daily update
[deliverable/binutils-gdb.git] / gdb / alpha-tdep.c
1 /* Target-dependent code for the ALPHA architecture, for GDB, the GNU Debugger.
2 Copyright 1993, 1994, 1995, 1996, 1997, 1998, 1999, 2000, 2001, 2002
3 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 2 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program; if not, write to the Free Software
19 Foundation, Inc., 59 Temple Place - Suite 330,
20 Boston, MA 02111-1307, USA. */
21
22 #include "defs.h"
23 #include "frame.h"
24 #include "inferior.h"
25 #include "symtab.h"
26 #include "value.h"
27 #include "gdbcmd.h"
28 #include "gdbcore.h"
29 #include "dis-asm.h"
30 #include "symfile.h"
31 #include "objfiles.h"
32 #include "gdb_string.h"
33 #include "linespec.h"
34 #include "regcache.h"
35 #include "doublest.h"
36 #include "arch-utils.h"
37
38 #include "elf-bfd.h"
39
40 #include "alpha-tdep.h"
41
42 static gdbarch_init_ftype alpha_gdbarch_init;
43
44 static gdbarch_register_name_ftype alpha_register_name;
45 static gdbarch_register_raw_size_ftype alpha_register_raw_size;
46 static gdbarch_register_virtual_size_ftype alpha_register_virtual_size;
47 static gdbarch_register_virtual_type_ftype alpha_register_virtual_type;
48 static gdbarch_register_byte_ftype alpha_register_byte;
49 static gdbarch_cannot_fetch_register_ftype alpha_cannot_fetch_register;
50 static gdbarch_cannot_store_register_ftype alpha_cannot_store_register;
51 static gdbarch_register_convertible_ftype alpha_register_convertible;
52 static gdbarch_register_convert_to_virtual_ftype
53 alpha_register_convert_to_virtual;
54 static gdbarch_register_convert_to_raw_ftype alpha_register_convert_to_raw;
55 static gdbarch_store_struct_return_ftype alpha_store_struct_return;
56 static gdbarch_deprecated_extract_return_value_ftype alpha_extract_return_value;
57 static gdbarch_store_return_value_ftype alpha_store_return_value;
58 static gdbarch_deprecated_extract_struct_value_address_ftype
59 alpha_extract_struct_value_address;
60 static gdbarch_use_struct_convention_ftype alpha_use_struct_convention;
61
62 static gdbarch_breakpoint_from_pc_ftype alpha_breakpoint_from_pc;
63
64 static gdbarch_frame_args_address_ftype alpha_frame_args_address;
65 static gdbarch_frame_locals_address_ftype alpha_frame_locals_address;
66
67 static gdbarch_skip_prologue_ftype alpha_skip_prologue;
68 static gdbarch_get_saved_register_ftype alpha_get_saved_register;
69 static gdbarch_saved_pc_after_call_ftype alpha_saved_pc_after_call;
70 static gdbarch_frame_chain_ftype alpha_frame_chain;
71 static gdbarch_frame_saved_pc_ftype alpha_frame_saved_pc;
72 static gdbarch_frame_init_saved_regs_ftype alpha_frame_init_saved_regs;
73
74 static gdbarch_push_arguments_ftype alpha_push_arguments;
75 static gdbarch_push_dummy_frame_ftype alpha_push_dummy_frame;
76 static gdbarch_pop_frame_ftype alpha_pop_frame;
77 static gdbarch_fix_call_dummy_ftype alpha_fix_call_dummy;
78 static gdbarch_init_frame_pc_first_ftype alpha_init_frame_pc_first;
79 static gdbarch_init_extra_frame_info_ftype alpha_init_extra_frame_info;
80
81 static gdbarch_get_longjmp_target_ftype alpha_get_longjmp_target;
82
83 struct frame_extra_info
84 {
85 alpha_extra_func_info_t proc_desc;
86 int localoff;
87 int pc_reg;
88 };
89
90 /* FIXME: Some of this code should perhaps be merged with mips-tdep.c. */
91
92 /* Prototypes for local functions. */
93
94 static void alpha_find_saved_regs (struct frame_info *);
95
96 static alpha_extra_func_info_t push_sigtramp_desc (CORE_ADDR low_addr);
97
98 static CORE_ADDR read_next_frame_reg (struct frame_info *, int);
99
100 static CORE_ADDR heuristic_proc_start (CORE_ADDR);
101
102 static alpha_extra_func_info_t heuristic_proc_desc (CORE_ADDR,
103 CORE_ADDR,
104 struct frame_info *);
105
106 static alpha_extra_func_info_t find_proc_desc (CORE_ADDR,
107 struct frame_info *);
108
109 #if 0
110 static int alpha_in_lenient_prologue (CORE_ADDR, CORE_ADDR);
111 #endif
112
113 static void reinit_frame_cache_sfunc (char *, int, struct cmd_list_element *);
114
115 static CORE_ADDR after_prologue (CORE_ADDR pc,
116 alpha_extra_func_info_t proc_desc);
117
118 static int alpha_in_prologue (CORE_ADDR pc,
119 alpha_extra_func_info_t proc_desc);
120
121 static int alpha_about_to_return (CORE_ADDR pc);
122
123 void _initialize_alpha_tdep (void);
124
125 /* Heuristic_proc_start may hunt through the text section for a long
126 time across a 2400 baud serial line. Allows the user to limit this
127 search. */
128 static unsigned int heuristic_fence_post = 0;
129 /* *INDENT-OFF* */
130 /* Layout of a stack frame on the alpha:
131
132 | |
133 pdr members: | 7th ... nth arg, |
134 | `pushed' by caller. |
135 | |
136 ----------------|-------------------------------|<-- old_sp == vfp
137 ^ ^ ^ ^ | |
138 | | | | | |
139 | |localoff | Copies of 1st .. 6th |
140 | | | | | argument if necessary. |
141 | | | v | |
142 | | | --- |-------------------------------|<-- FRAME_LOCALS_ADDRESS
143 | | | | |
144 | | | | Locals and temporaries. |
145 | | | | |
146 | | | |-------------------------------|
147 | | | | |
148 |-fregoffset | Saved float registers. |
149 | | | | F9 |
150 | | | | . |
151 | | | | . |
152 | | | | F2 |
153 | | v | |
154 | | -------|-------------------------------|
155 | | | |
156 | | | Saved registers. |
157 | | | S6 |
158 |-regoffset | . |
159 | | | . |
160 | | | S0 |
161 | | | pdr.pcreg |
162 | v | |
163 | ----------|-------------------------------|
164 | | |
165 frameoffset | Argument build area, gets |
166 | | 7th ... nth arg for any |
167 | | called procedure. |
168 v | |
169 -------------|-------------------------------|<-- sp
170 | |
171 */
172 /* *INDENT-ON* */
173
174 #define PROC_LOW_ADDR(proc) ((proc)->pdr.adr) /* least address */
175 /* These next two fields are kind of being hijacked. I wonder if
176 iline is too small for the values it needs to hold, if GDB is
177 running on a 32-bit host. */
178 #define PROC_HIGH_ADDR(proc) ((proc)->pdr.iline) /* upper address bound */
179 #define PROC_DUMMY_FRAME(proc) ((proc)->pdr.cbLineOffset) /*CALL_DUMMY frame */
180 #define PROC_FRAME_OFFSET(proc) ((proc)->pdr.frameoffset)
181 #define PROC_FRAME_REG(proc) ((proc)->pdr.framereg)
182 #define PROC_REG_MASK(proc) ((proc)->pdr.regmask)
183 #define PROC_FREG_MASK(proc) ((proc)->pdr.fregmask)
184 #define PROC_REG_OFFSET(proc) ((proc)->pdr.regoffset)
185 #define PROC_FREG_OFFSET(proc) ((proc)->pdr.fregoffset)
186 #define PROC_PC_REG(proc) ((proc)->pdr.pcreg)
187 #define PROC_LOCALOFF(proc) ((proc)->pdr.localoff)
188 #define PROC_SYMBOL(proc) (*(struct symbol**)&(proc)->pdr.isym)
189 #define _PROC_MAGIC_ 0x0F0F0F0F
190 #define PROC_DESC_IS_DUMMY(proc) ((proc)->pdr.isym == _PROC_MAGIC_)
191 #define SET_PROC_DESC_IS_DUMMY(proc) ((proc)->pdr.isym = _PROC_MAGIC_)
192
193 struct linked_proc_info
194 {
195 struct alpha_extra_func_info info;
196 struct linked_proc_info *next;
197 }
198 *linked_proc_desc_table = NULL;
199 \f
200 static CORE_ADDR
201 alpha_frame_past_sigtramp_frame (struct frame_info *frame, CORE_ADDR pc)
202 {
203 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
204
205 if (tdep->skip_sigtramp_frame != NULL)
206 return (tdep->skip_sigtramp_frame (frame, pc));
207
208 return (0);
209 }
210
211 static LONGEST
212 alpha_dynamic_sigtramp_offset (CORE_ADDR pc)
213 {
214 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
215
216 /* Must be provided by OS/ABI variant code if supported. */
217 if (tdep->dynamic_sigtramp_offset != NULL)
218 return (tdep->dynamic_sigtramp_offset (pc));
219
220 return (-1);
221 }
222
223 #define ALPHA_PROC_SIGTRAMP_MAGIC 0x0e0f0f0f
224
225 /* Return TRUE if the procedure descriptor PROC is a procedure
226 descriptor that refers to a dynamically generated signal
227 trampoline routine. */
228 static int
229 alpha_proc_desc_is_dyn_sigtramp (struct alpha_extra_func_info *proc)
230 {
231 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
232
233 if (tdep->dynamic_sigtramp_offset != NULL)
234 return (proc->pdr.isym == ALPHA_PROC_SIGTRAMP_MAGIC);
235
236 return (0);
237 }
238
239 static void
240 alpha_set_proc_desc_is_dyn_sigtramp (struct alpha_extra_func_info *proc)
241 {
242 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
243
244 if (tdep->dynamic_sigtramp_offset != NULL)
245 proc->pdr.isym = ALPHA_PROC_SIGTRAMP_MAGIC;
246 }
247
248 /* Dynamically create a signal-handler caller procedure descriptor for
249 the signal-handler return code starting at address LOW_ADDR. The
250 descriptor is added to the linked_proc_desc_table. */
251
252 static alpha_extra_func_info_t
253 push_sigtramp_desc (CORE_ADDR low_addr)
254 {
255 struct linked_proc_info *link;
256 alpha_extra_func_info_t proc_desc;
257
258 link = (struct linked_proc_info *)
259 xmalloc (sizeof (struct linked_proc_info));
260 link->next = linked_proc_desc_table;
261 linked_proc_desc_table = link;
262
263 proc_desc = &link->info;
264
265 proc_desc->numargs = 0;
266 PROC_LOW_ADDR (proc_desc) = low_addr;
267 PROC_HIGH_ADDR (proc_desc) = low_addr + 3 * 4;
268 PROC_DUMMY_FRAME (proc_desc) = 0;
269 PROC_FRAME_OFFSET (proc_desc) = 0x298; /* sizeof(struct sigcontext_struct) */
270 PROC_FRAME_REG (proc_desc) = SP_REGNUM;
271 PROC_REG_MASK (proc_desc) = 0xffff;
272 PROC_FREG_MASK (proc_desc) = 0xffff;
273 PROC_PC_REG (proc_desc) = 26;
274 PROC_LOCALOFF (proc_desc) = 0;
275 alpha_set_proc_desc_is_dyn_sigtramp (proc_desc);
276 return (proc_desc);
277 }
278 \f
279
280 static const char *
281 alpha_register_name (int regno)
282 {
283 static char *register_names[] =
284 {
285 "v0", "t0", "t1", "t2", "t3", "t4", "t5", "t6",
286 "t7", "s0", "s1", "s2", "s3", "s4", "s5", "fp",
287 "a0", "a1", "a2", "a3", "a4", "a5", "t8", "t9",
288 "t10", "t11", "ra", "t12", "at", "gp", "sp", "zero",
289 "f0", "f1", "f2", "f3", "f4", "f5", "f6", "f7",
290 "f8", "f9", "f10", "f11", "f12", "f13", "f14", "f15",
291 "f16", "f17", "f18", "f19", "f20", "f21", "f22", "f23",
292 "f24", "f25", "f26", "f27", "f28", "f29", "f30", "fpcr",
293 "pc", "vfp",
294 };
295
296 if (regno < 0)
297 return (NULL);
298 if (regno >= (sizeof(register_names) / sizeof(*register_names)))
299 return (NULL);
300 return (register_names[regno]);
301 }
302
303 static int
304 alpha_cannot_fetch_register (int regno)
305 {
306 return (regno == FP_REGNUM || regno == ALPHA_ZERO_REGNUM);
307 }
308
309 static int
310 alpha_cannot_store_register (int regno)
311 {
312 return (regno == FP_REGNUM || regno == ALPHA_ZERO_REGNUM);
313 }
314
315 static int
316 alpha_register_convertible (int regno)
317 {
318 return (regno >= FP0_REGNUM && regno <= FP0_REGNUM + 31);
319 }
320
321 static struct type *
322 alpha_register_virtual_type (int regno)
323 {
324 return ((regno >= FP0_REGNUM && regno < (FP0_REGNUM+31))
325 ? builtin_type_double : builtin_type_long);
326 }
327
328 static int
329 alpha_register_byte (int regno)
330 {
331 return (regno * 8);
332 }
333
334 static int
335 alpha_register_raw_size (int regno)
336 {
337 return 8;
338 }
339
340 static int
341 alpha_register_virtual_size (int regno)
342 {
343 return 8;
344 }
345 \f
346
347 static CORE_ADDR
348 alpha_sigcontext_addr (struct frame_info *fi)
349 {
350 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
351
352 if (tdep->sigcontext_addr)
353 return (tdep->sigcontext_addr (fi));
354
355 return (0);
356 }
357
358 /* Guaranteed to set frame->saved_regs to some values (it never leaves it
359 NULL). */
360
361 static void
362 alpha_find_saved_regs (struct frame_info *frame)
363 {
364 int ireg;
365 CORE_ADDR reg_position;
366 unsigned long mask;
367 alpha_extra_func_info_t proc_desc;
368 int returnreg;
369
370 frame_saved_regs_zalloc (frame);
371
372 /* If it is the frame for __sigtramp, the saved registers are located
373 in a sigcontext structure somewhere on the stack. __sigtramp
374 passes a pointer to the sigcontext structure on the stack.
375 If the stack layout for __sigtramp changes, or if sigcontext offsets
376 change, we might have to update this code. */
377 #ifndef SIGFRAME_PC_OFF
378 #define SIGFRAME_PC_OFF (2 * 8)
379 #define SIGFRAME_REGSAVE_OFF (4 * 8)
380 #define SIGFRAME_FPREGSAVE_OFF (SIGFRAME_REGSAVE_OFF + 32 * 8 + 8)
381 #endif
382 if (frame->signal_handler_caller)
383 {
384 CORE_ADDR sigcontext_addr;
385
386 sigcontext_addr = alpha_sigcontext_addr (frame);
387 if (sigcontext_addr == 0)
388 {
389 /* Don't know where the sigcontext is; just bail. */
390 return;
391 }
392 for (ireg = 0; ireg < 32; ireg++)
393 {
394 reg_position = sigcontext_addr + SIGFRAME_REGSAVE_OFF + ireg * 8;
395 frame->saved_regs[ireg] = reg_position;
396 }
397 for (ireg = 0; ireg < 32; ireg++)
398 {
399 reg_position = sigcontext_addr + SIGFRAME_FPREGSAVE_OFF + ireg * 8;
400 frame->saved_regs[FP0_REGNUM + ireg] = reg_position;
401 }
402 frame->saved_regs[PC_REGNUM] = sigcontext_addr + SIGFRAME_PC_OFF;
403 return;
404 }
405
406 proc_desc = frame->extra_info->proc_desc;
407 if (proc_desc == NULL)
408 /* I'm not sure how/whether this can happen. Normally when we can't
409 find a proc_desc, we "synthesize" one using heuristic_proc_desc
410 and set the saved_regs right away. */
411 return;
412
413 /* Fill in the offsets for the registers which gen_mask says
414 were saved. */
415
416 reg_position = frame->frame + PROC_REG_OFFSET (proc_desc);
417 mask = PROC_REG_MASK (proc_desc);
418
419 returnreg = PROC_PC_REG (proc_desc);
420
421 /* Note that RA is always saved first, regardless of its actual
422 register number. */
423 if (mask & (1 << returnreg))
424 {
425 frame->saved_regs[returnreg] = reg_position;
426 reg_position += 8;
427 mask &= ~(1 << returnreg); /* Clear bit for RA so we
428 don't save again later. */
429 }
430
431 for (ireg = 0; ireg <= 31; ++ireg)
432 if (mask & (1 << ireg))
433 {
434 frame->saved_regs[ireg] = reg_position;
435 reg_position += 8;
436 }
437
438 /* Fill in the offsets for the registers which float_mask says
439 were saved. */
440
441 reg_position = frame->frame + PROC_FREG_OFFSET (proc_desc);
442 mask = PROC_FREG_MASK (proc_desc);
443
444 for (ireg = 0; ireg <= 31; ++ireg)
445 if (mask & (1 << ireg))
446 {
447 frame->saved_regs[FP0_REGNUM + ireg] = reg_position;
448 reg_position += 8;
449 }
450
451 frame->saved_regs[PC_REGNUM] = frame->saved_regs[returnreg];
452 }
453
454 static void
455 alpha_frame_init_saved_regs (struct frame_info *fi)
456 {
457 if (fi->saved_regs == NULL)
458 alpha_find_saved_regs (fi);
459 fi->saved_regs[SP_REGNUM] = fi->frame;
460 }
461
462 static void
463 alpha_init_frame_pc_first (int fromleaf, struct frame_info *prev)
464 {
465 prev->pc = (fromleaf ? SAVED_PC_AFTER_CALL (prev->next) :
466 prev->next ? FRAME_SAVED_PC (prev->next) : read_pc ());
467 }
468
469 static CORE_ADDR
470 read_next_frame_reg (struct frame_info *fi, int regno)
471 {
472 for (; fi; fi = fi->next)
473 {
474 /* We have to get the saved sp from the sigcontext
475 if it is a signal handler frame. */
476 if (regno == SP_REGNUM && !fi->signal_handler_caller)
477 return fi->frame;
478 else
479 {
480 if (fi->saved_regs == NULL)
481 alpha_find_saved_regs (fi);
482 if (fi->saved_regs[regno])
483 return read_memory_integer (fi->saved_regs[regno], 8);
484 }
485 }
486 return read_register (regno);
487 }
488
489 static CORE_ADDR
490 alpha_frame_saved_pc (struct frame_info *frame)
491 {
492 alpha_extra_func_info_t proc_desc = frame->extra_info->proc_desc;
493 /* We have to get the saved pc from the sigcontext
494 if it is a signal handler frame. */
495 int pcreg = frame->signal_handler_caller ? PC_REGNUM
496 : frame->extra_info->pc_reg;
497
498 if (proc_desc && PROC_DESC_IS_DUMMY (proc_desc))
499 return read_memory_integer (frame->frame - 8, 8);
500
501 return read_next_frame_reg (frame, pcreg);
502 }
503
504 static void
505 alpha_get_saved_register (char *raw_buffer,
506 int *optimized,
507 CORE_ADDR *addrp,
508 struct frame_info *frame,
509 int regnum,
510 enum lval_type *lval)
511 {
512 CORE_ADDR addr;
513
514 if (!target_has_registers)
515 error ("No registers.");
516
517 /* Normal systems don't optimize out things with register numbers. */
518 if (optimized != NULL)
519 *optimized = 0;
520 addr = find_saved_register (frame, regnum);
521 if (addr != 0)
522 {
523 if (lval != NULL)
524 *lval = lval_memory;
525 if (regnum == SP_REGNUM)
526 {
527 if (raw_buffer != NULL)
528 {
529 /* Put it back in target format. */
530 store_address (raw_buffer, REGISTER_RAW_SIZE (regnum),
531 (LONGEST) addr);
532 }
533 if (addrp != NULL)
534 *addrp = 0;
535 return;
536 }
537 if (raw_buffer != NULL)
538 target_read_memory (addr, raw_buffer, REGISTER_RAW_SIZE (regnum));
539 }
540 else
541 {
542 if (lval != NULL)
543 *lval = lval_register;
544 addr = REGISTER_BYTE (regnum);
545 if (raw_buffer != NULL)
546 read_register_gen (regnum, raw_buffer);
547 }
548 if (addrp != NULL)
549 *addrp = addr;
550 }
551
552 static CORE_ADDR
553 alpha_saved_pc_after_call (struct frame_info *frame)
554 {
555 CORE_ADDR pc = frame->pc;
556 CORE_ADDR tmp;
557 alpha_extra_func_info_t proc_desc;
558 int pcreg;
559
560 /* Skip over shared library trampoline if necessary. */
561 tmp = SKIP_TRAMPOLINE_CODE (pc);
562 if (tmp != 0)
563 pc = tmp;
564
565 proc_desc = find_proc_desc (pc, frame->next);
566 pcreg = proc_desc ? PROC_PC_REG (proc_desc) : ALPHA_RA_REGNUM;
567
568 if (frame->signal_handler_caller)
569 return alpha_frame_saved_pc (frame);
570 else
571 return read_register (pcreg);
572 }
573
574
575 static struct alpha_extra_func_info temp_proc_desc;
576 static CORE_ADDR temp_saved_regs[ALPHA_NUM_REGS];
577
578 /* Nonzero if instruction at PC is a return instruction. "ret
579 $zero,($ra),1" on alpha. */
580
581 static int
582 alpha_about_to_return (CORE_ADDR pc)
583 {
584 return read_memory_integer (pc, 4) == 0x6bfa8001;
585 }
586
587
588
589 /* This fencepost looks highly suspicious to me. Removing it also
590 seems suspicious as it could affect remote debugging across serial
591 lines. */
592
593 static CORE_ADDR
594 heuristic_proc_start (CORE_ADDR pc)
595 {
596 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
597 CORE_ADDR start_pc = pc;
598 CORE_ADDR fence = start_pc - heuristic_fence_post;
599
600 if (start_pc == 0)
601 return 0;
602
603 if (heuristic_fence_post == UINT_MAX
604 || fence < tdep->vm_min_address)
605 fence = tdep->vm_min_address;
606
607 /* search back for previous return */
608 for (start_pc -= 4;; start_pc -= 4)
609 if (start_pc < fence)
610 {
611 /* It's not clear to me why we reach this point when
612 stop_soon_quietly, but with this test, at least we
613 don't print out warnings for every child forked (eg, on
614 decstation). 22apr93 rich@cygnus.com. */
615 if (!stop_soon_quietly)
616 {
617 static int blurb_printed = 0;
618
619 if (fence == tdep->vm_min_address)
620 warning ("Hit beginning of text section without finding");
621 else
622 warning ("Hit heuristic-fence-post without finding");
623
624 warning ("enclosing function for address 0x%s", paddr_nz (pc));
625 if (!blurb_printed)
626 {
627 printf_filtered ("\
628 This warning occurs if you are debugging a function without any symbols\n\
629 (for example, in a stripped executable). In that case, you may wish to\n\
630 increase the size of the search with the `set heuristic-fence-post' command.\n\
631 \n\
632 Otherwise, you told GDB there was a function where there isn't one, or\n\
633 (more likely) you have encountered a bug in GDB.\n");
634 blurb_printed = 1;
635 }
636 }
637
638 return 0;
639 }
640 else if (alpha_about_to_return (start_pc))
641 break;
642
643 start_pc += 4; /* skip return */
644 return start_pc;
645 }
646
647 static alpha_extra_func_info_t
648 heuristic_proc_desc (CORE_ADDR start_pc, CORE_ADDR limit_pc,
649 struct frame_info *next_frame)
650 {
651 CORE_ADDR sp = read_next_frame_reg (next_frame, SP_REGNUM);
652 CORE_ADDR vfp = sp;
653 CORE_ADDR cur_pc;
654 int frame_size;
655 int has_frame_reg = 0;
656 unsigned long reg_mask = 0;
657 int pcreg = -1;
658 int regno;
659
660 if (start_pc == 0)
661 return NULL;
662 memset (&temp_proc_desc, '\0', sizeof (temp_proc_desc));
663 memset (&temp_saved_regs, '\0', SIZEOF_FRAME_SAVED_REGS);
664 PROC_LOW_ADDR (&temp_proc_desc) = start_pc;
665
666 if (start_pc + 200 < limit_pc)
667 limit_pc = start_pc + 200;
668 frame_size = 0;
669 for (cur_pc = start_pc; cur_pc < limit_pc; cur_pc += 4)
670 {
671 char buf[4];
672 unsigned long word;
673 int status;
674
675 status = read_memory_nobpt (cur_pc, buf, 4);
676 if (status)
677 memory_error (status, cur_pc);
678 word = extract_unsigned_integer (buf, 4);
679
680 if ((word & 0xffff0000) == 0x23de0000) /* lda $sp,n($sp) */
681 {
682 if (word & 0x8000)
683 {
684 /* Consider only the first stack allocation instruction
685 to contain the static size of the frame. */
686 if (frame_size == 0)
687 frame_size += (-word) & 0xffff;
688 }
689 else
690 /* Exit loop if a positive stack adjustment is found, which
691 usually means that the stack cleanup code in the function
692 epilogue is reached. */
693 break;
694 }
695 else if ((word & 0xfc1f0000) == 0xb41e0000 /* stq reg,n($sp) */
696 && (word & 0xffff0000) != 0xb7fe0000) /* reg != $zero */
697 {
698 int reg = (word & 0x03e00000) >> 21;
699 reg_mask |= 1 << reg;
700
701 /* Do not compute the address where the register was saved yet,
702 because we don't know yet if the offset will need to be
703 relative to $sp or $fp (we can not compute the address relative
704 to $sp if $sp is updated during the execution of the current
705 subroutine, for instance when doing some alloca). So just store
706 the offset for the moment, and compute the address later
707 when we know whether this frame has a frame pointer or not.
708 */
709 temp_saved_regs[reg] = (short) word;
710
711 /* Starting with OSF/1-3.2C, the system libraries are shipped
712 without local symbols, but they still contain procedure
713 descriptors without a symbol reference. GDB is currently
714 unable to find these procedure descriptors and uses
715 heuristic_proc_desc instead.
716 As some low level compiler support routines (__div*, __add*)
717 use a non-standard return address register, we have to
718 add some heuristics to determine the return address register,
719 or stepping over these routines will fail.
720 Usually the return address register is the first register
721 saved on the stack, but assembler optimization might
722 rearrange the register saves.
723 So we recognize only a few registers (t7, t9, ra) within
724 the procedure prologue as valid return address registers.
725 If we encounter a return instruction, we extract the
726 the return address register from it.
727
728 FIXME: Rewriting GDB to access the procedure descriptors,
729 e.g. via the minimal symbol table, might obviate this hack. */
730 if (pcreg == -1
731 && cur_pc < (start_pc + 80)
732 && (reg == ALPHA_T7_REGNUM || reg == ALPHA_T9_REGNUM
733 || reg == ALPHA_RA_REGNUM))
734 pcreg = reg;
735 }
736 else if ((word & 0xffe0ffff) == 0x6be08001) /* ret zero,reg,1 */
737 pcreg = (word >> 16) & 0x1f;
738 else if (word == 0x47de040f || word == 0x47fe040f) /* bis sp,sp fp */
739 {
740 /* ??? I am not sure what instruction is 0x47fe040f, and I
741 am suspecting that there was a typo and should have been
742 0x47fe040f. I'm keeping it in the test above until further
743 investigation */
744 has_frame_reg = 1;
745 vfp = read_next_frame_reg (next_frame, ALPHA_GCC_FP_REGNUM);
746 }
747 }
748 if (pcreg == -1)
749 {
750 /* If we haven't found a valid return address register yet,
751 keep searching in the procedure prologue. */
752 while (cur_pc < (limit_pc + 80) && cur_pc < (start_pc + 80))
753 {
754 char buf[4];
755 unsigned long word;
756
757 if (read_memory_nobpt (cur_pc, buf, 4))
758 break;
759 cur_pc += 4;
760 word = extract_unsigned_integer (buf, 4);
761
762 if ((word & 0xfc1f0000) == 0xb41e0000 /* stq reg,n($sp) */
763 && (word & 0xffff0000) != 0xb7fe0000) /* reg != $zero */
764 {
765 int reg = (word & 0x03e00000) >> 21;
766 if (reg == ALPHA_T7_REGNUM || reg == ALPHA_T9_REGNUM
767 || reg == ALPHA_RA_REGNUM)
768 {
769 pcreg = reg;
770 break;
771 }
772 }
773 else if ((word & 0xffe0ffff) == 0x6be08001) /* ret zero,reg,1 */
774 {
775 pcreg = (word >> 16) & 0x1f;
776 break;
777 }
778 }
779 }
780
781 if (has_frame_reg)
782 PROC_FRAME_REG (&temp_proc_desc) = ALPHA_GCC_FP_REGNUM;
783 else
784 PROC_FRAME_REG (&temp_proc_desc) = SP_REGNUM;
785
786 /* At this point, we know which of the Stack Pointer or the Frame Pointer
787 to use as the reference address to compute the saved registers address.
788 But in both cases, the processing above has set vfp to this reference
789 address, so just need to increment the offset of each saved register
790 by this address. */
791 for (regno = 0; regno < NUM_REGS; regno++)
792 {
793 if (reg_mask & 1 << regno)
794 temp_saved_regs[regno] += vfp;
795 }
796
797 PROC_FRAME_OFFSET (&temp_proc_desc) = frame_size;
798 PROC_REG_MASK (&temp_proc_desc) = reg_mask;
799 PROC_PC_REG (&temp_proc_desc) = (pcreg == -1) ? ALPHA_RA_REGNUM : pcreg;
800 PROC_LOCALOFF (&temp_proc_desc) = 0; /* XXX - bogus */
801 return &temp_proc_desc;
802 }
803
804 /* This returns the PC of the first inst after the prologue. If we can't
805 find the prologue, then return 0. */
806
807 static CORE_ADDR
808 after_prologue (CORE_ADDR pc, alpha_extra_func_info_t proc_desc)
809 {
810 struct symtab_and_line sal;
811 CORE_ADDR func_addr, func_end;
812
813 if (!proc_desc)
814 proc_desc = find_proc_desc (pc, NULL);
815
816 if (proc_desc)
817 {
818 if (alpha_proc_desc_is_dyn_sigtramp (proc_desc))
819 return PROC_LOW_ADDR (proc_desc); /* "prologue" is in kernel */
820
821 /* If function is frameless, then we need to do it the hard way. I
822 strongly suspect that frameless always means prologueless... */
823 if (PROC_FRAME_REG (proc_desc) == SP_REGNUM
824 && PROC_FRAME_OFFSET (proc_desc) == 0)
825 return 0;
826 }
827
828 if (!find_pc_partial_function (pc, NULL, &func_addr, &func_end))
829 return 0; /* Unknown */
830
831 sal = find_pc_line (func_addr, 0);
832
833 if (sal.end < func_end)
834 return sal.end;
835
836 /* The line after the prologue is after the end of the function. In this
837 case, tell the caller to find the prologue the hard way. */
838
839 return 0;
840 }
841
842 /* Return non-zero if we *might* be in a function prologue. Return zero if we
843 are definitively *not* in a function prologue. */
844
845 static int
846 alpha_in_prologue (CORE_ADDR pc, alpha_extra_func_info_t proc_desc)
847 {
848 CORE_ADDR after_prologue_pc;
849
850 after_prologue_pc = after_prologue (pc, proc_desc);
851
852 if (after_prologue_pc == 0
853 || pc < after_prologue_pc)
854 return 1;
855 else
856 return 0;
857 }
858
859 static alpha_extra_func_info_t
860 find_proc_desc (CORE_ADDR pc, struct frame_info *next_frame)
861 {
862 alpha_extra_func_info_t proc_desc;
863 struct block *b;
864 struct symbol *sym;
865 CORE_ADDR startaddr;
866
867 /* Try to get the proc_desc from the linked call dummy proc_descs
868 if the pc is in the call dummy.
869 This is hairy. In the case of nested dummy calls we have to find the
870 right proc_desc, but we might not yet know the frame for the dummy
871 as it will be contained in the proc_desc we are searching for.
872 So we have to find the proc_desc whose frame is closest to the current
873 stack pointer. */
874
875 if (PC_IN_CALL_DUMMY (pc, 0, 0))
876 {
877 struct linked_proc_info *link;
878 CORE_ADDR sp = read_next_frame_reg (next_frame, SP_REGNUM);
879 alpha_extra_func_info_t found_proc_desc = NULL;
880 long min_distance = LONG_MAX;
881
882 for (link = linked_proc_desc_table; link; link = link->next)
883 {
884 long distance = (CORE_ADDR) PROC_DUMMY_FRAME (&link->info) - sp;
885 if (distance > 0 && distance < min_distance)
886 {
887 min_distance = distance;
888 found_proc_desc = &link->info;
889 }
890 }
891 if (found_proc_desc != NULL)
892 return found_proc_desc;
893 }
894
895 b = block_for_pc (pc);
896
897 find_pc_partial_function (pc, NULL, &startaddr, NULL);
898 if (b == NULL)
899 sym = NULL;
900 else
901 {
902 if (startaddr > BLOCK_START (b))
903 /* This is the "pathological" case referred to in a comment in
904 print_frame_info. It might be better to move this check into
905 symbol reading. */
906 sym = NULL;
907 else
908 sym = lookup_symbol (MIPS_EFI_SYMBOL_NAME, b, LABEL_NAMESPACE,
909 0, NULL);
910 }
911
912 /* If we never found a PDR for this function in symbol reading, then
913 examine prologues to find the information. */
914 if (sym && ((mips_extra_func_info_t) SYMBOL_VALUE (sym))->pdr.framereg == -1)
915 sym = NULL;
916
917 if (sym)
918 {
919 /* IF this is the topmost frame AND
920 * (this proc does not have debugging information OR
921 * the PC is in the procedure prologue)
922 * THEN create a "heuristic" proc_desc (by analyzing
923 * the actual code) to replace the "official" proc_desc.
924 */
925 proc_desc = (alpha_extra_func_info_t) SYMBOL_VALUE (sym);
926 if (next_frame == NULL)
927 {
928 if (PROC_DESC_IS_DUMMY (proc_desc) || alpha_in_prologue (pc, proc_desc))
929 {
930 alpha_extra_func_info_t found_heuristic =
931 heuristic_proc_desc (PROC_LOW_ADDR (proc_desc),
932 pc, next_frame);
933 if (found_heuristic)
934 {
935 PROC_LOCALOFF (found_heuristic) =
936 PROC_LOCALOFF (proc_desc);
937 PROC_PC_REG (found_heuristic) = PROC_PC_REG (proc_desc);
938 proc_desc = found_heuristic;
939 }
940 }
941 }
942 }
943 else
944 {
945 long offset;
946
947 /* Is linked_proc_desc_table really necessary? It only seems to be used
948 by procedure call dummys. However, the procedures being called ought
949 to have their own proc_descs, and even if they don't,
950 heuristic_proc_desc knows how to create them! */
951
952 register struct linked_proc_info *link;
953 for (link = linked_proc_desc_table; link; link = link->next)
954 if (PROC_LOW_ADDR (&link->info) <= pc
955 && PROC_HIGH_ADDR (&link->info) > pc)
956 return &link->info;
957
958 /* If PC is inside a dynamically generated sigtramp handler,
959 create and push a procedure descriptor for that code: */
960 offset = alpha_dynamic_sigtramp_offset (pc);
961 if (offset >= 0)
962 return push_sigtramp_desc (pc - offset);
963
964 /* If heuristic_fence_post is non-zero, determine the procedure
965 start address by examining the instructions.
966 This allows us to find the start address of static functions which
967 have no symbolic information, as startaddr would have been set to
968 the preceding global function start address by the
969 find_pc_partial_function call above. */
970 if (startaddr == 0 || heuristic_fence_post != 0)
971 startaddr = heuristic_proc_start (pc);
972
973 proc_desc =
974 heuristic_proc_desc (startaddr, pc, next_frame);
975 }
976 return proc_desc;
977 }
978
979 alpha_extra_func_info_t cached_proc_desc;
980
981 static CORE_ADDR
982 alpha_frame_chain (struct frame_info *frame)
983 {
984 alpha_extra_func_info_t proc_desc;
985 CORE_ADDR saved_pc = FRAME_SAVED_PC (frame);
986
987 if (saved_pc == 0 || inside_entry_file (saved_pc))
988 return 0;
989
990 proc_desc = find_proc_desc (saved_pc, frame);
991 if (!proc_desc)
992 return 0;
993
994 cached_proc_desc = proc_desc;
995
996 /* Fetch the frame pointer for a dummy frame from the procedure
997 descriptor. */
998 if (PROC_DESC_IS_DUMMY (proc_desc))
999 return (CORE_ADDR) PROC_DUMMY_FRAME (proc_desc);
1000
1001 /* If no frame pointer and frame size is zero, we must be at end
1002 of stack (or otherwise hosed). If we don't check frame size,
1003 we loop forever if we see a zero size frame. */
1004 if (PROC_FRAME_REG (proc_desc) == SP_REGNUM
1005 && PROC_FRAME_OFFSET (proc_desc) == 0
1006 /* The previous frame from a sigtramp frame might be frameless
1007 and have frame size zero. */
1008 && !frame->signal_handler_caller)
1009 return alpha_frame_past_sigtramp_frame (frame, saved_pc);
1010 else
1011 return read_next_frame_reg (frame, PROC_FRAME_REG (proc_desc))
1012 + PROC_FRAME_OFFSET (proc_desc);
1013 }
1014
1015 void
1016 alpha_print_extra_frame_info (struct frame_info *fi)
1017 {
1018 if (fi
1019 && fi->extra_info
1020 && fi->extra_info->proc_desc
1021 && fi->extra_info->proc_desc->pdr.framereg < NUM_REGS)
1022 printf_filtered (" frame pointer is at %s+%s\n",
1023 REGISTER_NAME (fi->extra_info->proc_desc->pdr.framereg),
1024 paddr_d (fi->extra_info->proc_desc->pdr.frameoffset));
1025 }
1026
1027 static void
1028 alpha_init_extra_frame_info (int fromleaf, struct frame_info *frame)
1029 {
1030 /* Use proc_desc calculated in frame_chain */
1031 alpha_extra_func_info_t proc_desc =
1032 frame->next ? cached_proc_desc : find_proc_desc (frame->pc, frame->next);
1033
1034 frame->extra_info = (struct frame_extra_info *)
1035 frame_obstack_alloc (sizeof (struct frame_extra_info));
1036
1037 frame->saved_regs = NULL;
1038 frame->extra_info->localoff = 0;
1039 frame->extra_info->pc_reg = ALPHA_RA_REGNUM;
1040 frame->extra_info->proc_desc = proc_desc == &temp_proc_desc ? 0 : proc_desc;
1041 if (proc_desc)
1042 {
1043 /* Get the locals offset and the saved pc register from the
1044 procedure descriptor, they are valid even if we are in the
1045 middle of the prologue. */
1046 frame->extra_info->localoff = PROC_LOCALOFF (proc_desc);
1047 frame->extra_info->pc_reg = PROC_PC_REG (proc_desc);
1048
1049 /* Fixup frame-pointer - only needed for top frame */
1050
1051 /* Fetch the frame pointer for a dummy frame from the procedure
1052 descriptor. */
1053 if (PROC_DESC_IS_DUMMY (proc_desc))
1054 frame->frame = (CORE_ADDR) PROC_DUMMY_FRAME (proc_desc);
1055
1056 /* This may not be quite right, if proc has a real frame register.
1057 Get the value of the frame relative sp, procedure might have been
1058 interrupted by a signal at it's very start. */
1059 else if (frame->pc == PROC_LOW_ADDR (proc_desc)
1060 && !alpha_proc_desc_is_dyn_sigtramp (proc_desc))
1061 frame->frame = read_next_frame_reg (frame->next, SP_REGNUM);
1062 else
1063 frame->frame = read_next_frame_reg (frame->next, PROC_FRAME_REG (proc_desc))
1064 + PROC_FRAME_OFFSET (proc_desc);
1065
1066 if (proc_desc == &temp_proc_desc)
1067 {
1068 char *name;
1069
1070 /* Do not set the saved registers for a sigtramp frame,
1071 alpha_find_saved_registers will do that for us.
1072 We can't use frame->signal_handler_caller, it is not yet set. */
1073 find_pc_partial_function (frame->pc, &name,
1074 (CORE_ADDR *) NULL, (CORE_ADDR *) NULL);
1075 if (!PC_IN_SIGTRAMP (frame->pc, name))
1076 {
1077 frame->saved_regs = (CORE_ADDR *)
1078 frame_obstack_alloc (SIZEOF_FRAME_SAVED_REGS);
1079 memcpy (frame->saved_regs, temp_saved_regs,
1080 SIZEOF_FRAME_SAVED_REGS);
1081 frame->saved_regs[PC_REGNUM]
1082 = frame->saved_regs[ALPHA_RA_REGNUM];
1083 }
1084 }
1085 }
1086 }
1087
1088 static CORE_ADDR
1089 alpha_frame_locals_address (struct frame_info *fi)
1090 {
1091 return (fi->frame - fi->extra_info->localoff);
1092 }
1093
1094 static CORE_ADDR
1095 alpha_frame_args_address (struct frame_info *fi)
1096 {
1097 return (fi->frame - (ALPHA_NUM_ARG_REGS * 8));
1098 }
1099
1100 /* ALPHA stack frames are almost impenetrable. When execution stops,
1101 we basically have to look at symbol information for the function
1102 that we stopped in, which tells us *which* register (if any) is
1103 the base of the frame pointer, and what offset from that register
1104 the frame itself is at.
1105
1106 This presents a problem when trying to examine a stack in memory
1107 (that isn't executing at the moment), using the "frame" command. We
1108 don't have a PC, nor do we have any registers except SP.
1109
1110 This routine takes two arguments, SP and PC, and tries to make the
1111 cached frames look as if these two arguments defined a frame on the
1112 cache. This allows the rest of info frame to extract the important
1113 arguments without difficulty. */
1114
1115 struct frame_info *
1116 alpha_setup_arbitrary_frame (int argc, CORE_ADDR *argv)
1117 {
1118 if (argc != 2)
1119 error ("ALPHA frame specifications require two arguments: sp and pc");
1120
1121 return create_new_frame (argv[0], argv[1]);
1122 }
1123
1124 /* The alpha passes the first six arguments in the registers, the rest on
1125 the stack. The register arguments are eventually transferred to the
1126 argument transfer area immediately below the stack by the called function
1127 anyway. So we `push' at least six arguments on the stack, `reload' the
1128 argument registers and then adjust the stack pointer to point past the
1129 sixth argument. This algorithm simplifies the passing of a large struct
1130 which extends from the registers to the stack.
1131 If the called function is returning a structure, the address of the
1132 structure to be returned is passed as a hidden first argument. */
1133
1134 static CORE_ADDR
1135 alpha_push_arguments (int nargs, struct value **args, CORE_ADDR sp,
1136 int struct_return, CORE_ADDR struct_addr)
1137 {
1138 int i;
1139 int accumulate_size = struct_return ? 8 : 0;
1140 int arg_regs_size = ALPHA_NUM_ARG_REGS * 8;
1141 struct alpha_arg
1142 {
1143 char *contents;
1144 int len;
1145 int offset;
1146 };
1147 struct alpha_arg *alpha_args =
1148 (struct alpha_arg *) alloca (nargs * sizeof (struct alpha_arg));
1149 register struct alpha_arg *m_arg;
1150 char raw_buffer[sizeof (CORE_ADDR)];
1151 int required_arg_regs;
1152
1153 for (i = 0, m_arg = alpha_args; i < nargs; i++, m_arg++)
1154 {
1155 struct value *arg = args[i];
1156 struct type *arg_type = check_typedef (VALUE_TYPE (arg));
1157 /* Cast argument to long if necessary as the compiler does it too. */
1158 switch (TYPE_CODE (arg_type))
1159 {
1160 case TYPE_CODE_INT:
1161 case TYPE_CODE_BOOL:
1162 case TYPE_CODE_CHAR:
1163 case TYPE_CODE_RANGE:
1164 case TYPE_CODE_ENUM:
1165 if (TYPE_LENGTH (arg_type) < TYPE_LENGTH (builtin_type_long))
1166 {
1167 arg_type = builtin_type_long;
1168 arg = value_cast (arg_type, arg);
1169 }
1170 break;
1171 default:
1172 break;
1173 }
1174 m_arg->len = TYPE_LENGTH (arg_type);
1175 m_arg->offset = accumulate_size;
1176 accumulate_size = (accumulate_size + m_arg->len + 7) & ~7;
1177 m_arg->contents = VALUE_CONTENTS (arg);
1178 }
1179
1180 /* Determine required argument register loads, loading an argument register
1181 is expensive as it uses three ptrace calls. */
1182 required_arg_regs = accumulate_size / 8;
1183 if (required_arg_regs > ALPHA_NUM_ARG_REGS)
1184 required_arg_regs = ALPHA_NUM_ARG_REGS;
1185
1186 /* Make room for the arguments on the stack. */
1187 if (accumulate_size < arg_regs_size)
1188 accumulate_size = arg_regs_size;
1189 sp -= accumulate_size;
1190
1191 /* Keep sp aligned to a multiple of 16 as the compiler does it too. */
1192 sp &= ~15;
1193
1194 /* `Push' arguments on the stack. */
1195 for (i = nargs; m_arg--, --i >= 0;)
1196 write_memory (sp + m_arg->offset, m_arg->contents, m_arg->len);
1197 if (struct_return)
1198 {
1199 store_address (raw_buffer, sizeof (CORE_ADDR), struct_addr);
1200 write_memory (sp, raw_buffer, sizeof (CORE_ADDR));
1201 }
1202
1203 /* Load the argument registers. */
1204 for (i = 0; i < required_arg_regs; i++)
1205 {
1206 LONGEST val;
1207
1208 val = read_memory_integer (sp + i * 8, 8);
1209 write_register (ALPHA_A0_REGNUM + i, val);
1210 write_register (ALPHA_FPA0_REGNUM + i, val);
1211 }
1212
1213 return sp + arg_regs_size;
1214 }
1215
1216 static void
1217 alpha_push_dummy_frame (void)
1218 {
1219 int ireg;
1220 struct linked_proc_info *link;
1221 alpha_extra_func_info_t proc_desc;
1222 CORE_ADDR sp = read_register (SP_REGNUM);
1223 CORE_ADDR save_address;
1224 char raw_buffer[ALPHA_MAX_REGISTER_RAW_SIZE];
1225 unsigned long mask;
1226
1227 link = (struct linked_proc_info *) xmalloc (sizeof (struct linked_proc_info));
1228 link->next = linked_proc_desc_table;
1229 linked_proc_desc_table = link;
1230
1231 proc_desc = &link->info;
1232
1233 /*
1234 * The registers we must save are all those not preserved across
1235 * procedure calls.
1236 * In addition, we must save the PC and RA.
1237 *
1238 * Dummy frame layout:
1239 * (high memory)
1240 * Saved PC
1241 * Saved F30
1242 * ...
1243 * Saved F0
1244 * Saved R29
1245 * ...
1246 * Saved R0
1247 * Saved R26 (RA)
1248 * Parameter build area
1249 * (low memory)
1250 */
1251
1252 /* MASK(i,j) == (1<<i) + (1<<(i+1)) + ... + (1<<j)). Assume i<=j<31. */
1253 #define MASK(i,j) ((((LONGEST)1 << ((j)+1)) - 1) ^ (((LONGEST)1 << (i)) - 1))
1254 #define GEN_REG_SAVE_MASK (MASK(0,8) | MASK(16,29))
1255 #define GEN_REG_SAVE_COUNT 24
1256 #define FLOAT_REG_SAVE_MASK (MASK(0,1) | MASK(10,30))
1257 #define FLOAT_REG_SAVE_COUNT 23
1258 /* The special register is the PC as we have no bit for it in the save masks.
1259 alpha_frame_saved_pc knows where the pc is saved in a dummy frame. */
1260 #define SPECIAL_REG_SAVE_COUNT 1
1261
1262 PROC_REG_MASK (proc_desc) = GEN_REG_SAVE_MASK;
1263 PROC_FREG_MASK (proc_desc) = FLOAT_REG_SAVE_MASK;
1264 /* PROC_REG_OFFSET is the offset from the dummy frame to the saved RA,
1265 but keep SP aligned to a multiple of 16. */
1266 PROC_REG_OFFSET (proc_desc) =
1267 -((8 * (SPECIAL_REG_SAVE_COUNT
1268 + GEN_REG_SAVE_COUNT
1269 + FLOAT_REG_SAVE_COUNT)
1270 + 15) & ~15);
1271 PROC_FREG_OFFSET (proc_desc) =
1272 PROC_REG_OFFSET (proc_desc) + 8 * GEN_REG_SAVE_COUNT;
1273
1274 /* Save general registers.
1275 The return address register is the first saved register, all other
1276 registers follow in ascending order.
1277 The PC is saved immediately below the SP. */
1278 save_address = sp + PROC_REG_OFFSET (proc_desc);
1279 store_address (raw_buffer, 8, read_register (ALPHA_RA_REGNUM));
1280 write_memory (save_address, raw_buffer, 8);
1281 save_address += 8;
1282 mask = PROC_REG_MASK (proc_desc) & 0xffffffffL;
1283 for (ireg = 0; mask; ireg++, mask >>= 1)
1284 if (mask & 1)
1285 {
1286 if (ireg == ALPHA_RA_REGNUM)
1287 continue;
1288 store_address (raw_buffer, 8, read_register (ireg));
1289 write_memory (save_address, raw_buffer, 8);
1290 save_address += 8;
1291 }
1292
1293 store_address (raw_buffer, 8, read_register (PC_REGNUM));
1294 write_memory (sp - 8, raw_buffer, 8);
1295
1296 /* Save floating point registers. */
1297 save_address = sp + PROC_FREG_OFFSET (proc_desc);
1298 mask = PROC_FREG_MASK (proc_desc) & 0xffffffffL;
1299 for (ireg = 0; mask; ireg++, mask >>= 1)
1300 if (mask & 1)
1301 {
1302 store_address (raw_buffer, 8, read_register (ireg + FP0_REGNUM));
1303 write_memory (save_address, raw_buffer, 8);
1304 save_address += 8;
1305 }
1306
1307 /* Set and save the frame address for the dummy.
1308 This is tricky. The only registers that are suitable for a frame save
1309 are those that are preserved across procedure calls (s0-s6). But if
1310 a read system call is interrupted and then a dummy call is made
1311 (see testsuite/gdb.t17/interrupt.exp) the dummy call hangs till the read
1312 is satisfied. Then it returns with the s0-s6 registers set to the values
1313 on entry to the read system call and our dummy frame pointer would be
1314 destroyed. So we save the dummy frame in the proc_desc and handle the
1315 retrieval of the frame pointer of a dummy specifically. The frame register
1316 is set to the virtual frame (pseudo) register, it's value will always
1317 be read as zero and will help us to catch any errors in the dummy frame
1318 retrieval code. */
1319 PROC_DUMMY_FRAME (proc_desc) = sp;
1320 PROC_FRAME_REG (proc_desc) = FP_REGNUM;
1321 PROC_FRAME_OFFSET (proc_desc) = 0;
1322 sp += PROC_REG_OFFSET (proc_desc);
1323 write_register (SP_REGNUM, sp);
1324
1325 PROC_LOW_ADDR (proc_desc) = CALL_DUMMY_ADDRESS ();
1326 PROC_HIGH_ADDR (proc_desc) = PROC_LOW_ADDR (proc_desc) + 4;
1327
1328 SET_PROC_DESC_IS_DUMMY (proc_desc);
1329 PROC_PC_REG (proc_desc) = ALPHA_RA_REGNUM;
1330 }
1331
1332 static void
1333 alpha_pop_frame (void)
1334 {
1335 register int regnum;
1336 struct frame_info *frame = get_current_frame ();
1337 CORE_ADDR new_sp = frame->frame;
1338
1339 alpha_extra_func_info_t proc_desc = frame->extra_info->proc_desc;
1340
1341 /* we need proc_desc to know how to restore the registers;
1342 if it is NULL, construct (a temporary) one */
1343 if (proc_desc == NULL)
1344 proc_desc = find_proc_desc (frame->pc, frame->next);
1345
1346 /* Question: should we copy this proc_desc and save it in
1347 frame->proc_desc? If we do, who will free it?
1348 For now, we don't save a copy... */
1349
1350 write_register (PC_REGNUM, FRAME_SAVED_PC (frame));
1351 if (frame->saved_regs == NULL)
1352 alpha_find_saved_regs (frame);
1353 if (proc_desc)
1354 {
1355 for (regnum = 32; --regnum >= 0;)
1356 if (PROC_REG_MASK (proc_desc) & (1 << regnum))
1357 write_register (regnum,
1358 read_memory_integer (frame->saved_regs[regnum],
1359 8));
1360 for (regnum = 32; --regnum >= 0;)
1361 if (PROC_FREG_MASK (proc_desc) & (1 << regnum))
1362 write_register (regnum + FP0_REGNUM,
1363 read_memory_integer (frame->saved_regs[regnum + FP0_REGNUM], 8));
1364 }
1365 write_register (SP_REGNUM, new_sp);
1366 flush_cached_frames ();
1367
1368 if (proc_desc && (PROC_DESC_IS_DUMMY (proc_desc)
1369 || alpha_proc_desc_is_dyn_sigtramp (proc_desc)))
1370 {
1371 struct linked_proc_info *pi_ptr, *prev_ptr;
1372
1373 for (pi_ptr = linked_proc_desc_table, prev_ptr = NULL;
1374 pi_ptr != NULL;
1375 prev_ptr = pi_ptr, pi_ptr = pi_ptr->next)
1376 {
1377 if (&pi_ptr->info == proc_desc)
1378 break;
1379 }
1380
1381 if (pi_ptr == NULL)
1382 error ("Can't locate dummy extra frame info\n");
1383
1384 if (prev_ptr != NULL)
1385 prev_ptr->next = pi_ptr->next;
1386 else
1387 linked_proc_desc_table = pi_ptr->next;
1388
1389 xfree (pi_ptr);
1390 }
1391 }
1392 \f
1393 /* To skip prologues, I use this predicate. Returns either PC itself
1394 if the code at PC does not look like a function prologue; otherwise
1395 returns an address that (if we're lucky) follows the prologue. If
1396 LENIENT, then we must skip everything which is involved in setting
1397 up the frame (it's OK to skip more, just so long as we don't skip
1398 anything which might clobber the registers which are being saved.
1399 Currently we must not skip more on the alpha, but we might need the
1400 lenient stuff some day. */
1401
1402 static CORE_ADDR
1403 alpha_skip_prologue_internal (CORE_ADDR pc, int lenient)
1404 {
1405 unsigned long inst;
1406 int offset;
1407 CORE_ADDR post_prologue_pc;
1408 char buf[4];
1409
1410 /* Silently return the unaltered pc upon memory errors.
1411 This could happen on OSF/1 if decode_line_1 tries to skip the
1412 prologue for quickstarted shared library functions when the
1413 shared library is not yet mapped in.
1414 Reading target memory is slow over serial lines, so we perform
1415 this check only if the target has shared libraries (which all
1416 Alpha targets do). */
1417 if (target_read_memory (pc, buf, 4))
1418 return pc;
1419
1420 /* See if we can determine the end of the prologue via the symbol table.
1421 If so, then return either PC, or the PC after the prologue, whichever
1422 is greater. */
1423
1424 post_prologue_pc = after_prologue (pc, NULL);
1425
1426 if (post_prologue_pc != 0)
1427 return max (pc, post_prologue_pc);
1428
1429 /* Can't determine prologue from the symbol table, need to examine
1430 instructions. */
1431
1432 /* Skip the typical prologue instructions. These are the stack adjustment
1433 instruction and the instructions that save registers on the stack
1434 or in the gcc frame. */
1435 for (offset = 0; offset < 100; offset += 4)
1436 {
1437 int status;
1438
1439 status = read_memory_nobpt (pc + offset, buf, 4);
1440 if (status)
1441 memory_error (status, pc + offset);
1442 inst = extract_unsigned_integer (buf, 4);
1443
1444 /* The alpha has no delay slots. But let's keep the lenient stuff,
1445 we might need it for something else in the future. */
1446 if (lenient && 0)
1447 continue;
1448
1449 if ((inst & 0xffff0000) == 0x27bb0000) /* ldah $gp,n($t12) */
1450 continue;
1451 if ((inst & 0xffff0000) == 0x23bd0000) /* lda $gp,n($gp) */
1452 continue;
1453 if ((inst & 0xffff0000) == 0x23de0000) /* lda $sp,n($sp) */
1454 continue;
1455 if ((inst & 0xffe01fff) == 0x43c0153e) /* subq $sp,n,$sp */
1456 continue;
1457
1458 if ((inst & 0xfc1f0000) == 0xb41e0000
1459 && (inst & 0xffff0000) != 0xb7fe0000)
1460 continue; /* stq reg,n($sp) */
1461 /* reg != $zero */
1462 if ((inst & 0xfc1f0000) == 0x9c1e0000
1463 && (inst & 0xffff0000) != 0x9ffe0000)
1464 continue; /* stt reg,n($sp) */
1465 /* reg != $zero */
1466 if (inst == 0x47de040f) /* bis sp,sp,fp */
1467 continue;
1468
1469 break;
1470 }
1471 return pc + offset;
1472 }
1473
1474 static CORE_ADDR
1475 alpha_skip_prologue (CORE_ADDR addr)
1476 {
1477 return (alpha_skip_prologue_internal (addr, 0));
1478 }
1479
1480 #if 0
1481 /* Is address PC in the prologue (loosely defined) for function at
1482 STARTADDR? */
1483
1484 static int
1485 alpha_in_lenient_prologue (CORE_ADDR startaddr, CORE_ADDR pc)
1486 {
1487 CORE_ADDR end_prologue = alpha_skip_prologue_internal (startaddr, 1);
1488 return pc >= startaddr && pc < end_prologue;
1489 }
1490 #endif
1491
1492 /* The alpha needs a conversion between register and memory format if
1493 the register is a floating point register and
1494 memory format is float, as the register format must be double
1495 or
1496 memory format is an integer with 4 bytes or less, as the representation
1497 of integers in floating point registers is different. */
1498 static void
1499 alpha_register_convert_to_virtual (int regnum, struct type *valtype,
1500 char *raw_buffer, char *virtual_buffer)
1501 {
1502 if (TYPE_LENGTH (valtype) >= REGISTER_RAW_SIZE (regnum))
1503 {
1504 memcpy (virtual_buffer, raw_buffer, REGISTER_VIRTUAL_SIZE (regnum));
1505 return;
1506 }
1507
1508 if (TYPE_CODE (valtype) == TYPE_CODE_FLT)
1509 {
1510 double d = extract_floating (raw_buffer, REGISTER_RAW_SIZE (regnum));
1511 store_floating (virtual_buffer, TYPE_LENGTH (valtype), d);
1512 }
1513 else if (TYPE_CODE (valtype) == TYPE_CODE_INT && TYPE_LENGTH (valtype) <= 4)
1514 {
1515 ULONGEST l;
1516 l = extract_unsigned_integer (raw_buffer, REGISTER_RAW_SIZE (regnum));
1517 l = ((l >> 32) & 0xc0000000) | ((l >> 29) & 0x3fffffff);
1518 store_unsigned_integer (virtual_buffer, TYPE_LENGTH (valtype), l);
1519 }
1520 else
1521 error ("Cannot retrieve value from floating point register");
1522 }
1523
1524 static void
1525 alpha_register_convert_to_raw (struct type *valtype, int regnum,
1526 char *virtual_buffer, char *raw_buffer)
1527 {
1528 if (TYPE_LENGTH (valtype) >= REGISTER_RAW_SIZE (regnum))
1529 {
1530 memcpy (raw_buffer, virtual_buffer, REGISTER_RAW_SIZE (regnum));
1531 return;
1532 }
1533
1534 if (TYPE_CODE (valtype) == TYPE_CODE_FLT)
1535 {
1536 double d = extract_floating (virtual_buffer, TYPE_LENGTH (valtype));
1537 store_floating (raw_buffer, REGISTER_RAW_SIZE (regnum), d);
1538 }
1539 else if (TYPE_CODE (valtype) == TYPE_CODE_INT && TYPE_LENGTH (valtype) <= 4)
1540 {
1541 ULONGEST l;
1542 if (TYPE_UNSIGNED (valtype))
1543 l = extract_unsigned_integer (virtual_buffer, TYPE_LENGTH (valtype));
1544 else
1545 l = extract_signed_integer (virtual_buffer, TYPE_LENGTH (valtype));
1546 l = ((l & 0xc0000000) << 32) | ((l & 0x3fffffff) << 29);
1547 store_unsigned_integer (raw_buffer, REGISTER_RAW_SIZE (regnum), l);
1548 }
1549 else
1550 error ("Cannot store value in floating point register");
1551 }
1552
1553 static const unsigned char *
1554 alpha_breakpoint_from_pc (CORE_ADDR *pcptr, int *lenptr)
1555 {
1556 static const unsigned char alpha_breakpoint[] =
1557 { 0x80, 0, 0, 0 }; /* call_pal bpt */
1558
1559 *lenptr = sizeof(alpha_breakpoint);
1560 return (alpha_breakpoint);
1561 }
1562
1563 /* Given a return value in `regbuf' with a type `valtype',
1564 extract and copy its value into `valbuf'. */
1565
1566 static void
1567 alpha_extract_return_value (struct type *valtype,
1568 char regbuf[ALPHA_REGISTER_BYTES], char *valbuf)
1569 {
1570 if (TYPE_CODE (valtype) == TYPE_CODE_FLT)
1571 alpha_register_convert_to_virtual (FP0_REGNUM, valtype,
1572 regbuf + REGISTER_BYTE (FP0_REGNUM),
1573 valbuf);
1574 else
1575 memcpy (valbuf, regbuf + REGISTER_BYTE (ALPHA_V0_REGNUM),
1576 TYPE_LENGTH (valtype));
1577 }
1578
1579 /* Given a return value in `regbuf' with a type `valtype',
1580 write its value into the appropriate register. */
1581
1582 static void
1583 alpha_store_return_value (struct type *valtype, char *valbuf)
1584 {
1585 char raw_buffer[ALPHA_MAX_REGISTER_RAW_SIZE];
1586 int regnum = ALPHA_V0_REGNUM;
1587 int length = TYPE_LENGTH (valtype);
1588
1589 if (TYPE_CODE (valtype) == TYPE_CODE_FLT)
1590 {
1591 regnum = FP0_REGNUM;
1592 length = REGISTER_RAW_SIZE (regnum);
1593 alpha_register_convert_to_raw (valtype, regnum, valbuf, raw_buffer);
1594 }
1595 else
1596 memcpy (raw_buffer, valbuf, length);
1597
1598 write_register_bytes (REGISTER_BYTE (regnum), raw_buffer, length);
1599 }
1600
1601 /* Just like reinit_frame_cache, but with the right arguments to be
1602 callable as an sfunc. */
1603
1604 static void
1605 reinit_frame_cache_sfunc (char *args, int from_tty, struct cmd_list_element *c)
1606 {
1607 reinit_frame_cache ();
1608 }
1609
1610 /* This is the definition of CALL_DUMMY_ADDRESS. It's a heuristic that is used
1611 to find a convenient place in the text segment to stick a breakpoint to
1612 detect the completion of a target function call (ala call_function_by_hand).
1613 */
1614
1615 CORE_ADDR
1616 alpha_call_dummy_address (void)
1617 {
1618 CORE_ADDR entry;
1619 struct minimal_symbol *sym;
1620
1621 entry = entry_point_address ();
1622
1623 if (entry != 0)
1624 return entry;
1625
1626 sym = lookup_minimal_symbol ("_Prelude", NULL, symfile_objfile);
1627
1628 if (!sym || MSYMBOL_TYPE (sym) != mst_text)
1629 return 0;
1630 else
1631 return SYMBOL_VALUE_ADDRESS (sym) + 4;
1632 }
1633
1634 static void
1635 alpha_fix_call_dummy (char *dummy, CORE_ADDR pc, CORE_ADDR fun, int nargs,
1636 struct value **args, struct type *type, int gcc_p)
1637 {
1638 CORE_ADDR bp_address = CALL_DUMMY_ADDRESS ();
1639
1640 if (bp_address == 0)
1641 error ("no place to put call");
1642 write_register (ALPHA_RA_REGNUM, bp_address);
1643 write_register (ALPHA_T12_REGNUM, fun);
1644 }
1645
1646 /* On the Alpha, the call dummy code is nevery copied to user space
1647 (see alpha_fix_call_dummy() above). The contents of this do not
1648 matter. */
1649 LONGEST alpha_call_dummy_words[] = { 0 };
1650
1651 static int
1652 alpha_use_struct_convention (int gcc_p, struct type *type)
1653 {
1654 /* Structures are returned by ref in extra arg0. */
1655 return 1;
1656 }
1657
1658 static void
1659 alpha_store_struct_return (CORE_ADDR addr, CORE_ADDR sp)
1660 {
1661 /* Store the address of the place in which to copy the structure the
1662 subroutine will return. Handled by alpha_push_arguments. */
1663 }
1664
1665 static CORE_ADDR
1666 alpha_extract_struct_value_address (char *regbuf)
1667 {
1668 return (extract_address (regbuf + REGISTER_BYTE (ALPHA_V0_REGNUM),
1669 REGISTER_RAW_SIZE (ALPHA_V0_REGNUM)));
1670 }
1671
1672 /* Figure out where the longjmp will land.
1673 We expect the first arg to be a pointer to the jmp_buf structure from
1674 which we extract the PC (JB_PC) that we will land at. The PC is copied
1675 into the "pc". This routine returns true on success. */
1676
1677 static int
1678 alpha_get_longjmp_target (CORE_ADDR *pc)
1679 {
1680 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
1681 CORE_ADDR jb_addr;
1682 char raw_buffer[ALPHA_MAX_REGISTER_RAW_SIZE];
1683
1684 jb_addr = read_register (ALPHA_A0_REGNUM);
1685
1686 if (target_read_memory (jb_addr + (tdep->jb_pc * tdep->jb_elt_size),
1687 raw_buffer, tdep->jb_elt_size))
1688 return 0;
1689
1690 *pc = extract_address (raw_buffer, tdep->jb_elt_size);
1691 return 1;
1692 }
1693
1694 /* alpha_software_single_step() is called just before we want to resume
1695 the inferior, if we want to single-step it but there is no hardware
1696 or kernel single-step support (NetBSD on Alpha, for example). We find
1697 the target of the coming instruction and breakpoint it.
1698
1699 single_step is also called just after the inferior stops. If we had
1700 set up a simulated single-step, we undo our damage. */
1701
1702 static CORE_ADDR
1703 alpha_next_pc (CORE_ADDR pc)
1704 {
1705 unsigned int insn;
1706 unsigned int op;
1707 int offset;
1708 LONGEST rav;
1709
1710 insn = read_memory_unsigned_integer (pc, sizeof (insn));
1711
1712 /* Opcode is top 6 bits. */
1713 op = (insn >> 26) & 0x3f;
1714
1715 if (op == 0x1a)
1716 {
1717 /* Jump format: target PC is:
1718 RB & ~3 */
1719 return (read_register ((insn >> 16) & 0x1f) & ~3);
1720 }
1721
1722 if ((op & 0x30) == 0x30)
1723 {
1724 /* Branch format: target PC is:
1725 (new PC) + (4 * sext(displacement)) */
1726 if (op == 0x30 || /* BR */
1727 op == 0x34) /* BSR */
1728 {
1729 branch_taken:
1730 offset = (insn & 0x001fffff);
1731 if (offset & 0x00100000)
1732 offset |= 0xffe00000;
1733 offset *= 4;
1734 return (pc + 4 + offset);
1735 }
1736
1737 /* Need to determine if branch is taken; read RA. */
1738 rav = (LONGEST) read_register ((insn >> 21) & 0x1f);
1739 switch (op)
1740 {
1741 case 0x38: /* BLBC */
1742 if ((rav & 1) == 0)
1743 goto branch_taken;
1744 break;
1745 case 0x3c: /* BLBS */
1746 if (rav & 1)
1747 goto branch_taken;
1748 break;
1749 case 0x39: /* BEQ */
1750 if (rav == 0)
1751 goto branch_taken;
1752 break;
1753 case 0x3d: /* BNE */
1754 if (rav != 0)
1755 goto branch_taken;
1756 break;
1757 case 0x3a: /* BLT */
1758 if (rav < 0)
1759 goto branch_taken;
1760 break;
1761 case 0x3b: /* BLE */
1762 if (rav <= 0)
1763 goto branch_taken;
1764 break;
1765 case 0x3f: /* BGT */
1766 if (rav > 0)
1767 goto branch_taken;
1768 break;
1769 case 0x3e: /* BGE */
1770 if (rav >= 0)
1771 goto branch_taken;
1772 break;
1773 }
1774 }
1775
1776 /* Not a branch or branch not taken; target PC is:
1777 pc + 4 */
1778 return (pc + 4);
1779 }
1780
1781 void
1782 alpha_software_single_step (enum target_signal sig, int insert_breakpoints_p)
1783 {
1784 static CORE_ADDR next_pc;
1785 typedef char binsn_quantum[BREAKPOINT_MAX];
1786 static binsn_quantum break_mem;
1787 CORE_ADDR pc;
1788
1789 if (insert_breakpoints_p)
1790 {
1791 pc = read_pc ();
1792 next_pc = alpha_next_pc (pc);
1793
1794 target_insert_breakpoint (next_pc, break_mem);
1795 }
1796 else
1797 {
1798 target_remove_breakpoint (next_pc, break_mem);
1799 write_pc (next_pc);
1800 }
1801 }
1802
1803 \f
1804
1805 /* Initialize the current architecture based on INFO. If possible, re-use an
1806 architecture from ARCHES, which is a list of architectures already created
1807 during this debugging session.
1808
1809 Called e.g. at program startup, when reading a core file, and when reading
1810 a binary file. */
1811
1812 static struct gdbarch *
1813 alpha_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
1814 {
1815 struct gdbarch_tdep *tdep;
1816 struct gdbarch *gdbarch;
1817 enum gdb_osabi osabi = GDB_OSABI_UNKNOWN;
1818
1819 /* Try to determine the ABI of the object we are loading. */
1820
1821 if (info.abfd != NULL)
1822 {
1823 osabi = gdbarch_lookup_osabi (info.abfd);
1824 if (osabi == GDB_OSABI_UNKNOWN)
1825 {
1826 /* If it's an ECOFF file, assume it's OSF/1. */
1827 if (bfd_get_flavour (info.abfd) == bfd_target_ecoff_flavour)
1828 osabi = GDB_OSABI_OSF1;
1829 }
1830 }
1831
1832 /* Find a candidate among extant architectures. */
1833 for (arches = gdbarch_list_lookup_by_info (arches, &info);
1834 arches != NULL;
1835 arches = gdbarch_list_lookup_by_info (arches->next, &info))
1836 {
1837 /* Make sure the ABI selection matches. */
1838 tdep = gdbarch_tdep (arches->gdbarch);
1839 if (tdep && tdep->osabi == osabi)
1840 return arches->gdbarch;
1841 }
1842
1843 tdep = xmalloc (sizeof (struct gdbarch_tdep));
1844 gdbarch = gdbarch_alloc (&info, tdep);
1845
1846 tdep->osabi = osabi;
1847
1848 /* Lowest text address. This is used by heuristic_proc_start() to
1849 decide when to stop looking. */
1850 tdep->vm_min_address = (CORE_ADDR) 0x120000000;
1851
1852 tdep->dynamic_sigtramp_offset = NULL;
1853 tdep->skip_sigtramp_frame = NULL;
1854 tdep->sigcontext_addr = NULL;
1855
1856 tdep->jb_pc = -1; /* longjmp support not enabled by default */
1857
1858 /* Type sizes */
1859 set_gdbarch_short_bit (gdbarch, 16);
1860 set_gdbarch_int_bit (gdbarch, 32);
1861 set_gdbarch_long_bit (gdbarch, 64);
1862 set_gdbarch_long_long_bit (gdbarch, 64);
1863 set_gdbarch_float_bit (gdbarch, 32);
1864 set_gdbarch_double_bit (gdbarch, 64);
1865 set_gdbarch_long_double_bit (gdbarch, 64);
1866 set_gdbarch_ptr_bit (gdbarch, 64);
1867
1868 /* Register info */
1869 set_gdbarch_num_regs (gdbarch, ALPHA_NUM_REGS);
1870 set_gdbarch_sp_regnum (gdbarch, ALPHA_SP_REGNUM);
1871 set_gdbarch_fp_regnum (gdbarch, ALPHA_FP_REGNUM);
1872 set_gdbarch_pc_regnum (gdbarch, ALPHA_PC_REGNUM);
1873 set_gdbarch_fp0_regnum (gdbarch, ALPHA_FP0_REGNUM);
1874
1875 set_gdbarch_register_name (gdbarch, alpha_register_name);
1876 set_gdbarch_register_size (gdbarch, ALPHA_REGISTER_SIZE);
1877 set_gdbarch_register_bytes (gdbarch, ALPHA_REGISTER_BYTES);
1878 set_gdbarch_register_byte (gdbarch, alpha_register_byte);
1879 set_gdbarch_register_raw_size (gdbarch, alpha_register_raw_size);
1880 set_gdbarch_max_register_raw_size (gdbarch, ALPHA_MAX_REGISTER_RAW_SIZE);
1881 set_gdbarch_register_virtual_size (gdbarch, alpha_register_virtual_size);
1882 set_gdbarch_max_register_virtual_size (gdbarch,
1883 ALPHA_MAX_REGISTER_VIRTUAL_SIZE);
1884 set_gdbarch_register_virtual_type (gdbarch, alpha_register_virtual_type);
1885
1886 set_gdbarch_cannot_fetch_register (gdbarch, alpha_cannot_fetch_register);
1887 set_gdbarch_cannot_store_register (gdbarch, alpha_cannot_store_register);
1888
1889 set_gdbarch_register_convertible (gdbarch, alpha_register_convertible);
1890 set_gdbarch_register_convert_to_virtual (gdbarch,
1891 alpha_register_convert_to_virtual);
1892 set_gdbarch_register_convert_to_raw (gdbarch, alpha_register_convert_to_raw);
1893
1894 set_gdbarch_skip_prologue (gdbarch, alpha_skip_prologue);
1895
1896 set_gdbarch_frame_num_args (gdbarch, frame_num_args_unknown);
1897 set_gdbarch_frameless_function_invocation (gdbarch,
1898 generic_frameless_function_invocation_not);
1899
1900 set_gdbarch_saved_pc_after_call (gdbarch, alpha_saved_pc_after_call);
1901
1902 set_gdbarch_frame_chain (gdbarch, alpha_frame_chain);
1903 set_gdbarch_frame_chain_valid (gdbarch, func_frame_chain_valid);
1904 set_gdbarch_frame_saved_pc (gdbarch, alpha_frame_saved_pc);
1905
1906 set_gdbarch_frame_init_saved_regs (gdbarch, alpha_frame_init_saved_regs);
1907 set_gdbarch_get_saved_register (gdbarch, alpha_get_saved_register);
1908
1909 set_gdbarch_use_struct_convention (gdbarch, alpha_use_struct_convention);
1910 set_gdbarch_deprecated_extract_return_value (gdbarch, alpha_extract_return_value);
1911
1912 set_gdbarch_store_struct_return (gdbarch, alpha_store_struct_return);
1913 set_gdbarch_store_return_value (gdbarch, alpha_store_return_value);
1914 set_gdbarch_deprecated_extract_struct_value_address (gdbarch,
1915 alpha_extract_struct_value_address);
1916
1917 /* Settings for calling functions in the inferior. */
1918 set_gdbarch_use_generic_dummy_frames (gdbarch, 0);
1919 set_gdbarch_call_dummy_length (gdbarch, 0);
1920 set_gdbarch_push_arguments (gdbarch, alpha_push_arguments);
1921 set_gdbarch_pop_frame (gdbarch, alpha_pop_frame);
1922
1923 /* On the Alpha, the call dummy code is never copied to user space,
1924 stopping the user call is achieved via a bp_call_dummy breakpoint.
1925 But we need a fake CALL_DUMMY definition to enable the proper
1926 call_function_by_hand and to avoid zero length array warnings. */
1927 set_gdbarch_call_dummy_p (gdbarch, 1);
1928 set_gdbarch_call_dummy_words (gdbarch, alpha_call_dummy_words);
1929 set_gdbarch_sizeof_call_dummy_words (gdbarch, 0);
1930 set_gdbarch_frame_args_address (gdbarch, alpha_frame_args_address);
1931 set_gdbarch_frame_locals_address (gdbarch, alpha_frame_locals_address);
1932 set_gdbarch_init_extra_frame_info (gdbarch, alpha_init_extra_frame_info);
1933
1934 /* Alpha OSF/1 inhibits execution of code on the stack. But there is
1935 no need for a dummy on the Alpha. PUSH_ARGUMENTS takes care of all
1936 argument handling and bp_call_dummy takes care of stopping the dummy. */
1937 set_gdbarch_call_dummy_location (gdbarch, AT_ENTRY_POINT);
1938 set_gdbarch_call_dummy_address (gdbarch, alpha_call_dummy_address);
1939 set_gdbarch_call_dummy_breakpoint_offset_p (gdbarch, 1);
1940 set_gdbarch_call_dummy_breakpoint_offset (gdbarch, 0);
1941 set_gdbarch_call_dummy_start_offset (gdbarch, 0);
1942 set_gdbarch_pc_in_call_dummy (gdbarch, pc_in_call_dummy_at_entry_point);
1943 set_gdbarch_call_dummy_stack_adjust_p (gdbarch, 0);
1944 set_gdbarch_push_dummy_frame (gdbarch, alpha_push_dummy_frame);
1945 set_gdbarch_fix_call_dummy (gdbarch, alpha_fix_call_dummy);
1946 set_gdbarch_init_frame_pc (gdbarch, init_frame_pc_noop);
1947 set_gdbarch_init_frame_pc_first (gdbarch, alpha_init_frame_pc_first);
1948
1949 set_gdbarch_inner_than (gdbarch, core_addr_lessthan);
1950 set_gdbarch_skip_trampoline_code (gdbarch, find_solib_trampoline_target);
1951
1952 /* Floats are always passed as doubles. */
1953 set_gdbarch_coerce_float_to_double (gdbarch,
1954 standard_coerce_float_to_double);
1955
1956 set_gdbarch_breakpoint_from_pc (gdbarch, alpha_breakpoint_from_pc);
1957 set_gdbarch_decr_pc_after_break (gdbarch, 4);
1958
1959 set_gdbarch_function_start_offset (gdbarch, 0);
1960 set_gdbarch_frame_args_skip (gdbarch, 0);
1961
1962 /* Hook in ABI-specific overrides, if they have been registered. */
1963 gdbarch_init_osabi (info, gdbarch, osabi);
1964
1965 /* Now that we have tuned the configuration, set a few final things
1966 based on what the OS ABI has told us. */
1967
1968 if (tdep->jb_pc >= 0)
1969 set_gdbarch_get_longjmp_target (gdbarch, alpha_get_longjmp_target);
1970
1971 return gdbarch;
1972 }
1973
1974 static void
1975 alpha_dump_tdep (struct gdbarch *current_gdbarch, struct ui_file *file)
1976 {
1977 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
1978
1979 if (tdep == NULL)
1980 return;
1981
1982 fprintf_unfiltered (file, "alpha_dump_tdep: OS ABI = %s\n",
1983 gdbarch_osabi_name (tdep->osabi));
1984
1985 fprintf_unfiltered (file,
1986 "alpha_dump_tdep: vm_min_address = 0x%lx\n",
1987 (long) tdep->vm_min_address);
1988
1989 fprintf_unfiltered (file,
1990 "alpha_dump_tdep: jb_pc = %d\n",
1991 tdep->jb_pc);
1992 fprintf_unfiltered (file,
1993 "alpha_dump_tdep: jb_elt_size = %ld\n",
1994 (long) tdep->jb_elt_size);
1995 }
1996
1997 void
1998 _initialize_alpha_tdep (void)
1999 {
2000 struct cmd_list_element *c;
2001
2002 gdbarch_register (bfd_arch_alpha, alpha_gdbarch_init, alpha_dump_tdep);
2003
2004 tm_print_insn = print_insn_alpha;
2005
2006 /* Let the user set the fence post for heuristic_proc_start. */
2007
2008 /* We really would like to have both "0" and "unlimited" work, but
2009 command.c doesn't deal with that. So make it a var_zinteger
2010 because the user can always use "999999" or some such for unlimited. */
2011 c = add_set_cmd ("heuristic-fence-post", class_support, var_zinteger,
2012 (char *) &heuristic_fence_post,
2013 "\
2014 Set the distance searched for the start of a function.\n\
2015 If you are debugging a stripped executable, GDB needs to search through the\n\
2016 program for the start of a function. This command sets the distance of the\n\
2017 search. The only need to set it is when debugging a stripped executable.",
2018 &setlist);
2019 /* We need to throw away the frame cache when we set this, since it
2020 might change our ability to get backtraces. */
2021 set_cmd_sfunc (c, reinit_frame_cache_sfunc);
2022 add_show_from_set (c, &showlist);
2023 }
This page took 0.075141 seconds and 4 git commands to generate.