Fix bug in sh_elf_reloc_loop
[deliverable/binutils-gdb.git] / gdb / alpha-nat.c
1 /* Low level Alpha interface, for GDB when running native.
2 Copyright 1993, 1995, 1996, 1998 Free Software Foundation, Inc.
3
4 This file is part of GDB.
5
6 This program is free software; you can redistribute it and/or modify
7 it under the terms of the GNU General Public License as published by
8 the Free Software Foundation; either version 2 of the License, or
9 (at your option) any later version.
10
11 This program is distributed in the hope that it will be useful,
12 but WITHOUT ANY WARRANTY; without even the implied warranty of
13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 GNU General Public License for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with this program; if not, write to the Free Software
18 Foundation, Inc., 59 Temple Place - Suite 330,
19 Boston, MA 02111-1307, USA. */
20
21 #include "defs.h"
22 #include "inferior.h"
23 #include "gdbcore.h"
24 #include "target.h"
25 #include <sys/ptrace.h>
26 #ifdef __linux__
27 #include <asm/reg.h>
28 #include <alpha/ptrace.h>
29 #else
30 #include <machine/reg.h>
31 #endif
32 #include <sys/user.h>
33
34 /* Prototypes for local functions. */
35
36 static void fetch_osf_core_registers (char *, unsigned, int, CORE_ADDR);
37 static void fetch_elf_core_registers (char *, unsigned, int, CORE_ADDR);
38
39 /* Size of elements in jmpbuf */
40
41 #define JB_ELEMENT_SIZE 8
42
43 /* The definition for JB_PC in machine/reg.h is wrong.
44 And we can't get at the correct definition in setjmp.h as it is
45 not always available (eg. if _POSIX_SOURCE is defined which is the
46 default). As the defintion is unlikely to change (see comment
47 in <setjmp.h>, define the correct value here. */
48
49 #undef JB_PC
50 #define JB_PC 2
51
52 /* Figure out where the longjmp will land.
53 We expect the first arg to be a pointer to the jmp_buf structure from which
54 we extract the pc (JB_PC) that we will land at. The pc is copied into PC.
55 This routine returns true on success. */
56
57 int
58 get_longjmp_target (CORE_ADDR *pc)
59 {
60 CORE_ADDR jb_addr;
61 char raw_buffer[MAX_REGISTER_RAW_SIZE];
62
63 jb_addr = read_register (A0_REGNUM);
64
65 if (target_read_memory (jb_addr + JB_PC * JB_ELEMENT_SIZE, raw_buffer,
66 sizeof (CORE_ADDR)))
67 return 0;
68
69 *pc = extract_address (raw_buffer, sizeof (CORE_ADDR));
70 return 1;
71 }
72
73 /* Extract the register values out of the core file and store
74 them where `read_register' will find them.
75
76 CORE_REG_SECT points to the register values themselves, read into memory.
77 CORE_REG_SIZE is the size of that area.
78 WHICH says which set of registers we are handling (0 = int, 2 = float
79 on machines where they are discontiguous).
80 REG_ADDR is the offset from u.u_ar0 to the register values relative to
81 core_reg_sect. This is used with old-fashioned core files to
82 locate the registers in a large upage-plus-stack ".reg" section.
83 Original upage address X is at location core_reg_sect+x+reg_addr.
84 */
85
86 static void
87 fetch_osf_core_registers (char *core_reg_sect, unsigned core_reg_size,
88 int which, CORE_ADDR reg_addr)
89 {
90 register int regno;
91 register int addr;
92 int bad_reg = -1;
93
94 /* Table to map a gdb regnum to an index in the core register section.
95 The floating point register values are garbage in OSF/1.2 core files. */
96 static int core_reg_mapping[NUM_REGS] =
97 {
98 #define EFL (EF_SIZE / 8)
99 EF_V0, EF_T0, EF_T1, EF_T2, EF_T3, EF_T4, EF_T5, EF_T6,
100 EF_T7, EF_S0, EF_S1, EF_S2, EF_S3, EF_S4, EF_S5, EF_S6,
101 EF_A0, EF_A1, EF_A2, EF_A3, EF_A4, EF_A5, EF_T8, EF_T9,
102 EF_T10, EF_T11, EF_RA, EF_T12, EF_AT, EF_GP, EF_SP, -1,
103 EFL + 0, EFL + 1, EFL + 2, EFL + 3, EFL + 4, EFL + 5, EFL + 6, EFL + 7,
104 EFL + 8, EFL + 9, EFL + 10, EFL + 11, EFL + 12, EFL + 13, EFL + 14, EFL + 15,
105 EFL + 16, EFL + 17, EFL + 18, EFL + 19, EFL + 20, EFL + 21, EFL + 22, EFL + 23,
106 EFL + 24, EFL + 25, EFL + 26, EFL + 27, EFL + 28, EFL + 29, EFL + 30, EFL + 31,
107 EF_PC, -1
108 };
109 static char zerobuf[MAX_REGISTER_RAW_SIZE] =
110 {0};
111
112 for (regno = 0; regno < NUM_REGS; regno++)
113 {
114 if (CANNOT_FETCH_REGISTER (regno))
115 {
116 supply_register (regno, zerobuf);
117 continue;
118 }
119 addr = 8 * core_reg_mapping[regno];
120 if (addr < 0 || addr >= core_reg_size)
121 {
122 if (bad_reg < 0)
123 bad_reg = regno;
124 }
125 else
126 {
127 supply_register (regno, core_reg_sect + addr);
128 }
129 }
130 if (bad_reg >= 0)
131 {
132 error ("Register %s not found in core file.", REGISTER_NAME (bad_reg));
133 }
134 }
135
136 static void
137 fetch_elf_core_registers (char *core_reg_sect, unsigned core_reg_size,
138 int which, CORE_ADDR reg_addr)
139 {
140 if (core_reg_size < 32 * 8)
141 {
142 error ("Core file register section too small (%u bytes).", core_reg_size);
143 return;
144 }
145
146 if (which == 2)
147 {
148 /* The FPU Registers. */
149 memcpy (&registers[REGISTER_BYTE (FP0_REGNUM)], core_reg_sect, 31 * 8);
150 memset (&registers[REGISTER_BYTE (FP0_REGNUM + 31)], 0, 8);
151 memset (&register_valid[FP0_REGNUM], 1, 32);
152 }
153 else
154 {
155 /* The General Registers. */
156 memcpy (&registers[REGISTER_BYTE (V0_REGNUM)], core_reg_sect, 31 * 8);
157 memcpy (&registers[REGISTER_BYTE (PC_REGNUM)], core_reg_sect + 31 * 8, 8);
158 memset (&registers[REGISTER_BYTE (ZERO_REGNUM)], 0, 8);
159 memset (&register_valid[V0_REGNUM], 1, 32);
160 register_valid[PC_REGNUM] = 1;
161 }
162 }
163
164
165 /* Map gdb internal register number to a ptrace ``address''.
166 These ``addresses'' are defined in <sys/ptrace.h> */
167
168 #define REGISTER_PTRACE_ADDR(regno) \
169 (regno < FP0_REGNUM ? GPR_BASE + (regno) \
170 : regno == PC_REGNUM ? PC \
171 : regno >= FP0_REGNUM ? FPR_BASE + ((regno) - FP0_REGNUM) \
172 : 0)
173
174 /* Return the ptrace ``address'' of register REGNO. */
175
176 CORE_ADDR
177 register_addr (int regno, CORE_ADDR blockend)
178 {
179 return REGISTER_PTRACE_ADDR (regno);
180 }
181
182 int
183 kernel_u_size (void)
184 {
185 return (sizeof (struct user));
186 }
187
188 #if defined(USE_PROC_FS) || defined(HAVE_GREGSET_T)
189 #include <sys/procfs.h>
190
191 /* Prototypes for supply_gregset etc. */
192 #include "gregset.h"
193
194 /*
195 * See the comment in m68k-tdep.c regarding the utility of these functions.
196 */
197
198 void
199 supply_gregset (gregset_t *gregsetp)
200 {
201 register int regi;
202 register long *regp = ALPHA_REGSET_BASE (gregsetp);
203 static char zerobuf[MAX_REGISTER_RAW_SIZE] =
204 {0};
205
206 for (regi = 0; regi < 31; regi++)
207 supply_register (regi, (char *) (regp + regi));
208
209 supply_register (PC_REGNUM, (char *) (regp + 31));
210
211 /* Fill inaccessible registers with zero. */
212 supply_register (ZERO_REGNUM, zerobuf);
213 supply_register (FP_REGNUM, zerobuf);
214 }
215
216 void
217 fill_gregset (gregset_t *gregsetp, int regno)
218 {
219 int regi;
220 register long *regp = ALPHA_REGSET_BASE (gregsetp);
221
222 for (regi = 0; regi < 31; regi++)
223 if ((regno == -1) || (regno == regi))
224 *(regp + regi) = *(long *) &registers[REGISTER_BYTE (regi)];
225
226 if ((regno == -1) || (regno == PC_REGNUM))
227 *(regp + 31) = *(long *) &registers[REGISTER_BYTE (PC_REGNUM)];
228 }
229
230 /*
231 * Now we do the same thing for floating-point registers.
232 * Again, see the comments in m68k-tdep.c.
233 */
234
235 void
236 supply_fpregset (fpregset_t *fpregsetp)
237 {
238 register int regi;
239 register long *regp = ALPHA_REGSET_BASE (fpregsetp);
240
241 for (regi = 0; regi < 32; regi++)
242 supply_register (regi + FP0_REGNUM, (char *) (regp + regi));
243 }
244
245 void
246 fill_fpregset (fpregset_t *fpregsetp, int regno)
247 {
248 int regi;
249 register long *regp = ALPHA_REGSET_BASE (fpregsetp);
250
251 for (regi = FP0_REGNUM; regi < FP0_REGNUM + 32; regi++)
252 {
253 if ((regno == -1) || (regno == regi))
254 {
255 *(regp + regi - FP0_REGNUM) =
256 *(long *) &registers[REGISTER_BYTE (regi)];
257 }
258 }
259 }
260 #endif
261 \f
262
263 /* Register that we are able to handle alpha core file formats. */
264
265 static struct core_fns alpha_osf_core_fns =
266 {
267 /* This really is bfd_target_unknown_flavour. */
268
269 bfd_target_unknown_flavour, /* core_flavour */
270 default_check_format, /* check_format */
271 default_core_sniffer, /* core_sniffer */
272 fetch_osf_core_registers, /* core_read_registers */
273 NULL /* next */
274 };
275
276 static struct core_fns alpha_elf_core_fns =
277 {
278 bfd_target_elf_flavour, /* core_flavour */
279 default_check_format, /* check_format */
280 default_core_sniffer, /* core_sniffer */
281 fetch_elf_core_registers, /* core_read_registers */
282 NULL /* next */
283 };
284
285 void
286 _initialize_core_alpha (void)
287 {
288 add_core_fns (&alpha_osf_core_fns);
289 add_core_fns (&alpha_elf_core_fns);
290 }
This page took 0.036075 seconds and 4 git commands to generate.