d0c49c93b46bc760976b44ba94dcaaa19e4618fe
[deliverable/binutils-gdb.git] / gdb / alpha-nat.c
1 /* Low level Alpha interface, for GDB when running native.
2 Copyright 1993, 1995, 1996 Free Software Foundation, Inc.
3
4 This file is part of GDB.
5
6 This program is free software; you can redistribute it and/or modify
7 it under the terms of the GNU General Public License as published by
8 the Free Software Foundation; either version 2 of the License, or
9 (at your option) any later version.
10
11 This program is distributed in the hope that it will be useful,
12 but WITHOUT ANY WARRANTY; without even the implied warranty of
13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 GNU General Public License for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with this program; if not, write to the Free Software
18 Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. */
19
20 #include "defs.h"
21 #include "inferior.h"
22 #include "gdbcore.h"
23 #include "target.h"
24 #include <sys/ptrace.h>
25 #ifdef __linux__
26 # include <asm/reg.h>
27 # include <alpha/ptrace.h>
28 #else
29 # include <machine/reg.h>
30 #endif
31 #include <sys/user.h>
32
33 static void fetch_core_registers PARAMS ((char *, unsigned, int, unsigned));
34
35 /* Size of elements in jmpbuf */
36
37 #define JB_ELEMENT_SIZE 8
38
39 /* The definition for JB_PC in machine/reg.h is wrong.
40 And we can't get at the correct definition in setjmp.h as it is
41 not always available (eg. if _POSIX_SOURCE is defined which is the
42 default). As the defintion is unlikely to change (see comment
43 in <setjmp.h>, define the correct value here. */
44
45 #undef JB_PC
46 #define JB_PC 2
47
48 /* Figure out where the longjmp will land.
49 We expect the first arg to be a pointer to the jmp_buf structure from which
50 we extract the pc (JB_PC) that we will land at. The pc is copied into PC.
51 This routine returns true on success. */
52
53 int
54 get_longjmp_target (pc)
55 CORE_ADDR *pc;
56 {
57 CORE_ADDR jb_addr;
58 char raw_buffer[MAX_REGISTER_RAW_SIZE];
59
60 jb_addr = read_register(A0_REGNUM);
61
62 if (target_read_memory(jb_addr + JB_PC * JB_ELEMENT_SIZE, raw_buffer,
63 sizeof(CORE_ADDR)))
64 return 0;
65
66 *pc = extract_address (raw_buffer, sizeof(CORE_ADDR));
67 return 1;
68 }
69
70 /* Extract the register values out of the core file and store
71 them where `read_register' will find them.
72
73 CORE_REG_SECT points to the register values themselves, read into memory.
74 CORE_REG_SIZE is the size of that area.
75 WHICH says which set of registers we are handling (0 = int, 2 = float
76 on machines where they are discontiguous).
77 REG_ADDR is the offset from u.u_ar0 to the register values relative to
78 core_reg_sect. This is used with old-fashioned core files to
79 locate the registers in a large upage-plus-stack ".reg" section.
80 Original upage address X is at location core_reg_sect+x+reg_addr.
81 */
82
83 static void
84 fetch_core_registers (core_reg_sect, core_reg_size, which, reg_addr)
85 char *core_reg_sect;
86 unsigned core_reg_size;
87 int which;
88 unsigned reg_addr;
89 {
90 register int regno;
91 register int addr;
92 int bad_reg = -1;
93
94 /* Table to map a gdb regnum to an index in the core register section.
95 The floating point register values are garbage in OSF/1.2 core files. */
96 static int core_reg_mapping[NUM_REGS] =
97 {
98 #define EFL (EF_SIZE / 8)
99 EF_V0, EF_T0, EF_T1, EF_T2, EF_T3, EF_T4, EF_T5, EF_T6,
100 EF_T7, EF_S0, EF_S1, EF_S2, EF_S3, EF_S4, EF_S5, EF_S6,
101 EF_A0, EF_A1, EF_A2, EF_A3, EF_A4, EF_A5, EF_T8, EF_T9,
102 EF_T10, EF_T11, EF_RA, EF_T12, EF_AT, EF_GP, EF_SP, -1,
103 EFL+0, EFL+1, EFL+2, EFL+3, EFL+4, EFL+5, EFL+6, EFL+7,
104 EFL+8, EFL+9, EFL+10, EFL+11, EFL+12, EFL+13, EFL+14, EFL+15,
105 EFL+16, EFL+17, EFL+18, EFL+19, EFL+20, EFL+21, EFL+22, EFL+23,
106 EFL+24, EFL+25, EFL+26, EFL+27, EFL+28, EFL+29, EFL+30, EFL+31,
107 EF_PC, -1
108 };
109 static char zerobuf[MAX_REGISTER_RAW_SIZE] = {0};
110
111 for (regno = 0; regno < NUM_REGS; regno++)
112 {
113 if (CANNOT_FETCH_REGISTER (regno))
114 {
115 supply_register (regno, zerobuf);
116 continue;
117 }
118 addr = 8 * core_reg_mapping[regno];
119 if (addr < 0 || addr >= core_reg_size)
120 {
121 if (bad_reg < 0)
122 bad_reg = regno;
123 }
124 else
125 {
126 supply_register (regno, core_reg_sect + addr);
127 }
128 }
129 if (bad_reg >= 0)
130 {
131 error ("Register %s not found in core file.", reg_names[bad_reg]);
132 }
133 }
134
135 /* Map gdb internal register number to a ptrace ``address''.
136 These ``addresses'' are defined in <sys/ptrace.h> */
137
138 #define REGISTER_PTRACE_ADDR(regno) \
139 (regno < FP0_REGNUM ? GPR_BASE + (regno) \
140 : regno == PC_REGNUM ? PC \
141 : regno >= FP0_REGNUM ? FPR_BASE + ((regno) - FP0_REGNUM) \
142 : 0)
143
144 /* Return the ptrace ``address'' of register REGNO. */
145
146 unsigned int
147 register_addr (regno, blockend)
148 int regno;
149 int blockend;
150 {
151 return REGISTER_PTRACE_ADDR (regno);
152 }
153
154 int
155 kernel_u_size ()
156 {
157 return (sizeof (struct user));
158 }
159
160 #ifdef USE_PROC_FS
161 #include <sys/procfs.h>
162
163 /*
164 * See the comment in m68k-tdep.c regarding the utility of these functions.
165 */
166
167 void
168 supply_gregset (gregsetp)
169 gregset_t *gregsetp;
170 {
171 register int regi;
172 register long *regp = gregsetp->regs;
173 static char zerobuf[MAX_REGISTER_RAW_SIZE] = {0};
174
175 for (regi = 0; regi < 31; regi++)
176 supply_register (regi, (char *)(regp + regi));
177
178 supply_register (PC_REGNUM, (char *)(regp + 31));
179
180 /* Fill inaccessible registers with zero. */
181 supply_register (ZERO_REGNUM, zerobuf);
182 supply_register (FP_REGNUM, zerobuf);
183 }
184
185 void
186 fill_gregset (gregsetp, regno)
187 gregset_t *gregsetp;
188 int regno;
189 {
190 int regi;
191 register long *regp = gregsetp->regs;
192
193 for (regi = 0; regi < 31; regi++)
194 if ((regno == -1) || (regno == regi))
195 *(regp + regi) = *(long *) &registers[REGISTER_BYTE (regi)];
196
197 if ((regno == -1) || (regno == PC_REGNUM))
198 *(regp + 31) = *(long *) &registers[REGISTER_BYTE (PC_REGNUM)];
199 }
200
201 /*
202 * Now we do the same thing for floating-point registers.
203 * Again, see the comments in m68k-tdep.c.
204 */
205
206 void
207 supply_fpregset (fpregsetp)
208 fpregset_t *fpregsetp;
209 {
210 register int regi;
211 register long *regp = fpregsetp->regs;
212
213 for (regi = 0; regi < 32; regi++)
214 supply_register (regi + FP0_REGNUM, (char *)(regp + regi));
215 }
216
217 void
218 fill_fpregset (fpregsetp, regno)
219 fpregset_t *fpregsetp;
220 int regno;
221 {
222 int regi;
223 register long *regp = fpregsetp->regs;
224
225 for (regi = FP0_REGNUM; regi < FP0_REGNUM + 32; regi++)
226 {
227 if ((regno == -1) || (regno == regi))
228 {
229 *(regp + regi - FP0_REGNUM) =
230 *(long *) &registers[REGISTER_BYTE (regi)];
231 }
232 }
233 }
234 #endif
235
236 \f
237 /* Register that we are able to handle alpha core file formats. */
238
239 static struct core_fns alpha_core_fns =
240 {
241 bfd_target_aout_flavour,
242 fetch_core_registers,
243 NULL
244 };
245
246 void
247 _initialize_core_alpha ()
248 {
249 add_core_fns (&alpha_core_fns);
250 }
This page took 0.051532 seconds and 4 git commands to generate.