a21346b49a8b431a680e9c01d4d7f6150d47c44f
[deliverable/binutils-gdb.git] / gdb / alpha-nat.c
1 /* Low level Alpha interface, for GDB when running native.
2 Copyright 1993, 1995, 1996, 1998, 1999, 2000, 2001
3 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 2 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program; if not, write to the Free Software
19 Foundation, Inc., 59 Temple Place - Suite 330,
20 Boston, MA 02111-1307, USA. */
21
22 #include "defs.h"
23 #include "inferior.h"
24 #include "gdbcore.h"
25 #include "target.h"
26 #include "regcache.h"
27
28 #include "alpha-tdep.h"
29
30 #include <sys/ptrace.h>
31 #ifdef __linux__
32 #include <asm/reg.h>
33 #include <alpha/ptrace.h>
34 #else
35 #include <alpha/coreregs.h>
36 #endif
37 #include <sys/user.h>
38
39 /* Prototypes for local functions. */
40
41 static void fetch_osf_core_registers (char *, unsigned, int, CORE_ADDR);
42 static void fetch_elf_core_registers (char *, unsigned, int, CORE_ADDR);
43
44 /* Size of elements in jmpbuf */
45
46 #define JB_ELEMENT_SIZE 8
47
48 /* The definition for JB_PC in machine/reg.h is wrong.
49 And we can't get at the correct definition in setjmp.h as it is
50 not always available (eg. if _POSIX_SOURCE is defined which is the
51 default). As the defintion is unlikely to change (see comment
52 in <setjmp.h>, define the correct value here. */
53
54 #undef JB_PC
55 #define JB_PC 2
56
57 /* Figure out where the longjmp will land.
58 We expect the first arg to be a pointer to the jmp_buf structure from which
59 we extract the pc (JB_PC) that we will land at. The pc is copied into PC.
60 This routine returns true on success. */
61
62 int
63 get_longjmp_target (CORE_ADDR *pc)
64 {
65 CORE_ADDR jb_addr;
66 char raw_buffer[ALPHA_MAX_REGISTER_RAW_SIZE];
67
68 jb_addr = read_register (ALPHA_A0_REGNUM);
69
70 if (target_read_memory (jb_addr + JB_PC * JB_ELEMENT_SIZE, raw_buffer,
71 sizeof (CORE_ADDR)))
72 return 0;
73
74 *pc = extract_address (raw_buffer, sizeof (CORE_ADDR));
75 return 1;
76 }
77
78 /* Extract the register values out of the core file and store
79 them where `read_register' will find them.
80
81 CORE_REG_SECT points to the register values themselves, read into memory.
82 CORE_REG_SIZE is the size of that area.
83 WHICH says which set of registers we are handling (0 = int, 2 = float
84 on machines where they are discontiguous).
85 REG_ADDR is the offset from u.u_ar0 to the register values relative to
86 core_reg_sect. This is used with old-fashioned core files to
87 locate the registers in a large upage-plus-stack ".reg" section.
88 Original upage address X is at location core_reg_sect+x+reg_addr.
89 */
90
91 static void
92 fetch_osf_core_registers (char *core_reg_sect, unsigned core_reg_size,
93 int which, CORE_ADDR reg_addr)
94 {
95 register int regno;
96 register int addr;
97 int bad_reg = -1;
98
99 /* Table to map a gdb regnum to an index in the core register
100 section. The floating point register values are garbage in
101 OSF/1.2 core files. OSF5 uses different names for the register
102 enum list, need to handle two cases. The actual values are the
103 same. */
104 static int core_reg_mapping[ALPHA_NUM_REGS] =
105 {
106 #ifdef NCF_REGS
107 #define EFL NCF_REGS
108 CF_V0, CF_T0, CF_T1, CF_T2, CF_T3, CF_T4, CF_T5, CF_T6,
109 CF_T7, CF_S0, CF_S1, CF_S2, CF_S3, CF_S4, CF_S5, CF_S6,
110 CF_A0, CF_A1, CF_A2, CF_A3, CF_A4, CF_A5, CF_T8, CF_T9,
111 CF_T10, CF_T11, CF_RA, CF_T12, CF_AT, CF_GP, CF_SP, -1,
112 EFL + 0, EFL + 1, EFL + 2, EFL + 3, EFL + 4, EFL + 5, EFL + 6, EFL + 7,
113 EFL + 8, EFL + 9, EFL + 10, EFL + 11, EFL + 12, EFL + 13, EFL + 14, EFL + 15,
114 EFL + 16, EFL + 17, EFL + 18, EFL + 19, EFL + 20, EFL + 21, EFL + 22, EFL + 23,
115 EFL + 24, EFL + 25, EFL + 26, EFL + 27, EFL + 28, EFL + 29, EFL + 30, EFL + 31,
116 CF_PC, -1
117 #else
118 #define EFL (EF_SIZE / 8)
119 EF_V0, EF_T0, EF_T1, EF_T2, EF_T3, EF_T4, EF_T5, EF_T6,
120 EF_T7, EF_S0, EF_S1, EF_S2, EF_S3, EF_S4, EF_S5, EF_S6,
121 EF_A0, EF_A1, EF_A2, EF_A3, EF_A4, EF_A5, EF_T8, EF_T9,
122 EF_T10, EF_T11, EF_RA, EF_T12, EF_AT, EF_GP, EF_SP, -1,
123 EFL + 0, EFL + 1, EFL + 2, EFL + 3, EFL + 4, EFL + 5, EFL + 6, EFL + 7,
124 EFL + 8, EFL + 9, EFL + 10, EFL + 11, EFL + 12, EFL + 13, EFL + 14, EFL + 15,
125 EFL + 16, EFL + 17, EFL + 18, EFL + 19, EFL + 20, EFL + 21, EFL + 22, EFL + 23,
126 EFL + 24, EFL + 25, EFL + 26, EFL + 27, EFL + 28, EFL + 29, EFL + 30, EFL + 31,
127 EF_PC, -1
128 #endif
129 };
130 static char zerobuf[ALPHA_MAX_REGISTER_RAW_SIZE] =
131 {0};
132
133 for (regno = 0; regno < NUM_REGS; regno++)
134 {
135 if (CANNOT_FETCH_REGISTER (regno))
136 {
137 supply_register (regno, zerobuf);
138 continue;
139 }
140 addr = 8 * core_reg_mapping[regno];
141 if (addr < 0 || addr >= core_reg_size)
142 {
143 if (bad_reg < 0)
144 bad_reg = regno;
145 }
146 else
147 {
148 supply_register (regno, core_reg_sect + addr);
149 }
150 }
151 if (bad_reg >= 0)
152 {
153 error ("Register %s not found in core file.", REGISTER_NAME (bad_reg));
154 }
155 }
156
157 static void
158 fetch_elf_core_registers (char *core_reg_sect, unsigned core_reg_size,
159 int which, CORE_ADDR reg_addr)
160 {
161 if (core_reg_size < 32 * 8)
162 {
163 error ("Core file register section too small (%u bytes).", core_reg_size);
164 return;
165 }
166
167 if (which == 2)
168 {
169 /* The FPU Registers. */
170 memcpy (&registers[REGISTER_BYTE (FP0_REGNUM)], core_reg_sect, 31 * 8);
171 memset (&registers[REGISTER_BYTE (FP0_REGNUM + 31)], 0, 8);
172 memset (&register_valid[FP0_REGNUM], 1, 32);
173 }
174 else
175 {
176 /* The General Registers. */
177 memcpy (&registers[REGISTER_BYTE (ALPHA_V0_REGNUM)], core_reg_sect,
178 31 * 8);
179 memcpy (&registers[REGISTER_BYTE (PC_REGNUM)], core_reg_sect + 31 * 8, 8);
180 memset (&registers[REGISTER_BYTE (ALPHA_ZERO_REGNUM)], 0, 8);
181 memset (&register_valid[ALPHA_V0_REGNUM], 1, 32);
182 register_valid[PC_REGNUM] = 1;
183 }
184 }
185
186
187 /* Map gdb internal register number to a ptrace ``address''.
188 These ``addresses'' are defined in <sys/ptrace.h> */
189
190 #define REGISTER_PTRACE_ADDR(regno) \
191 (regno < FP0_REGNUM ? GPR_BASE + (regno) \
192 : regno == PC_REGNUM ? PC \
193 : regno >= FP0_REGNUM ? FPR_BASE + ((regno) - FP0_REGNUM) \
194 : 0)
195
196 /* Return the ptrace ``address'' of register REGNO. */
197
198 CORE_ADDR
199 register_addr (int regno, CORE_ADDR blockend)
200 {
201 return REGISTER_PTRACE_ADDR (regno);
202 }
203
204 int
205 kernel_u_size (void)
206 {
207 return (sizeof (struct user));
208 }
209
210 #if defined(USE_PROC_FS) || defined(HAVE_GREGSET_T)
211 #include <sys/procfs.h>
212
213 /* Prototypes for supply_gregset etc. */
214 #include "gregset.h"
215
216 /*
217 * See the comment in m68k-tdep.c regarding the utility of these functions.
218 */
219
220 void
221 supply_gregset (gdb_gregset_t *gregsetp)
222 {
223 register int regi;
224 register long *regp = ALPHA_REGSET_BASE (gregsetp);
225 static char zerobuf[ALPHA_MAX_REGISTER_RAW_SIZE] =
226 {0};
227
228 for (regi = 0; regi < 31; regi++)
229 supply_register (regi, (char *) (regp + regi));
230
231 supply_register (PC_REGNUM, (char *) (regp + 31));
232
233 /* Fill inaccessible registers with zero. */
234 supply_register (ALPHA_ZERO_REGNUM, zerobuf);
235 supply_register (FP_REGNUM, zerobuf);
236 }
237
238 void
239 fill_gregset (gdb_gregset_t *gregsetp, int regno)
240 {
241 int regi;
242 register long *regp = ALPHA_REGSET_BASE (gregsetp);
243
244 for (regi = 0; regi < 31; regi++)
245 if ((regno == -1) || (regno == regi))
246 *(regp + regi) = *(long *) &registers[REGISTER_BYTE (regi)];
247
248 if ((regno == -1) || (regno == PC_REGNUM))
249 *(regp + 31) = *(long *) &registers[REGISTER_BYTE (PC_REGNUM)];
250 }
251
252 /*
253 * Now we do the same thing for floating-point registers.
254 * Again, see the comments in m68k-tdep.c.
255 */
256
257 void
258 supply_fpregset (gdb_fpregset_t *fpregsetp)
259 {
260 register int regi;
261 register long *regp = ALPHA_REGSET_BASE (fpregsetp);
262
263 for (regi = 0; regi < 32; regi++)
264 supply_register (regi + FP0_REGNUM, (char *) (regp + regi));
265 }
266
267 void
268 fill_fpregset (gdb_fpregset_t *fpregsetp, int regno)
269 {
270 int regi;
271 register long *regp = ALPHA_REGSET_BASE (fpregsetp);
272
273 for (regi = FP0_REGNUM; regi < FP0_REGNUM + 32; regi++)
274 {
275 if ((regno == -1) || (regno == regi))
276 {
277 *(regp + regi - FP0_REGNUM) =
278 *(long *) &registers[REGISTER_BYTE (regi)];
279 }
280 }
281 }
282 #endif
283 \f
284
285 /* Register that we are able to handle alpha core file formats. */
286
287 static struct core_fns alpha_osf_core_fns =
288 {
289 /* This really is bfd_target_unknown_flavour. */
290
291 bfd_target_unknown_flavour, /* core_flavour */
292 default_check_format, /* check_format */
293 default_core_sniffer, /* core_sniffer */
294 fetch_osf_core_registers, /* core_read_registers */
295 NULL /* next */
296 };
297
298 static struct core_fns alpha_elf_core_fns =
299 {
300 bfd_target_elf_flavour, /* core_flavour */
301 default_check_format, /* check_format */
302 default_core_sniffer, /* core_sniffer */
303 fetch_elf_core_registers, /* core_read_registers */
304 NULL /* next */
305 };
306
307 void
308 _initialize_core_alpha (void)
309 {
310 add_core_fns (&alpha_osf_core_fns);
311 add_core_fns (&alpha_elf_core_fns);
312 }
This page took 0.03767 seconds and 3 git commands to generate.