Address review comments for the previous series
[deliverable/binutils-gdb.git] / gdb / ada-tasks.c
1 /* Copyright (C) 1992-2017 Free Software Foundation, Inc.
2
3 This file is part of GDB.
4
5 This program is free software; you can redistribute it and/or modify
6 it under the terms of the GNU General Public License as published by
7 the Free Software Foundation; either version 3 of the License, or
8 (at your option) any later version.
9
10 This program is distributed in the hope that it will be useful,
11 but WITHOUT ANY WARRANTY; without even the implied warranty of
12 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
13 GNU General Public License for more details.
14
15 You should have received a copy of the GNU General Public License
16 along with this program. If not, see <http://www.gnu.org/licenses/>. */
17
18 #include "defs.h"
19 #include "observer.h"
20 #include "gdbcmd.h"
21 #include "target.h"
22 #include "ada-lang.h"
23 #include "gdbcore.h"
24 #include "inferior.h"
25 #include "gdbthread.h"
26 #include "progspace.h"
27 #include "objfiles.h"
28
29 /* The name of the array in the GNAT runtime where the Ada Task Control
30 Block of each task is stored. */
31 #define KNOWN_TASKS_NAME "system__tasking__debug__known_tasks"
32
33 /* The maximum number of tasks known to the Ada runtime. */
34 static const int MAX_NUMBER_OF_KNOWN_TASKS = 1000;
35
36 /* The name of the variable in the GNAT runtime where the head of a task
37 chain is saved. This is an alternate mechanism to find the list of known
38 tasks. */
39 #define KNOWN_TASKS_LIST "system__tasking__debug__first_task"
40
41 enum task_states
42 {
43 Unactivated,
44 Runnable,
45 Terminated,
46 Activator_Sleep,
47 Acceptor_Sleep,
48 Entry_Caller_Sleep,
49 Async_Select_Sleep,
50 Delay_Sleep,
51 Master_Completion_Sleep,
52 Master_Phase_2_Sleep,
53 Interrupt_Server_Idle_Sleep,
54 Interrupt_Server_Blocked_Interrupt_Sleep,
55 Timer_Server_Sleep,
56 AST_Server_Sleep,
57 Asynchronous_Hold,
58 Interrupt_Server_Blocked_On_Event_Flag,
59 Activating,
60 Acceptor_Delay_Sleep
61 };
62
63 /* A short description corresponding to each possible task state. */
64 static const char *task_states[] = {
65 N_("Unactivated"),
66 N_("Runnable"),
67 N_("Terminated"),
68 N_("Child Activation Wait"),
69 N_("Accept or Select Term"),
70 N_("Waiting on entry call"),
71 N_("Async Select Wait"),
72 N_("Delay Sleep"),
73 N_("Child Termination Wait"),
74 N_("Wait Child in Term Alt"),
75 "",
76 "",
77 "",
78 "",
79 N_("Asynchronous Hold"),
80 "",
81 N_("Activating"),
82 N_("Selective Wait")
83 };
84
85 /* A longer description corresponding to each possible task state. */
86 static const char *long_task_states[] = {
87 N_("Unactivated"),
88 N_("Runnable"),
89 N_("Terminated"),
90 N_("Waiting for child activation"),
91 N_("Blocked in accept or select with terminate"),
92 N_("Waiting on entry call"),
93 N_("Asynchronous Selective Wait"),
94 N_("Delay Sleep"),
95 N_("Waiting for children termination"),
96 N_("Waiting for children in terminate alternative"),
97 "",
98 "",
99 "",
100 "",
101 N_("Asynchronous Hold"),
102 "",
103 N_("Activating"),
104 N_("Blocked in selective wait statement")
105 };
106
107 /* The index of certain important fields in the Ada Task Control Block
108 record and sub-records. */
109
110 struct atcb_fieldnos
111 {
112 /* Fields in record Ada_Task_Control_Block. */
113 int common;
114 int entry_calls;
115 int atc_nesting_level;
116
117 /* Fields in record Common_ATCB. */
118 int state;
119 int parent;
120 int priority;
121 int image;
122 int image_len; /* This field may be missing. */
123 int activation_link;
124 int call;
125 int ll;
126 int base_cpu;
127
128 /* Fields in Task_Primitives.Private_Data. */
129 int ll_thread;
130 int ll_lwp; /* This field may be missing. */
131
132 /* Fields in Common_ATCB.Call.all. */
133 int call_self;
134 };
135
136 /* This module's per-program-space data. */
137
138 struct ada_tasks_pspace_data
139 {
140 /* Nonzero if the data has been initialized. If set to zero,
141 it means that the data has either not been initialized, or
142 has potentially become stale. */
143 int initialized_p;
144
145 /* The ATCB record type. */
146 struct type *atcb_type;
147
148 /* The ATCB "Common" component type. */
149 struct type *atcb_common_type;
150
151 /* The type of the "ll" field, from the atcb_common_type. */
152 struct type *atcb_ll_type;
153
154 /* The type of the "call" field, from the atcb_common_type. */
155 struct type *atcb_call_type;
156
157 /* The index of various fields in the ATCB record and sub-records. */
158 struct atcb_fieldnos atcb_fieldno;
159 };
160
161 /* Key to our per-program-space data. */
162 static const struct program_space_data *ada_tasks_pspace_data_handle;
163
164 typedef struct ada_task_info ada_task_info_s;
165 DEF_VEC_O(ada_task_info_s);
166
167 /* The kind of data structure used by the runtime to store the list
168 of Ada tasks. */
169
170 enum ada_known_tasks_kind
171 {
172 /* Use this value when we haven't determined which kind of structure
173 is being used, or when we need to recompute it.
174
175 We set the value of this enumerate to zero on purpose: This allows
176 us to use this enumerate in a structure where setting all fields
177 to zero will result in this kind being set to unknown. */
178 ADA_TASKS_UNKNOWN = 0,
179
180 /* This value means that we did not find any task list. Unless
181 there is a bug somewhere, this means that the inferior does not
182 use tasking. */
183 ADA_TASKS_NOT_FOUND,
184
185 /* This value means that the task list is stored as an array.
186 This is the usual method, as it causes very little overhead.
187 But this method is not always used, as it does use a certain
188 amount of memory, which might be scarse in certain environments. */
189 ADA_TASKS_ARRAY,
190
191 /* This value means that the task list is stored as a linked list.
192 This has more runtime overhead than the array approach, but
193 also require less memory when the number of tasks is small. */
194 ADA_TASKS_LIST,
195 };
196
197 /* This module's per-inferior data. */
198
199 struct ada_tasks_inferior_data
200 {
201 /* The type of data structure used by the runtime to store
202 the list of Ada tasks. The value of this field influences
203 the interpretation of the known_tasks_addr field below:
204 - ADA_TASKS_UNKNOWN: The value of known_tasks_addr hasn't
205 been determined yet;
206 - ADA_TASKS_NOT_FOUND: The program probably does not use tasking
207 and the known_tasks_addr is irrelevant;
208 - ADA_TASKS_ARRAY: The known_tasks is an array;
209 - ADA_TASKS_LIST: The known_tasks is a list. */
210 enum ada_known_tasks_kind known_tasks_kind;
211
212 /* The address of the known_tasks structure. This is where
213 the runtime stores the information for all Ada tasks.
214 The interpretation of this field depends on KNOWN_TASKS_KIND
215 above. */
216 CORE_ADDR known_tasks_addr;
217
218 /* Type of elements of the known task. Usually a pointer. */
219 struct type *known_tasks_element;
220
221 /* Number of elements in the known tasks array. */
222 unsigned int known_tasks_length;
223
224 /* When nonzero, this flag indicates that the task_list field
225 below is up to date. When set to zero, the list has either
226 not been initialized, or has potentially become stale. */
227 int task_list_valid_p;
228
229 /* The list of Ada tasks.
230
231 Note: To each task we associate a number that the user can use to
232 reference it - this number is printed beside each task in the tasks
233 info listing displayed by "info tasks". This number is equal to
234 its index in the vector + 1. Reciprocally, to compute the index
235 of a task in the vector, we need to substract 1 from its number. */
236 VEC(ada_task_info_s) *task_list;
237 };
238
239 /* Key to our per-inferior data. */
240 static const struct inferior_data *ada_tasks_inferior_data_handle;
241
242 /* Return the ada-tasks module's data for the given program space (PSPACE).
243 If none is found, add a zero'ed one now.
244
245 This function always returns a valid object. */
246
247 static struct ada_tasks_pspace_data *
248 get_ada_tasks_pspace_data (struct program_space *pspace)
249 {
250 struct ada_tasks_pspace_data *data;
251
252 data = ((struct ada_tasks_pspace_data *)
253 program_space_data (pspace, ada_tasks_pspace_data_handle));
254 if (data == NULL)
255 {
256 data = XCNEW (struct ada_tasks_pspace_data);
257 set_program_space_data (pspace, ada_tasks_pspace_data_handle, data);
258 }
259
260 return data;
261 }
262
263 /* Return the ada-tasks module's data for the given inferior (INF).
264 If none is found, add a zero'ed one now.
265
266 This function always returns a valid object.
267
268 Note that we could use an observer of the inferior-created event
269 to make sure that the ada-tasks per-inferior data always exists.
270 But we prefered this approach, as it avoids this entirely as long
271 as the user does not use any of the tasking features. This is
272 quite possible, particularly in the case where the inferior does
273 not use tasking. */
274
275 static struct ada_tasks_inferior_data *
276 get_ada_tasks_inferior_data (struct inferior *inf)
277 {
278 struct ada_tasks_inferior_data *data;
279
280 data = ((struct ada_tasks_inferior_data *)
281 inferior_data (inf, ada_tasks_inferior_data_handle));
282 if (data == NULL)
283 {
284 data = XCNEW (struct ada_tasks_inferior_data);
285 set_inferior_data (inf, ada_tasks_inferior_data_handle, data);
286 }
287
288 return data;
289 }
290
291 /* Return the task number of the task whose ptid is PTID, or zero
292 if the task could not be found. */
293
294 int
295 ada_get_task_number (ptid_t ptid)
296 {
297 int i;
298 struct inferior *inf = find_inferior_ptid (ptid);
299 struct ada_tasks_inferior_data *data;
300
301 gdb_assert (inf != NULL);
302 data = get_ada_tasks_inferior_data (inf);
303
304 for (i = 0; i < VEC_length (ada_task_info_s, data->task_list); i++)
305 if (ptid_equal (VEC_index (ada_task_info_s, data->task_list, i)->ptid,
306 ptid))
307 return i + 1;
308
309 return 0; /* No matching task found. */
310 }
311
312 /* Return the task number of the task running in inferior INF which
313 matches TASK_ID , or zero if the task could not be found. */
314
315 static int
316 get_task_number_from_id (CORE_ADDR task_id, struct inferior *inf)
317 {
318 struct ada_tasks_inferior_data *data = get_ada_tasks_inferior_data (inf);
319 int i;
320
321 for (i = 0; i < VEC_length (ada_task_info_s, data->task_list); i++)
322 {
323 struct ada_task_info *task_info =
324 VEC_index (ada_task_info_s, data->task_list, i);
325
326 if (task_info->task_id == task_id)
327 return i + 1;
328 }
329
330 /* Task not found. Return 0. */
331 return 0;
332 }
333
334 /* Return non-zero if TASK_NUM is a valid task number. */
335
336 int
337 valid_task_id (int task_num)
338 {
339 struct ada_tasks_inferior_data *data;
340
341 ada_build_task_list ();
342 data = get_ada_tasks_inferior_data (current_inferior ());
343 return (task_num > 0
344 && task_num <= VEC_length (ada_task_info_s, data->task_list));
345 }
346
347 /* Return non-zero iff the task STATE corresponds to a non-terminated
348 task state. */
349
350 static int
351 ada_task_is_alive (struct ada_task_info *task_info)
352 {
353 return (task_info->state != Terminated);
354 }
355
356 /* Search through the list of known tasks for the one whose ptid is
357 PTID, and return it. Return NULL if the task was not found. */
358
359 struct ada_task_info *
360 ada_get_task_info_from_ptid (ptid_t ptid)
361 {
362 int i, nb_tasks;
363 struct ada_task_info *task;
364 struct ada_tasks_inferior_data *data;
365
366 ada_build_task_list ();
367 data = get_ada_tasks_inferior_data (current_inferior ());
368 nb_tasks = VEC_length (ada_task_info_s, data->task_list);
369
370 for (i = 0; i < nb_tasks; i++)
371 {
372 task = VEC_index (ada_task_info_s, data->task_list, i);
373 if (ptid_equal (task->ptid, ptid))
374 return task;
375 }
376
377 return NULL;
378 }
379
380 /* Call the ITERATOR function once for each Ada task that hasn't been
381 terminated yet. */
382
383 void
384 iterate_over_live_ada_tasks (ada_task_list_iterator_ftype *iterator)
385 {
386 int i, nb_tasks;
387 struct ada_task_info *task;
388 struct ada_tasks_inferior_data *data;
389
390 ada_build_task_list ();
391 data = get_ada_tasks_inferior_data (current_inferior ());
392 nb_tasks = VEC_length (ada_task_info_s, data->task_list);
393
394 for (i = 0; i < nb_tasks; i++)
395 {
396 task = VEC_index (ada_task_info_s, data->task_list, i);
397 if (!ada_task_is_alive (task))
398 continue;
399 iterator (task);
400 }
401 }
402
403 /* Extract the contents of the value as a string whose length is LENGTH,
404 and store the result in DEST. */
405
406 static void
407 value_as_string (char *dest, struct value *val, int length)
408 {
409 memcpy (dest, value_contents (val), length);
410 dest[length] = '\0';
411 }
412
413 /* Extract the string image from the fat string corresponding to VAL,
414 and store it in DEST. If the string length is greater than MAX_LEN,
415 then truncate the result to the first MAX_LEN characters of the fat
416 string. */
417
418 static void
419 read_fat_string_value (char *dest, struct value *val, int max_len)
420 {
421 struct value *array_val;
422 struct value *bounds_val;
423 int len;
424
425 /* The following variables are made static to avoid recomputing them
426 each time this function is called. */
427 static int initialize_fieldnos = 1;
428 static int array_fieldno;
429 static int bounds_fieldno;
430 static int upper_bound_fieldno;
431
432 /* Get the index of the fields that we will need to read in order
433 to extract the string from the fat string. */
434 if (initialize_fieldnos)
435 {
436 struct type *type = value_type (val);
437 struct type *bounds_type;
438
439 array_fieldno = ada_get_field_index (type, "P_ARRAY", 0);
440 bounds_fieldno = ada_get_field_index (type, "P_BOUNDS", 0);
441
442 bounds_type = TYPE_FIELD_TYPE (type, bounds_fieldno);
443 if (TYPE_CODE (bounds_type) == TYPE_CODE_PTR)
444 bounds_type = TYPE_TARGET_TYPE (bounds_type);
445 if (TYPE_CODE (bounds_type) != TYPE_CODE_STRUCT)
446 error (_("Unknown task name format. Aborting"));
447 upper_bound_fieldno = ada_get_field_index (bounds_type, "UB0", 0);
448
449 initialize_fieldnos = 0;
450 }
451
452 /* Get the size of the task image by checking the value of the bounds.
453 The lower bound is always 1, so we only need to read the upper bound. */
454 bounds_val = value_ind (value_field (val, bounds_fieldno));
455 len = value_as_long (value_field (bounds_val, upper_bound_fieldno));
456
457 /* Make sure that we do not read more than max_len characters... */
458 if (len > max_len)
459 len = max_len;
460
461 /* Extract LEN characters from the fat string. */
462 array_val = value_ind (value_field (val, array_fieldno));
463 read_memory (value_address (array_val), (gdb_byte *) dest, len);
464
465 /* Add the NUL character to close the string. */
466 dest[len] = '\0';
467 }
468
469 /* Get, from the debugging information, the type description of all types
470 related to the Ada Task Control Block that are needed in order to
471 read the list of known tasks in the Ada runtime. If all of the info
472 needed to do so is found, then save that info in the module's per-
473 program-space data, and return NULL. Otherwise, if any information
474 cannot be found, leave the per-program-space data untouched, and
475 return an error message explaining what was missing (that error
476 message does NOT need to be deallocated). */
477
478 const char *
479 ada_get_tcb_types_info (void)
480 {
481 struct type *type;
482 struct type *common_type;
483 struct type *ll_type;
484 struct type *call_type;
485 struct atcb_fieldnos fieldnos;
486 struct ada_tasks_pspace_data *pspace_data;
487
488 const char *atcb_name = "system__tasking__ada_task_control_block___XVE";
489 const char *atcb_name_fixed = "system__tasking__ada_task_control_block";
490 const char *common_atcb_name = "system__tasking__common_atcb";
491 const char *private_data_name = "system__task_primitives__private_data";
492 const char *entry_call_record_name = "system__tasking__entry_call_record";
493
494 /* ATCB symbols may be found in several compilation units. As we
495 are only interested in one instance, use standard (literal,
496 C-like) lookups to get the first match. */
497
498 struct symbol *atcb_sym =
499 lookup_symbol_in_language (atcb_name, NULL, STRUCT_DOMAIN,
500 language_c, NULL).symbol;
501 const struct symbol *common_atcb_sym =
502 lookup_symbol_in_language (common_atcb_name, NULL, STRUCT_DOMAIN,
503 language_c, NULL).symbol;
504 const struct symbol *private_data_sym =
505 lookup_symbol_in_language (private_data_name, NULL, STRUCT_DOMAIN,
506 language_c, NULL).symbol;
507 const struct symbol *entry_call_record_sym =
508 lookup_symbol_in_language (entry_call_record_name, NULL, STRUCT_DOMAIN,
509 language_c, NULL).symbol;
510
511 if (atcb_sym == NULL || atcb_sym->type == NULL)
512 {
513 /* In Ravenscar run-time libs, the ATCB does not have a dynamic
514 size, so the symbol name differs. */
515 atcb_sym = lookup_symbol_in_language (atcb_name_fixed, NULL,
516 STRUCT_DOMAIN, language_c,
517 NULL).symbol;
518
519 if (atcb_sym == NULL || atcb_sym->type == NULL)
520 return _("Cannot find Ada_Task_Control_Block type");
521
522 type = atcb_sym->type;
523 }
524 else
525 {
526 /* Get a static representation of the type record
527 Ada_Task_Control_Block. */
528 type = atcb_sym->type;
529 type = ada_template_to_fixed_record_type_1 (type, NULL, 0, NULL, 0);
530 }
531
532 if (common_atcb_sym == NULL || common_atcb_sym->type == NULL)
533 return _("Cannot find Common_ATCB type");
534 if (private_data_sym == NULL || private_data_sym->type == NULL)
535 return _("Cannot find Private_Data type");
536 if (entry_call_record_sym == NULL || entry_call_record_sym->type == NULL)
537 return _("Cannot find Entry_Call_Record type");
538
539 /* Get the type for Ada_Task_Control_Block.Common. */
540 common_type = common_atcb_sym->type;
541
542 /* Get the type for Ada_Task_Control_Bloc.Common.Call.LL. */
543 ll_type = private_data_sym->type;
544
545 /* Get the type for Common_ATCB.Call.all. */
546 call_type = entry_call_record_sym->type;
547
548 /* Get the field indices. */
549 fieldnos.common = ada_get_field_index (type, "common", 0);
550 fieldnos.entry_calls = ada_get_field_index (type, "entry_calls", 1);
551 fieldnos.atc_nesting_level =
552 ada_get_field_index (type, "atc_nesting_level", 1);
553 fieldnos.state = ada_get_field_index (common_type, "state", 0);
554 fieldnos.parent = ada_get_field_index (common_type, "parent", 1);
555 fieldnos.priority = ada_get_field_index (common_type, "base_priority", 0);
556 fieldnos.image = ada_get_field_index (common_type, "task_image", 1);
557 fieldnos.image_len = ada_get_field_index (common_type, "task_image_len", 1);
558 fieldnos.activation_link = ada_get_field_index (common_type,
559 "activation_link", 1);
560 fieldnos.call = ada_get_field_index (common_type, "call", 1);
561 fieldnos.ll = ada_get_field_index (common_type, "ll", 0);
562 fieldnos.base_cpu = ada_get_field_index (common_type, "base_cpu", 0);
563 fieldnos.ll_thread = ada_get_field_index (ll_type, "thread", 0);
564 fieldnos.ll_lwp = ada_get_field_index (ll_type, "lwp", 1);
565 fieldnos.call_self = ada_get_field_index (call_type, "self", 0);
566
567 /* On certain platforms such as x86-windows, the "lwp" field has been
568 named "thread_id". This field will likely be renamed in the future,
569 but we need to support both possibilities to avoid an unnecessary
570 dependency on a recent compiler. We therefore try locating the
571 "thread_id" field in place of the "lwp" field if we did not find
572 the latter. */
573 if (fieldnos.ll_lwp < 0)
574 fieldnos.ll_lwp = ada_get_field_index (ll_type, "thread_id", 1);
575
576 /* Set all the out parameters all at once, now that we are certain
577 that there are no potential error() anymore. */
578 pspace_data = get_ada_tasks_pspace_data (current_program_space);
579 pspace_data->initialized_p = 1;
580 pspace_data->atcb_type = type;
581 pspace_data->atcb_common_type = common_type;
582 pspace_data->atcb_ll_type = ll_type;
583 pspace_data->atcb_call_type = call_type;
584 pspace_data->atcb_fieldno = fieldnos;
585 return NULL;
586 }
587
588 /* Build the PTID of the task from its COMMON_VALUE, which is the "Common"
589 component of its ATCB record. This PTID needs to match the PTID used
590 by the thread layer. */
591
592 static ptid_t
593 ptid_from_atcb_common (struct value *common_value)
594 {
595 long thread = 0;
596 CORE_ADDR lwp = 0;
597 struct value *ll_value;
598 ptid_t ptid;
599 const struct ada_tasks_pspace_data *pspace_data
600 = get_ada_tasks_pspace_data (current_program_space);
601
602 ll_value = value_field (common_value, pspace_data->atcb_fieldno.ll);
603
604 if (pspace_data->atcb_fieldno.ll_lwp >= 0)
605 lwp = value_as_address (value_field (ll_value,
606 pspace_data->atcb_fieldno.ll_lwp));
607 thread = value_as_long (value_field (ll_value,
608 pspace_data->atcb_fieldno.ll_thread));
609
610 ptid = target_get_ada_task_ptid (lwp, thread);
611
612 return ptid;
613 }
614
615 /* Read the ATCB data of a given task given its TASK_ID (which is in practice
616 the address of its assocated ATCB record), and store the result inside
617 TASK_INFO. */
618
619 static void
620 read_atcb (CORE_ADDR task_id, struct ada_task_info *task_info)
621 {
622 struct value *tcb_value;
623 struct value *common_value;
624 struct value *atc_nesting_level_value;
625 struct value *entry_calls_value;
626 struct value *entry_calls_value_element;
627 int called_task_fieldno = -1;
628 static const char ravenscar_task_name[] = "Ravenscar task";
629 const struct ada_tasks_pspace_data *pspace_data
630 = get_ada_tasks_pspace_data (current_program_space);
631
632 if (!pspace_data->initialized_p)
633 {
634 const char *err_msg = ada_get_tcb_types_info ();
635
636 if (err_msg != NULL)
637 error (_("%s. Aborting"), err_msg);
638 }
639
640 tcb_value = value_from_contents_and_address (pspace_data->atcb_type,
641 NULL, task_id);
642 common_value = value_field (tcb_value, pspace_data->atcb_fieldno.common);
643
644 /* Fill in the task_id. */
645
646 task_info->task_id = task_id;
647
648 /* Compute the name of the task.
649
650 Depending on the GNAT version used, the task image is either a fat
651 string, or a thin array of characters. Older versions of GNAT used
652 to use fat strings, and therefore did not need an extra field in
653 the ATCB to store the string length. For efficiency reasons, newer
654 versions of GNAT replaced the fat string by a static buffer, but this
655 also required the addition of a new field named "Image_Len" containing
656 the length of the task name. The method used to extract the task name
657 is selected depending on the existence of this field.
658
659 In some run-time libs (e.g. Ravenscar), the name is not in the ATCB;
660 we may want to get it from the first user frame of the stack. For now,
661 we just give a dummy name. */
662
663 if (pspace_data->atcb_fieldno.image_len == -1)
664 {
665 if (pspace_data->atcb_fieldno.image >= 0)
666 read_fat_string_value (task_info->name,
667 value_field (common_value,
668 pspace_data->atcb_fieldno.image),
669 sizeof (task_info->name) - 1);
670 else
671 {
672 struct bound_minimal_symbol msym;
673
674 msym = lookup_minimal_symbol_by_pc (task_id);
675 if (msym.minsym)
676 {
677 const char *full_name = MSYMBOL_LINKAGE_NAME (msym.minsym);
678 const char *task_name = full_name;
679 const char *p;
680
681 /* Strip the prefix. */
682 for (p = full_name; *p; p++)
683 if (p[0] == '_' && p[1] == '_')
684 task_name = p + 2;
685
686 /* Copy the task name. */
687 strncpy (task_info->name, task_name, sizeof (task_info->name));
688 task_info->name[sizeof (task_info->name) - 1] = 0;
689 }
690 else
691 {
692 /* No symbol found. Use a default name. */
693 strcpy (task_info->name, ravenscar_task_name);
694 }
695 }
696 }
697 else
698 {
699 int len = value_as_long
700 (value_field (common_value,
701 pspace_data->atcb_fieldno.image_len));
702
703 value_as_string (task_info->name,
704 value_field (common_value,
705 pspace_data->atcb_fieldno.image),
706 len);
707 }
708
709 /* Compute the task state and priority. */
710
711 task_info->state =
712 value_as_long (value_field (common_value,
713 pspace_data->atcb_fieldno.state));
714 task_info->priority =
715 value_as_long (value_field (common_value,
716 pspace_data->atcb_fieldno.priority));
717
718 /* If the ATCB contains some information about the parent task,
719 then compute it as well. Otherwise, zero. */
720
721 if (pspace_data->atcb_fieldno.parent >= 0)
722 task_info->parent =
723 value_as_address (value_field (common_value,
724 pspace_data->atcb_fieldno.parent));
725 else
726 task_info->parent = 0;
727
728
729 /* If the ATCB contains some information about entry calls, then
730 compute the "called_task" as well. Otherwise, zero. */
731
732 if (pspace_data->atcb_fieldno.atc_nesting_level > 0
733 && pspace_data->atcb_fieldno.entry_calls > 0)
734 {
735 /* Let My_ATCB be the Ada task control block of a task calling the
736 entry of another task; then the Task_Id of the called task is
737 in My_ATCB.Entry_Calls (My_ATCB.ATC_Nesting_Level).Called_Task. */
738 atc_nesting_level_value =
739 value_field (tcb_value, pspace_data->atcb_fieldno.atc_nesting_level);
740 entry_calls_value =
741 ada_coerce_to_simple_array_ptr
742 (value_field (tcb_value, pspace_data->atcb_fieldno.entry_calls));
743 entry_calls_value_element =
744 value_subscript (entry_calls_value,
745 value_as_long (atc_nesting_level_value));
746 called_task_fieldno =
747 ada_get_field_index (value_type (entry_calls_value_element),
748 "called_task", 0);
749 task_info->called_task =
750 value_as_address (value_field (entry_calls_value_element,
751 called_task_fieldno));
752 }
753 else
754 {
755 task_info->called_task = 0;
756 }
757
758 /* If the ATCB cotnains some information about RV callers,
759 then compute the "caller_task". Otherwise, zero. */
760
761 task_info->caller_task = 0;
762 if (pspace_data->atcb_fieldno.call >= 0)
763 {
764 /* Get the ID of the caller task from Common_ATCB.Call.all.Self.
765 If Common_ATCB.Call is null, then there is no caller. */
766 const CORE_ADDR call =
767 value_as_address (value_field (common_value,
768 pspace_data->atcb_fieldno.call));
769 struct value *call_val;
770
771 if (call != 0)
772 {
773 call_val =
774 value_from_contents_and_address (pspace_data->atcb_call_type,
775 NULL, call);
776 task_info->caller_task =
777 value_as_address
778 (value_field (call_val, pspace_data->atcb_fieldno.call_self));
779 }
780 }
781
782 task_info->base_cpu
783 = value_as_long (value_field (common_value,
784 pspace_data->atcb_fieldno.base_cpu));
785
786 /* And finally, compute the task ptid. Note that there are situations
787 where this cannot be determined:
788 - The task is no longer alive - the ptid is irrelevant;
789 - We are debugging a core file - the thread is not always
790 completely preserved for us to link back a task to its
791 underlying thread. Since we do not support task switching
792 when debugging core files anyway, we don't need to compute
793 that task ptid.
794 In either case, we don't need that ptid, and it is just good enough
795 to set it to null_ptid. */
796
797 if (target_has_execution && ada_task_is_alive (task_info))
798 task_info->ptid = ptid_from_atcb_common (common_value);
799 else
800 task_info->ptid = null_ptid;
801 }
802
803 /* Read the ATCB info of the given task (identified by TASK_ID), and
804 add the result to the given inferior's TASK_LIST. */
805
806 static void
807 add_ada_task (CORE_ADDR task_id, struct inferior *inf)
808 {
809 struct ada_task_info task_info;
810 struct ada_tasks_inferior_data *data = get_ada_tasks_inferior_data (inf);
811
812 read_atcb (task_id, &task_info);
813 VEC_safe_push (ada_task_info_s, data->task_list, &task_info);
814 }
815
816 /* Read the Known_Tasks array from the inferior memory, and store
817 it in the current inferior's TASK_LIST. Return non-zero upon success. */
818
819 static int
820 read_known_tasks_array (struct ada_tasks_inferior_data *data)
821 {
822 const int target_ptr_byte = TYPE_LENGTH (data->known_tasks_element);
823 const int known_tasks_size = target_ptr_byte * data->known_tasks_length;
824 gdb_byte *known_tasks = (gdb_byte *) alloca (known_tasks_size);
825 int i;
826
827 /* Build a new list by reading the ATCBs from the Known_Tasks array
828 in the Ada runtime. */
829 read_memory (data->known_tasks_addr, known_tasks, known_tasks_size);
830 for (i = 0; i < data->known_tasks_length; i++)
831 {
832 CORE_ADDR task_id =
833 extract_typed_address (known_tasks + i * target_ptr_byte,
834 data->known_tasks_element);
835
836 if (task_id != 0)
837 add_ada_task (task_id, current_inferior ());
838 }
839
840 return 1;
841 }
842
843 /* Read the known tasks from the inferior memory, and store it in
844 the current inferior's TASK_LIST. Return non-zero upon success. */
845
846 static int
847 read_known_tasks_list (struct ada_tasks_inferior_data *data)
848 {
849 const int target_ptr_byte = TYPE_LENGTH (data->known_tasks_element);
850 gdb_byte *known_tasks = (gdb_byte *) alloca (target_ptr_byte);
851 CORE_ADDR task_id;
852 const struct ada_tasks_pspace_data *pspace_data
853 = get_ada_tasks_pspace_data (current_program_space);
854
855 /* Sanity check. */
856 if (pspace_data->atcb_fieldno.activation_link < 0)
857 return 0;
858
859 /* Build a new list by reading the ATCBs. Read head of the list. */
860 read_memory (data->known_tasks_addr, known_tasks, target_ptr_byte);
861 task_id = extract_typed_address (known_tasks, data->known_tasks_element);
862 while (task_id != 0)
863 {
864 struct value *tcb_value;
865 struct value *common_value;
866
867 add_ada_task (task_id, current_inferior ());
868
869 /* Read the chain. */
870 tcb_value = value_from_contents_and_address (pspace_data->atcb_type,
871 NULL, task_id);
872 common_value = value_field (tcb_value, pspace_data->atcb_fieldno.common);
873 task_id = value_as_address
874 (value_field (common_value,
875 pspace_data->atcb_fieldno.activation_link));
876 }
877
878 return 1;
879 }
880
881 /* Set all fields of the current inferior ada-tasks data pointed by DATA.
882 Do nothing if those fields are already set and still up to date. */
883
884 static void
885 ada_tasks_inferior_data_sniffer (struct ada_tasks_inferior_data *data)
886 {
887 struct bound_minimal_symbol msym;
888 struct symbol *sym;
889
890 /* Return now if already set. */
891 if (data->known_tasks_kind != ADA_TASKS_UNKNOWN)
892 return;
893
894 /* Try array. */
895
896 msym = lookup_minimal_symbol (KNOWN_TASKS_NAME, NULL, NULL);
897 if (msym.minsym != NULL)
898 {
899 data->known_tasks_kind = ADA_TASKS_ARRAY;
900 data->known_tasks_addr = BMSYMBOL_VALUE_ADDRESS (msym);
901
902 /* Try to get pointer type and array length from the symtab. */
903 sym = lookup_symbol_in_language (KNOWN_TASKS_NAME, NULL, VAR_DOMAIN,
904 language_c, NULL).symbol;
905 if (sym != NULL)
906 {
907 /* Validate. */
908 struct type *type = check_typedef (SYMBOL_TYPE (sym));
909 struct type *eltype = NULL;
910 struct type *idxtype = NULL;
911
912 if (TYPE_CODE (type) == TYPE_CODE_ARRAY)
913 eltype = check_typedef (TYPE_TARGET_TYPE (type));
914 if (eltype != NULL
915 && TYPE_CODE (eltype) == TYPE_CODE_PTR)
916 idxtype = check_typedef (TYPE_INDEX_TYPE (type));
917 if (idxtype != NULL
918 && !TYPE_LOW_BOUND_UNDEFINED (idxtype)
919 && !TYPE_HIGH_BOUND_UNDEFINED (idxtype))
920 {
921 data->known_tasks_element = eltype;
922 data->known_tasks_length =
923 TYPE_HIGH_BOUND (idxtype) - TYPE_LOW_BOUND (idxtype) + 1;
924 return;
925 }
926 }
927
928 /* Fallback to default values. The runtime may have been stripped (as
929 in some distributions), but it is likely that the executable still
930 contains debug information on the task type (due to implicit with of
931 Ada.Tasking). */
932 data->known_tasks_element =
933 builtin_type (target_gdbarch ())->builtin_data_ptr;
934 data->known_tasks_length = MAX_NUMBER_OF_KNOWN_TASKS;
935 return;
936 }
937
938
939 /* Try list. */
940
941 msym = lookup_minimal_symbol (KNOWN_TASKS_LIST, NULL, NULL);
942 if (msym.minsym != NULL)
943 {
944 data->known_tasks_kind = ADA_TASKS_LIST;
945 data->known_tasks_addr = BMSYMBOL_VALUE_ADDRESS (msym);
946 data->known_tasks_length = 1;
947
948 sym = lookup_symbol_in_language (KNOWN_TASKS_LIST, NULL, VAR_DOMAIN,
949 language_c, NULL).symbol;
950 if (sym != NULL && SYMBOL_VALUE_ADDRESS (sym) != 0)
951 {
952 /* Validate. */
953 struct type *type = check_typedef (SYMBOL_TYPE (sym));
954
955 if (TYPE_CODE (type) == TYPE_CODE_PTR)
956 {
957 data->known_tasks_element = type;
958 return;
959 }
960 }
961
962 /* Fallback to default values. */
963 data->known_tasks_element =
964 builtin_type (target_gdbarch ())->builtin_data_ptr;
965 data->known_tasks_length = 1;
966 return;
967 }
968
969 /* Can't find tasks. */
970
971 data->known_tasks_kind = ADA_TASKS_NOT_FOUND;
972 data->known_tasks_addr = 0;
973 }
974
975 /* Read the known tasks from the current inferior's memory, and store it
976 in the current inferior's data TASK_LIST.
977 Return non-zero upon success. */
978
979 static int
980 read_known_tasks (void)
981 {
982 struct ada_tasks_inferior_data *data =
983 get_ada_tasks_inferior_data (current_inferior ());
984
985 /* Step 1: Clear the current list, if necessary. */
986 VEC_truncate (ada_task_info_s, data->task_list, 0);
987
988 /* Step 2: do the real work.
989 If the application does not use task, then no more needs to be done.
990 It is important to have the task list cleared (see above) before we
991 return, as we don't want a stale task list to be used... This can
992 happen for instance when debugging a non-multitasking program after
993 having debugged a multitasking one. */
994 ada_tasks_inferior_data_sniffer (data);
995 gdb_assert (data->known_tasks_kind != ADA_TASKS_UNKNOWN);
996
997 switch (data->known_tasks_kind)
998 {
999 case ADA_TASKS_NOT_FOUND: /* Tasking not in use in inferior. */
1000 return 0;
1001 case ADA_TASKS_ARRAY:
1002 return read_known_tasks_array (data);
1003 case ADA_TASKS_LIST:
1004 return read_known_tasks_list (data);
1005 }
1006
1007 /* Step 3: Set task_list_valid_p, to avoid re-reading the Known_Tasks
1008 array unless needed. Then report a success. */
1009 data->task_list_valid_p = 1;
1010
1011 return 1;
1012 }
1013
1014 /* Build the task_list by reading the Known_Tasks array from
1015 the inferior, and return the number of tasks in that list
1016 (zero means that the program is not using tasking at all). */
1017
1018 int
1019 ada_build_task_list (void)
1020 {
1021 struct ada_tasks_inferior_data *data;
1022
1023 if (!target_has_stack)
1024 error (_("Cannot inspect Ada tasks when program is not running"));
1025
1026 data = get_ada_tasks_inferior_data (current_inferior ());
1027 if (!data->task_list_valid_p)
1028 read_known_tasks ();
1029
1030 return VEC_length (ada_task_info_s, data->task_list);
1031 }
1032
1033 /* Print a table providing a short description of all Ada tasks
1034 running inside inferior INF. If ARG_STR is set, it will be
1035 interpreted as a task number, and the table will be limited to
1036 that task only. */
1037
1038 void
1039 print_ada_task_info (struct ui_out *uiout,
1040 char *arg_str,
1041 struct inferior *inf)
1042 {
1043 struct ada_tasks_inferior_data *data;
1044 int taskno, nb_tasks;
1045 int taskno_arg = 0;
1046 int nb_columns;
1047
1048 if (ada_build_task_list () == 0)
1049 {
1050 uiout->message (_("Your application does not use any Ada tasks.\n"));
1051 return;
1052 }
1053
1054 if (arg_str != NULL && arg_str[0] != '\0')
1055 taskno_arg = value_as_long (parse_and_eval (arg_str));
1056
1057 if (uiout->is_mi_like_p ())
1058 /* In GDB/MI mode, we want to provide the thread ID corresponding
1059 to each task. This allows clients to quickly find the thread
1060 associated to any task, which is helpful for commands that
1061 take a --thread argument. However, in order to be able to
1062 provide that thread ID, the thread list must be up to date
1063 first. */
1064 target_update_thread_list ();
1065
1066 data = get_ada_tasks_inferior_data (inf);
1067
1068 /* Compute the number of tasks that are going to be displayed
1069 in the output. If an argument was given, there will be
1070 at most 1 entry. Otherwise, there will be as many entries
1071 as we have tasks. */
1072 if (taskno_arg)
1073 {
1074 if (taskno_arg > 0
1075 && taskno_arg <= VEC_length (ada_task_info_s, data->task_list))
1076 nb_tasks = 1;
1077 else
1078 nb_tasks = 0;
1079 }
1080 else
1081 nb_tasks = VEC_length (ada_task_info_s, data->task_list);
1082
1083 nb_columns = uiout->is_mi_like_p () ? 8 : 7;
1084 ui_out_emit_table table_emitter (uiout, nb_columns, nb_tasks, "tasks");
1085 uiout->table_header (1, ui_left, "current", "");
1086 uiout->table_header (3, ui_right, "id", "ID");
1087 uiout->table_header (9, ui_right, "task-id", "TID");
1088 /* The following column is provided in GDB/MI mode only because
1089 it is only really useful in that mode, and also because it
1090 allows us to keep the CLI output shorter and more compact. */
1091 if (uiout->is_mi_like_p ())
1092 uiout->table_header (4, ui_right, "thread-id", "");
1093 uiout->table_header (4, ui_right, "parent-id", "P-ID");
1094 uiout->table_header (3, ui_right, "priority", "Pri");
1095 uiout->table_header (22, ui_left, "state", "State");
1096 /* Use ui_noalign for the last column, to prevent the CLI uiout
1097 from printing an extra space at the end of each row. This
1098 is a bit of a hack, but does get the job done. */
1099 uiout->table_header (1, ui_noalign, "name", "Name");
1100 uiout->table_body ();
1101
1102 for (taskno = 1;
1103 taskno <= VEC_length (ada_task_info_s, data->task_list);
1104 taskno++)
1105 {
1106 const struct ada_task_info *const task_info =
1107 VEC_index (ada_task_info_s, data->task_list, taskno - 1);
1108 int parent_id;
1109
1110 gdb_assert (task_info != NULL);
1111
1112 /* If the user asked for the output to be restricted
1113 to one task only, and this is not the task, skip
1114 to the next one. */
1115 if (taskno_arg && taskno != taskno_arg)
1116 continue;
1117
1118 ui_out_emit_tuple tuple_emitter (uiout, NULL);
1119
1120 /* Print a star if this task is the current task (or the task
1121 currently selected). */
1122 if (ptid_equal (task_info->ptid, inferior_ptid))
1123 uiout->field_string ("current", "*");
1124 else
1125 uiout->field_skip ("current");
1126
1127 /* Print the task number. */
1128 uiout->field_int ("id", taskno);
1129
1130 /* Print the Task ID. */
1131 uiout->field_fmt ("task-id", "%9lx", (long) task_info->task_id);
1132
1133 /* Print the associated Thread ID. */
1134 if (uiout->is_mi_like_p ())
1135 {
1136 const int thread_id = ptid_to_global_thread_id (task_info->ptid);
1137
1138 if (thread_id != 0)
1139 uiout->field_int ("thread-id", thread_id);
1140 else
1141 /* This should never happen unless there is a bug somewhere,
1142 but be resilient when that happens. */
1143 uiout->field_skip ("thread-id");
1144 }
1145
1146 /* Print the ID of the parent task. */
1147 parent_id = get_task_number_from_id (task_info->parent, inf);
1148 if (parent_id)
1149 uiout->field_int ("parent-id", parent_id);
1150 else
1151 uiout->field_skip ("parent-id");
1152
1153 /* Print the base priority of the task. */
1154 uiout->field_int ("priority", task_info->priority);
1155
1156 /* Print the task current state. */
1157 if (task_info->caller_task)
1158 uiout->field_fmt ("state",
1159 _("Accepting RV with %-4d"),
1160 get_task_number_from_id (task_info->caller_task,
1161 inf));
1162 else if (task_info->state == Entry_Caller_Sleep
1163 && task_info->called_task)
1164 uiout->field_fmt ("state",
1165 _("Waiting on RV with %-3d"),
1166 get_task_number_from_id (task_info->called_task,
1167 inf));
1168 else
1169 uiout->field_string ("state", task_states[task_info->state]);
1170
1171 /* Finally, print the task name. */
1172 uiout->field_fmt ("name",
1173 "%s",
1174 task_info->name[0] != '\0' ? task_info->name
1175 : _("<no name>"));
1176
1177 uiout->text ("\n");
1178 }
1179 }
1180
1181 /* Print a detailed description of the Ada task whose ID is TASKNO_STR
1182 for the given inferior (INF). */
1183
1184 static void
1185 info_task (struct ui_out *uiout, const char *taskno_str, struct inferior *inf)
1186 {
1187 const int taskno = value_as_long (parse_and_eval (taskno_str));
1188 struct ada_task_info *task_info;
1189 int parent_taskno = 0;
1190 struct ada_tasks_inferior_data *data = get_ada_tasks_inferior_data (inf);
1191
1192 if (ada_build_task_list () == 0)
1193 {
1194 uiout->message (_("Your application does not use any Ada tasks.\n"));
1195 return;
1196 }
1197
1198 if (taskno <= 0 || taskno > VEC_length (ada_task_info_s, data->task_list))
1199 error (_("Task ID %d not known. Use the \"info tasks\" command to\n"
1200 "see the IDs of currently known tasks"), taskno);
1201 task_info = VEC_index (ada_task_info_s, data->task_list, taskno - 1);
1202
1203 /* Print the Ada task ID. */
1204 printf_filtered (_("Ada Task: %s\n"),
1205 paddress (target_gdbarch (), task_info->task_id));
1206
1207 /* Print the name of the task. */
1208 if (task_info->name[0] != '\0')
1209 printf_filtered (_("Name: %s\n"), task_info->name);
1210 else
1211 printf_filtered (_("<no name>\n"));
1212
1213 /* Print the TID and LWP. */
1214 printf_filtered (_("Thread: %#lx\n"), ptid_get_tid (task_info->ptid));
1215 printf_filtered (_("LWP: %#lx\n"), ptid_get_lwp (task_info->ptid));
1216
1217 /* If set, print the base CPU. */
1218 if (task_info->base_cpu != 0)
1219 printf_filtered (_("Base CPU: %d\n"), task_info->base_cpu);
1220
1221 /* Print who is the parent (if any). */
1222 if (task_info->parent != 0)
1223 parent_taskno = get_task_number_from_id (task_info->parent, inf);
1224 if (parent_taskno)
1225 {
1226 struct ada_task_info *parent =
1227 VEC_index (ada_task_info_s, data->task_list, parent_taskno - 1);
1228
1229 printf_filtered (_("Parent: %d"), parent_taskno);
1230 if (parent->name[0] != '\0')
1231 printf_filtered (" (%s)", parent->name);
1232 printf_filtered ("\n");
1233 }
1234 else
1235 printf_filtered (_("No parent\n"));
1236
1237 /* Print the base priority. */
1238 printf_filtered (_("Base Priority: %d\n"), task_info->priority);
1239
1240 /* print the task current state. */
1241 {
1242 int target_taskno = 0;
1243
1244 if (task_info->caller_task)
1245 {
1246 target_taskno = get_task_number_from_id (task_info->caller_task, inf);
1247 printf_filtered (_("State: Accepting rendezvous with %d"),
1248 target_taskno);
1249 }
1250 else if (task_info->state == Entry_Caller_Sleep && task_info->called_task)
1251 {
1252 target_taskno = get_task_number_from_id (task_info->called_task, inf);
1253 printf_filtered (_("State: Waiting on task %d's entry"),
1254 target_taskno);
1255 }
1256 else
1257 printf_filtered (_("State: %s"), _(long_task_states[task_info->state]));
1258
1259 if (target_taskno)
1260 {
1261 struct ada_task_info *target_task_info =
1262 VEC_index (ada_task_info_s, data->task_list, target_taskno - 1);
1263
1264 if (target_task_info->name[0] != '\0')
1265 printf_filtered (" (%s)", target_task_info->name);
1266 }
1267
1268 printf_filtered ("\n");
1269 }
1270 }
1271
1272 /* If ARG is empty or null, then print a list of all Ada tasks.
1273 Otherwise, print detailed information about the task whose ID
1274 is ARG.
1275
1276 Does nothing if the program doesn't use Ada tasking. */
1277
1278 static void
1279 info_tasks_command (const char *arg, int from_tty)
1280 {
1281 struct ui_out *uiout = current_uiout;
1282
1283 if (arg == NULL || *arg == '\0')
1284 print_ada_task_info (uiout, NULL, current_inferior ());
1285 else
1286 info_task (uiout, arg, current_inferior ());
1287 }
1288
1289 /* Print a message telling the user id of the current task.
1290 This function assumes that tasking is in use in the inferior. */
1291
1292 static void
1293 display_current_task_id (void)
1294 {
1295 const int current_task = ada_get_task_number (inferior_ptid);
1296
1297 if (current_task == 0)
1298 printf_filtered (_("[Current task is unknown]\n"));
1299 else
1300 printf_filtered (_("[Current task is %d]\n"), current_task);
1301 }
1302
1303 /* Parse and evaluate TIDSTR into a task id, and try to switch to
1304 that task. Print an error message if the task switch failed. */
1305
1306 static void
1307 task_command_1 (const char *taskno_str, int from_tty, struct inferior *inf)
1308 {
1309 const int taskno = value_as_long (parse_and_eval (taskno_str));
1310 struct ada_task_info *task_info;
1311 struct ada_tasks_inferior_data *data = get_ada_tasks_inferior_data (inf);
1312
1313 if (taskno <= 0 || taskno > VEC_length (ada_task_info_s, data->task_list))
1314 error (_("Task ID %d not known. Use the \"info tasks\" command to\n"
1315 "see the IDs of currently known tasks"), taskno);
1316 task_info = VEC_index (ada_task_info_s, data->task_list, taskno - 1);
1317
1318 if (!ada_task_is_alive (task_info))
1319 error (_("Cannot switch to task %d: Task is no longer running"), taskno);
1320
1321 /* On some platforms, the thread list is not updated until the user
1322 performs a thread-related operation (by using the "info threads"
1323 command, for instance). So this thread list may not be up to date
1324 when the user attempts this task switch. Since we cannot switch
1325 to the thread associated to our task if GDB does not know about
1326 that thread, we need to make sure that any new threads gets added
1327 to the thread list. */
1328 target_update_thread_list ();
1329
1330 /* Verify that the ptid of the task we want to switch to is valid
1331 (in other words, a ptid that GDB knows about). Otherwise, we will
1332 cause an assertion failure later on, when we try to determine
1333 the ptid associated thread_info data. We should normally never
1334 encounter such an error, but the wrong ptid can actually easily be
1335 computed if target_get_ada_task_ptid has not been implemented for
1336 our target (yet). Rather than cause an assertion error in that case,
1337 it's nicer for the user to just refuse to perform the task switch. */
1338 if (!find_thread_ptid (task_info->ptid))
1339 error (_("Unable to compute thread ID for task %d.\n"
1340 "Cannot switch to this task."),
1341 taskno);
1342
1343 switch_to_thread (task_info->ptid);
1344 ada_find_printable_frame (get_selected_frame (NULL));
1345 printf_filtered (_("[Switching to task %d]\n"), taskno);
1346 print_stack_frame (get_selected_frame (NULL),
1347 frame_relative_level (get_selected_frame (NULL)),
1348 SRC_AND_LOC, 1);
1349 }
1350
1351
1352 /* Print the ID of the current task if TASKNO_STR is empty or NULL.
1353 Otherwise, switch to the task indicated by TASKNO_STR. */
1354
1355 static void
1356 task_command (const char *taskno_str, int from_tty)
1357 {
1358 struct ui_out *uiout = current_uiout;
1359
1360 if (ada_build_task_list () == 0)
1361 {
1362 uiout->message (_("Your application does not use any Ada tasks.\n"));
1363 return;
1364 }
1365
1366 if (taskno_str == NULL || taskno_str[0] == '\0')
1367 display_current_task_id ();
1368 else
1369 {
1370 /* Task switching in core files doesn't work, either because:
1371 1. Thread support is not implemented with core files
1372 2. Thread support is implemented, but the thread IDs created
1373 after having read the core file are not the same as the ones
1374 that were used during the program life, before the crash.
1375 As a consequence, there is no longer a way for the debugger
1376 to find the associated thead ID of any given Ada task.
1377 So, instead of attempting a task switch without giving the user
1378 any clue as to what might have happened, just error-out with
1379 a message explaining that this feature is not supported. */
1380 if (!target_has_execution)
1381 error (_("\
1382 Task switching not supported when debugging from core files\n\
1383 (use thread support instead)"));
1384 task_command_1 (taskno_str, from_tty, current_inferior ());
1385 }
1386 }
1387
1388 /* Indicate that the given inferior's task list may have changed,
1389 so invalidate the cache. */
1390
1391 static void
1392 ada_task_list_changed (struct inferior *inf)
1393 {
1394 struct ada_tasks_inferior_data *data = get_ada_tasks_inferior_data (inf);
1395
1396 data->task_list_valid_p = 0;
1397 }
1398
1399 /* Invalidate the per-program-space data. */
1400
1401 static void
1402 ada_tasks_invalidate_pspace_data (struct program_space *pspace)
1403 {
1404 get_ada_tasks_pspace_data (pspace)->initialized_p = 0;
1405 }
1406
1407 /* Invalidate the per-inferior data. */
1408
1409 static void
1410 ada_tasks_invalidate_inferior_data (struct inferior *inf)
1411 {
1412 struct ada_tasks_inferior_data *data = get_ada_tasks_inferior_data (inf);
1413
1414 data->known_tasks_kind = ADA_TASKS_UNKNOWN;
1415 data->task_list_valid_p = 0;
1416 }
1417
1418 /* The 'normal_stop' observer notification callback. */
1419
1420 static void
1421 ada_tasks_normal_stop_observer (struct bpstats *unused_args, int unused_args2)
1422 {
1423 /* The inferior has been resumed, and just stopped. This means that
1424 our task_list needs to be recomputed before it can be used again. */
1425 ada_task_list_changed (current_inferior ());
1426 }
1427
1428 /* A routine to be called when the objfiles have changed. */
1429
1430 static void
1431 ada_tasks_new_objfile_observer (struct objfile *objfile)
1432 {
1433 struct inferior *inf;
1434
1435 /* Invalidate the relevant data in our program-space data. */
1436
1437 if (objfile == NULL)
1438 {
1439 /* All objfiles are being cleared, so we should clear all
1440 our caches for all program spaces. */
1441 struct program_space *pspace;
1442
1443 for (pspace = program_spaces; pspace != NULL; pspace = pspace->next)
1444 ada_tasks_invalidate_pspace_data (pspace);
1445 }
1446 else
1447 {
1448 /* The associated program-space data might have changed after
1449 this objfile was added. Invalidate all cached data. */
1450 ada_tasks_invalidate_pspace_data (objfile->pspace);
1451 }
1452
1453 /* Invalidate the per-inferior cache for all inferiors using
1454 this objfile (or, in other words, for all inferiors who have
1455 the same program-space as the objfile's program space).
1456 If all objfiles are being cleared (OBJFILE is NULL), then
1457 clear the caches for all inferiors. */
1458
1459 for (inf = inferior_list; inf != NULL; inf = inf->next)
1460 if (objfile == NULL || inf->pspace == objfile->pspace)
1461 ada_tasks_invalidate_inferior_data (inf);
1462 }
1463
1464 void
1465 _initialize_tasks (void)
1466 {
1467 ada_tasks_pspace_data_handle = register_program_space_data ();
1468 ada_tasks_inferior_data_handle = register_inferior_data ();
1469
1470 /* Attach various observers. */
1471 observer_attach_normal_stop (ada_tasks_normal_stop_observer);
1472 observer_attach_new_objfile (ada_tasks_new_objfile_observer);
1473
1474 /* Some new commands provided by this module. */
1475 add_info ("tasks", info_tasks_command,
1476 _("Provide information about all known Ada tasks"));
1477 add_cmd ("task", class_run, task_command,
1478 _("Use this command to switch between Ada tasks.\n\
1479 Without argument, this command simply prints the current task ID"),
1480 &cmdlist);
1481 }
This page took 0.058709 seconds and 4 git commands to generate.