2003-06-11 Andrew Cagney <cagney@redhat.com>
[deliverable/binutils-gdb.git] / gdb / alpha-tdep.c
1 /* Target-dependent code for the ALPHA architecture, for GDB, the GNU Debugger.
2 Copyright 1993, 1994, 1995, 1996, 1997, 1998, 1999, 2000, 2001, 2002, 2003
3 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 2 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program; if not, write to the Free Software
19 Foundation, Inc., 59 Temple Place - Suite 330,
20 Boston, MA 02111-1307, USA. */
21
22 #include "defs.h"
23 #include "doublest.h"
24 #include "frame.h"
25 #include "frame-unwind.h"
26 #include "frame-base.h"
27 #include "dwarf2-frame.h"
28 #include "inferior.h"
29 #include "symtab.h"
30 #include "value.h"
31 #include "gdbcmd.h"
32 #include "gdbcore.h"
33 #include "dis-asm.h"
34 #include "symfile.h"
35 #include "objfiles.h"
36 #include "gdb_string.h"
37 #include "linespec.h"
38 #include "regcache.h"
39 #include "reggroups.h"
40 #include "arch-utils.h"
41 #include "osabi.h"
42 #include "block.h"
43
44 #include "elf-bfd.h"
45
46 #include "alpha-tdep.h"
47
48 \f
49 static const char *
50 alpha_register_name (int regno)
51 {
52 static const char * const register_names[] =
53 {
54 "v0", "t0", "t1", "t2", "t3", "t4", "t5", "t6",
55 "t7", "s0", "s1", "s2", "s3", "s4", "s5", "fp",
56 "a0", "a1", "a2", "a3", "a4", "a5", "t8", "t9",
57 "t10", "t11", "ra", "t12", "at", "gp", "sp", "zero",
58 "f0", "f1", "f2", "f3", "f4", "f5", "f6", "f7",
59 "f8", "f9", "f10", "f11", "f12", "f13", "f14", "f15",
60 "f16", "f17", "f18", "f19", "f20", "f21", "f22", "f23",
61 "f24", "f25", "f26", "f27", "f28", "f29", "f30", "fpcr",
62 "pc", "", "unique"
63 };
64
65 if (regno < 0)
66 return NULL;
67 if (regno >= (sizeof(register_names) / sizeof(*register_names)))
68 return NULL;
69 return register_names[regno];
70 }
71
72 static int
73 alpha_cannot_fetch_register (int regno)
74 {
75 return regno == ALPHA_ZERO_REGNUM;
76 }
77
78 static int
79 alpha_cannot_store_register (int regno)
80 {
81 return regno == ALPHA_ZERO_REGNUM;
82 }
83
84 static struct type *
85 alpha_register_type (struct gdbarch *gdbarch, int regno)
86 {
87 if (regno == ALPHA_SP_REGNUM || regno == ALPHA_GP_REGNUM)
88 return builtin_type_void_data_ptr;
89 if (regno == ALPHA_PC_REGNUM)
90 return builtin_type_void_func_ptr;
91
92 /* Don't need to worry about little vs big endian until
93 some jerk tries to port to alpha-unicosmk. */
94 if (regno >= ALPHA_FP0_REGNUM && regno < ALPHA_FP0_REGNUM + 31)
95 return builtin_type_ieee_double_little;
96
97 return builtin_type_int64;
98 }
99
100 /* Is REGNUM a member of REGGROUP? */
101
102 static int
103 alpha_register_reggroup_p (struct gdbarch *gdbarch, int regnum,
104 struct reggroup *group)
105 {
106 /* Filter out any registers eliminated, but whose regnum is
107 reserved for backward compatibility, e.g. the vfp. */
108 if (REGISTER_NAME (regnum) == NULL || *REGISTER_NAME (regnum) == '\0')
109 return 0;
110
111 if (group == all_reggroup)
112 return 1;
113
114 /* Zero should not be saved or restored. Technically it is a general
115 register (just as $f31 would be a float if we represented it), but
116 there's no point displaying it during "info regs", so leave it out
117 of all groups except for "all". */
118 if (regnum == ALPHA_ZERO_REGNUM)
119 return 0;
120
121 /* All other registers are saved and restored. */
122 if (group == save_reggroup || group == restore_reggroup)
123 return 1;
124
125 /* All other groups are non-overlapping. */
126
127 /* Since this is really a PALcode memory slot... */
128 if (regnum == ALPHA_UNIQUE_REGNUM)
129 return group == system_reggroup;
130
131 /* Force the FPCR to be considered part of the floating point state. */
132 if (regnum == ALPHA_FPCR_REGNUM)
133 return group == float_reggroup;
134
135 if (regnum >= ALPHA_FP0_REGNUM && regnum < ALPHA_FP0_REGNUM + 31)
136 return group == float_reggroup;
137 else
138 return group == general_reggroup;
139 }
140
141 static int
142 alpha_register_byte (int regno)
143 {
144 return (regno * 8);
145 }
146
147 static int
148 alpha_register_raw_size (int regno)
149 {
150 return 8;
151 }
152
153 static int
154 alpha_register_virtual_size (int regno)
155 {
156 return 8;
157 }
158
159 /* The following represents exactly the conversion performed by
160 the LDS instruction. This applies to both single-precision
161 floating point and 32-bit integers. */
162
163 static void
164 alpha_lds (void *out, const void *in)
165 {
166 ULONGEST mem = extract_unsigned_integer (in, 4);
167 ULONGEST frac = (mem >> 0) & 0x7fffff;
168 ULONGEST sign = (mem >> 31) & 1;
169 ULONGEST exp_msb = (mem >> 30) & 1;
170 ULONGEST exp_low = (mem >> 23) & 0x7f;
171 ULONGEST exp, reg;
172
173 exp = (exp_msb << 10) | exp_low;
174 if (exp_msb)
175 {
176 if (exp_low == 0x7f)
177 exp = 0x7ff;
178 }
179 else
180 {
181 if (exp_low != 0x00)
182 exp |= 0x380;
183 }
184
185 reg = (sign << 63) | (exp << 52) | (frac << 29);
186 store_unsigned_integer (out, 8, reg);
187 }
188
189 /* Similarly, this represents exactly the conversion performed by
190 the STS instruction. */
191
192 static inline void
193 alpha_sts (void *out, const void *in)
194 {
195 ULONGEST reg, mem;
196
197 reg = extract_unsigned_integer (in, 8);
198 mem = ((reg >> 32) & 0xc0000000) | ((reg >> 29) & 0x3fffffff);
199 store_unsigned_integer (out, 4, mem);
200 }
201
202 /* The alpha needs a conversion between register and memory format if the
203 register is a floating point register and memory format is float, as the
204 register format must be double or memory format is an integer with 4
205 bytes or less, as the representation of integers in floating point
206 registers is different. */
207
208 static int
209 alpha_convert_register_p (int regno)
210 {
211 return (regno >= ALPHA_FP0_REGNUM && regno < ALPHA_FP0_REGNUM + 31);
212 }
213
214 static void
215 alpha_register_to_value (int regnum, struct type *valtype, char *in, char *out)
216 {
217 switch (TYPE_LENGTH (valtype))
218 {
219 case 4:
220 alpha_sts (out, in);
221 break;
222 case 8:
223 memcpy (out, in, 8);
224 break;
225 default:
226 error ("Cannot retrieve value from floating point register");
227 }
228 }
229
230 static void
231 alpha_value_to_register (struct type *valtype, int regnum, char *in, char *out)
232 {
233 switch (TYPE_LENGTH (valtype))
234 {
235 case 4:
236 alpha_lds (out, in);
237 break;
238 case 8:
239 memcpy (out, in, 8);
240 break;
241 default:
242 error ("Cannot store value in floating point register");
243 }
244 }
245
246 \f
247 /* The alpha passes the first six arguments in the registers, the rest on
248 the stack. The register arguments are stored in ARG_REG_BUFFER, and
249 then moved into the register file; this simplifies the passing of a
250 large struct which extends from the registers to the stack, plus avoids
251 three ptrace invocations per word.
252
253 We don't bother tracking which register values should go in integer
254 regs or fp regs; we load the same values into both.
255
256 If the called function is returning a structure, the address of the
257 structure to be returned is passed as a hidden first argument. */
258
259 static CORE_ADDR
260 alpha_push_dummy_call (struct gdbarch *gdbarch, CORE_ADDR func_addr,
261 struct regcache *regcache, CORE_ADDR bp_addr,
262 int nargs, struct value **args, CORE_ADDR sp,
263 int struct_return, CORE_ADDR struct_addr)
264 {
265 int i;
266 int accumulate_size = struct_return ? 8 : 0;
267 struct alpha_arg
268 {
269 char *contents;
270 int len;
271 int offset;
272 };
273 struct alpha_arg *alpha_args
274 = (struct alpha_arg *) alloca (nargs * sizeof (struct alpha_arg));
275 register struct alpha_arg *m_arg;
276 char arg_reg_buffer[ALPHA_REGISTER_SIZE * ALPHA_NUM_ARG_REGS];
277 int required_arg_regs;
278
279 /* The ABI places the address of the called function in T12. */
280 regcache_cooked_write_signed (regcache, ALPHA_T12_REGNUM, func_addr);
281
282 /* Set the return address register to point to the entry point
283 of the program, where a breakpoint lies in wait. */
284 regcache_cooked_write_signed (regcache, ALPHA_RA_REGNUM, bp_addr);
285
286 /* Lay out the arguments in memory. */
287 for (i = 0, m_arg = alpha_args; i < nargs; i++, m_arg++)
288 {
289 struct value *arg = args[i];
290 struct type *arg_type = check_typedef (VALUE_TYPE (arg));
291
292 /* Cast argument to long if necessary as the compiler does it too. */
293 switch (TYPE_CODE (arg_type))
294 {
295 case TYPE_CODE_INT:
296 case TYPE_CODE_BOOL:
297 case TYPE_CODE_CHAR:
298 case TYPE_CODE_RANGE:
299 case TYPE_CODE_ENUM:
300 if (TYPE_LENGTH (arg_type) == 4)
301 {
302 /* 32-bit values must be sign-extended to 64 bits
303 even if the base data type is unsigned. */
304 arg_type = builtin_type_int32;
305 arg = value_cast (arg_type, arg);
306 }
307 if (TYPE_LENGTH (arg_type) < ALPHA_REGISTER_SIZE)
308 {
309 arg_type = builtin_type_int64;
310 arg = value_cast (arg_type, arg);
311 }
312 break;
313
314 case TYPE_CODE_FLT:
315 /* "float" arguments loaded in registers must be passed in
316 register format, aka "double". */
317 if (accumulate_size < sizeof (arg_reg_buffer)
318 && TYPE_LENGTH (arg_type) == 4)
319 {
320 arg_type = builtin_type_ieee_double_little;
321 arg = value_cast (arg_type, arg);
322 }
323 /* Tru64 5.1 has a 128-bit long double, and passes this by
324 invisible reference. No one else uses this data type. */
325 else if (TYPE_LENGTH (arg_type) == 16)
326 {
327 /* Allocate aligned storage. */
328 sp = (sp & -16) - 16;
329
330 /* Write the real data into the stack. */
331 write_memory (sp, VALUE_CONTENTS (arg), 16);
332
333 /* Construct the indirection. */
334 arg_type = lookup_pointer_type (arg_type);
335 arg = value_from_pointer (arg_type, sp);
336 }
337 break;
338
339 case TYPE_CODE_COMPLEX:
340 /* ??? The ABI says that complex values are passed as two
341 separate scalar values. This distinction only matters
342 for complex float. However, GCC does not implement this. */
343
344 /* Tru64 5.1 has a 128-bit long double, and passes this by
345 invisible reference. */
346 if (TYPE_LENGTH (arg_type) == 32)
347 {
348 /* Allocate aligned storage. */
349 sp = (sp & -16) - 16;
350
351 /* Write the real data into the stack. */
352 write_memory (sp, VALUE_CONTENTS (arg), 32);
353
354 /* Construct the indirection. */
355 arg_type = lookup_pointer_type (arg_type);
356 arg = value_from_pointer (arg_type, sp);
357 }
358 break;
359
360 default:
361 break;
362 }
363 m_arg->len = TYPE_LENGTH (arg_type);
364 m_arg->offset = accumulate_size;
365 accumulate_size = (accumulate_size + m_arg->len + 7) & ~7;
366 m_arg->contents = VALUE_CONTENTS (arg);
367 }
368
369 /* Determine required argument register loads, loading an argument register
370 is expensive as it uses three ptrace calls. */
371 required_arg_regs = accumulate_size / 8;
372 if (required_arg_regs > ALPHA_NUM_ARG_REGS)
373 required_arg_regs = ALPHA_NUM_ARG_REGS;
374
375 /* Make room for the arguments on the stack. */
376 if (accumulate_size < sizeof(arg_reg_buffer))
377 accumulate_size = 0;
378 else
379 accumulate_size -= sizeof(arg_reg_buffer);
380 sp -= accumulate_size;
381
382 /* Keep sp aligned to a multiple of 16 as the ABI requires. */
383 sp &= ~15;
384
385 /* `Push' arguments on the stack. */
386 for (i = nargs; m_arg--, --i >= 0;)
387 {
388 char *contents = m_arg->contents;
389 int offset = m_arg->offset;
390 int len = m_arg->len;
391
392 /* Copy the bytes destined for registers into arg_reg_buffer. */
393 if (offset < sizeof(arg_reg_buffer))
394 {
395 if (offset + len <= sizeof(arg_reg_buffer))
396 {
397 memcpy (arg_reg_buffer + offset, contents, len);
398 continue;
399 }
400 else
401 {
402 int tlen = sizeof(arg_reg_buffer) - offset;
403 memcpy (arg_reg_buffer + offset, contents, tlen);
404 offset += tlen;
405 contents += tlen;
406 len -= tlen;
407 }
408 }
409
410 /* Everything else goes to the stack. */
411 write_memory (sp + offset - sizeof(arg_reg_buffer), contents, len);
412 }
413 if (struct_return)
414 store_unsigned_integer (arg_reg_buffer, ALPHA_REGISTER_SIZE, struct_addr);
415
416 /* Load the argument registers. */
417 for (i = 0; i < required_arg_regs; i++)
418 {
419 regcache_cooked_write (regcache, ALPHA_A0_REGNUM + i,
420 arg_reg_buffer + i*ALPHA_REGISTER_SIZE);
421 regcache_cooked_write (regcache, ALPHA_FPA0_REGNUM + i,
422 arg_reg_buffer + i*ALPHA_REGISTER_SIZE);
423 }
424
425 /* Finally, update the stack pointer. */
426 regcache_cooked_write_signed (regcache, ALPHA_SP_REGNUM, sp);
427
428 return sp;
429 }
430
431 /* Extract from REGCACHE the value about to be returned from a function
432 and copy it into VALBUF. */
433
434 static void
435 alpha_extract_return_value (struct type *valtype, struct regcache *regcache,
436 void *valbuf)
437 {
438 int length = TYPE_LENGTH (valtype);
439 char raw_buffer[ALPHA_REGISTER_SIZE];
440 ULONGEST l;
441
442 switch (TYPE_CODE (valtype))
443 {
444 case TYPE_CODE_FLT:
445 switch (length)
446 {
447 case 4:
448 regcache_cooked_read (regcache, ALPHA_FP0_REGNUM, raw_buffer);
449 alpha_sts (valbuf, raw_buffer);
450 break;
451
452 case 8:
453 regcache_cooked_read (regcache, ALPHA_FP0_REGNUM, valbuf);
454 break;
455
456 case 16:
457 regcache_cooked_read_unsigned (regcache, ALPHA_V0_REGNUM, &l);
458 read_memory (l, valbuf, 16);
459 break;
460
461 default:
462 internal_error (__FILE__, __LINE__, "unknown floating point width");
463 }
464 break;
465
466 case TYPE_CODE_COMPLEX:
467 switch (length)
468 {
469 case 8:
470 /* ??? This isn't correct wrt the ABI, but it's what GCC does. */
471 regcache_cooked_read (regcache, ALPHA_FP0_REGNUM, valbuf);
472 break;
473
474 case 16:
475 regcache_cooked_read (regcache, ALPHA_FP0_REGNUM, valbuf);
476 regcache_cooked_read (regcache, ALPHA_FP0_REGNUM+1,
477 (char *)valbuf + 8);
478 break;
479
480 case 32:
481 regcache_cooked_read_signed (regcache, ALPHA_V0_REGNUM, &l);
482 read_memory (l, valbuf, 32);
483 break;
484
485 default:
486 internal_error (__FILE__, __LINE__, "unknown floating point width");
487 }
488 break;
489
490 default:
491 /* Assume everything else degenerates to an integer. */
492 regcache_cooked_read_unsigned (regcache, ALPHA_V0_REGNUM, &l);
493 store_unsigned_integer (valbuf, length, l);
494 break;
495 }
496 }
497
498 /* Extract from REGCACHE the address of a structure about to be returned
499 from a function. */
500
501 static CORE_ADDR
502 alpha_extract_struct_value_address (struct regcache *regcache)
503 {
504 ULONGEST addr;
505 regcache_cooked_read_unsigned (regcache, ALPHA_V0_REGNUM, &addr);
506 return addr;
507 }
508
509 /* Insert the given value into REGCACHE as if it was being
510 returned by a function. */
511
512 static void
513 alpha_store_return_value (struct type *valtype, struct regcache *regcache,
514 const void *valbuf)
515 {
516 int length = TYPE_LENGTH (valtype);
517 char raw_buffer[ALPHA_REGISTER_SIZE];
518 ULONGEST l;
519
520 switch (TYPE_CODE (valtype))
521 {
522 case TYPE_CODE_FLT:
523 switch (length)
524 {
525 case 4:
526 alpha_lds (raw_buffer, valbuf);
527 regcache_cooked_write (regcache, ALPHA_FP0_REGNUM, raw_buffer);
528 break;
529
530 case 8:
531 regcache_cooked_write (regcache, ALPHA_FP0_REGNUM, valbuf);
532 break;
533
534 case 16:
535 /* FIXME: 128-bit long doubles are returned like structures:
536 by writing into indirect storage provided by the caller
537 as the first argument. */
538 error ("Cannot set a 128-bit long double return value.");
539
540 default:
541 internal_error (__FILE__, __LINE__, "unknown floating point width");
542 }
543 break;
544
545 case TYPE_CODE_COMPLEX:
546 switch (length)
547 {
548 case 8:
549 /* ??? This isn't correct wrt the ABI, but it's what GCC does. */
550 regcache_cooked_write (regcache, ALPHA_FP0_REGNUM, valbuf);
551 break;
552
553 case 16:
554 regcache_cooked_write (regcache, ALPHA_FP0_REGNUM, valbuf);
555 regcache_cooked_write (regcache, ALPHA_FP0_REGNUM+1,
556 (const char *)valbuf + 8);
557 break;
558
559 case 32:
560 /* FIXME: 128-bit long doubles are returned like structures:
561 by writing into indirect storage provided by the caller
562 as the first argument. */
563 error ("Cannot set a 128-bit long double return value.");
564
565 default:
566 internal_error (__FILE__, __LINE__, "unknown floating point width");
567 }
568 break;
569
570 default:
571 /* Assume everything else degenerates to an integer. */
572 /* 32-bit values must be sign-extended to 64 bits
573 even if the base data type is unsigned. */
574 if (length == 4)
575 valtype = builtin_type_int32;
576 l = unpack_long (valtype, valbuf);
577 regcache_cooked_write_unsigned (regcache, ALPHA_V0_REGNUM, l);
578 break;
579 }
580 }
581
582 static int
583 alpha_use_struct_convention (int gcc_p, struct type *type)
584 {
585 /* Structures are returned by ref in extra arg0. */
586 return 1;
587 }
588
589 \f
590 static const unsigned char *
591 alpha_breakpoint_from_pc (CORE_ADDR *pcptr, int *lenptr)
592 {
593 static const unsigned char alpha_breakpoint[] =
594 { 0x80, 0, 0, 0 }; /* call_pal bpt */
595
596 *lenptr = sizeof(alpha_breakpoint);
597 return (alpha_breakpoint);
598 }
599
600 \f
601 /* This returns the PC of the first insn after the prologue.
602 If we can't find the prologue, then return 0. */
603
604 CORE_ADDR
605 alpha_after_prologue (CORE_ADDR pc)
606 {
607 struct symtab_and_line sal;
608 CORE_ADDR func_addr, func_end;
609
610 if (!find_pc_partial_function (pc, NULL, &func_addr, &func_end))
611 return 0;
612
613 sal = find_pc_line (func_addr, 0);
614 if (sal.end < func_end)
615 return sal.end;
616
617 /* The line after the prologue is after the end of the function. In this
618 case, tell the caller to find the prologue the hard way. */
619 return 0;
620 }
621
622 /* Read an instruction from memory at PC, looking through breakpoints. */
623
624 unsigned int
625 alpha_read_insn (CORE_ADDR pc)
626 {
627 char buf[4];
628 int status;
629
630 status = read_memory_nobpt (pc, buf, 4);
631 if (status)
632 memory_error (status, pc);
633 return extract_unsigned_integer (buf, 4);
634 }
635
636 /* To skip prologues, I use this predicate. Returns either PC itself
637 if the code at PC does not look like a function prologue; otherwise
638 returns an address that (if we're lucky) follows the prologue. If
639 LENIENT, then we must skip everything which is involved in setting
640 up the frame (it's OK to skip more, just so long as we don't skip
641 anything which might clobber the registers which are being saved. */
642
643 static CORE_ADDR
644 alpha_skip_prologue (CORE_ADDR pc)
645 {
646 unsigned long inst;
647 int offset;
648 CORE_ADDR post_prologue_pc;
649 char buf[4];
650
651 /* Silently return the unaltered pc upon memory errors.
652 This could happen on OSF/1 if decode_line_1 tries to skip the
653 prologue for quickstarted shared library functions when the
654 shared library is not yet mapped in.
655 Reading target memory is slow over serial lines, so we perform
656 this check only if the target has shared libraries (which all
657 Alpha targets do). */
658 if (target_read_memory (pc, buf, 4))
659 return pc;
660
661 /* See if we can determine the end of the prologue via the symbol table.
662 If so, then return either PC, or the PC after the prologue, whichever
663 is greater. */
664
665 post_prologue_pc = alpha_after_prologue (pc);
666 if (post_prologue_pc != 0)
667 return max (pc, post_prologue_pc);
668
669 /* Can't determine prologue from the symbol table, need to examine
670 instructions. */
671
672 /* Skip the typical prologue instructions. These are the stack adjustment
673 instruction and the instructions that save registers on the stack
674 or in the gcc frame. */
675 for (offset = 0; offset < 100; offset += 4)
676 {
677 inst = alpha_read_insn (pc + offset);
678
679 if ((inst & 0xffff0000) == 0x27bb0000) /* ldah $gp,n($t12) */
680 continue;
681 if ((inst & 0xffff0000) == 0x23bd0000) /* lda $gp,n($gp) */
682 continue;
683 if ((inst & 0xffff0000) == 0x23de0000) /* lda $sp,n($sp) */
684 continue;
685 if ((inst & 0xffe01fff) == 0x43c0153e) /* subq $sp,n,$sp */
686 continue;
687
688 if (((inst & 0xfc1f0000) == 0xb41e0000 /* stq reg,n($sp) */
689 || (inst & 0xfc1f0000) == 0x9c1e0000) /* stt reg,n($sp) */
690 && (inst & 0x03e00000) != 0x03e00000) /* reg != $zero */
691 continue;
692
693 if (inst == 0x47de040f) /* bis sp,sp,fp */
694 continue;
695 if (inst == 0x47fe040f) /* bis zero,sp,fp */
696 continue;
697
698 break;
699 }
700 return pc + offset;
701 }
702
703 \f
704 /* Figure out where the longjmp will land.
705 We expect the first arg to be a pointer to the jmp_buf structure from
706 which we extract the PC (JB_PC) that we will land at. The PC is copied
707 into the "pc". This routine returns true on success. */
708
709 static int
710 alpha_get_longjmp_target (CORE_ADDR *pc)
711 {
712 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
713 CORE_ADDR jb_addr;
714 char raw_buffer[ALPHA_REGISTER_SIZE];
715
716 jb_addr = read_register (ALPHA_A0_REGNUM);
717
718 if (target_read_memory (jb_addr + (tdep->jb_pc * tdep->jb_elt_size),
719 raw_buffer, tdep->jb_elt_size))
720 return 0;
721
722 *pc = extract_unsigned_integer (raw_buffer, tdep->jb_elt_size);
723 return 1;
724 }
725
726 \f
727 /* Frame unwinder for signal trampolines. We use alpha tdep bits that
728 describe the location and shape of the sigcontext structure. After
729 that, all registers are in memory, so it's easy. */
730 /* ??? Shouldn't we be able to do this generically, rather than with
731 OSABI data specific to Alpha? */
732
733 struct alpha_sigtramp_unwind_cache
734 {
735 CORE_ADDR sigcontext_addr;
736 };
737
738 static struct alpha_sigtramp_unwind_cache *
739 alpha_sigtramp_frame_unwind_cache (struct frame_info *next_frame,
740 void **this_prologue_cache)
741 {
742 struct alpha_sigtramp_unwind_cache *info;
743 struct gdbarch_tdep *tdep;
744
745 if (*this_prologue_cache)
746 return *this_prologue_cache;
747
748 info = FRAME_OBSTACK_ZALLOC (struct alpha_sigtramp_unwind_cache);
749 *this_prologue_cache = info;
750
751 tdep = gdbarch_tdep (current_gdbarch);
752 info->sigcontext_addr = tdep->sigcontext_addr (next_frame);
753
754 return info;
755 }
756
757 /* Return the address of REGNO in a sigtramp frame. Since this is all
758 arithmetic, it doesn't seem worthwhile to cache it. */
759
760 #ifndef SIGFRAME_PC_OFF
761 #define SIGFRAME_PC_OFF (2 * 8)
762 #define SIGFRAME_REGSAVE_OFF (4 * 8)
763 #define SIGFRAME_FPREGSAVE_OFF (SIGFRAME_REGSAVE_OFF + 32 * 8 + 8)
764 #endif
765
766 static CORE_ADDR
767 alpha_sigtramp_register_address (CORE_ADDR sigcontext_addr, unsigned int regno)
768 {
769 if (regno < 32)
770 return sigcontext_addr + SIGFRAME_REGSAVE_OFF + regno * 8;
771 if (regno >= ALPHA_FP0_REGNUM && regno < ALPHA_FP0_REGNUM + 32)
772 return sigcontext_addr + SIGFRAME_FPREGSAVE_OFF + regno * 8;
773 if (regno == ALPHA_PC_REGNUM)
774 return sigcontext_addr + SIGFRAME_PC_OFF;
775
776 return 0;
777 }
778
779 /* Given a GDB frame, determine the address of the calling function's
780 frame. This will be used to create a new GDB frame struct. */
781
782 static void
783 alpha_sigtramp_frame_this_id (struct frame_info *next_frame,
784 void **this_prologue_cache,
785 struct frame_id *this_id)
786 {
787 struct alpha_sigtramp_unwind_cache *info
788 = alpha_sigtramp_frame_unwind_cache (next_frame, this_prologue_cache);
789 struct gdbarch_tdep *tdep;
790 CORE_ADDR stack_addr, code_addr;
791
792 /* If the OSABI couldn't locate the sigcontext, give up. */
793 if (info->sigcontext_addr == 0)
794 return;
795
796 /* If we have dynamic signal trampolines, find their start.
797 If we do not, then we must assume there is a symbol record
798 that can provide the start address. */
799 tdep = gdbarch_tdep (current_gdbarch);
800 if (tdep->dynamic_sigtramp_offset)
801 {
802 int offset;
803 code_addr = frame_pc_unwind (next_frame);
804 offset = tdep->dynamic_sigtramp_offset (code_addr);
805 if (offset >= 0)
806 code_addr -= offset;
807 else
808 code_addr = 0;
809 }
810 else
811 code_addr = frame_func_unwind (next_frame);
812
813 /* The stack address is trivially read from the sigcontext. */
814 stack_addr = alpha_sigtramp_register_address (info->sigcontext_addr,
815 ALPHA_SP_REGNUM);
816 stack_addr = get_frame_memory_unsigned (next_frame, stack_addr,
817 ALPHA_REGISTER_SIZE);
818
819 *this_id = frame_id_build (stack_addr, code_addr);
820 }
821
822 /* Retrieve the value of REGNUM in FRAME. Don't give up! */
823
824 static void
825 alpha_sigtramp_frame_prev_register (struct frame_info *next_frame,
826 void **this_prologue_cache,
827 int regnum, int *optimizedp,
828 enum lval_type *lvalp, CORE_ADDR *addrp,
829 int *realnump, void *bufferp)
830 {
831 struct alpha_sigtramp_unwind_cache *info
832 = alpha_sigtramp_frame_unwind_cache (next_frame, this_prologue_cache);
833 CORE_ADDR addr;
834
835 if (info->sigcontext_addr != 0)
836 {
837 /* All integer and fp registers are stored in memory. */
838 addr = alpha_sigtramp_register_address (info->sigcontext_addr, regnum);
839 if (addr != 0)
840 {
841 *optimizedp = 0;
842 *lvalp = lval_memory;
843 *addrp = addr;
844 *realnump = -1;
845 if (bufferp != NULL)
846 get_frame_memory (next_frame, addr, bufferp, ALPHA_REGISTER_SIZE);
847 return;
848 }
849 }
850
851 /* This extra register may actually be in the sigcontext, but our
852 current description of it in alpha_sigtramp_frame_unwind_cache
853 doesn't include it. Too bad. Fall back on whatever's in the
854 outer frame. */
855 frame_register (next_frame, regnum, optimizedp, lvalp, addrp,
856 realnump, bufferp);
857 }
858
859 static const struct frame_unwind alpha_sigtramp_frame_unwind = {
860 SIGTRAMP_FRAME,
861 alpha_sigtramp_frame_this_id,
862 alpha_sigtramp_frame_prev_register
863 };
864
865 static const struct frame_unwind *
866 alpha_sigtramp_frame_p (CORE_ADDR pc)
867 {
868 char *name;
869
870 /* We shouldn't even bother to try if the OSABI didn't register
871 a sigcontext_addr handler. */
872 if (!gdbarch_tdep (current_gdbarch)->sigcontext_addr)
873 return NULL;
874
875 /* Otherwise we should be in a signal frame. */
876 find_pc_partial_function (pc, &name, NULL, NULL);
877 if (PC_IN_SIGTRAMP (pc, name))
878 return &alpha_sigtramp_frame_unwind;
879
880 return NULL;
881 }
882 \f
883 /* Fallback alpha frame unwinder. Uses instruction scanning and knows
884 something about the traditional layout of alpha stack frames. */
885
886 struct alpha_heuristic_unwind_cache
887 {
888 CORE_ADDR *saved_regs;
889 CORE_ADDR vfp;
890 CORE_ADDR start_pc;
891 int return_reg;
892 };
893
894 /* Heuristic_proc_start may hunt through the text section for a long
895 time across a 2400 baud serial line. Allows the user to limit this
896 search. */
897 static unsigned int heuristic_fence_post = 0;
898
899 /* Attempt to locate the start of the function containing PC. We assume that
900 the previous function ends with an about_to_return insn. Not foolproof by
901 any means, since gcc is happy to put the epilogue in the middle of a
902 function. But we're guessing anyway... */
903
904 static CORE_ADDR
905 alpha_heuristic_proc_start (CORE_ADDR pc)
906 {
907 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
908 CORE_ADDR last_non_nop = pc;
909 CORE_ADDR fence = pc - heuristic_fence_post;
910 CORE_ADDR orig_pc = pc;
911 CORE_ADDR func;
912
913 if (pc == 0)
914 return 0;
915
916 /* First see if we can find the start of the function from minimal
917 symbol information. This can succeed with a binary that doesn't
918 have debug info, but hasn't been stripped. */
919 func = get_pc_function_start (pc);
920 if (func)
921 return func;
922
923 if (heuristic_fence_post == UINT_MAX
924 || fence < tdep->vm_min_address)
925 fence = tdep->vm_min_address;
926
927 /* Search back for previous return; also stop at a 0, which might be
928 seen for instance before the start of a code section. Don't include
929 nops, since this usually indicates padding between functions. */
930 for (pc -= 4; pc >= fence; pc -= 4)
931 {
932 unsigned int insn = alpha_read_insn (pc);
933 switch (insn)
934 {
935 case 0: /* invalid insn */
936 case 0x6bfa8001: /* ret $31,($26),1 */
937 return last_non_nop;
938
939 case 0x2ffe0000: /* unop: ldq_u $31,0($30) */
940 case 0x47ff041f: /* nop: bis $31,$31,$31 */
941 break;
942
943 default:
944 last_non_nop = pc;
945 break;
946 }
947 }
948
949 /* It's not clear to me why we reach this point when stopping quietly,
950 but with this test, at least we don't print out warnings for every
951 child forked (eg, on decstation). 22apr93 rich@cygnus.com. */
952 if (stop_soon == NO_STOP_QUIETLY)
953 {
954 static int blurb_printed = 0;
955
956 if (fence == tdep->vm_min_address)
957 warning ("Hit beginning of text section without finding");
958 else
959 warning ("Hit heuristic-fence-post without finding");
960 warning ("enclosing function for address 0x%s", paddr_nz (orig_pc));
961
962 if (!blurb_printed)
963 {
964 printf_filtered ("\
965 This warning occurs if you are debugging a function without any symbols\n\
966 (for example, in a stripped executable). In that case, you may wish to\n\
967 increase the size of the search with the `set heuristic-fence-post' command.\n\
968 \n\
969 Otherwise, you told GDB there was a function where there isn't one, or\n\
970 (more likely) you have encountered a bug in GDB.\n");
971 blurb_printed = 1;
972 }
973 }
974
975 return 0;
976 }
977
978 static struct alpha_heuristic_unwind_cache *
979 alpha_heuristic_frame_unwind_cache (struct frame_info *next_frame,
980 void **this_prologue_cache,
981 CORE_ADDR start_pc)
982 {
983 struct alpha_heuristic_unwind_cache *info;
984 ULONGEST val;
985 CORE_ADDR limit_pc, cur_pc;
986 int frame_reg, frame_size, return_reg, reg;
987
988 if (*this_prologue_cache)
989 return *this_prologue_cache;
990
991 info = FRAME_OBSTACK_ZALLOC (struct alpha_heuristic_unwind_cache);
992 *this_prologue_cache = info;
993 info->saved_regs = frame_obstack_zalloc (SIZEOF_FRAME_SAVED_REGS);
994
995 limit_pc = frame_pc_unwind (next_frame);
996 if (start_pc == 0)
997 start_pc = alpha_heuristic_proc_start (limit_pc);
998 info->start_pc = start_pc;
999
1000 frame_reg = ALPHA_SP_REGNUM;
1001 frame_size = 0;
1002 return_reg = -1;
1003
1004 /* If we've identified a likely place to start, do code scanning. */
1005 if (start_pc != 0)
1006 {
1007 /* Limit the forward search to 50 instructions. */
1008 if (start_pc + 200 < limit_pc)
1009 limit_pc = start_pc + 200;
1010
1011 for (cur_pc = start_pc; cur_pc < limit_pc; cur_pc += 4)
1012 {
1013 unsigned int word = alpha_read_insn (cur_pc);
1014
1015 if ((word & 0xffff0000) == 0x23de0000) /* lda $sp,n($sp) */
1016 {
1017 if (word & 0x8000)
1018 {
1019 /* Consider only the first stack allocation instruction
1020 to contain the static size of the frame. */
1021 if (frame_size == 0)
1022 frame_size = (-word) & 0xffff;
1023 }
1024 else
1025 {
1026 /* Exit loop if a positive stack adjustment is found, which
1027 usually means that the stack cleanup code in the function
1028 epilogue is reached. */
1029 break;
1030 }
1031 }
1032 else if ((word & 0xfc1f0000) == 0xb41e0000) /* stq reg,n($sp) */
1033 {
1034 reg = (word & 0x03e00000) >> 21;
1035
1036 if (reg == 31)
1037 continue;
1038
1039 /* Do not compute the address where the register was saved yet,
1040 because we don't know yet if the offset will need to be
1041 relative to $sp or $fp (we can not compute the address
1042 relative to $sp if $sp is updated during the execution of
1043 the current subroutine, for instance when doing some alloca).
1044 So just store the offset for the moment, and compute the
1045 address later when we know whether this frame has a frame
1046 pointer or not. */
1047 /* Hack: temporarily add one, so that the offset is non-zero
1048 and we can tell which registers have save offsets below. */
1049 info->saved_regs[reg] = (word & 0xffff) + 1;
1050
1051 /* Starting with OSF/1-3.2C, the system libraries are shipped
1052 without local symbols, but they still contain procedure
1053 descriptors without a symbol reference. GDB is currently
1054 unable to find these procedure descriptors and uses
1055 heuristic_proc_desc instead.
1056 As some low level compiler support routines (__div*, __add*)
1057 use a non-standard return address register, we have to
1058 add some heuristics to determine the return address register,
1059 or stepping over these routines will fail.
1060 Usually the return address register is the first register
1061 saved on the stack, but assembler optimization might
1062 rearrange the register saves.
1063 So we recognize only a few registers (t7, t9, ra) within
1064 the procedure prologue as valid return address registers.
1065 If we encounter a return instruction, we extract the
1066 the return address register from it.
1067
1068 FIXME: Rewriting GDB to access the procedure descriptors,
1069 e.g. via the minimal symbol table, might obviate this hack. */
1070 if (return_reg == -1
1071 && cur_pc < (start_pc + 80)
1072 && (reg == ALPHA_T7_REGNUM
1073 || reg == ALPHA_T9_REGNUM
1074 || reg == ALPHA_RA_REGNUM))
1075 return_reg = reg;
1076 }
1077 else if ((word & 0xffe0ffff) == 0x6be08001) /* ret zero,reg,1 */
1078 return_reg = (word >> 16) & 0x1f;
1079 else if (word == 0x47de040f) /* bis sp,sp,fp */
1080 frame_reg = ALPHA_GCC_FP_REGNUM;
1081 else if (word == 0x47fe040f) /* bis zero,sp,fp */
1082 frame_reg = ALPHA_GCC_FP_REGNUM;
1083 }
1084
1085 /* If we haven't found a valid return address register yet, keep
1086 searching in the procedure prologue. */
1087 if (return_reg == -1)
1088 {
1089 while (cur_pc < (limit_pc + 80) && cur_pc < (start_pc + 80))
1090 {
1091 unsigned int word = alpha_read_insn (cur_pc);
1092
1093 if ((word & 0xfc1f0000) == 0xb41e0000) /* stq reg,n($sp) */
1094 {
1095 reg = (word & 0x03e00000) >> 21;
1096 if (reg == ALPHA_T7_REGNUM
1097 || reg == ALPHA_T9_REGNUM
1098 || reg == ALPHA_RA_REGNUM)
1099 {
1100 return_reg = reg;
1101 break;
1102 }
1103 }
1104 else if ((word & 0xffe0ffff) == 0x6be08001) /* ret zero,reg,1 */
1105 {
1106 return_reg = (word >> 16) & 0x1f;
1107 break;
1108 }
1109
1110 cur_pc += 4;
1111 }
1112 }
1113 }
1114
1115 /* Failing that, do default to the customary RA. */
1116 if (return_reg == -1)
1117 return_reg = ALPHA_RA_REGNUM;
1118 info->return_reg = return_reg;
1119
1120 frame_unwind_unsigned_register (next_frame, frame_reg, &val);
1121 info->vfp = val + frame_size;
1122
1123 /* Convert offsets to absolute addresses. See above about adding
1124 one to the offsets to make all detected offsets non-zero. */
1125 for (reg = 0; reg < ALPHA_NUM_REGS; ++reg)
1126 if (info->saved_regs[reg])
1127 info->saved_regs[reg] += val - 1;
1128
1129 return info;
1130 }
1131
1132 /* Given a GDB frame, determine the address of the calling function's
1133 frame. This will be used to create a new GDB frame struct. */
1134
1135 static void
1136 alpha_heuristic_frame_this_id (struct frame_info *next_frame,
1137 void **this_prologue_cache,
1138 struct frame_id *this_id)
1139 {
1140 struct alpha_heuristic_unwind_cache *info
1141 = alpha_heuristic_frame_unwind_cache (next_frame, this_prologue_cache, 0);
1142
1143 /* This is meant to halt the backtrace at "_start". Make sure we
1144 don't halt it at a generic dummy frame. */
1145 if (inside_entry_file (info->start_pc))
1146 return;
1147
1148 *this_id = frame_id_build (info->vfp, info->start_pc);
1149 }
1150
1151 /* Retrieve the value of REGNUM in FRAME. Don't give up! */
1152
1153 static void
1154 alpha_heuristic_frame_prev_register (struct frame_info *next_frame,
1155 void **this_prologue_cache,
1156 int regnum, int *optimizedp,
1157 enum lval_type *lvalp, CORE_ADDR *addrp,
1158 int *realnump, void *bufferp)
1159 {
1160 struct alpha_heuristic_unwind_cache *info
1161 = alpha_heuristic_frame_unwind_cache (next_frame, this_prologue_cache, 0);
1162
1163 /* The PC of the previous frame is stored in the link register of
1164 the current frame. Frob regnum so that we pull the value from
1165 the correct place. */
1166 if (regnum == ALPHA_PC_REGNUM)
1167 regnum = info->return_reg;
1168
1169 /* For all registers known to be saved in the current frame,
1170 do the obvious and pull the value out. */
1171 if (info->saved_regs[regnum])
1172 {
1173 *optimizedp = 0;
1174 *lvalp = lval_memory;
1175 *addrp = info->saved_regs[regnum];
1176 *realnump = -1;
1177 if (bufferp != NULL)
1178 get_frame_memory (next_frame, *addrp, bufferp, ALPHA_REGISTER_SIZE);
1179 return;
1180 }
1181
1182 /* The stack pointer of the previous frame is computed by popping
1183 the current stack frame. */
1184 if (regnum == ALPHA_SP_REGNUM)
1185 {
1186 *optimizedp = 0;
1187 *lvalp = not_lval;
1188 *addrp = 0;
1189 *realnump = -1;
1190 if (bufferp != NULL)
1191 store_unsigned_integer (bufferp, ALPHA_REGISTER_SIZE, info->vfp);
1192 return;
1193 }
1194
1195 /* Otherwise assume the next frame has the same register value. */
1196 frame_register (next_frame, regnum, optimizedp, lvalp, addrp,
1197 realnump, bufferp);
1198 }
1199
1200 static const struct frame_unwind alpha_heuristic_frame_unwind = {
1201 NORMAL_FRAME,
1202 alpha_heuristic_frame_this_id,
1203 alpha_heuristic_frame_prev_register
1204 };
1205
1206 static const struct frame_unwind *
1207 alpha_heuristic_frame_p (CORE_ADDR pc)
1208 {
1209 return &alpha_heuristic_frame_unwind;
1210 }
1211
1212 static CORE_ADDR
1213 alpha_heuristic_frame_base_address (struct frame_info *next_frame,
1214 void **this_prologue_cache)
1215 {
1216 struct alpha_heuristic_unwind_cache *info
1217 = alpha_heuristic_frame_unwind_cache (next_frame, this_prologue_cache, 0);
1218
1219 return info->vfp;
1220 }
1221
1222 static const struct frame_base alpha_heuristic_frame_base = {
1223 &alpha_heuristic_frame_unwind,
1224 alpha_heuristic_frame_base_address,
1225 alpha_heuristic_frame_base_address,
1226 alpha_heuristic_frame_base_address
1227 };
1228
1229 /* Just like reinit_frame_cache, but with the right arguments to be
1230 callable as an sfunc. Used by the "set heuristic-fence-post" command. */
1231
1232 static void
1233 reinit_frame_cache_sfunc (char *args, int from_tty, struct cmd_list_element *c)
1234 {
1235 reinit_frame_cache ();
1236 }
1237
1238 \f
1239 /* ALPHA stack frames are almost impenetrable. When execution stops,
1240 we basically have to look at symbol information for the function
1241 that we stopped in, which tells us *which* register (if any) is
1242 the base of the frame pointer, and what offset from that register
1243 the frame itself is at.
1244
1245 This presents a problem when trying to examine a stack in memory
1246 (that isn't executing at the moment), using the "frame" command. We
1247 don't have a PC, nor do we have any registers except SP.
1248
1249 This routine takes two arguments, SP and PC, and tries to make the
1250 cached frames look as if these two arguments defined a frame on the
1251 cache. This allows the rest of info frame to extract the important
1252 arguments without difficulty. */
1253
1254 struct frame_info *
1255 alpha_setup_arbitrary_frame (int argc, CORE_ADDR *argv)
1256 {
1257 if (argc != 2)
1258 error ("ALPHA frame specifications require two arguments: sp and pc");
1259
1260 return create_new_frame (argv[0], argv[1]);
1261 }
1262
1263 /* Assuming NEXT_FRAME->prev is a dummy, return the frame ID of that
1264 dummy frame. The frame ID's base needs to match the TOS value
1265 saved by save_dummy_frame_tos(), and the PC match the dummy frame's
1266 breakpoint. */
1267
1268 static struct frame_id
1269 alpha_unwind_dummy_id (struct gdbarch *gdbarch, struct frame_info *next_frame)
1270 {
1271 ULONGEST base;
1272 frame_unwind_unsigned_register (next_frame, ALPHA_SP_REGNUM, &base);
1273 return frame_id_build (base, frame_pc_unwind (next_frame));
1274 }
1275
1276 static CORE_ADDR
1277 alpha_unwind_pc (struct gdbarch *gdbarch, struct frame_info *next_frame)
1278 {
1279 ULONGEST pc;
1280 frame_unwind_unsigned_register (next_frame, ALPHA_PC_REGNUM, &pc);
1281 return pc;
1282 }
1283
1284 \f
1285 /* Helper routines for alpha*-nat.c files to move register sets to and
1286 from core files. The UNIQUE pointer is allowed to be NULL, as most
1287 targets don't supply this value in their core files. */
1288
1289 void
1290 alpha_supply_int_regs (int regno, const void *r0_r30,
1291 const void *pc, const void *unique)
1292 {
1293 int i;
1294
1295 for (i = 0; i < 31; ++i)
1296 if (regno == i || regno == -1)
1297 supply_register (i, (const char *)r0_r30 + i*8);
1298
1299 if (regno == ALPHA_ZERO_REGNUM || regno == -1)
1300 supply_register (ALPHA_ZERO_REGNUM, NULL);
1301
1302 if (regno == ALPHA_PC_REGNUM || regno == -1)
1303 supply_register (ALPHA_PC_REGNUM, pc);
1304
1305 if (regno == ALPHA_UNIQUE_REGNUM || regno == -1)
1306 supply_register (ALPHA_UNIQUE_REGNUM, unique);
1307 }
1308
1309 void
1310 alpha_fill_int_regs (int regno, void *r0_r30, void *pc, void *unique)
1311 {
1312 int i;
1313
1314 for (i = 0; i < 31; ++i)
1315 if (regno == i || regno == -1)
1316 regcache_collect (i, (char *)r0_r30 + i*8);
1317
1318 if (regno == ALPHA_PC_REGNUM || regno == -1)
1319 regcache_collect (ALPHA_PC_REGNUM, pc);
1320
1321 if (unique && (regno == ALPHA_UNIQUE_REGNUM || regno == -1))
1322 regcache_collect (ALPHA_UNIQUE_REGNUM, unique);
1323 }
1324
1325 void
1326 alpha_supply_fp_regs (int regno, const void *f0_f30, const void *fpcr)
1327 {
1328 int i;
1329
1330 for (i = ALPHA_FP0_REGNUM; i < ALPHA_FP0_REGNUM + 31; ++i)
1331 if (regno == i || regno == -1)
1332 supply_register (i, (const char *)f0_f30 + (i - ALPHA_FP0_REGNUM) * 8);
1333
1334 if (regno == ALPHA_FPCR_REGNUM || regno == -1)
1335 supply_register (ALPHA_FPCR_REGNUM, fpcr);
1336 }
1337
1338 void
1339 alpha_fill_fp_regs (int regno, void *f0_f30, void *fpcr)
1340 {
1341 int i;
1342
1343 for (i = ALPHA_FP0_REGNUM; i < ALPHA_FP0_REGNUM + 31; ++i)
1344 if (regno == i || regno == -1)
1345 regcache_collect (i, (char *)f0_f30 + (i - ALPHA_FP0_REGNUM) * 8);
1346
1347 if (regno == ALPHA_FPCR_REGNUM || regno == -1)
1348 regcache_collect (ALPHA_FPCR_REGNUM, fpcr);
1349 }
1350
1351 \f
1352 /* alpha_software_single_step() is called just before we want to resume
1353 the inferior, if we want to single-step it but there is no hardware
1354 or kernel single-step support (NetBSD on Alpha, for example). We find
1355 the target of the coming instruction and breakpoint it.
1356
1357 single_step is also called just after the inferior stops. If we had
1358 set up a simulated single-step, we undo our damage. */
1359
1360 static CORE_ADDR
1361 alpha_next_pc (CORE_ADDR pc)
1362 {
1363 unsigned int insn;
1364 unsigned int op;
1365 int offset;
1366 LONGEST rav;
1367
1368 insn = alpha_read_insn (pc);
1369
1370 /* Opcode is top 6 bits. */
1371 op = (insn >> 26) & 0x3f;
1372
1373 if (op == 0x1a)
1374 {
1375 /* Jump format: target PC is:
1376 RB & ~3 */
1377 return (read_register ((insn >> 16) & 0x1f) & ~3);
1378 }
1379
1380 if ((op & 0x30) == 0x30)
1381 {
1382 /* Branch format: target PC is:
1383 (new PC) + (4 * sext(displacement)) */
1384 if (op == 0x30 || /* BR */
1385 op == 0x34) /* BSR */
1386 {
1387 branch_taken:
1388 offset = (insn & 0x001fffff);
1389 if (offset & 0x00100000)
1390 offset |= 0xffe00000;
1391 offset *= 4;
1392 return (pc + 4 + offset);
1393 }
1394
1395 /* Need to determine if branch is taken; read RA. */
1396 rav = (LONGEST) read_register ((insn >> 21) & 0x1f);
1397 switch (op)
1398 {
1399 case 0x38: /* BLBC */
1400 if ((rav & 1) == 0)
1401 goto branch_taken;
1402 break;
1403 case 0x3c: /* BLBS */
1404 if (rav & 1)
1405 goto branch_taken;
1406 break;
1407 case 0x39: /* BEQ */
1408 if (rav == 0)
1409 goto branch_taken;
1410 break;
1411 case 0x3d: /* BNE */
1412 if (rav != 0)
1413 goto branch_taken;
1414 break;
1415 case 0x3a: /* BLT */
1416 if (rav < 0)
1417 goto branch_taken;
1418 break;
1419 case 0x3b: /* BLE */
1420 if (rav <= 0)
1421 goto branch_taken;
1422 break;
1423 case 0x3f: /* BGT */
1424 if (rav > 0)
1425 goto branch_taken;
1426 break;
1427 case 0x3e: /* BGE */
1428 if (rav >= 0)
1429 goto branch_taken;
1430 break;
1431
1432 /* ??? Missing floating-point branches. */
1433 }
1434 }
1435
1436 /* Not a branch or branch not taken; target PC is:
1437 pc + 4 */
1438 return (pc + 4);
1439 }
1440
1441 void
1442 alpha_software_single_step (enum target_signal sig, int insert_breakpoints_p)
1443 {
1444 static CORE_ADDR next_pc;
1445 typedef char binsn_quantum[BREAKPOINT_MAX];
1446 static binsn_quantum break_mem;
1447 CORE_ADDR pc;
1448
1449 if (insert_breakpoints_p)
1450 {
1451 pc = read_pc ();
1452 next_pc = alpha_next_pc (pc);
1453
1454 target_insert_breakpoint (next_pc, break_mem);
1455 }
1456 else
1457 {
1458 target_remove_breakpoint (next_pc, break_mem);
1459 write_pc (next_pc);
1460 }
1461 }
1462
1463 \f
1464 /* Initialize the current architecture based on INFO. If possible, re-use an
1465 architecture from ARCHES, which is a list of architectures already created
1466 during this debugging session.
1467
1468 Called e.g. at program startup, when reading a core file, and when reading
1469 a binary file. */
1470
1471 static struct gdbarch *
1472 alpha_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
1473 {
1474 struct gdbarch_tdep *tdep;
1475 struct gdbarch *gdbarch;
1476
1477 /* Try to determine the ABI of the object we are loading. */
1478 if (info.abfd != NULL && info.osabi == GDB_OSABI_UNKNOWN)
1479 {
1480 /* If it's an ECOFF file, assume it's OSF/1. */
1481 if (bfd_get_flavour (info.abfd) == bfd_target_ecoff_flavour)
1482 info.osabi = GDB_OSABI_OSF1;
1483 }
1484
1485 /* Find a candidate among extant architectures. */
1486 arches = gdbarch_list_lookup_by_info (arches, &info);
1487 if (arches != NULL)
1488 return arches->gdbarch;
1489
1490 tdep = xmalloc (sizeof (struct gdbarch_tdep));
1491 gdbarch = gdbarch_alloc (&info, tdep);
1492
1493 /* Lowest text address. This is used by heuristic_proc_start()
1494 to decide when to stop looking. */
1495 tdep->vm_min_address = (CORE_ADDR) 0x120000000;
1496
1497 tdep->dynamic_sigtramp_offset = NULL;
1498 tdep->sigcontext_addr = NULL;
1499
1500 tdep->jb_pc = -1; /* longjmp support not enabled by default */
1501
1502 /* Type sizes */
1503 set_gdbarch_short_bit (gdbarch, 16);
1504 set_gdbarch_int_bit (gdbarch, 32);
1505 set_gdbarch_long_bit (gdbarch, 64);
1506 set_gdbarch_long_long_bit (gdbarch, 64);
1507 set_gdbarch_float_bit (gdbarch, 32);
1508 set_gdbarch_double_bit (gdbarch, 64);
1509 set_gdbarch_long_double_bit (gdbarch, 64);
1510 set_gdbarch_ptr_bit (gdbarch, 64);
1511
1512 /* Register info */
1513 set_gdbarch_num_regs (gdbarch, ALPHA_NUM_REGS);
1514 set_gdbarch_sp_regnum (gdbarch, ALPHA_SP_REGNUM);
1515 set_gdbarch_pc_regnum (gdbarch, ALPHA_PC_REGNUM);
1516 set_gdbarch_fp0_regnum (gdbarch, ALPHA_FP0_REGNUM);
1517
1518 set_gdbarch_register_name (gdbarch, alpha_register_name);
1519 set_gdbarch_register_byte (gdbarch, alpha_register_byte);
1520 set_gdbarch_register_raw_size (gdbarch, alpha_register_raw_size);
1521 set_gdbarch_register_virtual_size (gdbarch, alpha_register_virtual_size);
1522 set_gdbarch_register_type (gdbarch, alpha_register_type);
1523
1524 set_gdbarch_cannot_fetch_register (gdbarch, alpha_cannot_fetch_register);
1525 set_gdbarch_cannot_store_register (gdbarch, alpha_cannot_store_register);
1526
1527 set_gdbarch_convert_register_p (gdbarch, alpha_convert_register_p);
1528 set_gdbarch_register_to_value (gdbarch, alpha_register_to_value);
1529 set_gdbarch_value_to_register (gdbarch, alpha_value_to_register);
1530
1531 set_gdbarch_register_reggroup_p (gdbarch, alpha_register_reggroup_p);
1532
1533 /* Prologue heuristics. */
1534 set_gdbarch_skip_prologue (gdbarch, alpha_skip_prologue);
1535
1536 /* Disassembler. */
1537 set_gdbarch_print_insn (gdbarch, print_insn_alpha);
1538
1539 /* Call info. */
1540 set_gdbarch_frameless_function_invocation (gdbarch,
1541 generic_frameless_function_invocation_not);
1542
1543 set_gdbarch_use_struct_convention (gdbarch, alpha_use_struct_convention);
1544 set_gdbarch_extract_return_value (gdbarch, alpha_extract_return_value);
1545 set_gdbarch_store_return_value (gdbarch, alpha_store_return_value);
1546 set_gdbarch_extract_struct_value_address (gdbarch,
1547 alpha_extract_struct_value_address);
1548
1549 /* Settings for calling functions in the inferior. */
1550 set_gdbarch_push_dummy_call (gdbarch, alpha_push_dummy_call);
1551
1552 /* Methods for saving / extracting a dummy frame's ID. */
1553 set_gdbarch_unwind_dummy_id (gdbarch, alpha_unwind_dummy_id);
1554 set_gdbarch_save_dummy_frame_tos (gdbarch, generic_save_dummy_frame_tos);
1555
1556 /* Return the unwound PC value. */
1557 set_gdbarch_unwind_pc (gdbarch, alpha_unwind_pc);
1558
1559 set_gdbarch_inner_than (gdbarch, core_addr_lessthan);
1560 set_gdbarch_skip_trampoline_code (gdbarch, find_solib_trampoline_target);
1561
1562 set_gdbarch_breakpoint_from_pc (gdbarch, alpha_breakpoint_from_pc);
1563 set_gdbarch_decr_pc_after_break (gdbarch, 4);
1564
1565 set_gdbarch_function_start_offset (gdbarch, 0);
1566 set_gdbarch_frame_args_skip (gdbarch, 0);
1567
1568 /* Hook in ABI-specific overrides, if they have been registered. */
1569 gdbarch_init_osabi (info, gdbarch);
1570
1571 /* Now that we have tuned the configuration, set a few final things
1572 based on what the OS ABI has told us. */
1573
1574 if (tdep->jb_pc >= 0)
1575 set_gdbarch_get_longjmp_target (gdbarch, alpha_get_longjmp_target);
1576
1577 frame_unwind_append_predicate (gdbarch, alpha_sigtramp_frame_p);
1578 frame_unwind_append_predicate (gdbarch, alpha_heuristic_frame_p);
1579
1580 frame_base_set_default (gdbarch, &alpha_heuristic_frame_base);
1581
1582 return gdbarch;
1583 }
1584
1585 void
1586 alpha_dwarf2_init_abi (struct gdbarch_info info, struct gdbarch *gdbarch)
1587 {
1588 frame_unwind_append_predicate (gdbarch, dwarf2_frame_p);
1589 frame_base_append_predicate (gdbarch, dwarf2_frame_base_p);
1590 set_gdbarch_dwarf2_build_frame_info (gdbarch, dwarf2_build_frame_info);
1591 }
1592
1593 extern initialize_file_ftype _initialize_alpha_tdep; /* -Wmissing-prototypes */
1594
1595 void
1596 _initialize_alpha_tdep (void)
1597 {
1598 struct cmd_list_element *c;
1599
1600 gdbarch_register (bfd_arch_alpha, alpha_gdbarch_init, NULL);
1601
1602 /* Let the user set the fence post for heuristic_proc_start. */
1603
1604 /* We really would like to have both "0" and "unlimited" work, but
1605 command.c doesn't deal with that. So make it a var_zinteger
1606 because the user can always use "999999" or some such for unlimited. */
1607 c = add_set_cmd ("heuristic-fence-post", class_support, var_zinteger,
1608 (char *) &heuristic_fence_post,
1609 "\
1610 Set the distance searched for the start of a function.\n\
1611 If you are debugging a stripped executable, GDB needs to search through the\n\
1612 program for the start of a function. This command sets the distance of the\n\
1613 search. The only need to set it is when debugging a stripped executable.",
1614 &setlist);
1615 /* We need to throw away the frame cache when we set this, since it
1616 might change our ability to get backtraces. */
1617 set_cmd_sfunc (c, reinit_frame_cache_sfunc);
1618 add_show_from_set (c, &showlist);
1619 }
This page took 0.063716 seconds and 4 git commands to generate.