64d12db65c0a5c33a2393458485455618342ab18
[deliverable/binutils-gdb.git] / gdb / alpha-tdep.c
1 /* Target-dependent code for the ALPHA architecture, for GDB, the GNU Debugger.
2 Copyright 1993, 1994, 1995, 1996, 1997, 1998, 1999, 2000, 2001, 2002, 2003
3 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 2 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program; if not, write to the Free Software
19 Foundation, Inc., 59 Temple Place - Suite 330,
20 Boston, MA 02111-1307, USA. */
21
22 #include "defs.h"
23 #include "doublest.h"
24 #include "frame.h"
25 #include "frame-unwind.h"
26 #include "frame-base.h"
27 #include "dwarf2-frame.h"
28 #include "inferior.h"
29 #include "symtab.h"
30 #include "value.h"
31 #include "gdbcmd.h"
32 #include "gdbcore.h"
33 #include "dis-asm.h"
34 #include "symfile.h"
35 #include "objfiles.h"
36 #include "gdb_string.h"
37 #include "linespec.h"
38 #include "regcache.h"
39 #include "reggroups.h"
40 #include "arch-utils.h"
41 #include "osabi.h"
42 #include "block.h"
43
44 #include "elf-bfd.h"
45
46 #include "alpha-tdep.h"
47
48 \f
49 static const char *
50 alpha_register_name (int regno)
51 {
52 static const char * const register_names[] =
53 {
54 "v0", "t0", "t1", "t2", "t3", "t4", "t5", "t6",
55 "t7", "s0", "s1", "s2", "s3", "s4", "s5", "fp",
56 "a0", "a1", "a2", "a3", "a4", "a5", "t8", "t9",
57 "t10", "t11", "ra", "t12", "at", "gp", "sp", "zero",
58 "f0", "f1", "f2", "f3", "f4", "f5", "f6", "f7",
59 "f8", "f9", "f10", "f11", "f12", "f13", "f14", "f15",
60 "f16", "f17", "f18", "f19", "f20", "f21", "f22", "f23",
61 "f24", "f25", "f26", "f27", "f28", "f29", "f30", "fpcr",
62 "pc", "", "unique"
63 };
64
65 if (regno < 0)
66 return NULL;
67 if (regno >= (sizeof(register_names) / sizeof(*register_names)))
68 return NULL;
69 return register_names[regno];
70 }
71
72 static int
73 alpha_cannot_fetch_register (int regno)
74 {
75 return regno == ALPHA_ZERO_REGNUM;
76 }
77
78 static int
79 alpha_cannot_store_register (int regno)
80 {
81 return regno == ALPHA_ZERO_REGNUM;
82 }
83
84 static struct type *
85 alpha_register_type (struct gdbarch *gdbarch, int regno)
86 {
87 if (regno == ALPHA_SP_REGNUM || regno == ALPHA_GP_REGNUM)
88 return builtin_type_void_data_ptr;
89 if (regno == ALPHA_PC_REGNUM)
90 return builtin_type_void_func_ptr;
91
92 /* Don't need to worry about little vs big endian until
93 some jerk tries to port to alpha-unicosmk. */
94 if (regno >= ALPHA_FP0_REGNUM && regno < ALPHA_FP0_REGNUM + 31)
95 return builtin_type_ieee_double_little;
96
97 return builtin_type_int64;
98 }
99
100 /* Is REGNUM a member of REGGROUP? */
101
102 static int
103 alpha_register_reggroup_p (struct gdbarch *gdbarch, int regnum,
104 struct reggroup *group)
105 {
106 /* Filter out any registers eliminated, but whose regnum is
107 reserved for backward compatibility, e.g. the vfp. */
108 if (REGISTER_NAME (regnum) == NULL || *REGISTER_NAME (regnum) == '\0')
109 return 0;
110
111 if (group == all_reggroup)
112 return 1;
113
114 /* Zero should not be saved or restored. Technically it is a general
115 register (just as $f31 would be a float if we represented it), but
116 there's no point displaying it during "info regs", so leave it out
117 of all groups except for "all". */
118 if (regnum == ALPHA_ZERO_REGNUM)
119 return 0;
120
121 /* All other registers are saved and restored. */
122 if (group == save_reggroup || group == restore_reggroup)
123 return 1;
124
125 /* All other groups are non-overlapping. */
126
127 /* Since this is really a PALcode memory slot... */
128 if (regnum == ALPHA_UNIQUE_REGNUM)
129 return group == system_reggroup;
130
131 /* Force the FPCR to be considered part of the floating point state. */
132 if (regnum == ALPHA_FPCR_REGNUM)
133 return group == float_reggroup;
134
135 if (regnum >= ALPHA_FP0_REGNUM && regnum < ALPHA_FP0_REGNUM + 31)
136 return group == float_reggroup;
137 else
138 return group == general_reggroup;
139 }
140
141 static int
142 alpha_register_byte (int regno)
143 {
144 return (regno * 8);
145 }
146
147 static int
148 alpha_register_raw_size (int regno)
149 {
150 return 8;
151 }
152
153 static int
154 alpha_register_virtual_size (int regno)
155 {
156 return 8;
157 }
158
159 /* The following represents exactly the conversion performed by
160 the LDS instruction. This applies to both single-precision
161 floating point and 32-bit integers. */
162
163 static void
164 alpha_lds (void *out, const void *in)
165 {
166 ULONGEST mem = extract_unsigned_integer (in, 4);
167 ULONGEST frac = (mem >> 0) & 0x7fffff;
168 ULONGEST sign = (mem >> 31) & 1;
169 ULONGEST exp_msb = (mem >> 30) & 1;
170 ULONGEST exp_low = (mem >> 23) & 0x7f;
171 ULONGEST exp, reg;
172
173 exp = (exp_msb << 10) | exp_low;
174 if (exp_msb)
175 {
176 if (exp_low == 0x7f)
177 exp = 0x7ff;
178 }
179 else
180 {
181 if (exp_low != 0x00)
182 exp |= 0x380;
183 }
184
185 reg = (sign << 63) | (exp << 52) | (frac << 29);
186 store_unsigned_integer (out, 8, reg);
187 }
188
189 /* Similarly, this represents exactly the conversion performed by
190 the STS instruction. */
191
192 static inline void
193 alpha_sts (void *out, const void *in)
194 {
195 ULONGEST reg, mem;
196
197 reg = extract_unsigned_integer (in, 8);
198 mem = ((reg >> 32) & 0xc0000000) | ((reg >> 29) & 0x3fffffff);
199 store_unsigned_integer (out, 4, mem);
200 }
201
202 /* The alpha needs a conversion between register and memory format if the
203 register is a floating point register and memory format is float, as the
204 register format must be double or memory format is an integer with 4
205 bytes or less, as the representation of integers in floating point
206 registers is different. */
207
208 static int
209 alpha_convert_register_p (int regno)
210 {
211 return (regno >= ALPHA_FP0_REGNUM && regno < ALPHA_FP0_REGNUM + 31);
212 }
213
214 static void
215 alpha_register_to_value (int regnum, struct type *valtype, char *in, char *out)
216 {
217 switch (TYPE_LENGTH (valtype))
218 {
219 case 4:
220 alpha_sts (out, in);
221 break;
222 case 8:
223 memcpy (out, in, 8);
224 break;
225 default:
226 error ("Cannot retrieve value from floating point register");
227 }
228 }
229
230 static void
231 alpha_value_to_register (struct type *valtype, int regnum, char *in, char *out)
232 {
233 switch (TYPE_LENGTH (valtype))
234 {
235 case 4:
236 alpha_lds (out, in);
237 break;
238 case 8:
239 memcpy (out, in, 8);
240 break;
241 default:
242 error ("Cannot store value in floating point register");
243 }
244 }
245
246 \f
247 /* The alpha passes the first six arguments in the registers, the rest on
248 the stack. The register arguments are stored in ARG_REG_BUFFER, and
249 then moved into the register file; this simplifies the passing of a
250 large struct which extends from the registers to the stack, plus avoids
251 three ptrace invocations per word.
252
253 We don't bother tracking which register values should go in integer
254 regs or fp regs; we load the same values into both.
255
256 If the called function is returning a structure, the address of the
257 structure to be returned is passed as a hidden first argument. */
258
259 static CORE_ADDR
260 alpha_push_dummy_call (struct gdbarch *gdbarch, CORE_ADDR func_addr,
261 struct regcache *regcache, CORE_ADDR bp_addr,
262 int nargs, struct value **args, CORE_ADDR sp,
263 int struct_return, CORE_ADDR struct_addr)
264 {
265 int i;
266 int accumulate_size = struct_return ? 8 : 0;
267 struct alpha_arg
268 {
269 char *contents;
270 int len;
271 int offset;
272 };
273 struct alpha_arg *alpha_args
274 = (struct alpha_arg *) alloca (nargs * sizeof (struct alpha_arg));
275 register struct alpha_arg *m_arg;
276 char arg_reg_buffer[ALPHA_REGISTER_SIZE * ALPHA_NUM_ARG_REGS];
277 int required_arg_regs;
278
279 /* The ABI places the address of the called function in T12. */
280 regcache_cooked_write_signed (regcache, ALPHA_T12_REGNUM, func_addr);
281
282 /* Set the return address register to point to the entry point
283 of the program, where a breakpoint lies in wait. */
284 regcache_cooked_write_signed (regcache, ALPHA_RA_REGNUM, bp_addr);
285
286 /* Lay out the arguments in memory. */
287 for (i = 0, m_arg = alpha_args; i < nargs; i++, m_arg++)
288 {
289 struct value *arg = args[i];
290 struct type *arg_type = check_typedef (VALUE_TYPE (arg));
291
292 /* Cast argument to long if necessary as the compiler does it too. */
293 switch (TYPE_CODE (arg_type))
294 {
295 case TYPE_CODE_INT:
296 case TYPE_CODE_BOOL:
297 case TYPE_CODE_CHAR:
298 case TYPE_CODE_RANGE:
299 case TYPE_CODE_ENUM:
300 if (TYPE_LENGTH (arg_type) == 4)
301 {
302 /* 32-bit values must be sign-extended to 64 bits
303 even if the base data type is unsigned. */
304 arg_type = builtin_type_int32;
305 arg = value_cast (arg_type, arg);
306 }
307 if (TYPE_LENGTH (arg_type) < ALPHA_REGISTER_SIZE)
308 {
309 arg_type = builtin_type_int64;
310 arg = value_cast (arg_type, arg);
311 }
312 break;
313
314 case TYPE_CODE_FLT:
315 /* "float" arguments loaded in registers must be passed in
316 register format, aka "double". */
317 if (accumulate_size < sizeof (arg_reg_buffer)
318 && TYPE_LENGTH (arg_type) == 4)
319 {
320 arg_type = builtin_type_ieee_double_little;
321 arg = value_cast (arg_type, arg);
322 }
323 /* Tru64 5.1 has a 128-bit long double, and passes this by
324 invisible reference. No one else uses this data type. */
325 else if (TYPE_LENGTH (arg_type) == 16)
326 {
327 /* Allocate aligned storage. */
328 sp = (sp & -16) - 16;
329
330 /* Write the real data into the stack. */
331 write_memory (sp, VALUE_CONTENTS (arg), 16);
332
333 /* Construct the indirection. */
334 arg_type = lookup_pointer_type (arg_type);
335 arg = value_from_pointer (arg_type, sp);
336 }
337 break;
338
339 case TYPE_CODE_COMPLEX:
340 /* ??? The ABI says that complex values are passed as two
341 separate scalar values. This distinction only matters
342 for complex float. However, GCC does not implement this. */
343
344 /* Tru64 5.1 has a 128-bit long double, and passes this by
345 invisible reference. */
346 if (TYPE_LENGTH (arg_type) == 32)
347 {
348 /* Allocate aligned storage. */
349 sp = (sp & -16) - 16;
350
351 /* Write the real data into the stack. */
352 write_memory (sp, VALUE_CONTENTS (arg), 32);
353
354 /* Construct the indirection. */
355 arg_type = lookup_pointer_type (arg_type);
356 arg = value_from_pointer (arg_type, sp);
357 }
358 break;
359
360 default:
361 break;
362 }
363 m_arg->len = TYPE_LENGTH (arg_type);
364 m_arg->offset = accumulate_size;
365 accumulate_size = (accumulate_size + m_arg->len + 7) & ~7;
366 m_arg->contents = VALUE_CONTENTS (arg);
367 }
368
369 /* Determine required argument register loads, loading an argument register
370 is expensive as it uses three ptrace calls. */
371 required_arg_regs = accumulate_size / 8;
372 if (required_arg_regs > ALPHA_NUM_ARG_REGS)
373 required_arg_regs = ALPHA_NUM_ARG_REGS;
374
375 /* Make room for the arguments on the stack. */
376 if (accumulate_size < sizeof(arg_reg_buffer))
377 accumulate_size = 0;
378 else
379 accumulate_size -= sizeof(arg_reg_buffer);
380 sp -= accumulate_size;
381
382 /* Keep sp aligned to a multiple of 16 as the ABI requires. */
383 sp &= ~15;
384
385 /* `Push' arguments on the stack. */
386 for (i = nargs; m_arg--, --i >= 0;)
387 {
388 char *contents = m_arg->contents;
389 int offset = m_arg->offset;
390 int len = m_arg->len;
391
392 /* Copy the bytes destined for registers into arg_reg_buffer. */
393 if (offset < sizeof(arg_reg_buffer))
394 {
395 if (offset + len <= sizeof(arg_reg_buffer))
396 {
397 memcpy (arg_reg_buffer + offset, contents, len);
398 continue;
399 }
400 else
401 {
402 int tlen = sizeof(arg_reg_buffer) - offset;
403 memcpy (arg_reg_buffer + offset, contents, tlen);
404 offset += tlen;
405 contents += tlen;
406 len -= tlen;
407 }
408 }
409
410 /* Everything else goes to the stack. */
411 write_memory (sp + offset - sizeof(arg_reg_buffer), contents, len);
412 }
413 if (struct_return)
414 store_unsigned_integer (arg_reg_buffer, ALPHA_REGISTER_SIZE, struct_addr);
415
416 /* Load the argument registers. */
417 for (i = 0; i < required_arg_regs; i++)
418 {
419 regcache_cooked_write (regcache, ALPHA_A0_REGNUM + i,
420 arg_reg_buffer + i*ALPHA_REGISTER_SIZE);
421 regcache_cooked_write (regcache, ALPHA_FPA0_REGNUM + i,
422 arg_reg_buffer + i*ALPHA_REGISTER_SIZE);
423 }
424
425 /* Finally, update the stack pointer. */
426 regcache_cooked_write_signed (regcache, ALPHA_SP_REGNUM, sp);
427
428 return sp;
429 }
430
431 /* Extract from REGCACHE the value about to be returned from a function
432 and copy it into VALBUF. */
433
434 static void
435 alpha_extract_return_value (struct type *valtype, struct regcache *regcache,
436 void *valbuf)
437 {
438 int length = TYPE_LENGTH (valtype);
439 char raw_buffer[ALPHA_REGISTER_SIZE];
440 ULONGEST l;
441
442 switch (TYPE_CODE (valtype))
443 {
444 case TYPE_CODE_FLT:
445 switch (length)
446 {
447 case 4:
448 regcache_cooked_read (regcache, ALPHA_FP0_REGNUM, raw_buffer);
449 alpha_sts (valbuf, raw_buffer);
450 break;
451
452 case 8:
453 regcache_cooked_read (regcache, ALPHA_FP0_REGNUM, valbuf);
454 break;
455
456 case 16:
457 regcache_cooked_read_unsigned (regcache, ALPHA_V0_REGNUM, &l);
458 read_memory (l, valbuf, 16);
459 break;
460
461 default:
462 internal_error (__FILE__, __LINE__, "unknown floating point width");
463 }
464 break;
465
466 case TYPE_CODE_COMPLEX:
467 switch (length)
468 {
469 case 8:
470 /* ??? This isn't correct wrt the ABI, but it's what GCC does. */
471 regcache_cooked_read (regcache, ALPHA_FP0_REGNUM, valbuf);
472 break;
473
474 case 16:
475 regcache_cooked_read (regcache, ALPHA_FP0_REGNUM, valbuf);
476 regcache_cooked_read (regcache, ALPHA_FP0_REGNUM+1,
477 (char *)valbuf + 8);
478 break;
479
480 case 32:
481 regcache_cooked_read_signed (regcache, ALPHA_V0_REGNUM, &l);
482 read_memory (l, valbuf, 32);
483 break;
484
485 default:
486 internal_error (__FILE__, __LINE__, "unknown floating point width");
487 }
488 break;
489
490 default:
491 /* Assume everything else degenerates to an integer. */
492 regcache_cooked_read_unsigned (regcache, ALPHA_V0_REGNUM, &l);
493 store_unsigned_integer (valbuf, length, l);
494 break;
495 }
496 }
497
498 /* Extract from REGCACHE the address of a structure about to be returned
499 from a function. */
500
501 static CORE_ADDR
502 alpha_extract_struct_value_address (struct regcache *regcache)
503 {
504 ULONGEST addr;
505 regcache_cooked_read_unsigned (regcache, ALPHA_V0_REGNUM, &addr);
506 return addr;
507 }
508
509 /* Insert the given value into REGCACHE as if it was being
510 returned by a function. */
511
512 static void
513 alpha_store_return_value (struct type *valtype, struct regcache *regcache,
514 const void *valbuf)
515 {
516 int length = TYPE_LENGTH (valtype);
517 char raw_buffer[ALPHA_REGISTER_SIZE];
518 ULONGEST l;
519
520 switch (TYPE_CODE (valtype))
521 {
522 case TYPE_CODE_FLT:
523 switch (length)
524 {
525 case 4:
526 alpha_lds (raw_buffer, valbuf);
527 regcache_cooked_write (regcache, ALPHA_FP0_REGNUM, raw_buffer);
528 break;
529
530 case 8:
531 regcache_cooked_write (regcache, ALPHA_FP0_REGNUM, valbuf);
532 break;
533
534 case 16:
535 /* FIXME: 128-bit long doubles are returned like structures:
536 by writing into indirect storage provided by the caller
537 as the first argument. */
538 error ("Cannot set a 128-bit long double return value.");
539
540 default:
541 internal_error (__FILE__, __LINE__, "unknown floating point width");
542 }
543 break;
544
545 case TYPE_CODE_COMPLEX:
546 switch (length)
547 {
548 case 8:
549 /* ??? This isn't correct wrt the ABI, but it's what GCC does. */
550 regcache_cooked_write (regcache, ALPHA_FP0_REGNUM, valbuf);
551 break;
552
553 case 16:
554 regcache_cooked_write (regcache, ALPHA_FP0_REGNUM, valbuf);
555 regcache_cooked_write (regcache, ALPHA_FP0_REGNUM+1,
556 (const char *)valbuf + 8);
557 break;
558
559 case 32:
560 /* FIXME: 128-bit long doubles are returned like structures:
561 by writing into indirect storage provided by the caller
562 as the first argument. */
563 error ("Cannot set a 128-bit long double return value.");
564
565 default:
566 internal_error (__FILE__, __LINE__, "unknown floating point width");
567 }
568 break;
569
570 default:
571 /* Assume everything else degenerates to an integer. */
572 /* 32-bit values must be sign-extended to 64 bits
573 even if the base data type is unsigned. */
574 if (length == 4)
575 valtype = builtin_type_int32;
576 l = unpack_long (valtype, valbuf);
577 regcache_cooked_write_unsigned (regcache, ALPHA_V0_REGNUM, l);
578 break;
579 }
580 }
581
582 \f
583 static const unsigned char *
584 alpha_breakpoint_from_pc (CORE_ADDR *pcptr, int *lenptr)
585 {
586 static const unsigned char alpha_breakpoint[] =
587 { 0x80, 0, 0, 0 }; /* call_pal bpt */
588
589 *lenptr = sizeof(alpha_breakpoint);
590 return (alpha_breakpoint);
591 }
592
593 \f
594 /* This returns the PC of the first insn after the prologue.
595 If we can't find the prologue, then return 0. */
596
597 CORE_ADDR
598 alpha_after_prologue (CORE_ADDR pc)
599 {
600 struct symtab_and_line sal;
601 CORE_ADDR func_addr, func_end;
602
603 if (!find_pc_partial_function (pc, NULL, &func_addr, &func_end))
604 return 0;
605
606 sal = find_pc_line (func_addr, 0);
607 if (sal.end < func_end)
608 return sal.end;
609
610 /* The line after the prologue is after the end of the function. In this
611 case, tell the caller to find the prologue the hard way. */
612 return 0;
613 }
614
615 /* Read an instruction from memory at PC, looking through breakpoints. */
616
617 unsigned int
618 alpha_read_insn (CORE_ADDR pc)
619 {
620 char buf[4];
621 int status;
622
623 status = read_memory_nobpt (pc, buf, 4);
624 if (status)
625 memory_error (status, pc);
626 return extract_unsigned_integer (buf, 4);
627 }
628
629 /* To skip prologues, I use this predicate. Returns either PC itself
630 if the code at PC does not look like a function prologue; otherwise
631 returns an address that (if we're lucky) follows the prologue. If
632 LENIENT, then we must skip everything which is involved in setting
633 up the frame (it's OK to skip more, just so long as we don't skip
634 anything which might clobber the registers which are being saved. */
635
636 static CORE_ADDR
637 alpha_skip_prologue (CORE_ADDR pc)
638 {
639 unsigned long inst;
640 int offset;
641 CORE_ADDR post_prologue_pc;
642 char buf[4];
643
644 /* Silently return the unaltered pc upon memory errors.
645 This could happen on OSF/1 if decode_line_1 tries to skip the
646 prologue for quickstarted shared library functions when the
647 shared library is not yet mapped in.
648 Reading target memory is slow over serial lines, so we perform
649 this check only if the target has shared libraries (which all
650 Alpha targets do). */
651 if (target_read_memory (pc, buf, 4))
652 return pc;
653
654 /* See if we can determine the end of the prologue via the symbol table.
655 If so, then return either PC, or the PC after the prologue, whichever
656 is greater. */
657
658 post_prologue_pc = alpha_after_prologue (pc);
659 if (post_prologue_pc != 0)
660 return max (pc, post_prologue_pc);
661
662 /* Can't determine prologue from the symbol table, need to examine
663 instructions. */
664
665 /* Skip the typical prologue instructions. These are the stack adjustment
666 instruction and the instructions that save registers on the stack
667 or in the gcc frame. */
668 for (offset = 0; offset < 100; offset += 4)
669 {
670 inst = alpha_read_insn (pc + offset);
671
672 if ((inst & 0xffff0000) == 0x27bb0000) /* ldah $gp,n($t12) */
673 continue;
674 if ((inst & 0xffff0000) == 0x23bd0000) /* lda $gp,n($gp) */
675 continue;
676 if ((inst & 0xffff0000) == 0x23de0000) /* lda $sp,n($sp) */
677 continue;
678 if ((inst & 0xffe01fff) == 0x43c0153e) /* subq $sp,n,$sp */
679 continue;
680
681 if (((inst & 0xfc1f0000) == 0xb41e0000 /* stq reg,n($sp) */
682 || (inst & 0xfc1f0000) == 0x9c1e0000) /* stt reg,n($sp) */
683 && (inst & 0x03e00000) != 0x03e00000) /* reg != $zero */
684 continue;
685
686 if (inst == 0x47de040f) /* bis sp,sp,fp */
687 continue;
688 if (inst == 0x47fe040f) /* bis zero,sp,fp */
689 continue;
690
691 break;
692 }
693 return pc + offset;
694 }
695
696 \f
697 /* Figure out where the longjmp will land.
698 We expect the first arg to be a pointer to the jmp_buf structure from
699 which we extract the PC (JB_PC) that we will land at. The PC is copied
700 into the "pc". This routine returns true on success. */
701
702 static int
703 alpha_get_longjmp_target (CORE_ADDR *pc)
704 {
705 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
706 CORE_ADDR jb_addr;
707 char raw_buffer[ALPHA_REGISTER_SIZE];
708
709 jb_addr = read_register (ALPHA_A0_REGNUM);
710
711 if (target_read_memory (jb_addr + (tdep->jb_pc * tdep->jb_elt_size),
712 raw_buffer, tdep->jb_elt_size))
713 return 0;
714
715 *pc = extract_unsigned_integer (raw_buffer, tdep->jb_elt_size);
716 return 1;
717 }
718
719 \f
720 /* Frame unwinder for signal trampolines. We use alpha tdep bits that
721 describe the location and shape of the sigcontext structure. After
722 that, all registers are in memory, so it's easy. */
723 /* ??? Shouldn't we be able to do this generically, rather than with
724 OSABI data specific to Alpha? */
725
726 struct alpha_sigtramp_unwind_cache
727 {
728 CORE_ADDR sigcontext_addr;
729 };
730
731 static struct alpha_sigtramp_unwind_cache *
732 alpha_sigtramp_frame_unwind_cache (struct frame_info *next_frame,
733 void **this_prologue_cache)
734 {
735 struct alpha_sigtramp_unwind_cache *info;
736 struct gdbarch_tdep *tdep;
737
738 if (*this_prologue_cache)
739 return *this_prologue_cache;
740
741 info = FRAME_OBSTACK_ZALLOC (struct alpha_sigtramp_unwind_cache);
742 *this_prologue_cache = info;
743
744 tdep = gdbarch_tdep (current_gdbarch);
745 info->sigcontext_addr = tdep->sigcontext_addr (next_frame);
746
747 return info;
748 }
749
750 /* Return the address of REGNO in a sigtramp frame. Since this is all
751 arithmetic, it doesn't seem worthwhile to cache it. */
752
753 #ifndef SIGFRAME_PC_OFF
754 #define SIGFRAME_PC_OFF (2 * 8)
755 #define SIGFRAME_REGSAVE_OFF (4 * 8)
756 #define SIGFRAME_FPREGSAVE_OFF (SIGFRAME_REGSAVE_OFF + 32 * 8 + 8)
757 #endif
758
759 static CORE_ADDR
760 alpha_sigtramp_register_address (CORE_ADDR sigcontext_addr, unsigned int regno)
761 {
762 if (regno < 32)
763 return sigcontext_addr + SIGFRAME_REGSAVE_OFF + regno * 8;
764 if (regno >= ALPHA_FP0_REGNUM && regno < ALPHA_FP0_REGNUM + 32)
765 return sigcontext_addr + SIGFRAME_FPREGSAVE_OFF + regno * 8;
766 if (regno == ALPHA_PC_REGNUM)
767 return sigcontext_addr + SIGFRAME_PC_OFF;
768
769 return 0;
770 }
771
772 /* Given a GDB frame, determine the address of the calling function's
773 frame. This will be used to create a new GDB frame struct. */
774
775 static void
776 alpha_sigtramp_frame_this_id (struct frame_info *next_frame,
777 void **this_prologue_cache,
778 struct frame_id *this_id)
779 {
780 struct alpha_sigtramp_unwind_cache *info
781 = alpha_sigtramp_frame_unwind_cache (next_frame, this_prologue_cache);
782 struct gdbarch_tdep *tdep;
783 CORE_ADDR stack_addr, code_addr;
784
785 /* If the OSABI couldn't locate the sigcontext, give up. */
786 if (info->sigcontext_addr == 0)
787 return;
788
789 /* If we have dynamic signal trampolines, find their start.
790 If we do not, then we must assume there is a symbol record
791 that can provide the start address. */
792 tdep = gdbarch_tdep (current_gdbarch);
793 if (tdep->dynamic_sigtramp_offset)
794 {
795 int offset;
796 code_addr = frame_pc_unwind (next_frame);
797 offset = tdep->dynamic_sigtramp_offset (code_addr);
798 if (offset >= 0)
799 code_addr -= offset;
800 else
801 code_addr = 0;
802 }
803 else
804 code_addr = frame_func_unwind (next_frame);
805
806 /* The stack address is trivially read from the sigcontext. */
807 stack_addr = alpha_sigtramp_register_address (info->sigcontext_addr,
808 ALPHA_SP_REGNUM);
809 stack_addr = get_frame_memory_unsigned (next_frame, stack_addr,
810 ALPHA_REGISTER_SIZE);
811
812 *this_id = frame_id_build (stack_addr, code_addr);
813 }
814
815 /* Retrieve the value of REGNUM in FRAME. Don't give up! */
816
817 static void
818 alpha_sigtramp_frame_prev_register (struct frame_info *next_frame,
819 void **this_prologue_cache,
820 int regnum, int *optimizedp,
821 enum lval_type *lvalp, CORE_ADDR *addrp,
822 int *realnump, void *bufferp)
823 {
824 struct alpha_sigtramp_unwind_cache *info
825 = alpha_sigtramp_frame_unwind_cache (next_frame, this_prologue_cache);
826 CORE_ADDR addr;
827
828 if (info->sigcontext_addr != 0)
829 {
830 /* All integer and fp registers are stored in memory. */
831 addr = alpha_sigtramp_register_address (info->sigcontext_addr, regnum);
832 if (addr != 0)
833 {
834 *optimizedp = 0;
835 *lvalp = lval_memory;
836 *addrp = addr;
837 *realnump = -1;
838 if (bufferp != NULL)
839 get_frame_memory (next_frame, addr, bufferp, ALPHA_REGISTER_SIZE);
840 return;
841 }
842 }
843
844 /* This extra register may actually be in the sigcontext, but our
845 current description of it in alpha_sigtramp_frame_unwind_cache
846 doesn't include it. Too bad. Fall back on whatever's in the
847 outer frame. */
848 frame_register (next_frame, regnum, optimizedp, lvalp, addrp,
849 realnump, bufferp);
850 }
851
852 static const struct frame_unwind alpha_sigtramp_frame_unwind = {
853 SIGTRAMP_FRAME,
854 alpha_sigtramp_frame_this_id,
855 alpha_sigtramp_frame_prev_register
856 };
857
858 static const struct frame_unwind *
859 alpha_sigtramp_frame_p (CORE_ADDR pc)
860 {
861 char *name;
862
863 /* We shouldn't even bother to try if the OSABI didn't register
864 a sigcontext_addr handler. */
865 if (!gdbarch_tdep (current_gdbarch)->sigcontext_addr)
866 return NULL;
867
868 /* Otherwise we should be in a signal frame. */
869 find_pc_partial_function (pc, &name, NULL, NULL);
870 if (PC_IN_SIGTRAMP (pc, name))
871 return &alpha_sigtramp_frame_unwind;
872
873 return NULL;
874 }
875 \f
876 /* Fallback alpha frame unwinder. Uses instruction scanning and knows
877 something about the traditional layout of alpha stack frames. */
878
879 struct alpha_heuristic_unwind_cache
880 {
881 CORE_ADDR *saved_regs;
882 CORE_ADDR vfp;
883 CORE_ADDR start_pc;
884 int return_reg;
885 };
886
887 /* Heuristic_proc_start may hunt through the text section for a long
888 time across a 2400 baud serial line. Allows the user to limit this
889 search. */
890 static unsigned int heuristic_fence_post = 0;
891
892 /* Attempt to locate the start of the function containing PC. We assume that
893 the previous function ends with an about_to_return insn. Not foolproof by
894 any means, since gcc is happy to put the epilogue in the middle of a
895 function. But we're guessing anyway... */
896
897 static CORE_ADDR
898 alpha_heuristic_proc_start (CORE_ADDR pc)
899 {
900 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
901 CORE_ADDR last_non_nop = pc;
902 CORE_ADDR fence = pc - heuristic_fence_post;
903 CORE_ADDR orig_pc = pc;
904 CORE_ADDR func;
905
906 if (pc == 0)
907 return 0;
908
909 /* First see if we can find the start of the function from minimal
910 symbol information. This can succeed with a binary that doesn't
911 have debug info, but hasn't been stripped. */
912 func = get_pc_function_start (pc);
913 if (func)
914 return func;
915
916 if (heuristic_fence_post == UINT_MAX
917 || fence < tdep->vm_min_address)
918 fence = tdep->vm_min_address;
919
920 /* Search back for previous return; also stop at a 0, which might be
921 seen for instance before the start of a code section. Don't include
922 nops, since this usually indicates padding between functions. */
923 for (pc -= 4; pc >= fence; pc -= 4)
924 {
925 unsigned int insn = alpha_read_insn (pc);
926 switch (insn)
927 {
928 case 0: /* invalid insn */
929 case 0x6bfa8001: /* ret $31,($26),1 */
930 return last_non_nop;
931
932 case 0x2ffe0000: /* unop: ldq_u $31,0($30) */
933 case 0x47ff041f: /* nop: bis $31,$31,$31 */
934 break;
935
936 default:
937 last_non_nop = pc;
938 break;
939 }
940 }
941
942 /* It's not clear to me why we reach this point when stopping quietly,
943 but with this test, at least we don't print out warnings for every
944 child forked (eg, on decstation). 22apr93 rich@cygnus.com. */
945 if (stop_soon == NO_STOP_QUIETLY)
946 {
947 static int blurb_printed = 0;
948
949 if (fence == tdep->vm_min_address)
950 warning ("Hit beginning of text section without finding");
951 else
952 warning ("Hit heuristic-fence-post without finding");
953 warning ("enclosing function for address 0x%s", paddr_nz (orig_pc));
954
955 if (!blurb_printed)
956 {
957 printf_filtered ("\
958 This warning occurs if you are debugging a function without any symbols\n\
959 (for example, in a stripped executable). In that case, you may wish to\n\
960 increase the size of the search with the `set heuristic-fence-post' command.\n\
961 \n\
962 Otherwise, you told GDB there was a function where there isn't one, or\n\
963 (more likely) you have encountered a bug in GDB.\n");
964 blurb_printed = 1;
965 }
966 }
967
968 return 0;
969 }
970
971 static struct alpha_heuristic_unwind_cache *
972 alpha_heuristic_frame_unwind_cache (struct frame_info *next_frame,
973 void **this_prologue_cache,
974 CORE_ADDR start_pc)
975 {
976 struct alpha_heuristic_unwind_cache *info;
977 ULONGEST val;
978 CORE_ADDR limit_pc, cur_pc;
979 int frame_reg, frame_size, return_reg, reg;
980
981 if (*this_prologue_cache)
982 return *this_prologue_cache;
983
984 info = FRAME_OBSTACK_ZALLOC (struct alpha_heuristic_unwind_cache);
985 *this_prologue_cache = info;
986 info->saved_regs = frame_obstack_zalloc (SIZEOF_FRAME_SAVED_REGS);
987
988 limit_pc = frame_pc_unwind (next_frame);
989 if (start_pc == 0)
990 start_pc = alpha_heuristic_proc_start (limit_pc);
991 info->start_pc = start_pc;
992
993 frame_reg = ALPHA_SP_REGNUM;
994 frame_size = 0;
995 return_reg = -1;
996
997 /* If we've identified a likely place to start, do code scanning. */
998 if (start_pc != 0)
999 {
1000 /* Limit the forward search to 50 instructions. */
1001 if (start_pc + 200 < limit_pc)
1002 limit_pc = start_pc + 200;
1003
1004 for (cur_pc = start_pc; cur_pc < limit_pc; cur_pc += 4)
1005 {
1006 unsigned int word = alpha_read_insn (cur_pc);
1007
1008 if ((word & 0xffff0000) == 0x23de0000) /* lda $sp,n($sp) */
1009 {
1010 if (word & 0x8000)
1011 {
1012 /* Consider only the first stack allocation instruction
1013 to contain the static size of the frame. */
1014 if (frame_size == 0)
1015 frame_size = (-word) & 0xffff;
1016 }
1017 else
1018 {
1019 /* Exit loop if a positive stack adjustment is found, which
1020 usually means that the stack cleanup code in the function
1021 epilogue is reached. */
1022 break;
1023 }
1024 }
1025 else if ((word & 0xfc1f0000) == 0xb41e0000) /* stq reg,n($sp) */
1026 {
1027 reg = (word & 0x03e00000) >> 21;
1028
1029 if (reg == 31)
1030 continue;
1031
1032 /* Do not compute the address where the register was saved yet,
1033 because we don't know yet if the offset will need to be
1034 relative to $sp or $fp (we can not compute the address
1035 relative to $sp if $sp is updated during the execution of
1036 the current subroutine, for instance when doing some alloca).
1037 So just store the offset for the moment, and compute the
1038 address later when we know whether this frame has a frame
1039 pointer or not. */
1040 /* Hack: temporarily add one, so that the offset is non-zero
1041 and we can tell which registers have save offsets below. */
1042 info->saved_regs[reg] = (word & 0xffff) + 1;
1043
1044 /* Starting with OSF/1-3.2C, the system libraries are shipped
1045 without local symbols, but they still contain procedure
1046 descriptors without a symbol reference. GDB is currently
1047 unable to find these procedure descriptors and uses
1048 heuristic_proc_desc instead.
1049 As some low level compiler support routines (__div*, __add*)
1050 use a non-standard return address register, we have to
1051 add some heuristics to determine the return address register,
1052 or stepping over these routines will fail.
1053 Usually the return address register is the first register
1054 saved on the stack, but assembler optimization might
1055 rearrange the register saves.
1056 So we recognize only a few registers (t7, t9, ra) within
1057 the procedure prologue as valid return address registers.
1058 If we encounter a return instruction, we extract the
1059 the return address register from it.
1060
1061 FIXME: Rewriting GDB to access the procedure descriptors,
1062 e.g. via the minimal symbol table, might obviate this hack. */
1063 if (return_reg == -1
1064 && cur_pc < (start_pc + 80)
1065 && (reg == ALPHA_T7_REGNUM
1066 || reg == ALPHA_T9_REGNUM
1067 || reg == ALPHA_RA_REGNUM))
1068 return_reg = reg;
1069 }
1070 else if ((word & 0xffe0ffff) == 0x6be08001) /* ret zero,reg,1 */
1071 return_reg = (word >> 16) & 0x1f;
1072 else if (word == 0x47de040f) /* bis sp,sp,fp */
1073 frame_reg = ALPHA_GCC_FP_REGNUM;
1074 else if (word == 0x47fe040f) /* bis zero,sp,fp */
1075 frame_reg = ALPHA_GCC_FP_REGNUM;
1076 }
1077
1078 /* If we haven't found a valid return address register yet, keep
1079 searching in the procedure prologue. */
1080 if (return_reg == -1)
1081 {
1082 while (cur_pc < (limit_pc + 80) && cur_pc < (start_pc + 80))
1083 {
1084 unsigned int word = alpha_read_insn (cur_pc);
1085
1086 if ((word & 0xfc1f0000) == 0xb41e0000) /* stq reg,n($sp) */
1087 {
1088 reg = (word & 0x03e00000) >> 21;
1089 if (reg == ALPHA_T7_REGNUM
1090 || reg == ALPHA_T9_REGNUM
1091 || reg == ALPHA_RA_REGNUM)
1092 {
1093 return_reg = reg;
1094 break;
1095 }
1096 }
1097 else if ((word & 0xffe0ffff) == 0x6be08001) /* ret zero,reg,1 */
1098 {
1099 return_reg = (word >> 16) & 0x1f;
1100 break;
1101 }
1102
1103 cur_pc += 4;
1104 }
1105 }
1106 }
1107
1108 /* Failing that, do default to the customary RA. */
1109 if (return_reg == -1)
1110 return_reg = ALPHA_RA_REGNUM;
1111 info->return_reg = return_reg;
1112
1113 frame_unwind_unsigned_register (next_frame, frame_reg, &val);
1114 info->vfp = val + frame_size;
1115
1116 /* Convert offsets to absolute addresses. See above about adding
1117 one to the offsets to make all detected offsets non-zero. */
1118 for (reg = 0; reg < ALPHA_NUM_REGS; ++reg)
1119 if (info->saved_regs[reg])
1120 info->saved_regs[reg] += val - 1;
1121
1122 return info;
1123 }
1124
1125 /* Given a GDB frame, determine the address of the calling function's
1126 frame. This will be used to create a new GDB frame struct. */
1127
1128 static void
1129 alpha_heuristic_frame_this_id (struct frame_info *next_frame,
1130 void **this_prologue_cache,
1131 struct frame_id *this_id)
1132 {
1133 struct alpha_heuristic_unwind_cache *info
1134 = alpha_heuristic_frame_unwind_cache (next_frame, this_prologue_cache, 0);
1135
1136 /* This is meant to halt the backtrace at "_start". Make sure we
1137 don't halt it at a generic dummy frame. */
1138 if (inside_entry_file (info->start_pc))
1139 return;
1140
1141 *this_id = frame_id_build (info->vfp, info->start_pc);
1142 }
1143
1144 /* Retrieve the value of REGNUM in FRAME. Don't give up! */
1145
1146 static void
1147 alpha_heuristic_frame_prev_register (struct frame_info *next_frame,
1148 void **this_prologue_cache,
1149 int regnum, int *optimizedp,
1150 enum lval_type *lvalp, CORE_ADDR *addrp,
1151 int *realnump, void *bufferp)
1152 {
1153 struct alpha_heuristic_unwind_cache *info
1154 = alpha_heuristic_frame_unwind_cache (next_frame, this_prologue_cache, 0);
1155
1156 /* The PC of the previous frame is stored in the link register of
1157 the current frame. Frob regnum so that we pull the value from
1158 the correct place. */
1159 if (regnum == ALPHA_PC_REGNUM)
1160 regnum = info->return_reg;
1161
1162 /* For all registers known to be saved in the current frame,
1163 do the obvious and pull the value out. */
1164 if (info->saved_regs[regnum])
1165 {
1166 *optimizedp = 0;
1167 *lvalp = lval_memory;
1168 *addrp = info->saved_regs[regnum];
1169 *realnump = -1;
1170 if (bufferp != NULL)
1171 get_frame_memory (next_frame, *addrp, bufferp, ALPHA_REGISTER_SIZE);
1172 return;
1173 }
1174
1175 /* The stack pointer of the previous frame is computed by popping
1176 the current stack frame. */
1177 if (regnum == ALPHA_SP_REGNUM)
1178 {
1179 *optimizedp = 0;
1180 *lvalp = not_lval;
1181 *addrp = 0;
1182 *realnump = -1;
1183 if (bufferp != NULL)
1184 store_unsigned_integer (bufferp, ALPHA_REGISTER_SIZE, info->vfp);
1185 return;
1186 }
1187
1188 /* Otherwise assume the next frame has the same register value. */
1189 frame_register (next_frame, regnum, optimizedp, lvalp, addrp,
1190 realnump, bufferp);
1191 }
1192
1193 static const struct frame_unwind alpha_heuristic_frame_unwind = {
1194 NORMAL_FRAME,
1195 alpha_heuristic_frame_this_id,
1196 alpha_heuristic_frame_prev_register
1197 };
1198
1199 static const struct frame_unwind *
1200 alpha_heuristic_frame_p (CORE_ADDR pc)
1201 {
1202 return &alpha_heuristic_frame_unwind;
1203 }
1204
1205 static CORE_ADDR
1206 alpha_heuristic_frame_base_address (struct frame_info *next_frame,
1207 void **this_prologue_cache)
1208 {
1209 struct alpha_heuristic_unwind_cache *info
1210 = alpha_heuristic_frame_unwind_cache (next_frame, this_prologue_cache, 0);
1211
1212 return info->vfp;
1213 }
1214
1215 static const struct frame_base alpha_heuristic_frame_base = {
1216 &alpha_heuristic_frame_unwind,
1217 alpha_heuristic_frame_base_address,
1218 alpha_heuristic_frame_base_address,
1219 alpha_heuristic_frame_base_address
1220 };
1221
1222 /* Just like reinit_frame_cache, but with the right arguments to be
1223 callable as an sfunc. Used by the "set heuristic-fence-post" command. */
1224
1225 static void
1226 reinit_frame_cache_sfunc (char *args, int from_tty, struct cmd_list_element *c)
1227 {
1228 reinit_frame_cache ();
1229 }
1230
1231 \f
1232 /* ALPHA stack frames are almost impenetrable. When execution stops,
1233 we basically have to look at symbol information for the function
1234 that we stopped in, which tells us *which* register (if any) is
1235 the base of the frame pointer, and what offset from that register
1236 the frame itself is at.
1237
1238 This presents a problem when trying to examine a stack in memory
1239 (that isn't executing at the moment), using the "frame" command. We
1240 don't have a PC, nor do we have any registers except SP.
1241
1242 This routine takes two arguments, SP and PC, and tries to make the
1243 cached frames look as if these two arguments defined a frame on the
1244 cache. This allows the rest of info frame to extract the important
1245 arguments without difficulty. */
1246
1247 struct frame_info *
1248 alpha_setup_arbitrary_frame (int argc, CORE_ADDR *argv)
1249 {
1250 if (argc != 2)
1251 error ("ALPHA frame specifications require two arguments: sp and pc");
1252
1253 return create_new_frame (argv[0], argv[1]);
1254 }
1255
1256 /* Assuming NEXT_FRAME->prev is a dummy, return the frame ID of that
1257 dummy frame. The frame ID's base needs to match the TOS value
1258 saved by save_dummy_frame_tos(), and the PC match the dummy frame's
1259 breakpoint. */
1260
1261 static struct frame_id
1262 alpha_unwind_dummy_id (struct gdbarch *gdbarch, struct frame_info *next_frame)
1263 {
1264 ULONGEST base;
1265 frame_unwind_unsigned_register (next_frame, ALPHA_SP_REGNUM, &base);
1266 return frame_id_build (base, frame_pc_unwind (next_frame));
1267 }
1268
1269 static CORE_ADDR
1270 alpha_unwind_pc (struct gdbarch *gdbarch, struct frame_info *next_frame)
1271 {
1272 ULONGEST pc;
1273 frame_unwind_unsigned_register (next_frame, ALPHA_PC_REGNUM, &pc);
1274 return pc;
1275 }
1276
1277 \f
1278 /* Helper routines for alpha*-nat.c files to move register sets to and
1279 from core files. The UNIQUE pointer is allowed to be NULL, as most
1280 targets don't supply this value in their core files. */
1281
1282 void
1283 alpha_supply_int_regs (int regno, const void *r0_r30,
1284 const void *pc, const void *unique)
1285 {
1286 int i;
1287
1288 for (i = 0; i < 31; ++i)
1289 if (regno == i || regno == -1)
1290 supply_register (i, (const char *)r0_r30 + i*8);
1291
1292 if (regno == ALPHA_ZERO_REGNUM || regno == -1)
1293 supply_register (ALPHA_ZERO_REGNUM, NULL);
1294
1295 if (regno == ALPHA_PC_REGNUM || regno == -1)
1296 supply_register (ALPHA_PC_REGNUM, pc);
1297
1298 if (regno == ALPHA_UNIQUE_REGNUM || regno == -1)
1299 supply_register (ALPHA_UNIQUE_REGNUM, unique);
1300 }
1301
1302 void
1303 alpha_fill_int_regs (int regno, void *r0_r30, void *pc, void *unique)
1304 {
1305 int i;
1306
1307 for (i = 0; i < 31; ++i)
1308 if (regno == i || regno == -1)
1309 regcache_collect (i, (char *)r0_r30 + i*8);
1310
1311 if (regno == ALPHA_PC_REGNUM || regno == -1)
1312 regcache_collect (ALPHA_PC_REGNUM, pc);
1313
1314 if (unique && (regno == ALPHA_UNIQUE_REGNUM || regno == -1))
1315 regcache_collect (ALPHA_UNIQUE_REGNUM, unique);
1316 }
1317
1318 void
1319 alpha_supply_fp_regs (int regno, const void *f0_f30, const void *fpcr)
1320 {
1321 int i;
1322
1323 for (i = ALPHA_FP0_REGNUM; i < ALPHA_FP0_REGNUM + 31; ++i)
1324 if (regno == i || regno == -1)
1325 supply_register (i, (const char *)f0_f30 + (i - ALPHA_FP0_REGNUM) * 8);
1326
1327 if (regno == ALPHA_FPCR_REGNUM || regno == -1)
1328 supply_register (ALPHA_FPCR_REGNUM, fpcr);
1329 }
1330
1331 void
1332 alpha_fill_fp_regs (int regno, void *f0_f30, void *fpcr)
1333 {
1334 int i;
1335
1336 for (i = ALPHA_FP0_REGNUM; i < ALPHA_FP0_REGNUM + 31; ++i)
1337 if (regno == i || regno == -1)
1338 regcache_collect (i, (char *)f0_f30 + (i - ALPHA_FP0_REGNUM) * 8);
1339
1340 if (regno == ALPHA_FPCR_REGNUM || regno == -1)
1341 regcache_collect (ALPHA_FPCR_REGNUM, fpcr);
1342 }
1343
1344 \f
1345 /* alpha_software_single_step() is called just before we want to resume
1346 the inferior, if we want to single-step it but there is no hardware
1347 or kernel single-step support (NetBSD on Alpha, for example). We find
1348 the target of the coming instruction and breakpoint it.
1349
1350 single_step is also called just after the inferior stops. If we had
1351 set up a simulated single-step, we undo our damage. */
1352
1353 static CORE_ADDR
1354 alpha_next_pc (CORE_ADDR pc)
1355 {
1356 unsigned int insn;
1357 unsigned int op;
1358 int offset;
1359 LONGEST rav;
1360
1361 insn = alpha_read_insn (pc);
1362
1363 /* Opcode is top 6 bits. */
1364 op = (insn >> 26) & 0x3f;
1365
1366 if (op == 0x1a)
1367 {
1368 /* Jump format: target PC is:
1369 RB & ~3 */
1370 return (read_register ((insn >> 16) & 0x1f) & ~3);
1371 }
1372
1373 if ((op & 0x30) == 0x30)
1374 {
1375 /* Branch format: target PC is:
1376 (new PC) + (4 * sext(displacement)) */
1377 if (op == 0x30 || /* BR */
1378 op == 0x34) /* BSR */
1379 {
1380 branch_taken:
1381 offset = (insn & 0x001fffff);
1382 if (offset & 0x00100000)
1383 offset |= 0xffe00000;
1384 offset *= 4;
1385 return (pc + 4 + offset);
1386 }
1387
1388 /* Need to determine if branch is taken; read RA. */
1389 rav = (LONGEST) read_register ((insn >> 21) & 0x1f);
1390 switch (op)
1391 {
1392 case 0x38: /* BLBC */
1393 if ((rav & 1) == 0)
1394 goto branch_taken;
1395 break;
1396 case 0x3c: /* BLBS */
1397 if (rav & 1)
1398 goto branch_taken;
1399 break;
1400 case 0x39: /* BEQ */
1401 if (rav == 0)
1402 goto branch_taken;
1403 break;
1404 case 0x3d: /* BNE */
1405 if (rav != 0)
1406 goto branch_taken;
1407 break;
1408 case 0x3a: /* BLT */
1409 if (rav < 0)
1410 goto branch_taken;
1411 break;
1412 case 0x3b: /* BLE */
1413 if (rav <= 0)
1414 goto branch_taken;
1415 break;
1416 case 0x3f: /* BGT */
1417 if (rav > 0)
1418 goto branch_taken;
1419 break;
1420 case 0x3e: /* BGE */
1421 if (rav >= 0)
1422 goto branch_taken;
1423 break;
1424
1425 /* ??? Missing floating-point branches. */
1426 }
1427 }
1428
1429 /* Not a branch or branch not taken; target PC is:
1430 pc + 4 */
1431 return (pc + 4);
1432 }
1433
1434 void
1435 alpha_software_single_step (enum target_signal sig, int insert_breakpoints_p)
1436 {
1437 static CORE_ADDR next_pc;
1438 typedef char binsn_quantum[BREAKPOINT_MAX];
1439 static binsn_quantum break_mem;
1440 CORE_ADDR pc;
1441
1442 if (insert_breakpoints_p)
1443 {
1444 pc = read_pc ();
1445 next_pc = alpha_next_pc (pc);
1446
1447 target_insert_breakpoint (next_pc, break_mem);
1448 }
1449 else
1450 {
1451 target_remove_breakpoint (next_pc, break_mem);
1452 write_pc (next_pc);
1453 }
1454 }
1455
1456 \f
1457 /* Initialize the current architecture based on INFO. If possible, re-use an
1458 architecture from ARCHES, which is a list of architectures already created
1459 during this debugging session.
1460
1461 Called e.g. at program startup, when reading a core file, and when reading
1462 a binary file. */
1463
1464 static struct gdbarch *
1465 alpha_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
1466 {
1467 struct gdbarch_tdep *tdep;
1468 struct gdbarch *gdbarch;
1469
1470 /* Try to determine the ABI of the object we are loading. */
1471 if (info.abfd != NULL && info.osabi == GDB_OSABI_UNKNOWN)
1472 {
1473 /* If it's an ECOFF file, assume it's OSF/1. */
1474 if (bfd_get_flavour (info.abfd) == bfd_target_ecoff_flavour)
1475 info.osabi = GDB_OSABI_OSF1;
1476 }
1477
1478 /* Find a candidate among extant architectures. */
1479 arches = gdbarch_list_lookup_by_info (arches, &info);
1480 if (arches != NULL)
1481 return arches->gdbarch;
1482
1483 tdep = xmalloc (sizeof (struct gdbarch_tdep));
1484 gdbarch = gdbarch_alloc (&info, tdep);
1485
1486 /* Lowest text address. This is used by heuristic_proc_start()
1487 to decide when to stop looking. */
1488 tdep->vm_min_address = (CORE_ADDR) 0x120000000;
1489
1490 tdep->dynamic_sigtramp_offset = NULL;
1491 tdep->sigcontext_addr = NULL;
1492
1493 tdep->jb_pc = -1; /* longjmp support not enabled by default */
1494
1495 /* Type sizes */
1496 set_gdbarch_short_bit (gdbarch, 16);
1497 set_gdbarch_int_bit (gdbarch, 32);
1498 set_gdbarch_long_bit (gdbarch, 64);
1499 set_gdbarch_long_long_bit (gdbarch, 64);
1500 set_gdbarch_float_bit (gdbarch, 32);
1501 set_gdbarch_double_bit (gdbarch, 64);
1502 set_gdbarch_long_double_bit (gdbarch, 64);
1503 set_gdbarch_ptr_bit (gdbarch, 64);
1504
1505 /* Register info */
1506 set_gdbarch_num_regs (gdbarch, ALPHA_NUM_REGS);
1507 set_gdbarch_sp_regnum (gdbarch, ALPHA_SP_REGNUM);
1508 set_gdbarch_pc_regnum (gdbarch, ALPHA_PC_REGNUM);
1509 set_gdbarch_fp0_regnum (gdbarch, ALPHA_FP0_REGNUM);
1510
1511 set_gdbarch_register_name (gdbarch, alpha_register_name);
1512 set_gdbarch_deprecated_register_byte (gdbarch, alpha_register_byte);
1513 set_gdbarch_deprecated_register_raw_size (gdbarch, alpha_register_raw_size);
1514 set_gdbarch_deprecated_register_virtual_size (gdbarch, alpha_register_virtual_size);
1515 set_gdbarch_register_type (gdbarch, alpha_register_type);
1516
1517 set_gdbarch_cannot_fetch_register (gdbarch, alpha_cannot_fetch_register);
1518 set_gdbarch_cannot_store_register (gdbarch, alpha_cannot_store_register);
1519
1520 set_gdbarch_convert_register_p (gdbarch, alpha_convert_register_p);
1521 set_gdbarch_register_to_value (gdbarch, alpha_register_to_value);
1522 set_gdbarch_value_to_register (gdbarch, alpha_value_to_register);
1523
1524 set_gdbarch_register_reggroup_p (gdbarch, alpha_register_reggroup_p);
1525
1526 /* Prologue heuristics. */
1527 set_gdbarch_skip_prologue (gdbarch, alpha_skip_prologue);
1528
1529 /* Disassembler. */
1530 set_gdbarch_print_insn (gdbarch, print_insn_alpha);
1531
1532 /* Call info. */
1533 set_gdbarch_frameless_function_invocation (gdbarch,
1534 generic_frameless_function_invocation_not);
1535
1536 set_gdbarch_use_struct_convention (gdbarch, always_use_struct_convention);
1537 set_gdbarch_extract_return_value (gdbarch, alpha_extract_return_value);
1538 set_gdbarch_store_return_value (gdbarch, alpha_store_return_value);
1539 set_gdbarch_extract_struct_value_address (gdbarch,
1540 alpha_extract_struct_value_address);
1541
1542 /* Settings for calling functions in the inferior. */
1543 set_gdbarch_push_dummy_call (gdbarch, alpha_push_dummy_call);
1544
1545 /* Methods for saving / extracting a dummy frame's ID. */
1546 set_gdbarch_unwind_dummy_id (gdbarch, alpha_unwind_dummy_id);
1547 set_gdbarch_save_dummy_frame_tos (gdbarch, generic_save_dummy_frame_tos);
1548
1549 /* Return the unwound PC value. */
1550 set_gdbarch_unwind_pc (gdbarch, alpha_unwind_pc);
1551
1552 set_gdbarch_inner_than (gdbarch, core_addr_lessthan);
1553 set_gdbarch_skip_trampoline_code (gdbarch, find_solib_trampoline_target);
1554
1555 set_gdbarch_breakpoint_from_pc (gdbarch, alpha_breakpoint_from_pc);
1556 set_gdbarch_decr_pc_after_break (gdbarch, 4);
1557
1558 set_gdbarch_function_start_offset (gdbarch, 0);
1559 set_gdbarch_frame_args_skip (gdbarch, 0);
1560
1561 /* Hook in ABI-specific overrides, if they have been registered. */
1562 gdbarch_init_osabi (info, gdbarch);
1563
1564 /* Now that we have tuned the configuration, set a few final things
1565 based on what the OS ABI has told us. */
1566
1567 if (tdep->jb_pc >= 0)
1568 set_gdbarch_get_longjmp_target (gdbarch, alpha_get_longjmp_target);
1569
1570 frame_unwind_append_predicate (gdbarch, alpha_sigtramp_frame_p);
1571 frame_unwind_append_predicate (gdbarch, alpha_heuristic_frame_p);
1572
1573 frame_base_set_default (gdbarch, &alpha_heuristic_frame_base);
1574
1575 return gdbarch;
1576 }
1577
1578 void
1579 alpha_dwarf2_init_abi (struct gdbarch_info info, struct gdbarch *gdbarch)
1580 {
1581 frame_unwind_append_predicate (gdbarch, dwarf2_frame_p);
1582 frame_base_append_predicate (gdbarch, dwarf2_frame_base_p);
1583 set_gdbarch_dwarf2_build_frame_info (gdbarch, dwarf2_build_frame_info);
1584 }
1585
1586 extern initialize_file_ftype _initialize_alpha_tdep; /* -Wmissing-prototypes */
1587
1588 void
1589 _initialize_alpha_tdep (void)
1590 {
1591 struct cmd_list_element *c;
1592
1593 gdbarch_register (bfd_arch_alpha, alpha_gdbarch_init, NULL);
1594
1595 /* Let the user set the fence post for heuristic_proc_start. */
1596
1597 /* We really would like to have both "0" and "unlimited" work, but
1598 command.c doesn't deal with that. So make it a var_zinteger
1599 because the user can always use "999999" or some such for unlimited. */
1600 c = add_set_cmd ("heuristic-fence-post", class_support, var_zinteger,
1601 (char *) &heuristic_fence_post,
1602 "\
1603 Set the distance searched for the start of a function.\n\
1604 If you are debugging a stripped executable, GDB needs to search through the\n\
1605 program for the start of a function. This command sets the distance of the\n\
1606 search. The only need to set it is when debugging a stripped executable.",
1607 &setlist);
1608 /* We need to throw away the frame cache when we set this, since it
1609 might change our ability to get backtraces. */
1610 set_cmd_sfunc (c, reinit_frame_cache_sfunc);
1611 add_show_from_set (c, &showlist);
1612 }
This page took 0.092408 seconds and 4 git commands to generate.