* alpha-tdep.c (alpha_supply_int_regs, alpha_fill_int_regs): New.
[deliverable/binutils-gdb.git] / gdb / alpha-tdep.c
1 /* Target-dependent code for the ALPHA architecture, for GDB, the GNU Debugger.
2 Copyright 1993, 1994, 1995, 1996, 1997, 1998, 1999, 2000, 2001, 2002, 2003
3 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 2 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program; if not, write to the Free Software
19 Foundation, Inc., 59 Temple Place - Suite 330,
20 Boston, MA 02111-1307, USA. */
21
22 #include "defs.h"
23 #include "doublest.h"
24 #include "frame.h"
25 #include "frame-unwind.h"
26 #include "frame-base.h"
27 #include "inferior.h"
28 #include "symtab.h"
29 #include "value.h"
30 #include "gdbcmd.h"
31 #include "gdbcore.h"
32 #include "dis-asm.h"
33 #include "symfile.h"
34 #include "objfiles.h"
35 #include "gdb_string.h"
36 #include "linespec.h"
37 #include "regcache.h"
38 #include "reggroups.h"
39 #include "arch-utils.h"
40 #include "osabi.h"
41 #include "block.h"
42
43 #include "elf-bfd.h"
44
45 #include "alpha-tdep.h"
46
47 \f
48 static const char *
49 alpha_register_name (int regno)
50 {
51 static const char * const register_names[] =
52 {
53 "v0", "t0", "t1", "t2", "t3", "t4", "t5", "t6",
54 "t7", "s0", "s1", "s2", "s3", "s4", "s5", "fp",
55 "a0", "a1", "a2", "a3", "a4", "a5", "t8", "t9",
56 "t10", "t11", "ra", "t12", "at", "gp", "sp", "zero",
57 "f0", "f1", "f2", "f3", "f4", "f5", "f6", "f7",
58 "f8", "f9", "f10", "f11", "f12", "f13", "f14", "f15",
59 "f16", "f17", "f18", "f19", "f20", "f21", "f22", "f23",
60 "f24", "f25", "f26", "f27", "f28", "f29", "f30", "fpcr",
61 "pc", "", "unique"
62 };
63
64 if (regno < 0)
65 return NULL;
66 if (regno >= (sizeof(register_names) / sizeof(*register_names)))
67 return NULL;
68 return register_names[regno];
69 }
70
71 static int
72 alpha_cannot_fetch_register (int regno)
73 {
74 return regno == ALPHA_ZERO_REGNUM;
75 }
76
77 static int
78 alpha_cannot_store_register (int regno)
79 {
80 return regno == ALPHA_ZERO_REGNUM;
81 }
82
83 static int
84 alpha_register_convertible (int regno)
85 {
86 return (regno >= FP0_REGNUM && regno <= FP0_REGNUM + 31);
87 }
88
89 static struct type *
90 alpha_register_virtual_type (int regno)
91 {
92 if (regno == ALPHA_SP_REGNUM || regno == ALPHA_GP_REGNUM)
93 return builtin_type_void_data_ptr;
94 if (regno == ALPHA_PC_REGNUM)
95 return builtin_type_void_func_ptr;
96
97 /* Don't need to worry about little vs big endian until
98 some jerk tries to port to alpha-unicosmk. */
99 if (regno >= FP0_REGNUM && regno < FP0_REGNUM + 31)
100 return builtin_type_ieee_double_little;
101
102 return builtin_type_int64;
103 }
104
105 /* Is REGNUM a member of REGGROUP? */
106
107 static int
108 alpha_register_reggroup_p (struct gdbarch *gdbarch, int regnum,
109 struct reggroup *group)
110 {
111 /* Filter out any registers eliminated, but whose regnum is
112 reserved for backward compatibility, e.g. the vfp. */
113 if (REGISTER_NAME (regnum) == NULL || *REGISTER_NAME (regnum) == '\0')
114 return 0;
115
116 /* Since we implement no pseudo registers, save/restore is equal to all. */
117 if (group == all_reggroup
118 || group == save_reggroup
119 || group == restore_reggroup)
120 return 1;
121
122 /* All other groups are non-overlapping. */
123
124 /* Since this is really a PALcode memory slot... */
125 if (regnum == ALPHA_UNIQUE_REGNUM)
126 return group == system_reggroup;
127
128 /* Force the FPCR to be considered part of the floating point state. */
129 if (regnum == ALPHA_FPCR_REGNUM)
130 return group == float_reggroup;
131
132 if (regnum >= ALPHA_FP0_REGNUM && regnum < ALPHA_FP0_REGNUM + 31)
133 return group == float_reggroup;
134 else
135 return group == general_reggroup;
136 }
137
138 static int
139 alpha_register_byte (int regno)
140 {
141 return (regno * 8);
142 }
143
144 static int
145 alpha_register_raw_size (int regno)
146 {
147 return 8;
148 }
149
150 static int
151 alpha_register_virtual_size (int regno)
152 {
153 return 8;
154 }
155
156 /* The alpha needs a conversion between register and memory format if the
157 register is a floating point register and memory format is float, as the
158 register format must be double or memory format is an integer with 4
159 bytes or less, as the representation of integers in floating point
160 registers is different. */
161
162 static void
163 alpha_convert_flt_dbl (void *out, const void *in)
164 {
165 DOUBLEST d = extract_typed_floating (in, builtin_type_ieee_single_little);
166 store_typed_floating (out, builtin_type_ieee_double_little, d);
167 }
168
169 static void
170 alpha_convert_dbl_flt (void *out, const void *in)
171 {
172 DOUBLEST d = extract_typed_floating (in, builtin_type_ieee_double_little);
173 store_typed_floating (out, builtin_type_ieee_single_little, d);
174 }
175
176 static void
177 alpha_register_convert_to_virtual (int regnum, struct type *valtype,
178 char *raw_buffer, char *virtual_buffer)
179 {
180 if (TYPE_LENGTH (valtype) >= ALPHA_REGISTER_SIZE)
181 {
182 memcpy (virtual_buffer, raw_buffer, ALPHA_REGISTER_SIZE);
183 return;
184 }
185
186 /* Note that everything below is less than 8 bytes long. */
187
188 if (TYPE_CODE (valtype) == TYPE_CODE_FLT)
189 alpha_convert_dbl_flt (virtual_buffer, raw_buffer);
190 else if (TYPE_CODE (valtype) == TYPE_CODE_INT)
191 {
192 ULONGEST l;
193 l = extract_unsigned_integer (raw_buffer, ALPHA_REGISTER_SIZE);
194 l = ((l >> 32) & 0xc0000000) | ((l >> 29) & 0x3fffffff);
195 store_unsigned_integer (virtual_buffer, TYPE_LENGTH (valtype), l);
196 }
197 else
198 error ("Cannot retrieve value from floating point register");
199 }
200
201 static void
202 alpha_register_convert_to_raw (struct type *valtype, int regnum,
203 char *virtual_buffer, char *raw_buffer)
204 {
205 if (TYPE_LENGTH (valtype) >= ALPHA_REGISTER_SIZE)
206 {
207 memcpy (raw_buffer, virtual_buffer, ALPHA_REGISTER_SIZE);
208 return;
209 }
210
211 /* Note that everything below is less than 8 bytes long. */
212
213 if (TYPE_CODE (valtype) == TYPE_CODE_FLT)
214 alpha_convert_flt_dbl (raw_buffer, virtual_buffer);
215 else if (TYPE_CODE (valtype) == TYPE_CODE_INT)
216 {
217 ULONGEST l = unpack_long (valtype, virtual_buffer);
218 l = ((l & 0xc0000000) << 32) | ((l & 0x3fffffff) << 29);
219 store_unsigned_integer (raw_buffer, ALPHA_REGISTER_SIZE, l);
220 }
221 else
222 error ("Cannot store value in floating point register");
223 }
224
225 \f
226 /* The alpha passes the first six arguments in the registers, the rest on
227 the stack. The register arguments are stored in ARG_REG_BUFFER, and
228 then moved into the register file; this simplifies the passing of a
229 large struct which extends from the registers to the stack, plus avoids
230 three ptrace invocations per word.
231
232 We don't bother tracking which register values should go in integer
233 regs or fp regs; we load the same values into both.
234
235 If the called function is returning a structure, the address of the
236 structure to be returned is passed as a hidden first argument. */
237
238 static CORE_ADDR
239 alpha_push_dummy_call (struct gdbarch *gdbarch, CORE_ADDR func_addr,
240 struct regcache *regcache, CORE_ADDR bp_addr,
241 int nargs, struct value **args, CORE_ADDR sp,
242 int struct_return, CORE_ADDR struct_addr)
243 {
244 int i;
245 int accumulate_size = struct_return ? 8 : 0;
246 struct alpha_arg
247 {
248 char *contents;
249 int len;
250 int offset;
251 };
252 struct alpha_arg *alpha_args
253 = (struct alpha_arg *) alloca (nargs * sizeof (struct alpha_arg));
254 register struct alpha_arg *m_arg;
255 char arg_reg_buffer[ALPHA_REGISTER_SIZE * ALPHA_NUM_ARG_REGS];
256 int required_arg_regs;
257
258 /* The ABI places the address of the called function in T12. */
259 regcache_cooked_write_signed (regcache, ALPHA_T12_REGNUM, func_addr);
260
261 /* Set the return address register to point to the entry point
262 of the program, where a breakpoint lies in wait. */
263 regcache_cooked_write_signed (regcache, ALPHA_RA_REGNUM, bp_addr);
264
265 /* Lay out the arguments in memory. */
266 for (i = 0, m_arg = alpha_args; i < nargs; i++, m_arg++)
267 {
268 struct value *arg = args[i];
269 struct type *arg_type = check_typedef (VALUE_TYPE (arg));
270
271 /* Cast argument to long if necessary as the compiler does it too. */
272 switch (TYPE_CODE (arg_type))
273 {
274 case TYPE_CODE_INT:
275 case TYPE_CODE_BOOL:
276 case TYPE_CODE_CHAR:
277 case TYPE_CODE_RANGE:
278 case TYPE_CODE_ENUM:
279 if (TYPE_LENGTH (arg_type) == 4)
280 {
281 /* 32-bit values must be sign-extended to 64 bits
282 even if the base data type is unsigned. */
283 arg_type = builtin_type_int32;
284 arg = value_cast (arg_type, arg);
285 }
286 if (TYPE_LENGTH (arg_type) < ALPHA_REGISTER_SIZE)
287 {
288 arg_type = builtin_type_int64;
289 arg = value_cast (arg_type, arg);
290 }
291 break;
292
293 case TYPE_CODE_FLT:
294 /* "float" arguments loaded in registers must be passed in
295 register format, aka "double". */
296 if (accumulate_size < sizeof (arg_reg_buffer)
297 && TYPE_LENGTH (arg_type) == 4)
298 {
299 arg_type = builtin_type_ieee_double_little;
300 arg = value_cast (arg_type, arg);
301 }
302 /* Tru64 5.1 has a 128-bit long double, and passes this by
303 invisible reference. No one else uses this data type. */
304 else if (TYPE_LENGTH (arg_type) == 16)
305 {
306 /* Allocate aligned storage. */
307 sp = (sp & -16) - 16;
308
309 /* Write the real data into the stack. */
310 write_memory (sp, VALUE_CONTENTS (arg), 16);
311
312 /* Construct the indirection. */
313 arg_type = lookup_pointer_type (arg_type);
314 arg = value_from_pointer (arg_type, sp);
315 }
316 break;
317
318 case TYPE_CODE_COMPLEX:
319 /* ??? The ABI says that complex values are passed as two
320 separate scalar values. This distinction only matters
321 for complex float. However, GCC does not implement this. */
322
323 /* Tru64 5.1 has a 128-bit long double, and passes this by
324 invisible reference. */
325 if (TYPE_LENGTH (arg_type) == 32)
326 {
327 /* Allocate aligned storage. */
328 sp = (sp & -16) - 16;
329
330 /* Write the real data into the stack. */
331 write_memory (sp, VALUE_CONTENTS (arg), 32);
332
333 /* Construct the indirection. */
334 arg_type = lookup_pointer_type (arg_type);
335 arg = value_from_pointer (arg_type, sp);
336 }
337 break;
338
339 default:
340 break;
341 }
342 m_arg->len = TYPE_LENGTH (arg_type);
343 m_arg->offset = accumulate_size;
344 accumulate_size = (accumulate_size + m_arg->len + 7) & ~7;
345 m_arg->contents = VALUE_CONTENTS (arg);
346 }
347
348 /* Determine required argument register loads, loading an argument register
349 is expensive as it uses three ptrace calls. */
350 required_arg_regs = accumulate_size / 8;
351 if (required_arg_regs > ALPHA_NUM_ARG_REGS)
352 required_arg_regs = ALPHA_NUM_ARG_REGS;
353
354 /* Make room for the arguments on the stack. */
355 if (accumulate_size < sizeof(arg_reg_buffer))
356 accumulate_size = 0;
357 else
358 accumulate_size -= sizeof(arg_reg_buffer);
359 sp -= accumulate_size;
360
361 /* Keep sp aligned to a multiple of 16 as the ABI requires. */
362 sp &= ~15;
363
364 /* `Push' arguments on the stack. */
365 for (i = nargs; m_arg--, --i >= 0;)
366 {
367 char *contents = m_arg->contents;
368 int offset = m_arg->offset;
369 int len = m_arg->len;
370
371 /* Copy the bytes destined for registers into arg_reg_buffer. */
372 if (offset < sizeof(arg_reg_buffer))
373 {
374 if (offset + len <= sizeof(arg_reg_buffer))
375 {
376 memcpy (arg_reg_buffer + offset, contents, len);
377 continue;
378 }
379 else
380 {
381 int tlen = sizeof(arg_reg_buffer) - offset;
382 memcpy (arg_reg_buffer + offset, contents, tlen);
383 offset += tlen;
384 contents += tlen;
385 len -= tlen;
386 }
387 }
388
389 /* Everything else goes to the stack. */
390 write_memory (sp + offset - sizeof(arg_reg_buffer), contents, len);
391 }
392 if (struct_return)
393 store_unsigned_integer (arg_reg_buffer, ALPHA_REGISTER_SIZE, struct_addr);
394
395 /* Load the argument registers. */
396 for (i = 0; i < required_arg_regs; i++)
397 {
398 regcache_cooked_write (regcache, ALPHA_A0_REGNUM + i,
399 arg_reg_buffer + i*ALPHA_REGISTER_SIZE);
400 regcache_cooked_write (regcache, ALPHA_FPA0_REGNUM + i,
401 arg_reg_buffer + i*ALPHA_REGISTER_SIZE);
402 }
403
404 /* Finally, update the stack pointer. */
405 regcache_cooked_write_signed (regcache, ALPHA_SP_REGNUM, sp);
406
407 return sp;
408 }
409
410 /* Extract from REGCACHE the value about to be returned from a function
411 and copy it into VALBUF. */
412
413 static void
414 alpha_extract_return_value (struct type *valtype, struct regcache *regcache,
415 void *valbuf)
416 {
417 int length = TYPE_LENGTH (valtype);
418 char raw_buffer[ALPHA_REGISTER_SIZE];
419 ULONGEST l;
420
421 switch (TYPE_CODE (valtype))
422 {
423 case TYPE_CODE_FLT:
424 switch (length)
425 {
426 case 4:
427 regcache_cooked_read (regcache, ALPHA_FP0_REGNUM, raw_buffer);
428 alpha_convert_dbl_flt (valbuf, raw_buffer);
429 break;
430
431 case 8:
432 regcache_cooked_read (regcache, ALPHA_FP0_REGNUM, valbuf);
433 break;
434
435 case 16:
436 regcache_cooked_read_unsigned (regcache, ALPHA_V0_REGNUM, &l);
437 read_memory (l, valbuf, 16);
438 break;
439
440 default:
441 internal_error (__FILE__, __LINE__, "unknown floating point width");
442 }
443 break;
444
445 case TYPE_CODE_COMPLEX:
446 switch (length)
447 {
448 case 8:
449 /* ??? This isn't correct wrt the ABI, but it's what GCC does. */
450 regcache_cooked_read (regcache, ALPHA_FP0_REGNUM, valbuf);
451 break;
452
453 case 16:
454 regcache_cooked_read (regcache, ALPHA_FP0_REGNUM, valbuf);
455 regcache_cooked_read (regcache, ALPHA_FP0_REGNUM+1,
456 (char *)valbuf + 8);
457 break;
458
459 case 32:
460 regcache_cooked_read_signed (regcache, ALPHA_V0_REGNUM, &l);
461 read_memory (l, valbuf, 32);
462 break;
463
464 default:
465 internal_error (__FILE__, __LINE__, "unknown floating point width");
466 }
467 break;
468
469 default:
470 /* Assume everything else degenerates to an integer. */
471 regcache_cooked_read_unsigned (regcache, ALPHA_V0_REGNUM, &l);
472 store_unsigned_integer (valbuf, length, l);
473 break;
474 }
475 }
476
477 /* Extract from REGCACHE the address of a structure about to be returned
478 from a function. */
479
480 static CORE_ADDR
481 alpha_extract_struct_value_address (struct regcache *regcache)
482 {
483 ULONGEST addr;
484 regcache_cooked_read_unsigned (regcache, ALPHA_V0_REGNUM, &addr);
485 return addr;
486 }
487
488 /* Insert the given value into REGCACHE as if it was being
489 returned by a function. */
490
491 static void
492 alpha_store_return_value (struct type *valtype, struct regcache *regcache,
493 const void *valbuf)
494 {
495 int length = TYPE_LENGTH (valtype);
496 char raw_buffer[ALPHA_REGISTER_SIZE];
497 ULONGEST l;
498
499 switch (TYPE_CODE (valtype))
500 {
501 case TYPE_CODE_FLT:
502 switch (length)
503 {
504 case 4:
505 alpha_convert_flt_dbl (raw_buffer, valbuf);
506 regcache_cooked_write (regcache, ALPHA_FP0_REGNUM, raw_buffer);
507 break;
508
509 case 8:
510 regcache_cooked_write (regcache, ALPHA_FP0_REGNUM, valbuf);
511 break;
512
513 case 16:
514 /* FIXME: 128-bit long doubles are returned like structures:
515 by writing into indirect storage provided by the caller
516 as the first argument. */
517 error ("Cannot set a 128-bit long double return value.");
518
519 default:
520 internal_error (__FILE__, __LINE__, "unknown floating point width");
521 }
522 break;
523
524 case TYPE_CODE_COMPLEX:
525 switch (length)
526 {
527 case 8:
528 /* ??? This isn't correct wrt the ABI, but it's what GCC does. */
529 regcache_cooked_write (regcache, ALPHA_FP0_REGNUM, valbuf);
530 break;
531
532 case 16:
533 regcache_cooked_write (regcache, ALPHA_FP0_REGNUM, valbuf);
534 regcache_cooked_write (regcache, ALPHA_FP0_REGNUM+1,
535 (const char *)valbuf + 8);
536 break;
537
538 case 32:
539 /* FIXME: 128-bit long doubles are returned like structures:
540 by writing into indirect storage provided by the caller
541 as the first argument. */
542 error ("Cannot set a 128-bit long double return value.");
543
544 default:
545 internal_error (__FILE__, __LINE__, "unknown floating point width");
546 }
547 break;
548
549 default:
550 /* Assume everything else degenerates to an integer. */
551 /* 32-bit values must be sign-extended to 64 bits
552 even if the base data type is unsigned. */
553 if (length == 4)
554 valtype = builtin_type_int32;
555 l = unpack_long (valtype, valbuf);
556 regcache_cooked_write_unsigned (regcache, ALPHA_V0_REGNUM, l);
557 break;
558 }
559 }
560
561 static int
562 alpha_use_struct_convention (int gcc_p, struct type *type)
563 {
564 /* Structures are returned by ref in extra arg0. */
565 return 1;
566 }
567
568 \f
569 static const unsigned char *
570 alpha_breakpoint_from_pc (CORE_ADDR *pcptr, int *lenptr)
571 {
572 static const unsigned char alpha_breakpoint[] =
573 { 0x80, 0, 0, 0 }; /* call_pal bpt */
574
575 *lenptr = sizeof(alpha_breakpoint);
576 return (alpha_breakpoint);
577 }
578
579 \f
580 /* This returns the PC of the first insn after the prologue.
581 If we can't find the prologue, then return 0. */
582
583 CORE_ADDR
584 alpha_after_prologue (CORE_ADDR pc)
585 {
586 struct symtab_and_line sal;
587 CORE_ADDR func_addr, func_end;
588
589 if (!find_pc_partial_function (pc, NULL, &func_addr, &func_end))
590 return 0;
591
592 sal = find_pc_line (func_addr, 0);
593 if (sal.end < func_end)
594 return sal.end;
595
596 /* The line after the prologue is after the end of the function. In this
597 case, tell the caller to find the prologue the hard way. */
598 return 0;
599 }
600
601 /* Read an instruction from memory at PC, looking through breakpoints. */
602
603 unsigned int
604 alpha_read_insn (CORE_ADDR pc)
605 {
606 char buf[4];
607 int status;
608
609 status = read_memory_nobpt (pc, buf, 4);
610 if (status)
611 memory_error (status, pc);
612 return extract_unsigned_integer (buf, 4);
613 }
614
615 /* To skip prologues, I use this predicate. Returns either PC itself
616 if the code at PC does not look like a function prologue; otherwise
617 returns an address that (if we're lucky) follows the prologue. If
618 LENIENT, then we must skip everything which is involved in setting
619 up the frame (it's OK to skip more, just so long as we don't skip
620 anything which might clobber the registers which are being saved. */
621
622 static CORE_ADDR
623 alpha_skip_prologue (CORE_ADDR pc)
624 {
625 unsigned long inst;
626 int offset;
627 CORE_ADDR post_prologue_pc;
628 char buf[4];
629
630 /* Silently return the unaltered pc upon memory errors.
631 This could happen on OSF/1 if decode_line_1 tries to skip the
632 prologue for quickstarted shared library functions when the
633 shared library is not yet mapped in.
634 Reading target memory is slow over serial lines, so we perform
635 this check only if the target has shared libraries (which all
636 Alpha targets do). */
637 if (target_read_memory (pc, buf, 4))
638 return pc;
639
640 /* See if we can determine the end of the prologue via the symbol table.
641 If so, then return either PC, or the PC after the prologue, whichever
642 is greater. */
643
644 post_prologue_pc = alpha_after_prologue (pc);
645 if (post_prologue_pc != 0)
646 return max (pc, post_prologue_pc);
647
648 /* Can't determine prologue from the symbol table, need to examine
649 instructions. */
650
651 /* Skip the typical prologue instructions. These are the stack adjustment
652 instruction and the instructions that save registers on the stack
653 or in the gcc frame. */
654 for (offset = 0; offset < 100; offset += 4)
655 {
656 inst = alpha_read_insn (pc + offset);
657
658 if ((inst & 0xffff0000) == 0x27bb0000) /* ldah $gp,n($t12) */
659 continue;
660 if ((inst & 0xffff0000) == 0x23bd0000) /* lda $gp,n($gp) */
661 continue;
662 if ((inst & 0xffff0000) == 0x23de0000) /* lda $sp,n($sp) */
663 continue;
664 if ((inst & 0xffe01fff) == 0x43c0153e) /* subq $sp,n,$sp */
665 continue;
666
667 if (((inst & 0xfc1f0000) == 0xb41e0000 /* stq reg,n($sp) */
668 || (inst & 0xfc1f0000) == 0x9c1e0000) /* stt reg,n($sp) */
669 && (inst & 0x03e00000) != 0x03e00000) /* reg != $zero */
670 continue;
671
672 if (inst == 0x47de040f) /* bis sp,sp,fp */
673 continue;
674 if (inst == 0x47fe040f) /* bis zero,sp,fp */
675 continue;
676
677 break;
678 }
679 return pc + offset;
680 }
681
682 \f
683 /* Figure out where the longjmp will land.
684 We expect the first arg to be a pointer to the jmp_buf structure from
685 which we extract the PC (JB_PC) that we will land at. The PC is copied
686 into the "pc". This routine returns true on success. */
687
688 static int
689 alpha_get_longjmp_target (CORE_ADDR *pc)
690 {
691 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
692 CORE_ADDR jb_addr;
693 char raw_buffer[ALPHA_REGISTER_SIZE];
694
695 jb_addr = read_register (ALPHA_A0_REGNUM);
696
697 if (target_read_memory (jb_addr + (tdep->jb_pc * tdep->jb_elt_size),
698 raw_buffer, tdep->jb_elt_size))
699 return 0;
700
701 *pc = extract_unsigned_integer (raw_buffer, tdep->jb_elt_size);
702 return 1;
703 }
704
705 \f
706 /* Frame unwinder for signal trampolines. We use alpha tdep bits that
707 describe the location and shape of the sigcontext structure. After
708 that, all registers are in memory, so it's easy. */
709 /* ??? Shouldn't we be able to do this generically, rather than with
710 OSABI data specific to Alpha? */
711
712 struct alpha_sigtramp_unwind_cache
713 {
714 CORE_ADDR sigcontext_addr;
715 };
716
717 static struct alpha_sigtramp_unwind_cache *
718 alpha_sigtramp_frame_unwind_cache (struct frame_info *next_frame,
719 void **this_prologue_cache)
720 {
721 struct alpha_sigtramp_unwind_cache *info;
722 struct gdbarch_tdep *tdep;
723
724 if (*this_prologue_cache)
725 return *this_prologue_cache;
726
727 info = FRAME_OBSTACK_ZALLOC (struct alpha_sigtramp_unwind_cache);
728 *this_prologue_cache = info;
729
730 tdep = gdbarch_tdep (current_gdbarch);
731 info->sigcontext_addr = tdep->sigcontext_addr (next_frame);
732
733 return info;
734 }
735
736 /* Return the address of REGNO in a sigtramp frame. Since this is all
737 arithmetic, it doesn't seem worthwhile to cache it. */
738
739 #ifndef SIGFRAME_PC_OFF
740 #define SIGFRAME_PC_OFF (2 * 8)
741 #define SIGFRAME_REGSAVE_OFF (4 * 8)
742 #define SIGFRAME_FPREGSAVE_OFF (SIGFRAME_REGSAVE_OFF + 32 * 8 + 8)
743 #endif
744
745 static CORE_ADDR
746 alpha_sigtramp_register_address (CORE_ADDR sigcontext_addr, unsigned int regno)
747 {
748 if (regno < 32)
749 return sigcontext_addr + SIGFRAME_REGSAVE_OFF + regno * 8;
750 if (regno >= FP0_REGNUM && regno < FP0_REGNUM + 32)
751 return sigcontext_addr + SIGFRAME_FPREGSAVE_OFF + regno * 8;
752 if (regno == PC_REGNUM)
753 return sigcontext_addr + SIGFRAME_PC_OFF;
754
755 return 0;
756 }
757
758 /* Given a GDB frame, determine the address of the calling function's
759 frame. This will be used to create a new GDB frame struct. */
760
761 static void
762 alpha_sigtramp_frame_this_id (struct frame_info *next_frame,
763 void **this_prologue_cache,
764 struct frame_id *this_id)
765 {
766 struct alpha_sigtramp_unwind_cache *info
767 = alpha_sigtramp_frame_unwind_cache (next_frame, this_prologue_cache);
768 struct gdbarch_tdep *tdep;
769 CORE_ADDR stack_addr, code_addr;
770
771 /* If the OSABI couldn't locate the sigcontext, give up. */
772 if (info->sigcontext_addr == 0)
773 return;
774
775 /* If we have dynamic signal trampolines, find their start.
776 If we do not, then we must assume there is a symbol record
777 that can provide the start address. */
778 tdep = gdbarch_tdep (current_gdbarch);
779 if (tdep->dynamic_sigtramp_offset)
780 {
781 int offset;
782 code_addr = frame_pc_unwind (next_frame);
783 offset = tdep->dynamic_sigtramp_offset (code_addr);
784 if (offset >= 0)
785 code_addr -= offset;
786 else
787 code_addr = 0;
788 }
789 else
790 code_addr = frame_func_unwind (next_frame);
791
792 /* The stack address is trivially read from the sigcontext. */
793 stack_addr = alpha_sigtramp_register_address (info->sigcontext_addr,
794 ALPHA_SP_REGNUM);
795 stack_addr = read_memory_unsigned_integer (stack_addr, ALPHA_REGISTER_SIZE);
796
797 *this_id = frame_id_build (stack_addr, code_addr);
798 }
799
800 /* Retrieve the value of REGNUM in FRAME. Don't give up! */
801
802 static void
803 alpha_sigtramp_frame_prev_register (struct frame_info *next_frame,
804 void **this_prologue_cache,
805 int regnum, int *optimizedp,
806 enum lval_type *lvalp, CORE_ADDR *addrp,
807 int *realnump, void *bufferp)
808 {
809 struct alpha_sigtramp_unwind_cache *info
810 = alpha_sigtramp_frame_unwind_cache (next_frame, this_prologue_cache);
811 CORE_ADDR addr;
812
813 if (info->sigcontext_addr != 0)
814 {
815 /* All integer and fp registers are stored in memory. */
816 addr = alpha_sigtramp_register_address (info->sigcontext_addr, regnum);
817 if (addr != 0)
818 {
819 *optimizedp = 0;
820 *lvalp = lval_memory;
821 *addrp = addr;
822 *realnump = -1;
823 if (bufferp != NULL)
824 read_memory (addr, bufferp, ALPHA_REGISTER_SIZE);
825 return;
826 }
827 }
828
829 /* This extra register may actually be in the sigcontext, but our
830 current description of it in alpha_sigtramp_frame_unwind_cache
831 doesn't include it. Too bad. Fall back on whatever's in the
832 outer frame. */
833 frame_register (next_frame, regnum, optimizedp, lvalp, addrp,
834 realnump, bufferp);
835 }
836
837 static const struct frame_unwind alpha_sigtramp_frame_unwind = {
838 SIGTRAMP_FRAME,
839 alpha_sigtramp_frame_this_id,
840 alpha_sigtramp_frame_prev_register
841 };
842
843 static const struct frame_unwind *
844 alpha_sigtramp_frame_p (CORE_ADDR pc)
845 {
846 char *name;
847
848 /* We shouldn't even bother to try if the OSABI didn't register
849 a sigcontext_addr handler. */
850 if (!gdbarch_tdep (current_gdbarch)->sigcontext_addr)
851 return NULL;
852
853 /* Otherwise we should be in a signal frame. */
854 find_pc_partial_function (pc, &name, NULL, NULL);
855 if (PC_IN_SIGTRAMP (pc, name))
856 return &alpha_sigtramp_frame_unwind;
857
858 return NULL;
859 }
860 \f
861 /* Fallback alpha frame unwinder. Uses instruction scanning and knows
862 something about the traditional layout of alpha stack frames. */
863
864 struct alpha_heuristic_unwind_cache
865 {
866 CORE_ADDR *saved_regs;
867 CORE_ADDR vfp;
868 CORE_ADDR start_pc;
869 int return_reg;
870 };
871
872 /* Heuristic_proc_start may hunt through the text section for a long
873 time across a 2400 baud serial line. Allows the user to limit this
874 search. */
875 static unsigned int heuristic_fence_post = 0;
876
877 /* Attempt to locate the start of the function containing PC. We assume that
878 the previous function ends with an about_to_return insn. Not foolproof by
879 any means, since gcc is happy to put the epilogue in the middle of a
880 function. But we're guessing anyway... */
881
882 static CORE_ADDR
883 alpha_heuristic_proc_start (CORE_ADDR pc)
884 {
885 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
886 CORE_ADDR last_non_nop = pc;
887 CORE_ADDR fence = pc - heuristic_fence_post;
888 CORE_ADDR orig_pc = pc;
889 CORE_ADDR func;
890
891 if (pc == 0)
892 return 0;
893
894 /* First see if we can find the start of the function from minimal
895 symbol information. This can succeed with a binary that doesn't
896 have debug info, but hasn't been stripped. */
897 func = get_pc_function_start (pc);
898 if (func)
899 return func;
900
901 if (heuristic_fence_post == UINT_MAX
902 || fence < tdep->vm_min_address)
903 fence = tdep->vm_min_address;
904
905 /* Search back for previous return; also stop at a 0, which might be
906 seen for instance before the start of a code section. Don't include
907 nops, since this usually indicates padding between functions. */
908 for (pc -= 4; pc >= fence; pc -= 4)
909 {
910 unsigned int insn = alpha_read_insn (pc);
911 switch (insn)
912 {
913 case 0: /* invalid insn */
914 case 0x6bfa8001: /* ret $31,($26),1 */
915 return last_non_nop;
916
917 case 0x2ffe0000: /* unop: ldq_u $31,0($30) */
918 case 0x47ff041f: /* nop: bis $31,$31,$31 */
919 break;
920
921 default:
922 last_non_nop = pc;
923 break;
924 }
925 }
926
927 /* It's not clear to me why we reach this point when stopping quietly,
928 but with this test, at least we don't print out warnings for every
929 child forked (eg, on decstation). 22apr93 rich@cygnus.com. */
930 if (stop_soon == NO_STOP_QUIETLY)
931 {
932 static int blurb_printed = 0;
933
934 if (fence == tdep->vm_min_address)
935 warning ("Hit beginning of text section without finding");
936 else
937 warning ("Hit heuristic-fence-post without finding");
938 warning ("enclosing function for address 0x%s", paddr_nz (orig_pc));
939
940 if (!blurb_printed)
941 {
942 printf_filtered ("\
943 This warning occurs if you are debugging a function without any symbols\n\
944 (for example, in a stripped executable). In that case, you may wish to\n\
945 increase the size of the search with the `set heuristic-fence-post' command.\n\
946 \n\
947 Otherwise, you told GDB there was a function where there isn't one, or\n\
948 (more likely) you have encountered a bug in GDB.\n");
949 blurb_printed = 1;
950 }
951 }
952
953 return 0;
954 }
955
956 static struct alpha_heuristic_unwind_cache *
957 alpha_heuristic_frame_unwind_cache (struct frame_info *next_frame,
958 void **this_prologue_cache,
959 CORE_ADDR start_pc)
960 {
961 struct alpha_heuristic_unwind_cache *info;
962 ULONGEST val;
963 CORE_ADDR limit_pc, cur_pc;
964 int frame_reg, frame_size, return_reg, reg;
965
966 if (*this_prologue_cache)
967 return *this_prologue_cache;
968
969 info = FRAME_OBSTACK_ZALLOC (struct alpha_heuristic_unwind_cache);
970 *this_prologue_cache = info;
971 info->saved_regs = frame_obstack_zalloc (SIZEOF_FRAME_SAVED_REGS);
972
973 limit_pc = frame_pc_unwind (next_frame);
974 if (start_pc == 0)
975 start_pc = alpha_heuristic_proc_start (limit_pc);
976 info->start_pc = start_pc;
977
978 frame_reg = ALPHA_SP_REGNUM;
979 frame_size = 0;
980 return_reg = -1;
981
982 /* If we've identified a likely place to start, do code scanning. */
983 if (start_pc != 0)
984 {
985 /* Limit the forward search to 50 instructions. */
986 if (start_pc + 200 < limit_pc)
987 limit_pc = start_pc + 200;
988
989 for (cur_pc = start_pc; cur_pc < limit_pc; cur_pc += 4)
990 {
991 unsigned int word = alpha_read_insn (cur_pc);
992
993 if ((word & 0xffff0000) == 0x23de0000) /* lda $sp,n($sp) */
994 {
995 if (word & 0x8000)
996 {
997 /* Consider only the first stack allocation instruction
998 to contain the static size of the frame. */
999 if (frame_size == 0)
1000 frame_size = (-word) & 0xffff;
1001 }
1002 else
1003 {
1004 /* Exit loop if a positive stack adjustment is found, which
1005 usually means that the stack cleanup code in the function
1006 epilogue is reached. */
1007 break;
1008 }
1009 }
1010 else if ((word & 0xfc1f0000) == 0xb41e0000) /* stq reg,n($sp) */
1011 {
1012 reg = (word & 0x03e00000) >> 21;
1013
1014 if (reg == 31)
1015 continue;
1016
1017 /* Do not compute the address where the register was saved yet,
1018 because we don't know yet if the offset will need to be
1019 relative to $sp or $fp (we can not compute the address
1020 relative to $sp if $sp is updated during the execution of
1021 the current subroutine, for instance when doing some alloca).
1022 So just store the offset for the moment, and compute the
1023 address later when we know whether this frame has a frame
1024 pointer or not. */
1025 /* Hack: temporarily add one, so that the offset is non-zero
1026 and we can tell which registers have save offsets below. */
1027 info->saved_regs[reg] = (word & 0xffff) + 1;
1028
1029 /* Starting with OSF/1-3.2C, the system libraries are shipped
1030 without local symbols, but they still contain procedure
1031 descriptors without a symbol reference. GDB is currently
1032 unable to find these procedure descriptors and uses
1033 heuristic_proc_desc instead.
1034 As some low level compiler support routines (__div*, __add*)
1035 use a non-standard return address register, we have to
1036 add some heuristics to determine the return address register,
1037 or stepping over these routines will fail.
1038 Usually the return address register is the first register
1039 saved on the stack, but assembler optimization might
1040 rearrange the register saves.
1041 So we recognize only a few registers (t7, t9, ra) within
1042 the procedure prologue as valid return address registers.
1043 If we encounter a return instruction, we extract the
1044 the return address register from it.
1045
1046 FIXME: Rewriting GDB to access the procedure descriptors,
1047 e.g. via the minimal symbol table, might obviate this hack. */
1048 if (return_reg == -1
1049 && cur_pc < (start_pc + 80)
1050 && (reg == ALPHA_T7_REGNUM
1051 || reg == ALPHA_T9_REGNUM
1052 || reg == ALPHA_RA_REGNUM))
1053 return_reg = reg;
1054 }
1055 else if ((word & 0xffe0ffff) == 0x6be08001) /* ret zero,reg,1 */
1056 return_reg = (word >> 16) & 0x1f;
1057 else if (word == 0x47de040f) /* bis sp,sp,fp */
1058 frame_reg = ALPHA_GCC_FP_REGNUM;
1059 else if (word == 0x47fe040f) /* bis zero,sp,fp */
1060 frame_reg = ALPHA_GCC_FP_REGNUM;
1061 }
1062
1063 /* If we haven't found a valid return address register yet, keep
1064 searching in the procedure prologue. */
1065 if (return_reg == -1)
1066 {
1067 while (cur_pc < (limit_pc + 80) && cur_pc < (start_pc + 80))
1068 {
1069 unsigned int word = alpha_read_insn (cur_pc);
1070
1071 if ((word & 0xfc1f0000) == 0xb41e0000) /* stq reg,n($sp) */
1072 {
1073 reg = (word & 0x03e00000) >> 21;
1074 if (reg == ALPHA_T7_REGNUM
1075 || reg == ALPHA_T9_REGNUM
1076 || reg == ALPHA_RA_REGNUM)
1077 {
1078 return_reg = reg;
1079 break;
1080 }
1081 }
1082 else if ((word & 0xffe0ffff) == 0x6be08001) /* ret zero,reg,1 */
1083 {
1084 return_reg = (word >> 16) & 0x1f;
1085 break;
1086 }
1087
1088 cur_pc += 4;
1089 }
1090 }
1091 }
1092
1093 /* Failing that, do default to the customary RA. */
1094 if (return_reg == -1)
1095 return_reg = ALPHA_RA_REGNUM;
1096 info->return_reg = return_reg;
1097
1098 frame_unwind_unsigned_register (next_frame, frame_reg, &val);
1099 info->vfp = val + frame_size;
1100
1101 /* Convert offsets to absolute addresses. See above about adding
1102 one to the offsets to make all detected offsets non-zero. */
1103 for (reg = 0; reg < ALPHA_NUM_REGS; ++reg)
1104 if (info->saved_regs[reg])
1105 info->saved_regs[reg] += val - 1;
1106
1107 return info;
1108 }
1109
1110 /* Given a GDB frame, determine the address of the calling function's
1111 frame. This will be used to create a new GDB frame struct. */
1112
1113 static void
1114 alpha_heuristic_frame_this_id (struct frame_info *next_frame,
1115 void **this_prologue_cache,
1116 struct frame_id *this_id)
1117 {
1118 struct alpha_heuristic_unwind_cache *info
1119 = alpha_heuristic_frame_unwind_cache (next_frame, this_prologue_cache, 0);
1120
1121 /* This is meant to halt the backtrace at "_start". Make sure we
1122 don't halt it at a generic dummy frame. */
1123 if (inside_entry_file (info->start_pc))
1124 return;
1125
1126 *this_id = frame_id_build (info->vfp, info->start_pc);
1127 }
1128
1129 /* Retrieve the value of REGNUM in FRAME. Don't give up! */
1130
1131 static void
1132 alpha_heuristic_frame_prev_register (struct frame_info *next_frame,
1133 void **this_prologue_cache,
1134 int regnum, int *optimizedp,
1135 enum lval_type *lvalp, CORE_ADDR *addrp,
1136 int *realnump, void *bufferp)
1137 {
1138 struct alpha_heuristic_unwind_cache *info
1139 = alpha_heuristic_frame_unwind_cache (next_frame, this_prologue_cache, 0);
1140
1141 /* The PC of the previous frame is stored in the link register of
1142 the current frame. Frob regnum so that we pull the value from
1143 the correct place. */
1144 if (regnum == ALPHA_PC_REGNUM)
1145 regnum = info->return_reg;
1146
1147 /* For all registers known to be saved in the current frame,
1148 do the obvious and pull the value out. */
1149 if (info->saved_regs[regnum])
1150 {
1151 *optimizedp = 0;
1152 *lvalp = lval_memory;
1153 *addrp = info->saved_regs[regnum];
1154 *realnump = -1;
1155 if (bufferp != NULL)
1156 read_memory (*addrp, bufferp, ALPHA_REGISTER_SIZE);
1157 return;
1158 }
1159
1160 /* The stack pointer of the previous frame is computed by popping
1161 the current stack frame. */
1162 if (regnum == ALPHA_SP_REGNUM)
1163 {
1164 *optimizedp = 0;
1165 *lvalp = not_lval;
1166 *addrp = 0;
1167 *realnump = -1;
1168 if (bufferp != NULL)
1169 store_unsigned_integer (bufferp, ALPHA_REGISTER_SIZE, info->vfp);
1170 return;
1171 }
1172
1173 /* Otherwise assume the next frame has the same register value. */
1174 frame_register (next_frame, regnum, optimizedp, lvalp, addrp,
1175 realnump, bufferp);
1176 }
1177
1178 static const struct frame_unwind alpha_heuristic_frame_unwind = {
1179 NORMAL_FRAME,
1180 alpha_heuristic_frame_this_id,
1181 alpha_heuristic_frame_prev_register
1182 };
1183
1184 static const struct frame_unwind *
1185 alpha_heuristic_frame_p (CORE_ADDR pc)
1186 {
1187 return &alpha_heuristic_frame_unwind;
1188 }
1189
1190 static CORE_ADDR
1191 alpha_heuristic_frame_base_address (struct frame_info *next_frame,
1192 void **this_prologue_cache)
1193 {
1194 struct alpha_heuristic_unwind_cache *info
1195 = alpha_heuristic_frame_unwind_cache (next_frame, this_prologue_cache, 0);
1196
1197 return info->vfp;
1198 }
1199
1200 static const struct frame_base alpha_heuristic_frame_base = {
1201 &alpha_heuristic_frame_unwind,
1202 alpha_heuristic_frame_base_address,
1203 alpha_heuristic_frame_base_address,
1204 alpha_heuristic_frame_base_address
1205 };
1206
1207 /* Just like reinit_frame_cache, but with the right arguments to be
1208 callable as an sfunc. Used by the "set heuristic-fence-post" command. */
1209
1210 static void
1211 reinit_frame_cache_sfunc (char *args, int from_tty, struct cmd_list_element *c)
1212 {
1213 reinit_frame_cache ();
1214 }
1215
1216 \f
1217 /* ALPHA stack frames are almost impenetrable. When execution stops,
1218 we basically have to look at symbol information for the function
1219 that we stopped in, which tells us *which* register (if any) is
1220 the base of the frame pointer, and what offset from that register
1221 the frame itself is at.
1222
1223 This presents a problem when trying to examine a stack in memory
1224 (that isn't executing at the moment), using the "frame" command. We
1225 don't have a PC, nor do we have any registers except SP.
1226
1227 This routine takes two arguments, SP and PC, and tries to make the
1228 cached frames look as if these two arguments defined a frame on the
1229 cache. This allows the rest of info frame to extract the important
1230 arguments without difficulty. */
1231
1232 struct frame_info *
1233 alpha_setup_arbitrary_frame (int argc, CORE_ADDR *argv)
1234 {
1235 if (argc != 2)
1236 error ("ALPHA frame specifications require two arguments: sp and pc");
1237
1238 return create_new_frame (argv[0], argv[1]);
1239 }
1240
1241 /* Assuming NEXT_FRAME->prev is a dummy, return the frame ID of that
1242 dummy frame. The frame ID's base needs to match the TOS value
1243 saved by save_dummy_frame_tos(), and the PC match the dummy frame's
1244 breakpoint. */
1245
1246 static struct frame_id
1247 alpha_unwind_dummy_id (struct gdbarch *gdbarch, struct frame_info *next_frame)
1248 {
1249 ULONGEST base;
1250 frame_unwind_unsigned_register (next_frame, ALPHA_SP_REGNUM, &base);
1251 return frame_id_build (base, frame_pc_unwind (next_frame));
1252 }
1253
1254 static CORE_ADDR
1255 alpha_unwind_pc (struct gdbarch *gdbarch, struct frame_info *next_frame)
1256 {
1257 ULONGEST pc;
1258 frame_unwind_unsigned_register (next_frame, ALPHA_PC_REGNUM, &pc);
1259 return pc;
1260 }
1261
1262 \f
1263 /* Helper routines for alpha*-nat.c files to move register sets to and
1264 from core files. The UNIQUE pointer is allowed to be NULL, as most
1265 targets don't supply this value in their core files. */
1266
1267 void
1268 alpha_supply_int_regs (int regno, const void *r0_r30,
1269 const void *pc, const void *unique)
1270 {
1271 int i;
1272
1273 for (i = 0; i < 31; ++i)
1274 if (regno == i || regno == -1)
1275 supply_register (i, (const char *)r0_r30 + i*8);
1276
1277 if (regno == ALPHA_ZERO_REGNUM || regno == -1)
1278 supply_register (ALPHA_ZERO_REGNUM, NULL);
1279
1280 if (regno == ALPHA_PC_REGNUM || regno == -1)
1281 supply_register (ALPHA_PC_REGNUM, pc);
1282
1283 if (regno == ALPHA_UNIQUE_REGNUM || regno == -1)
1284 supply_register (ALPHA_UNIQUE_REGNUM, unique);
1285 }
1286
1287 void
1288 alpha_fill_int_regs (int regno, void *r0_r30, void *pc, void *unique)
1289 {
1290 int i;
1291
1292 for (i = 0; i < 31; ++i)
1293 if (regno == i || regno == -1)
1294 regcache_collect (i, (char *)r0_r30 + i*8);
1295
1296 if (regno == ALPHA_PC_REGNUM || regno == -1)
1297 regcache_collect (ALPHA_PC_REGNUM, pc);
1298
1299 if (unique && (regno == ALPHA_UNIQUE_REGNUM || regno == -1))
1300 regcache_collect (ALPHA_UNIQUE_REGNUM, unique);
1301 }
1302
1303 void
1304 alpha_supply_fp_regs (int regno, const void *f0_f30, const void *fpcr)
1305 {
1306 int i;
1307
1308 for (i = ALPHA_FP0_REGNUM; i < ALPHA_FP0_REGNUM + 31; ++i)
1309 if (regno == i || regno == -1)
1310 supply_register (i, (const char *)f0_f30 + (i - ALPHA_FP0_REGNUM) * 8);
1311
1312 if (regno == ALPHA_FPCR_REGNUM || regno == -1)
1313 supply_register (ALPHA_FPCR_REGNUM, fpcr);
1314 }
1315
1316 void
1317 alpha_fill_fp_regs (int regno, void *f0_f30, void *fpcr)
1318 {
1319 int i;
1320
1321 for (i = ALPHA_FP0_REGNUM; i < ALPHA_FP0_REGNUM + 31; ++i)
1322 if (regno == i || regno == -1)
1323 regcache_collect (i, (char *)f0_f30 + (i - ALPHA_FP0_REGNUM) * 8);
1324
1325 if (regno == ALPHA_FPCR_REGNUM || regno == -1)
1326 regcache_collect (ALPHA_FPCR_REGNUM, fpcr);
1327 }
1328
1329 \f
1330 /* alpha_software_single_step() is called just before we want to resume
1331 the inferior, if we want to single-step it but there is no hardware
1332 or kernel single-step support (NetBSD on Alpha, for example). We find
1333 the target of the coming instruction and breakpoint it.
1334
1335 single_step is also called just after the inferior stops. If we had
1336 set up a simulated single-step, we undo our damage. */
1337
1338 static CORE_ADDR
1339 alpha_next_pc (CORE_ADDR pc)
1340 {
1341 unsigned int insn;
1342 unsigned int op;
1343 int offset;
1344 LONGEST rav;
1345
1346 insn = read_memory_unsigned_integer (pc, sizeof (insn));
1347
1348 /* Opcode is top 6 bits. */
1349 op = (insn >> 26) & 0x3f;
1350
1351 if (op == 0x1a)
1352 {
1353 /* Jump format: target PC is:
1354 RB & ~3 */
1355 return (read_register ((insn >> 16) & 0x1f) & ~3);
1356 }
1357
1358 if ((op & 0x30) == 0x30)
1359 {
1360 /* Branch format: target PC is:
1361 (new PC) + (4 * sext(displacement)) */
1362 if (op == 0x30 || /* BR */
1363 op == 0x34) /* BSR */
1364 {
1365 branch_taken:
1366 offset = (insn & 0x001fffff);
1367 if (offset & 0x00100000)
1368 offset |= 0xffe00000;
1369 offset *= 4;
1370 return (pc + 4 + offset);
1371 }
1372
1373 /* Need to determine if branch is taken; read RA. */
1374 rav = (LONGEST) read_register ((insn >> 21) & 0x1f);
1375 switch (op)
1376 {
1377 case 0x38: /* BLBC */
1378 if ((rav & 1) == 0)
1379 goto branch_taken;
1380 break;
1381 case 0x3c: /* BLBS */
1382 if (rav & 1)
1383 goto branch_taken;
1384 break;
1385 case 0x39: /* BEQ */
1386 if (rav == 0)
1387 goto branch_taken;
1388 break;
1389 case 0x3d: /* BNE */
1390 if (rav != 0)
1391 goto branch_taken;
1392 break;
1393 case 0x3a: /* BLT */
1394 if (rav < 0)
1395 goto branch_taken;
1396 break;
1397 case 0x3b: /* BLE */
1398 if (rav <= 0)
1399 goto branch_taken;
1400 break;
1401 case 0x3f: /* BGT */
1402 if (rav > 0)
1403 goto branch_taken;
1404 break;
1405 case 0x3e: /* BGE */
1406 if (rav >= 0)
1407 goto branch_taken;
1408 break;
1409
1410 /* ??? Missing floating-point branches. */
1411 }
1412 }
1413
1414 /* Not a branch or branch not taken; target PC is:
1415 pc + 4 */
1416 return (pc + 4);
1417 }
1418
1419 void
1420 alpha_software_single_step (enum target_signal sig, int insert_breakpoints_p)
1421 {
1422 static CORE_ADDR next_pc;
1423 typedef char binsn_quantum[BREAKPOINT_MAX];
1424 static binsn_quantum break_mem;
1425 CORE_ADDR pc;
1426
1427 if (insert_breakpoints_p)
1428 {
1429 pc = read_pc ();
1430 next_pc = alpha_next_pc (pc);
1431
1432 target_insert_breakpoint (next_pc, break_mem);
1433 }
1434 else
1435 {
1436 target_remove_breakpoint (next_pc, break_mem);
1437 write_pc (next_pc);
1438 }
1439 }
1440
1441 \f
1442 /* Initialize the current architecture based on INFO. If possible, re-use an
1443 architecture from ARCHES, which is a list of architectures already created
1444 during this debugging session.
1445
1446 Called e.g. at program startup, when reading a core file, and when reading
1447 a binary file. */
1448
1449 static struct gdbarch *
1450 alpha_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
1451 {
1452 struct gdbarch_tdep *tdep;
1453 struct gdbarch *gdbarch;
1454
1455 /* Try to determine the ABI of the object we are loading. */
1456 if (info.abfd != NULL && info.osabi == GDB_OSABI_UNKNOWN)
1457 {
1458 /* If it's an ECOFF file, assume it's OSF/1. */
1459 if (bfd_get_flavour (info.abfd) == bfd_target_ecoff_flavour)
1460 info.osabi = GDB_OSABI_OSF1;
1461 }
1462
1463 /* Find a candidate among extant architectures. */
1464 arches = gdbarch_list_lookup_by_info (arches, &info);
1465 if (arches != NULL)
1466 return arches->gdbarch;
1467
1468 tdep = xmalloc (sizeof (struct gdbarch_tdep));
1469 gdbarch = gdbarch_alloc (&info, tdep);
1470
1471 /* Lowest text address. This is used by heuristic_proc_start()
1472 to decide when to stop looking. */
1473 tdep->vm_min_address = (CORE_ADDR) 0x120000000;
1474
1475 tdep->dynamic_sigtramp_offset = NULL;
1476 tdep->sigcontext_addr = NULL;
1477
1478 tdep->jb_pc = -1; /* longjmp support not enabled by default */
1479
1480 /* Type sizes */
1481 set_gdbarch_short_bit (gdbarch, 16);
1482 set_gdbarch_int_bit (gdbarch, 32);
1483 set_gdbarch_long_bit (gdbarch, 64);
1484 set_gdbarch_long_long_bit (gdbarch, 64);
1485 set_gdbarch_float_bit (gdbarch, 32);
1486 set_gdbarch_double_bit (gdbarch, 64);
1487 set_gdbarch_long_double_bit (gdbarch, 64);
1488 set_gdbarch_ptr_bit (gdbarch, 64);
1489
1490 /* Register info */
1491 set_gdbarch_num_regs (gdbarch, ALPHA_NUM_REGS);
1492 set_gdbarch_sp_regnum (gdbarch, ALPHA_SP_REGNUM);
1493 set_gdbarch_pc_regnum (gdbarch, ALPHA_PC_REGNUM);
1494 set_gdbarch_fp0_regnum (gdbarch, ALPHA_FP0_REGNUM);
1495
1496 set_gdbarch_register_name (gdbarch, alpha_register_name);
1497 set_gdbarch_register_byte (gdbarch, alpha_register_byte);
1498 set_gdbarch_register_raw_size (gdbarch, alpha_register_raw_size);
1499 set_gdbarch_register_virtual_size (gdbarch, alpha_register_virtual_size);
1500 set_gdbarch_register_virtual_type (gdbarch, alpha_register_virtual_type);
1501
1502 set_gdbarch_cannot_fetch_register (gdbarch, alpha_cannot_fetch_register);
1503 set_gdbarch_cannot_store_register (gdbarch, alpha_cannot_store_register);
1504
1505 set_gdbarch_register_convertible (gdbarch, alpha_register_convertible);
1506 set_gdbarch_register_convert_to_virtual (gdbarch,
1507 alpha_register_convert_to_virtual);
1508 set_gdbarch_register_convert_to_raw (gdbarch, alpha_register_convert_to_raw);
1509
1510 set_gdbarch_register_reggroup_p (gdbarch, alpha_register_reggroup_p);
1511
1512 /* Prologue heuristics. */
1513 set_gdbarch_skip_prologue (gdbarch, alpha_skip_prologue);
1514
1515 /* Disassembler. */
1516 set_gdbarch_print_insn (gdbarch, print_insn_alpha);
1517
1518 /* Call info. */
1519 set_gdbarch_frame_num_args (gdbarch, frame_num_args_unknown);
1520 set_gdbarch_frameless_function_invocation (gdbarch,
1521 generic_frameless_function_invocation_not);
1522
1523 set_gdbarch_use_struct_convention (gdbarch, alpha_use_struct_convention);
1524 set_gdbarch_extract_return_value (gdbarch, alpha_extract_return_value);
1525 set_gdbarch_store_return_value (gdbarch, alpha_store_return_value);
1526 set_gdbarch_extract_struct_value_address (gdbarch,
1527 alpha_extract_struct_value_address);
1528
1529 /* Settings for calling functions in the inferior. */
1530 set_gdbarch_push_dummy_call (gdbarch, alpha_push_dummy_call);
1531
1532 /* Methods for saving / extracting a dummy frame's ID. */
1533 set_gdbarch_unwind_dummy_id (gdbarch, alpha_unwind_dummy_id);
1534 set_gdbarch_save_dummy_frame_tos (gdbarch, generic_save_dummy_frame_tos);
1535
1536 /* Return the unwound PC value. */
1537 set_gdbarch_unwind_pc (gdbarch, alpha_unwind_pc);
1538
1539 set_gdbarch_inner_than (gdbarch, core_addr_lessthan);
1540 set_gdbarch_skip_trampoline_code (gdbarch, find_solib_trampoline_target);
1541
1542 set_gdbarch_breakpoint_from_pc (gdbarch, alpha_breakpoint_from_pc);
1543 set_gdbarch_decr_pc_after_break (gdbarch, 4);
1544
1545 set_gdbarch_function_start_offset (gdbarch, 0);
1546 set_gdbarch_frame_args_skip (gdbarch, 0);
1547
1548 /* Hook in ABI-specific overrides, if they have been registered. */
1549 gdbarch_init_osabi (info, gdbarch);
1550
1551 /* Now that we have tuned the configuration, set a few final things
1552 based on what the OS ABI has told us. */
1553
1554 if (tdep->jb_pc >= 0)
1555 set_gdbarch_get_longjmp_target (gdbarch, alpha_get_longjmp_target);
1556
1557 frame_unwind_append_predicate (gdbarch, alpha_sigtramp_frame_p);
1558 frame_unwind_append_predicate (gdbarch, alpha_heuristic_frame_p);
1559
1560 frame_base_set_default (gdbarch, &alpha_heuristic_frame_base);
1561
1562 return gdbarch;
1563 }
1564
1565 void
1566 _initialize_alpha_tdep (void)
1567 {
1568 struct cmd_list_element *c;
1569
1570 gdbarch_register (bfd_arch_alpha, alpha_gdbarch_init, NULL);
1571
1572 /* Let the user set the fence post for heuristic_proc_start. */
1573
1574 /* We really would like to have both "0" and "unlimited" work, but
1575 command.c doesn't deal with that. So make it a var_zinteger
1576 because the user can always use "999999" or some such for unlimited. */
1577 c = add_set_cmd ("heuristic-fence-post", class_support, var_zinteger,
1578 (char *) &heuristic_fence_post,
1579 "\
1580 Set the distance searched for the start of a function.\n\
1581 If you are debugging a stripped executable, GDB needs to search through the\n\
1582 program for the start of a function. This command sets the distance of the\n\
1583 search. The only need to set it is when debugging a stripped executable.",
1584 &setlist);
1585 /* We need to throw away the frame cache when we set this, since it
1586 might change our ability to get backtraces. */
1587 set_cmd_sfunc (c, reinit_frame_cache_sfunc);
1588 add_show_from_set (c, &showlist);
1589 }
This page took 0.067518 seconds and 4 git commands to generate.