* s390-tdep.c (s390_gdbarch_init): Use the default
[deliverable/binutils-gdb.git] / gdb / alpha-nat.c
1 /* Low level Alpha interface, for GDB when running native.
2 Copyright 1993, 1995, 1996, 1998, 1999, 2000, 2001
3 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 2 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program; if not, write to the Free Software
19 Foundation, Inc., 59 Temple Place - Suite 330,
20 Boston, MA 02111-1307, USA. */
21
22 #include "defs.h"
23 #include "inferior.h"
24 #include "gdbcore.h"
25 #include "target.h"
26 #include "regcache.h"
27 #include <sys/ptrace.h>
28 #ifdef __linux__
29 #include <asm/reg.h>
30 #include <alpha/ptrace.h>
31 #else
32 #include <alpha/coreregs.h>
33 #endif
34 #include <sys/user.h>
35
36 /* Prototypes for local functions. */
37
38 static void fetch_osf_core_registers (char *, unsigned, int, CORE_ADDR);
39 static void fetch_elf_core_registers (char *, unsigned, int, CORE_ADDR);
40
41 /* Size of elements in jmpbuf */
42
43 #define JB_ELEMENT_SIZE 8
44
45 /* The definition for JB_PC in machine/reg.h is wrong.
46 And we can't get at the correct definition in setjmp.h as it is
47 not always available (eg. if _POSIX_SOURCE is defined which is the
48 default). As the defintion is unlikely to change (see comment
49 in <setjmp.h>, define the correct value here. */
50
51 #undef JB_PC
52 #define JB_PC 2
53
54 /* Figure out where the longjmp will land.
55 We expect the first arg to be a pointer to the jmp_buf structure from which
56 we extract the pc (JB_PC) that we will land at. The pc is copied into PC.
57 This routine returns true on success. */
58
59 int
60 get_longjmp_target (CORE_ADDR *pc)
61 {
62 CORE_ADDR jb_addr;
63 char raw_buffer[MAX_REGISTER_RAW_SIZE];
64
65 jb_addr = read_register (A0_REGNUM);
66
67 if (target_read_memory (jb_addr + JB_PC * JB_ELEMENT_SIZE, raw_buffer,
68 sizeof (CORE_ADDR)))
69 return 0;
70
71 *pc = extract_address (raw_buffer, sizeof (CORE_ADDR));
72 return 1;
73 }
74
75 /* Extract the register values out of the core file and store
76 them where `read_register' will find them.
77
78 CORE_REG_SECT points to the register values themselves, read into memory.
79 CORE_REG_SIZE is the size of that area.
80 WHICH says which set of registers we are handling (0 = int, 2 = float
81 on machines where they are discontiguous).
82 REG_ADDR is the offset from u.u_ar0 to the register values relative to
83 core_reg_sect. This is used with old-fashioned core files to
84 locate the registers in a large upage-plus-stack ".reg" section.
85 Original upage address X is at location core_reg_sect+x+reg_addr.
86 */
87
88 static void
89 fetch_osf_core_registers (char *core_reg_sect, unsigned core_reg_size,
90 int which, CORE_ADDR reg_addr)
91 {
92 register int regno;
93 register int addr;
94 int bad_reg = -1;
95
96 /* Table to map a gdb regnum to an index in the core register
97 section. The floating point register values are garbage in
98 OSF/1.2 core files. OSF5 uses different names for the register
99 enum list, need to handle two cases. The actual values are the
100 same. */
101 static int core_reg_mapping[NUM_REGS] =
102 {
103 #ifdef NCF_REGS
104 #define EFL NCF_REGS
105 CF_V0, CF_T0, CF_T1, CF_T2, CF_T3, CF_T4, CF_T5, CF_T6,
106 CF_T7, CF_S0, CF_S1, CF_S2, CF_S3, CF_S4, CF_S5, CF_S6,
107 CF_A0, CF_A1, CF_A2, CF_A3, CF_A4, CF_A5, CF_T8, CF_T9,
108 CF_T10, CF_T11, CF_RA, CF_T12, CF_AT, CF_GP, CF_SP, -1,
109 EFL + 0, EFL + 1, EFL + 2, EFL + 3, EFL + 4, EFL + 5, EFL + 6, EFL + 7,
110 EFL + 8, EFL + 9, EFL + 10, EFL + 11, EFL + 12, EFL + 13, EFL + 14, EFL + 15,
111 EFL + 16, EFL + 17, EFL + 18, EFL + 19, EFL + 20, EFL + 21, EFL + 22, EFL + 23,
112 EFL + 24, EFL + 25, EFL + 26, EFL + 27, EFL + 28, EFL + 29, EFL + 30, EFL + 31,
113 CF_PC, -1
114 #else
115 #define EFL (EF_SIZE / 8)
116 EF_V0, EF_T0, EF_T1, EF_T2, EF_T3, EF_T4, EF_T5, EF_T6,
117 EF_T7, EF_S0, EF_S1, EF_S2, EF_S3, EF_S4, EF_S5, EF_S6,
118 EF_A0, EF_A1, EF_A2, EF_A3, EF_A4, EF_A5, EF_T8, EF_T9,
119 EF_T10, EF_T11, EF_RA, EF_T12, EF_AT, EF_GP, EF_SP, -1,
120 EFL + 0, EFL + 1, EFL + 2, EFL + 3, EFL + 4, EFL + 5, EFL + 6, EFL + 7,
121 EFL + 8, EFL + 9, EFL + 10, EFL + 11, EFL + 12, EFL + 13, EFL + 14, EFL + 15,
122 EFL + 16, EFL + 17, EFL + 18, EFL + 19, EFL + 20, EFL + 21, EFL + 22, EFL + 23,
123 EFL + 24, EFL + 25, EFL + 26, EFL + 27, EFL + 28, EFL + 29, EFL + 30, EFL + 31,
124 EF_PC, -1
125 #endif
126 };
127 static char zerobuf[MAX_REGISTER_RAW_SIZE] =
128 {0};
129
130 for (regno = 0; regno < NUM_REGS; regno++)
131 {
132 if (CANNOT_FETCH_REGISTER (regno))
133 {
134 supply_register (regno, zerobuf);
135 continue;
136 }
137 addr = 8 * core_reg_mapping[regno];
138 if (addr < 0 || addr >= core_reg_size)
139 {
140 if (bad_reg < 0)
141 bad_reg = regno;
142 }
143 else
144 {
145 supply_register (regno, core_reg_sect + addr);
146 }
147 }
148 if (bad_reg >= 0)
149 {
150 error ("Register %s not found in core file.", REGISTER_NAME (bad_reg));
151 }
152 }
153
154 static void
155 fetch_elf_core_registers (char *core_reg_sect, unsigned core_reg_size,
156 int which, CORE_ADDR reg_addr)
157 {
158 if (core_reg_size < 32 * 8)
159 {
160 error ("Core file register section too small (%u bytes).", core_reg_size);
161 return;
162 }
163
164 if (which == 2)
165 {
166 /* The FPU Registers. */
167 memcpy (&registers[REGISTER_BYTE (FP0_REGNUM)], core_reg_sect, 31 * 8);
168 memset (&registers[REGISTER_BYTE (FP0_REGNUM + 31)], 0, 8);
169 memset (&register_valid[FP0_REGNUM], 1, 32);
170 }
171 else
172 {
173 /* The General Registers. */
174 memcpy (&registers[REGISTER_BYTE (V0_REGNUM)], core_reg_sect, 31 * 8);
175 memcpy (&registers[REGISTER_BYTE (PC_REGNUM)], core_reg_sect + 31 * 8, 8);
176 memset (&registers[REGISTER_BYTE (ZERO_REGNUM)], 0, 8);
177 memset (&register_valid[V0_REGNUM], 1, 32);
178 register_valid[PC_REGNUM] = 1;
179 }
180 }
181
182
183 /* Map gdb internal register number to a ptrace ``address''.
184 These ``addresses'' are defined in <sys/ptrace.h> */
185
186 #define REGISTER_PTRACE_ADDR(regno) \
187 (regno < FP0_REGNUM ? GPR_BASE + (regno) \
188 : regno == PC_REGNUM ? PC \
189 : regno >= FP0_REGNUM ? FPR_BASE + ((regno) - FP0_REGNUM) \
190 : 0)
191
192 /* Return the ptrace ``address'' of register REGNO. */
193
194 CORE_ADDR
195 register_addr (int regno, CORE_ADDR blockend)
196 {
197 return REGISTER_PTRACE_ADDR (regno);
198 }
199
200 int
201 kernel_u_size (void)
202 {
203 return (sizeof (struct user));
204 }
205
206 #if defined(USE_PROC_FS) || defined(HAVE_GREGSET_T)
207 #include <sys/procfs.h>
208
209 /* Prototypes for supply_gregset etc. */
210 #include "gregset.h"
211
212 /*
213 * See the comment in m68k-tdep.c regarding the utility of these functions.
214 */
215
216 void
217 supply_gregset (gdb_gregset_t *gregsetp)
218 {
219 register int regi;
220 register long *regp = ALPHA_REGSET_BASE (gregsetp);
221 static char zerobuf[MAX_REGISTER_RAW_SIZE] =
222 {0};
223
224 for (regi = 0; regi < 31; regi++)
225 supply_register (regi, (char *) (regp + regi));
226
227 supply_register (PC_REGNUM, (char *) (regp + 31));
228
229 /* Fill inaccessible registers with zero. */
230 supply_register (ZERO_REGNUM, zerobuf);
231 supply_register (FP_REGNUM, zerobuf);
232 }
233
234 void
235 fill_gregset (gdb_gregset_t *gregsetp, int regno)
236 {
237 int regi;
238 register long *regp = ALPHA_REGSET_BASE (gregsetp);
239
240 for (regi = 0; regi < 31; regi++)
241 if ((regno == -1) || (regno == regi))
242 *(regp + regi) = *(long *) &registers[REGISTER_BYTE (regi)];
243
244 if ((regno == -1) || (regno == PC_REGNUM))
245 *(regp + 31) = *(long *) &registers[REGISTER_BYTE (PC_REGNUM)];
246 }
247
248 /*
249 * Now we do the same thing for floating-point registers.
250 * Again, see the comments in m68k-tdep.c.
251 */
252
253 void
254 supply_fpregset (gdb_fpregset_t *fpregsetp)
255 {
256 register int regi;
257 register long *regp = ALPHA_REGSET_BASE (fpregsetp);
258
259 for (regi = 0; regi < 32; regi++)
260 supply_register (regi + FP0_REGNUM, (char *) (regp + regi));
261 }
262
263 void
264 fill_fpregset (gdb_fpregset_t *fpregsetp, int regno)
265 {
266 int regi;
267 register long *regp = ALPHA_REGSET_BASE (fpregsetp);
268
269 for (regi = FP0_REGNUM; regi < FP0_REGNUM + 32; regi++)
270 {
271 if ((regno == -1) || (regno == regi))
272 {
273 *(regp + regi - FP0_REGNUM) =
274 *(long *) &registers[REGISTER_BYTE (regi)];
275 }
276 }
277 }
278 #endif
279 \f
280
281 /* Register that we are able to handle alpha core file formats. */
282
283 static struct core_fns alpha_osf_core_fns =
284 {
285 /* This really is bfd_target_unknown_flavour. */
286
287 bfd_target_unknown_flavour, /* core_flavour */
288 default_check_format, /* check_format */
289 default_core_sniffer, /* core_sniffer */
290 fetch_osf_core_registers, /* core_read_registers */
291 NULL /* next */
292 };
293
294 static struct core_fns alpha_elf_core_fns =
295 {
296 bfd_target_elf_flavour, /* core_flavour */
297 default_check_format, /* check_format */
298 default_core_sniffer, /* core_sniffer */
299 fetch_elf_core_registers, /* core_read_registers */
300 NULL /* next */
301 };
302
303 void
304 _initialize_core_alpha (void)
305 {
306 add_core_fns (&alpha_osf_core_fns);
307 add_core_fns (&alpha_elf_core_fns);
308 }
This page took 0.035596 seconds and 4 git commands to generate.