your application does not use any Ada tasks.\n"));
1039 return;
1040 }
1041
1042 if (arg_str != NULL && arg_str[0] != '\0')
1043 taskno_arg = value_as_long (parse_and_eval (arg_str));
1044
1045 if (uiout->is_mi_like_p ())
1046 /* In GDB/MI mode, we want to provide the thread ID corresponding
1047 to each task. This allows clients to quickly find the thread
1048 associated to any task, which is helpful for commands that
1049 take a --thread argument. However, in order to be able to
1050 provide that thread ID, the thread list must be up to date
1051 first. */
1052 target_update_thread_list ();
1053
1054 data = get_ada_tasks_inferior_data (inf);
1055
1056 /* Compute the number of tasks that are going to be displayed
1057 in the output. If an argument was given, there will be
1058 at most 1 entry. Otherwise, there will be as many entries
1059 as we have tasks. */
1060 if (taskno_arg)
1061 {
1062 if (taskno_arg > 0 && taskno_arg <= data->task_list.size ())
1063 nb_tasks = 1;
1064 else
1065 nb_tasks = 0;
1066 }
1067 else
1068 nb_tasks = data->task_list.size ();
1069
1070 nb_columns = uiout->is_mi_like_p () ? 8 : 7;
1071 ui_out_emit_table table_emitter (uiout, nb_columns, nb_tasks, "tasks");
1072 uiout->table_header (1, ui_left, "current", "");
1073 uiout->table_header (3, ui_right, "id", "ID");
1074 uiout->table_header (9, ui_right, "task-id", "TID");
1075 /* The following column is provided in GDB/MI mode only because
1076 it is only really useful in that mode, and also because it
1077 allows us to keep the CLI output shorter and more compact. */
1078 if (uiout->is_mi_like_p ())
1079 uiout->table_header (4, ui_right, "thread-id", "");
1080 uiout->table_header (4, ui_right, "parent-id", "P-ID");
1081 uiout->table_header (3, ui_right, "priority", "Pri");
1082 uiout->table_header (22, ui_left, "state", "State");
1083 /* Use ui_noalign for the last column, to prevent the CLI uiout
1084 from printing an extra space at the end of each row. This
1085 is a bit of a hack, but does get the job done. */
1086 uiout->table_header (1, ui_noalign, "name", "Name");
1087 uiout->table_body ();
1088
1089 for (taskno = 1; taskno <= data->task_list.size (); taskno++)
1090 {
1091 const struct ada_task_info *const task_info =
1092 &data->task_list[taskno - 1];
1093 int parent_id;
1094
1095 gdb_assert (task_info != NULL);
1096
1097 /* If the user asked for the output to be restricted
1098 to one task only, and this is not the task, skip
1099 to the next one. */
1100 if (taskno_arg && taskno != taskno_arg)
1101 continue;
1102
1103 ui_out_emit_tuple tuple_emitter (uiout, NULL);
1104
1105 /* Print a star if this task is the current task (or the task
1106 currently selected). */
1107 if (task_info->ptid == inferior_ptid)
1108 uiout->field_string ("current", "*");
1109 else
1110 uiout->field_skip ("current");
1111
1112 /* Print the task number. */
1113 uiout->field_int ("id", taskno);
1114
1115 /* Print the Task ID. */
1116 uiout->field_fmt ("task-id", "%9lx", (long) task_info->task_id);
1117
1118 /* Print the associated Thread ID. */
1119 if (uiout->is_mi_like_p ())
1120 {
1121 thread_info *thread = find_thread_ptid (task_info->ptid);
1122
1123 if (thread != NULL)
1124 uiout->field_int ("thread-id", thread->global_num);
1125 else
1126 /* This should never happen unless there is a bug somewhere,
1127 but be resilient when that happens. */
1128 uiout->field_skip ("thread-id");
1129 }
1130
1131 /* Print the ID of the parent task. */
1132 parent_id = get_task_number_from_id (task_info->parent, inf);
1133 if (parent_id)
1134 uiout->field_int ("parent-id", parent_id);
1135 else
1136 uiout->field_skip ("parent-id");
1137
1138 /* Print the base priority of the task. */
1139 uiout->field_int ("priority", task_info->priority);
1140
1141 /* Print the task current state. */
1142 if (task_info->caller_task)
1143 uiout->field_fmt ("state",
1144 _("Accepting RV with %-4d"),
1145 get_task_number_from_id (task_info->caller_task,
1146 inf));
1147 else if (task_info->called_task)
1148 uiout->field_fmt ("state",
1149 _("Waiting on RV with %-3d"),
1150 get_task_number_from_id (task_info->called_task,
1151 inf));
1152 else
1153 uiout->field_string ("state", task_states[task_info->state]);
1154
1155 /* Finally, print the task name. */
1156 uiout->field_fmt ("name",
1157 "%s",
1158 task_info->name[0] != '\0' ? task_info->name
1159 : _("<no name>"));
1160
1161 uiout->text ("\n");
1162 }
1163 }
1164
1165 /* Print a detailed description of the Ada task whose ID is TASKNO_STR
1166 for the given inferior (INF). */
1167
1168 static void
1169 info_task (struct ui_out *uiout, const char *taskno_str, struct inferior *inf)
1170 {
1171 const int taskno = value_as_long (parse_and_eval (taskno_str));
1172 struct ada_task_info *task_info;
1173 int parent_taskno = 0;
1174 struct ada_tasks_inferior_data *data = get_ada_tasks_inferior_data (inf);
1175
1176 if (ada_build_task_list () == 0)
1177 {
1178 uiout->message (_("Your application does not use any Ada tasks.\n"));
1179 return;
1180 }
1181
1182 if (taskno <= 0 || taskno > data->task_list.size ())
1183 error (_("Task ID %d not known. Use the \"info tasks\" command to\n"
1184 "see the IDs of currently known tasks"), taskno);
1185 task_info = &data->task_list[taskno - 1];
1186
1187 /* Print the Ada task ID. */
1188 printf_filtered (_("Ada Task: %s\n"),
1189 paddress (target_gdbarch (), task_info->task_id));
1190
1191 /* Print the name of the task. */
1192 if (task_info->name[0] != '\0')
1193 printf_filtered (_("Name: %s\n"), task_info->name);
1194 else
1195 printf_filtered (_("<no name>\n"));
1196
1197 /* Print the TID and LWP. */
1198 printf_filtered (_("Thread: %#lx\n"), task_info->ptid.tid ());
1199 printf_filtered (_("LWP: %#lx\n"), task_info->ptid.lwp ());
1200
1201 /* If set, print the base CPU. */
1202 if (task_info->base_cpu != 0)
1203 printf_filtered (_("Base CPU: %d\n"), task_info->base_cpu);
1204
1205 /* Print who is the parent (if any). */
1206 if (task_info->parent != 0)
1207 parent_taskno = get_task_number_from_id (task_info->parent, inf);
1208 if (parent_taskno)
1209 {
1210 struct ada_task_info *parent = &data->task_list[parent_taskno - 1];
1211
1212 printf_filtered (_("Parent: %d"), parent_taskno);
1213 if (parent->name[0] != '\0')
1214 printf_filtered (" (%s)", parent->name);
1215 printf_filtered ("\n");
1216 }
1217 else
1218 printf_filtered (_("No parent\n"));
1219
1220 /* Print the base priority. */
1221 printf_filtered (_("Base Priority: %d\n"), task_info->priority);
1222
1223 /* print the task current state. */
1224 {
1225 int target_taskno = 0;
1226
1227 if (task_info->caller_task)
1228 {
1229 target_taskno = get_task_number_from_id (task_info->caller_task, inf);
1230 printf_filtered (_("State: Accepting rendezvous with %d"),
1231 target_taskno);
1232 }
1233 else if (task_info->called_task)
1234 {
1235 target_taskno = get_task_number_from_id (task_info->called_task, inf);
1236 printf_filtered (_("State: Waiting on task %d's entry"),
1237 target_taskno);
1238 }
1239 else
1240 printf_filtered (_("State: %s"), _(long_task_states[task_info->state]));
1241
1242 if (target_taskno)
1243 {
1244 ada_task_info *target_task_info = &data->task_list[target_taskno - 1];
1245
1246 if (target_task_info->name[0] != '\0')
1247 printf_filtered (" (%s)", target_task_info->name);
1248 }
1249
1250 printf_filtered ("\n");
1251 }
1252 }
1253
1254 /* If ARG is empty or null, then print a list of all Ada tasks.
1255 Otherwise, print detailed information about the task whose ID
1256 is ARG.
1257
1258 Does nothing if the program doesn't use Ada tasking. */
1259
1260 static void
1261 info_tasks_command (const char *arg, int from_tty)
1262 {
1263 struct ui_out *uiout = current_uiout;
1264
1265 if (arg == NULL || *arg == '\0')
1266 print_ada_task_info (uiout, NULL, current_inferior ());
1267 else
1268 info_task (uiout, arg, current_inferior ());
1269 }
1270
1271 /* Print a message telling the user id of the current task.
1272 This function assumes that tasking is in use in the inferior. */
1273
1274 static void
1275 display_current_task_id (void)
1276 {
1277 const int current_task = ada_get_task_number (inferior_thread ());
1278
1279 if (current_task == 0)
1280 printf_filtered (_("[Current task is unknown]\n"));
1281 else
1282 printf_filtered (_("[Current task is %d]\n"), current_task);
1283 }
1284
1285 /* Parse and evaluate TIDSTR into a task id, and try to switch to
1286 that task. Print an error message if the task switch failed. */
1287
1288 static void
1289 task_command_1 (const char *taskno_str, int from_tty, struct inferior *inf)
1290 {
1291 const int taskno = value_as_long (parse_and_eval (taskno_str));
1292 struct ada_task_info *task_info;
1293 struct ada_tasks_inferior_data *data = get_ada_tasks_inferior_data (inf);
1294
1295 if (taskno <= 0 || taskno > data->task_list.size ())
1296 error (_("Task ID %d not known. Use the \"info tasks\" command to\n"
1297 "see the IDs of currently known tasks"), taskno);
1298 task_info = &data->task_list[taskno - 1];
1299
1300 if (!ada_task_is_alive (task_info))
1301 error (_("Cannot switch to task %d: Task is no longer running"), taskno);
1302
1303 /* On some platforms, the thread list is not updated until the user
1304 performs a thread-related operation (by using the "info threads"
1305 command, for instance). So this thread list may not be up to date
1306 when the user attempts this task switch. Since we cannot switch
1307 to the thread associated to our task if GDB does not know about
1308 that thread, we need to make sure that any new threads gets added
1309 to the thread list. */
1310 target_update_thread_list ();
1311
1312 /* Verify that the ptid of the task we want to switch to is valid
1313 (in other words, a ptid that GDB knows about). Otherwise, we will
1314 cause an assertion failure later on, when we try to determine
1315 the ptid associated thread_info data. We should normally never
1316 encounter such an error, but the wrong ptid can actually easily be
1317 computed if target_get_ada_task_ptid has not been implemented for
1318 our target (yet). Rather than cause an assertion error in that case,
1319 it's nicer for the user to just refuse to perform the task switch. */
1320 thread_info *tp = find_thread_ptid (task_info->ptid);
1321 if (tp == NULL)
1322 error (_("Unable to compute thread ID for task %d.\n"
1323 "Cannot switch to this task."),
1324 taskno);
1325
1326 switch_to_thread (tp);
1327 ada_find_printable_frame (get_selected_frame (NULL));
1328 printf_filtered (_("[Switching to task %d]\n"), taskno);
1329 print_stack_frame (get_selected_frame (NULL),
1330 frame_relative_level (get_selected_frame (NULL)),
1331 SRC_AND_LOC, 1);
1332 }
1333
1334
1335 /* Print the ID of the current task if TASKNO_STR is empty or NULL.
1336 Otherwise, switch to the task indicated by TASKNO_STR. */
1337
1338 static void
1339 task_command (const char *taskno_str, int from_tty)
1340 {
1341 struct ui_out *uiout = current_uiout;
1342
1343 if (ada_build_task_list () == 0)
1344 {
1345 uiout->message (_("Your application does not use any Ada tasks.\n"));
1346 return;
1347 }
1348
1349 if (taskno_str == NULL || taskno_str[0] == '\0')
1350 display_current_task_id ();
1351 else
1352 task_command_1 (taskno_str, from_tty, current_inferior ());
1353 }
1354
1355 /* Indicate that the given inferior's task list may have changed,
1356 so invalidate the cache. */
1357
1358 static void
1359 ada_task_list_changed (struct inferior *inf)
1360 {
1361 struct ada_tasks_inferior_data *data = get_ada_tasks_inferior_data (inf);
1362
1363 data->task_list_valid_p = false;
1364 }
1365
1366 /* Invalidate the per-program-space data. */
1367
1368 static void
1369 ada_tasks_invalidate_pspace_data (struct program_space *pspace)
1370 {
1371 get_ada_tasks_pspace_data (pspace)->initialized_p = 0;
1372 }
1373
1374 /* Invalidate the per-inferior data. */
1375
1376 static void
1377 ada_tasks_invalidate_inferior_data (struct inferior *inf)
1378 {
1379 struct ada_tasks_inferior_data *data = get_ada_tasks_inferior_data (inf);
1380
1381 data->known_tasks_kind = ADA_TASKS_UNKNOWN;
1382 data->task_list_valid_p = false;
1383 }
1384
1385 /* The 'normal_stop' observer notification callback. */
1386
1387 static void
1388 ada_tasks_normal_stop_observer (struct bpstats *unused_args, int unused_args2)
1389 {
1390 /* The inferior has been resumed, and just stopped. This means that
1391 our task_list needs to be recomputed before it can be used again. */
1392 ada_task_list_changed (current_inferior ());
1393 }
1394
1395 /* A routine to be called when the objfiles have changed. */
1396
1397 static void
1398 ada_tasks_new_objfile_observer (struct objfile *objfile)
1399 {
1400 struct inferior *inf;
1401
1402 /* Invalidate the relevant data in our program-space data. */
1403
1404 if (objfile == NULL)
1405 {
1406 /* All objfiles are being cleared, so we should clear all
1407 our caches for all program spaces. */
1408 struct program_space *pspace;
1409
1410 for (pspace = program_spaces; pspace != NULL; pspace = pspace->next)
1411 ada_tasks_invalidate_pspace_data (pspace);
1412 }
1413 else
1414 {
1415 /* The associated program-space data might have changed after
1416 this objfile was added. Invalidate all cached data. */
1417 ada_tasks_invalidate_pspace_data (objfile->pspace);
1418 }
1419
1420 /* Invalidate the per-inferior cache for all inferiors using
1421 this objfile (or, in other words, for all inferiors who have
1422 the same program-space as the objfile's program space).
1423 If all objfiles are being cleared (OBJFILE is NULL), then
1424 clear the caches for all inferiors. */
1425
1426 for (inf = inferior_list; inf != NULL; inf = inf->next)
1427 if (objfile == NULL || inf->pspace == objfile->pspace)
1428 ada_tasks_invalidate_inferior_data (inf);
1429 }
1430
1431 void
1432 _initialize_tasks (void)
1433 {
1434 ada_tasks_pspace_data_handle
1435 = register_program_space_data_with_cleanup (NULL,
1436 ada_tasks_pspace_data_cleanup);
1437 ada_tasks_inferior_data_handle
1438 = register_inferior_data_with_cleanup (NULL,
1439 ada_tasks_inferior_data_cleanup);
1440
1441 /* Attach various observers. */
1442 gdb::observers::normal_stop.attach (ada_tasks_normal_stop_observer);
1443 gdb::observers::new_objfile.attach (ada_tasks_new_objfile_observer);
1444
1445 /* Some new commands provided by this module. */
1446 add_info ("tasks", info_tasks_command,
1447 _("Provide information about all known Ada tasks"));
1448 add_cmd ("task", class_run, task_command,
1449 _("Use this command to switch between Ada tasks.\n\
1450 Without argument, this command simply prints the current task ID"),
1451 &cmdlist);
1452 }
This page took 0.093709 seconds and 4 git commands to generate.