1 /* Target-dependent code for the ALPHA architecture, for GDB, the GNU Debugger.
3 Copyright (C) 1993, 1994, 1995, 1996, 1997, 1998, 1999, 2000, 2001, 2002,
4 2003, 2005, 2006, 2007, 2008, 2009, 2010 Free Software Foundation, Inc.
6 This file is part of GDB.
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 3 of the License, or
11 (at your option) any later version.
13 This program is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
18 You should have received a copy of the GNU General Public License
19 along with this program. If not, see <http://www.gnu.org/licenses/>. */
24 #include "frame-unwind.h"
25 #include "frame-base.h"
26 #include "dwarf2-frame.h"
35 #include "gdb_string.h"
38 #include "reggroups.h"
39 #include "arch-utils.h"
43 #include "trad-frame.h"
47 #include "alpha-tdep.h"
49 /* Instruction decoding. The notations for registers, immediates and
50 opcodes are the same as the one used in Compaq's Alpha architecture
53 #define INSN_OPCODE(insn) ((insn & 0xfc000000) >> 26)
55 /* Memory instruction format */
56 #define MEM_RA(insn) ((insn & 0x03e00000) >> 21)
57 #define MEM_RB(insn) ((insn & 0x001f0000) >> 16)
58 #define MEM_DISP(insn) \
59 (((insn & 0x8000) == 0) ? (insn & 0xffff) : -((-insn) & 0xffff))
61 static const int lda_opcode
= 0x08;
62 static const int stq_opcode
= 0x2d;
64 /* Branch instruction format */
65 #define BR_RA(insn) MEM_RA(insn)
67 static const int bne_opcode
= 0x3d;
69 /* Operate instruction format */
70 #define OPR_FUNCTION(insn) ((insn & 0xfe0) >> 5)
71 #define OPR_HAS_IMMEDIATE(insn) ((insn & 0x1000) == 0x1000)
72 #define OPR_RA(insn) MEM_RA(insn)
73 #define OPR_RC(insn) ((insn & 0x1f))
74 #define OPR_LIT(insn) ((insn & 0x1fe000) >> 13)
76 static const int subq_opcode
= 0x10;
77 static const int subq_function
= 0x29;
80 /* Return the name of the REGNO register.
82 An empty name corresponds to a register number that used to
83 be used for a virtual register. That virtual register has
84 been removed, but the index is still reserved to maintain
85 compatibility with existing remote alpha targets. */
88 alpha_register_name (struct gdbarch
*gdbarch
, int regno
)
90 static const char * const register_names
[] =
92 "v0", "t0", "t1", "t2", "t3", "t4", "t5", "t6",
93 "t7", "s0", "s1", "s2", "s3", "s4", "s5", "fp",
94 "a0", "a1", "a2", "a3", "a4", "a5", "t8", "t9",
95 "t10", "t11", "ra", "t12", "at", "gp", "sp", "zero",
96 "f0", "f1", "f2", "f3", "f4", "f5", "f6", "f7",
97 "f8", "f9", "f10", "f11", "f12", "f13", "f14", "f15",
98 "f16", "f17", "f18", "f19", "f20", "f21", "f22", "f23",
99 "f24", "f25", "f26", "f27", "f28", "f29", "f30", "fpcr",
105 if (regno
>= ARRAY_SIZE(register_names
))
107 return register_names
[regno
];
111 alpha_cannot_fetch_register (struct gdbarch
*gdbarch
, int regno
)
113 return (regno
== ALPHA_ZERO_REGNUM
114 || strlen (alpha_register_name (gdbarch
, regno
)) == 0);
118 alpha_cannot_store_register (struct gdbarch
*gdbarch
, int regno
)
120 return (regno
== ALPHA_ZERO_REGNUM
121 || strlen (alpha_register_name (gdbarch
, regno
)) == 0);
125 alpha_register_type (struct gdbarch
*gdbarch
, int regno
)
127 if (regno
== ALPHA_SP_REGNUM
|| regno
== ALPHA_GP_REGNUM
)
128 return builtin_type (gdbarch
)->builtin_data_ptr
;
129 if (regno
== ALPHA_PC_REGNUM
)
130 return builtin_type (gdbarch
)->builtin_func_ptr
;
132 /* Don't need to worry about little vs big endian until
133 some jerk tries to port to alpha-unicosmk. */
134 if (regno
>= ALPHA_FP0_REGNUM
&& regno
< ALPHA_FP0_REGNUM
+ 31)
135 return builtin_type (gdbarch
)->builtin_double
;
137 return builtin_type (gdbarch
)->builtin_int64
;
140 /* Is REGNUM a member of REGGROUP? */
143 alpha_register_reggroup_p (struct gdbarch
*gdbarch
, int regnum
,
144 struct reggroup
*group
)
146 /* Filter out any registers eliminated, but whose regnum is
147 reserved for backward compatibility, e.g. the vfp. */
148 if (gdbarch_register_name (gdbarch
, regnum
) == NULL
149 || *gdbarch_register_name (gdbarch
, regnum
) == '\0')
152 if (group
== all_reggroup
)
155 /* Zero should not be saved or restored. Technically it is a general
156 register (just as $f31 would be a float if we represented it), but
157 there's no point displaying it during "info regs", so leave it out
158 of all groups except for "all". */
159 if (regnum
== ALPHA_ZERO_REGNUM
)
162 /* All other registers are saved and restored. */
163 if (group
== save_reggroup
|| group
== restore_reggroup
)
166 /* All other groups are non-overlapping. */
168 /* Since this is really a PALcode memory slot... */
169 if (regnum
== ALPHA_UNIQUE_REGNUM
)
170 return group
== system_reggroup
;
172 /* Force the FPCR to be considered part of the floating point state. */
173 if (regnum
== ALPHA_FPCR_REGNUM
)
174 return group
== float_reggroup
;
176 if (regnum
>= ALPHA_FP0_REGNUM
&& regnum
< ALPHA_FP0_REGNUM
+ 31)
177 return group
== float_reggroup
;
179 return group
== general_reggroup
;
182 /* The following represents exactly the conversion performed by
183 the LDS instruction. This applies to both single-precision
184 floating point and 32-bit integers. */
187 alpha_lds (struct gdbarch
*gdbarch
, void *out
, const void *in
)
189 enum bfd_endian byte_order
= gdbarch_byte_order (gdbarch
);
190 ULONGEST mem
= extract_unsigned_integer (in
, 4, byte_order
);
191 ULONGEST frac
= (mem
>> 0) & 0x7fffff;
192 ULONGEST sign
= (mem
>> 31) & 1;
193 ULONGEST exp_msb
= (mem
>> 30) & 1;
194 ULONGEST exp_low
= (mem
>> 23) & 0x7f;
197 exp
= (exp_msb
<< 10) | exp_low
;
209 reg
= (sign
<< 63) | (exp
<< 52) | (frac
<< 29);
210 store_unsigned_integer (out
, 8, byte_order
, reg
);
213 /* Similarly, this represents exactly the conversion performed by
214 the STS instruction. */
217 alpha_sts (struct gdbarch
*gdbarch
, void *out
, const void *in
)
219 enum bfd_endian byte_order
= gdbarch_byte_order (gdbarch
);
222 reg
= extract_unsigned_integer (in
, 8, byte_order
);
223 mem
= ((reg
>> 32) & 0xc0000000) | ((reg
>> 29) & 0x3fffffff);
224 store_unsigned_integer (out
, 4, byte_order
, mem
);
227 /* The alpha needs a conversion between register and memory format if the
228 register is a floating point register and memory format is float, as the
229 register format must be double or memory format is an integer with 4
230 bytes or less, as the representation of integers in floating point
231 registers is different. */
234 alpha_convert_register_p (struct gdbarch
*gdbarch
, int regno
, struct type
*type
)
236 return (regno
>= ALPHA_FP0_REGNUM
&& regno
< ALPHA_FP0_REGNUM
+ 31
237 && TYPE_LENGTH (type
) != 8);
241 alpha_register_to_value (struct frame_info
*frame
, int regnum
,
242 struct type
*valtype
, gdb_byte
*out
)
244 gdb_byte in
[MAX_REGISTER_SIZE
];
246 frame_register_read (frame
, regnum
, in
);
247 switch (TYPE_LENGTH (valtype
))
250 alpha_sts (get_frame_arch (frame
), out
, in
);
253 error (_("Cannot retrieve value from floating point register"));
258 alpha_value_to_register (struct frame_info
*frame
, int regnum
,
259 struct type
*valtype
, const gdb_byte
*in
)
261 gdb_byte out
[MAX_REGISTER_SIZE
];
263 switch (TYPE_LENGTH (valtype
))
266 alpha_lds (get_frame_arch (frame
), out
, in
);
269 error (_("Cannot store value in floating point register"));
271 put_frame_register (frame
, regnum
, out
);
275 /* The alpha passes the first six arguments in the registers, the rest on
276 the stack. The register arguments are stored in ARG_REG_BUFFER, and
277 then moved into the register file; this simplifies the passing of a
278 large struct which extends from the registers to the stack, plus avoids
279 three ptrace invocations per word.
281 We don't bother tracking which register values should go in integer
282 regs or fp regs; we load the same values into both.
284 If the called function is returning a structure, the address of the
285 structure to be returned is passed as a hidden first argument. */
288 alpha_push_dummy_call (struct gdbarch
*gdbarch
, struct value
*function
,
289 struct regcache
*regcache
, CORE_ADDR bp_addr
,
290 int nargs
, struct value
**args
, CORE_ADDR sp
,
291 int struct_return
, CORE_ADDR struct_addr
)
293 enum bfd_endian byte_order
= gdbarch_byte_order (gdbarch
);
295 int accumulate_size
= struct_return
? 8 : 0;
302 struct alpha_arg
*alpha_args
303 = (struct alpha_arg
*) alloca (nargs
* sizeof (struct alpha_arg
));
304 struct alpha_arg
*m_arg
;
305 gdb_byte arg_reg_buffer
[ALPHA_REGISTER_SIZE
* ALPHA_NUM_ARG_REGS
];
306 int required_arg_regs
;
307 CORE_ADDR func_addr
= find_function_addr (function
, NULL
);
309 /* The ABI places the address of the called function in T12. */
310 regcache_cooked_write_signed (regcache
, ALPHA_T12_REGNUM
, func_addr
);
312 /* Set the return address register to point to the entry point
313 of the program, where a breakpoint lies in wait. */
314 regcache_cooked_write_signed (regcache
, ALPHA_RA_REGNUM
, bp_addr
);
316 /* Lay out the arguments in memory. */
317 for (i
= 0, m_arg
= alpha_args
; i
< nargs
; i
++, m_arg
++)
319 struct value
*arg
= args
[i
];
320 struct type
*arg_type
= check_typedef (value_type (arg
));
322 /* Cast argument to long if necessary as the compiler does it too. */
323 switch (TYPE_CODE (arg_type
))
328 case TYPE_CODE_RANGE
:
330 if (TYPE_LENGTH (arg_type
) == 4)
332 /* 32-bit values must be sign-extended to 64 bits
333 even if the base data type is unsigned. */
334 arg_type
= builtin_type (gdbarch
)->builtin_int32
;
335 arg
= value_cast (arg_type
, arg
);
337 if (TYPE_LENGTH (arg_type
) < ALPHA_REGISTER_SIZE
)
339 arg_type
= builtin_type (gdbarch
)->builtin_int64
;
340 arg
= value_cast (arg_type
, arg
);
345 /* "float" arguments loaded in registers must be passed in
346 register format, aka "double". */
347 if (accumulate_size
< sizeof (arg_reg_buffer
)
348 && TYPE_LENGTH (arg_type
) == 4)
350 arg_type
= builtin_type (gdbarch
)->builtin_double
;
351 arg
= value_cast (arg_type
, arg
);
353 /* Tru64 5.1 has a 128-bit long double, and passes this by
354 invisible reference. No one else uses this data type. */
355 else if (TYPE_LENGTH (arg_type
) == 16)
357 /* Allocate aligned storage. */
358 sp
= (sp
& -16) - 16;
360 /* Write the real data into the stack. */
361 write_memory (sp
, value_contents (arg
), 16);
363 /* Construct the indirection. */
364 arg_type
= lookup_pointer_type (arg_type
);
365 arg
= value_from_pointer (arg_type
, sp
);
369 case TYPE_CODE_COMPLEX
:
370 /* ??? The ABI says that complex values are passed as two
371 separate scalar values. This distinction only matters
372 for complex float. However, GCC does not implement this. */
374 /* Tru64 5.1 has a 128-bit long double, and passes this by
375 invisible reference. */
376 if (TYPE_LENGTH (arg_type
) == 32)
378 /* Allocate aligned storage. */
379 sp
= (sp
& -16) - 16;
381 /* Write the real data into the stack. */
382 write_memory (sp
, value_contents (arg
), 32);
384 /* Construct the indirection. */
385 arg_type
= lookup_pointer_type (arg_type
);
386 arg
= value_from_pointer (arg_type
, sp
);
393 m_arg
->len
= TYPE_LENGTH (arg_type
);
394 m_arg
->offset
= accumulate_size
;
395 accumulate_size
= (accumulate_size
+ m_arg
->len
+ 7) & ~7;
396 m_arg
->contents
= value_contents_writeable (arg
);
399 /* Determine required argument register loads, loading an argument register
400 is expensive as it uses three ptrace calls. */
401 required_arg_regs
= accumulate_size
/ 8;
402 if (required_arg_regs
> ALPHA_NUM_ARG_REGS
)
403 required_arg_regs
= ALPHA_NUM_ARG_REGS
;
405 /* Make room for the arguments on the stack. */
406 if (accumulate_size
< sizeof(arg_reg_buffer
))
409 accumulate_size
-= sizeof(arg_reg_buffer
);
410 sp
-= accumulate_size
;
412 /* Keep sp aligned to a multiple of 16 as the ABI requires. */
415 /* `Push' arguments on the stack. */
416 for (i
= nargs
; m_arg
--, --i
>= 0;)
418 gdb_byte
*contents
= m_arg
->contents
;
419 int offset
= m_arg
->offset
;
420 int len
= m_arg
->len
;
422 /* Copy the bytes destined for registers into arg_reg_buffer. */
423 if (offset
< sizeof(arg_reg_buffer
))
425 if (offset
+ len
<= sizeof(arg_reg_buffer
))
427 memcpy (arg_reg_buffer
+ offset
, contents
, len
);
432 int tlen
= sizeof(arg_reg_buffer
) - offset
;
433 memcpy (arg_reg_buffer
+ offset
, contents
, tlen
);
440 /* Everything else goes to the stack. */
441 write_memory (sp
+ offset
- sizeof(arg_reg_buffer
), contents
, len
);
444 store_unsigned_integer (arg_reg_buffer
, ALPHA_REGISTER_SIZE
,
445 byte_order
, struct_addr
);
447 /* Load the argument registers. */
448 for (i
= 0; i
< required_arg_regs
; i
++)
450 regcache_cooked_write (regcache
, ALPHA_A0_REGNUM
+ i
,
451 arg_reg_buffer
+ i
*ALPHA_REGISTER_SIZE
);
452 regcache_cooked_write (regcache
, ALPHA_FPA0_REGNUM
+ i
,
453 arg_reg_buffer
+ i
*ALPHA_REGISTER_SIZE
);
456 /* Finally, update the stack pointer. */
457 regcache_cooked_write_signed (regcache
, ALPHA_SP_REGNUM
, sp
);
462 /* Extract from REGCACHE the value about to be returned from a function
463 and copy it into VALBUF. */
466 alpha_extract_return_value (struct type
*valtype
, struct regcache
*regcache
,
469 struct gdbarch
*gdbarch
= get_regcache_arch (regcache
);
470 enum bfd_endian byte_order
= gdbarch_byte_order (gdbarch
);
471 int length
= TYPE_LENGTH (valtype
);
472 gdb_byte raw_buffer
[ALPHA_REGISTER_SIZE
];
475 switch (TYPE_CODE (valtype
))
481 regcache_cooked_read (regcache
, ALPHA_FP0_REGNUM
, raw_buffer
);
482 alpha_sts (gdbarch
, valbuf
, raw_buffer
);
486 regcache_cooked_read (regcache
, ALPHA_FP0_REGNUM
, valbuf
);
490 regcache_cooked_read_unsigned (regcache
, ALPHA_V0_REGNUM
, &l
);
491 read_memory (l
, valbuf
, 16);
495 internal_error (__FILE__
, __LINE__
, _("unknown floating point width"));
499 case TYPE_CODE_COMPLEX
:
503 /* ??? This isn't correct wrt the ABI, but it's what GCC does. */
504 regcache_cooked_read (regcache
, ALPHA_FP0_REGNUM
, valbuf
);
508 regcache_cooked_read (regcache
, ALPHA_FP0_REGNUM
, valbuf
);
509 regcache_cooked_read (regcache
, ALPHA_FP0_REGNUM
+ 1, valbuf
+ 8);
513 regcache_cooked_read_signed (regcache
, ALPHA_V0_REGNUM
, &l
);
514 read_memory (l
, valbuf
, 32);
518 internal_error (__FILE__
, __LINE__
, _("unknown floating point width"));
523 /* Assume everything else degenerates to an integer. */
524 regcache_cooked_read_unsigned (regcache
, ALPHA_V0_REGNUM
, &l
);
525 store_unsigned_integer (valbuf
, length
, byte_order
, l
);
530 /* Insert the given value into REGCACHE as if it was being
531 returned by a function. */
534 alpha_store_return_value (struct type
*valtype
, struct regcache
*regcache
,
535 const gdb_byte
*valbuf
)
537 struct gdbarch
*gdbarch
= get_regcache_arch (regcache
);
538 int length
= TYPE_LENGTH (valtype
);
539 gdb_byte raw_buffer
[ALPHA_REGISTER_SIZE
];
542 switch (TYPE_CODE (valtype
))
548 alpha_lds (gdbarch
, raw_buffer
, valbuf
);
549 regcache_cooked_write (regcache
, ALPHA_FP0_REGNUM
, raw_buffer
);
553 regcache_cooked_write (regcache
, ALPHA_FP0_REGNUM
, valbuf
);
557 /* FIXME: 128-bit long doubles are returned like structures:
558 by writing into indirect storage provided by the caller
559 as the first argument. */
560 error (_("Cannot set a 128-bit long double return value."));
563 internal_error (__FILE__
, __LINE__
, _("unknown floating point width"));
567 case TYPE_CODE_COMPLEX
:
571 /* ??? This isn't correct wrt the ABI, but it's what GCC does. */
572 regcache_cooked_write (regcache
, ALPHA_FP0_REGNUM
, valbuf
);
576 regcache_cooked_write (regcache
, ALPHA_FP0_REGNUM
, valbuf
);
577 regcache_cooked_write (regcache
, ALPHA_FP0_REGNUM
+ 1, valbuf
+ 8);
581 /* FIXME: 128-bit long doubles are returned like structures:
582 by writing into indirect storage provided by the caller
583 as the first argument. */
584 error (_("Cannot set a 128-bit long double return value."));
587 internal_error (__FILE__
, __LINE__
, _("unknown floating point width"));
592 /* Assume everything else degenerates to an integer. */
593 /* 32-bit values must be sign-extended to 64 bits
594 even if the base data type is unsigned. */
596 valtype
= builtin_type (gdbarch
)->builtin_int32
;
597 l
= unpack_long (valtype
, valbuf
);
598 regcache_cooked_write_unsigned (regcache
, ALPHA_V0_REGNUM
, l
);
603 static enum return_value_convention
604 alpha_return_value (struct gdbarch
*gdbarch
, struct type
*func_type
,
605 struct type
*type
, struct regcache
*regcache
,
606 gdb_byte
*readbuf
, const gdb_byte
*writebuf
)
608 enum type_code code
= TYPE_CODE (type
);
610 if ((code
== TYPE_CODE_STRUCT
611 || code
== TYPE_CODE_UNION
612 || code
== TYPE_CODE_ARRAY
)
613 && gdbarch_tdep (gdbarch
)->return_in_memory (type
))
618 regcache_raw_read_unsigned (regcache
, ALPHA_V0_REGNUM
, &addr
);
619 read_memory (addr
, readbuf
, TYPE_LENGTH (type
));
622 return RETURN_VALUE_ABI_RETURNS_ADDRESS
;
626 alpha_extract_return_value (type
, regcache
, readbuf
);
628 alpha_store_return_value (type
, regcache
, writebuf
);
630 return RETURN_VALUE_REGISTER_CONVENTION
;
634 alpha_return_in_memory_always (struct type
*type
)
639 static const gdb_byte
*
640 alpha_breakpoint_from_pc (struct gdbarch
*gdbarch
, CORE_ADDR
*pc
, int *len
)
642 static const gdb_byte break_insn
[] = { 0x80, 0, 0, 0 }; /* call_pal bpt */
644 *len
= sizeof(break_insn
);
649 /* This returns the PC of the first insn after the prologue.
650 If we can't find the prologue, then return 0. */
653 alpha_after_prologue (CORE_ADDR pc
)
655 struct symtab_and_line sal
;
656 CORE_ADDR func_addr
, func_end
;
658 if (!find_pc_partial_function (pc
, NULL
, &func_addr
, &func_end
))
661 sal
= find_pc_line (func_addr
, 0);
662 if (sal
.end
< func_end
)
665 /* The line after the prologue is after the end of the function. In this
666 case, tell the caller to find the prologue the hard way. */
670 /* Read an instruction from memory at PC, looking through breakpoints. */
673 alpha_read_insn (struct gdbarch
*gdbarch
, CORE_ADDR pc
)
675 enum bfd_endian byte_order
= gdbarch_byte_order (gdbarch
);
676 gdb_byte buf
[ALPHA_INSN_SIZE
];
679 status
= target_read_memory (pc
, buf
, sizeof (buf
));
681 memory_error (status
, pc
);
682 return extract_unsigned_integer (buf
, sizeof (buf
), byte_order
);
685 /* To skip prologues, I use this predicate. Returns either PC itself
686 if the code at PC does not look like a function prologue; otherwise
687 returns an address that (if we're lucky) follows the prologue. If
688 LENIENT, then we must skip everything which is involved in setting
689 up the frame (it's OK to skip more, just so long as we don't skip
690 anything which might clobber the registers which are being saved. */
693 alpha_skip_prologue (struct gdbarch
*gdbarch
, CORE_ADDR pc
)
697 CORE_ADDR post_prologue_pc
;
698 gdb_byte buf
[ALPHA_INSN_SIZE
];
700 /* Silently return the unaltered pc upon memory errors.
701 This could happen on OSF/1 if decode_line_1 tries to skip the
702 prologue for quickstarted shared library functions when the
703 shared library is not yet mapped in.
704 Reading target memory is slow over serial lines, so we perform
705 this check only if the target has shared libraries (which all
706 Alpha targets do). */
707 if (target_read_memory (pc
, buf
, sizeof (buf
)))
710 /* See if we can determine the end of the prologue via the symbol table.
711 If so, then return either PC, or the PC after the prologue, whichever
714 post_prologue_pc
= alpha_after_prologue (pc
);
715 if (post_prologue_pc
!= 0)
716 return max (pc
, post_prologue_pc
);
718 /* Can't determine prologue from the symbol table, need to examine
721 /* Skip the typical prologue instructions. These are the stack adjustment
722 instruction and the instructions that save registers on the stack
723 or in the gcc frame. */
724 for (offset
= 0; offset
< 100; offset
+= ALPHA_INSN_SIZE
)
726 inst
= alpha_read_insn (gdbarch
, pc
+ offset
);
728 if ((inst
& 0xffff0000) == 0x27bb0000) /* ldah $gp,n($t12) */
730 if ((inst
& 0xffff0000) == 0x23bd0000) /* lda $gp,n($gp) */
732 if ((inst
& 0xffff0000) == 0x23de0000) /* lda $sp,n($sp) */
734 if ((inst
& 0xffe01fff) == 0x43c0153e) /* subq $sp,n,$sp */
737 if (((inst
& 0xfc1f0000) == 0xb41e0000 /* stq reg,n($sp) */
738 || (inst
& 0xfc1f0000) == 0x9c1e0000) /* stt reg,n($sp) */
739 && (inst
& 0x03e00000) != 0x03e00000) /* reg != $zero */
742 if (inst
== 0x47de040f) /* bis sp,sp,fp */
744 if (inst
== 0x47fe040f) /* bis zero,sp,fp */
753 /* Figure out where the longjmp will land.
754 We expect the first arg to be a pointer to the jmp_buf structure from
755 which we extract the PC (JB_PC) that we will land at. The PC is copied
756 into the "pc". This routine returns true on success. */
759 alpha_get_longjmp_target (struct frame_info
*frame
, CORE_ADDR
*pc
)
761 struct gdbarch
*gdbarch
= get_frame_arch (frame
);
762 struct gdbarch_tdep
*tdep
= gdbarch_tdep (gdbarch
);
763 enum bfd_endian byte_order
= gdbarch_byte_order (gdbarch
);
765 gdb_byte raw_buffer
[ALPHA_REGISTER_SIZE
];
767 jb_addr
= get_frame_register_unsigned (frame
, ALPHA_A0_REGNUM
);
769 if (target_read_memory (jb_addr
+ (tdep
->jb_pc
* tdep
->jb_elt_size
),
770 raw_buffer
, tdep
->jb_elt_size
))
773 *pc
= extract_unsigned_integer (raw_buffer
, tdep
->jb_elt_size
, byte_order
);
778 /* Frame unwinder for signal trampolines. We use alpha tdep bits that
779 describe the location and shape of the sigcontext structure. After
780 that, all registers are in memory, so it's easy. */
781 /* ??? Shouldn't we be able to do this generically, rather than with
782 OSABI data specific to Alpha? */
784 struct alpha_sigtramp_unwind_cache
786 CORE_ADDR sigcontext_addr
;
789 static struct alpha_sigtramp_unwind_cache
*
790 alpha_sigtramp_frame_unwind_cache (struct frame_info
*this_frame
,
791 void **this_prologue_cache
)
793 struct alpha_sigtramp_unwind_cache
*info
;
794 struct gdbarch_tdep
*tdep
;
796 if (*this_prologue_cache
)
797 return *this_prologue_cache
;
799 info
= FRAME_OBSTACK_ZALLOC (struct alpha_sigtramp_unwind_cache
);
800 *this_prologue_cache
= info
;
802 tdep
= gdbarch_tdep (get_frame_arch (this_frame
));
803 info
->sigcontext_addr
= tdep
->sigcontext_addr (this_frame
);
808 /* Return the address of REGNUM in a sigtramp frame. Since this is
809 all arithmetic, it doesn't seem worthwhile to cache it. */
812 alpha_sigtramp_register_address (struct gdbarch
*gdbarch
,
813 CORE_ADDR sigcontext_addr
, int regnum
)
815 struct gdbarch_tdep
*tdep
= gdbarch_tdep (gdbarch
);
817 if (regnum
>= 0 && regnum
< 32)
818 return sigcontext_addr
+ tdep
->sc_regs_offset
+ regnum
* 8;
819 else if (regnum
>= ALPHA_FP0_REGNUM
&& regnum
< ALPHA_FP0_REGNUM
+ 32)
820 return sigcontext_addr
+ tdep
->sc_fpregs_offset
+ regnum
* 8;
821 else if (regnum
== ALPHA_PC_REGNUM
)
822 return sigcontext_addr
+ tdep
->sc_pc_offset
;
827 /* Given a GDB frame, determine the address of the calling function's
828 frame. This will be used to create a new GDB frame struct. */
831 alpha_sigtramp_frame_this_id (struct frame_info
*this_frame
,
832 void **this_prologue_cache
,
833 struct frame_id
*this_id
)
835 struct gdbarch
*gdbarch
= get_frame_arch (this_frame
);
836 struct gdbarch_tdep
*tdep
= gdbarch_tdep (gdbarch
);
837 struct alpha_sigtramp_unwind_cache
*info
838 = alpha_sigtramp_frame_unwind_cache (this_frame
, this_prologue_cache
);
839 CORE_ADDR stack_addr
, code_addr
;
841 /* If the OSABI couldn't locate the sigcontext, give up. */
842 if (info
->sigcontext_addr
== 0)
845 /* If we have dynamic signal trampolines, find their start.
846 If we do not, then we must assume there is a symbol record
847 that can provide the start address. */
848 if (tdep
->dynamic_sigtramp_offset
)
851 code_addr
= get_frame_pc (this_frame
);
852 offset
= tdep
->dynamic_sigtramp_offset (gdbarch
, code_addr
);
859 code_addr
= get_frame_func (this_frame
);
861 /* The stack address is trivially read from the sigcontext. */
862 stack_addr
= alpha_sigtramp_register_address (gdbarch
, info
->sigcontext_addr
,
864 stack_addr
= get_frame_memory_unsigned (this_frame
, stack_addr
,
865 ALPHA_REGISTER_SIZE
);
867 *this_id
= frame_id_build (stack_addr
, code_addr
);
870 /* Retrieve the value of REGNUM in FRAME. Don't give up! */
872 static struct value
*
873 alpha_sigtramp_frame_prev_register (struct frame_info
*this_frame
,
874 void **this_prologue_cache
, int regnum
)
876 struct alpha_sigtramp_unwind_cache
*info
877 = alpha_sigtramp_frame_unwind_cache (this_frame
, this_prologue_cache
);
880 if (info
->sigcontext_addr
!= 0)
882 /* All integer and fp registers are stored in memory. */
883 addr
= alpha_sigtramp_register_address (get_frame_arch (this_frame
),
884 info
->sigcontext_addr
, regnum
);
886 return frame_unwind_got_memory (this_frame
, regnum
, addr
);
889 /* This extra register may actually be in the sigcontext, but our
890 current description of it in alpha_sigtramp_frame_unwind_cache
891 doesn't include it. Too bad. Fall back on whatever's in the
893 return frame_unwind_got_register (this_frame
, regnum
, regnum
);
897 alpha_sigtramp_frame_sniffer (const struct frame_unwind
*self
,
898 struct frame_info
*this_frame
,
899 void **this_prologue_cache
)
901 struct gdbarch
*gdbarch
= get_frame_arch (this_frame
);
902 CORE_ADDR pc
= get_frame_pc (this_frame
);
905 /* NOTE: cagney/2004-04-30: Do not copy/clone this code. Instead
906 look at tramp-frame.h and other simplier per-architecture
907 sigtramp unwinders. */
909 /* We shouldn't even bother to try if the OSABI didn't register a
910 sigcontext_addr handler or pc_in_sigtramp hander. */
911 if (gdbarch_tdep (gdbarch
)->sigcontext_addr
== NULL
)
913 if (gdbarch_tdep (gdbarch
)->pc_in_sigtramp
== NULL
)
916 /* Otherwise we should be in a signal frame. */
917 find_pc_partial_function (pc
, &name
, NULL
, NULL
);
918 if (gdbarch_tdep (gdbarch
)->pc_in_sigtramp (gdbarch
, pc
, name
))
924 static const struct frame_unwind alpha_sigtramp_frame_unwind
= {
926 alpha_sigtramp_frame_this_id
,
927 alpha_sigtramp_frame_prev_register
,
929 alpha_sigtramp_frame_sniffer
934 /* Heuristic_proc_start may hunt through the text section for a long
935 time across a 2400 baud serial line. Allows the user to limit this
937 static unsigned int heuristic_fence_post
= 0;
939 /* Attempt to locate the start of the function containing PC. We assume that
940 the previous function ends with an about_to_return insn. Not foolproof by
941 any means, since gcc is happy to put the epilogue in the middle of a
942 function. But we're guessing anyway... */
945 alpha_heuristic_proc_start (struct gdbarch
*gdbarch
, CORE_ADDR pc
)
947 struct gdbarch_tdep
*tdep
= gdbarch_tdep (gdbarch
);
948 CORE_ADDR last_non_nop
= pc
;
949 CORE_ADDR fence
= pc
- heuristic_fence_post
;
950 CORE_ADDR orig_pc
= pc
;
952 struct inferior
*inf
;
957 /* First see if we can find the start of the function from minimal
958 symbol information. This can succeed with a binary that doesn't
959 have debug info, but hasn't been stripped. */
960 func
= get_pc_function_start (pc
);
964 if (heuristic_fence_post
== UINT_MAX
965 || fence
< tdep
->vm_min_address
)
966 fence
= tdep
->vm_min_address
;
968 /* Search back for previous return; also stop at a 0, which might be
969 seen for instance before the start of a code section. Don't include
970 nops, since this usually indicates padding between functions. */
971 for (pc
-= ALPHA_INSN_SIZE
; pc
>= fence
; pc
-= ALPHA_INSN_SIZE
)
973 unsigned int insn
= alpha_read_insn (gdbarch
, pc
);
976 case 0: /* invalid insn */
977 case 0x6bfa8001: /* ret $31,($26),1 */
980 case 0x2ffe0000: /* unop: ldq_u $31,0($30) */
981 case 0x47ff041f: /* nop: bis $31,$31,$31 */
990 inf
= current_inferior ();
992 /* It's not clear to me why we reach this point when stopping quietly,
993 but with this test, at least we don't print out warnings for every
994 child forked (eg, on decstation). 22apr93 rich@cygnus.com. */
995 if (inf
->stop_soon
== NO_STOP_QUIETLY
)
997 static int blurb_printed
= 0;
999 if (fence
== tdep
->vm_min_address
)
1000 warning (_("Hit beginning of text section without finding \
1001 enclosing function for address %s"), paddress (gdbarch
, orig_pc
));
1003 warning (_("Hit heuristic-fence-post without finding \
1004 enclosing function for address %s"), paddress (gdbarch
, orig_pc
));
1008 printf_filtered (_("\
1009 This warning occurs if you are debugging a function without any symbols\n\
1010 (for example, in a stripped executable). In that case, you may wish to\n\
1011 increase the size of the search with the `set heuristic-fence-post' command.\n\
1013 Otherwise, you told GDB there was a function where there isn't one, or\n\
1014 (more likely) you have encountered a bug in GDB.\n"));
1022 /* Fallback alpha frame unwinder. Uses instruction scanning and knows
1023 something about the traditional layout of alpha stack frames. */
1025 struct alpha_heuristic_unwind_cache
1029 struct trad_frame_saved_reg
*saved_regs
;
1033 /* If a probing loop sequence starts at PC, simulate it and compute
1034 FRAME_SIZE and PC after its execution. Otherwise, return with PC and
1035 FRAME_SIZE unchanged. */
1038 alpha_heuristic_analyze_probing_loop (struct gdbarch
*gdbarch
, CORE_ADDR
*pc
,
1041 CORE_ADDR cur_pc
= *pc
;
1042 int cur_frame_size
= *frame_size
;
1043 int nb_of_iterations
, reg_index
, reg_probe
;
1046 /* The following pattern is recognized as a probing loop:
1048 lda REG_INDEX,NB_OF_ITERATIONS
1049 lda REG_PROBE,<immediate>(sp)
1052 stq zero,<immediate>(REG_PROBE)
1053 subq REG_INDEX,0x1,REG_INDEX
1054 lda REG_PROBE,<immediate>(REG_PROBE)
1055 bne REG_INDEX, LOOP_START
1057 lda sp,<immediate>(REG_PROBE)
1059 If anything different is found, the function returns without
1060 changing PC and FRAME_SIZE. Otherwise, PC will point immediately
1061 after this sequence, and FRAME_SIZE will be updated.
1064 /* lda REG_INDEX,NB_OF_ITERATIONS */
1066 insn
= alpha_read_insn (gdbarch
, cur_pc
);
1067 if (INSN_OPCODE (insn
) != lda_opcode
)
1069 reg_index
= MEM_RA (insn
);
1070 nb_of_iterations
= MEM_DISP (insn
);
1072 /* lda REG_PROBE,<immediate>(sp) */
1074 cur_pc
+= ALPHA_INSN_SIZE
;
1075 insn
= alpha_read_insn (gdbarch
, cur_pc
);
1076 if (INSN_OPCODE (insn
) != lda_opcode
1077 || MEM_RB (insn
) != ALPHA_SP_REGNUM
)
1079 reg_probe
= MEM_RA (insn
);
1080 cur_frame_size
-= MEM_DISP (insn
);
1082 /* stq zero,<immediate>(REG_PROBE) */
1084 cur_pc
+= ALPHA_INSN_SIZE
;
1085 insn
= alpha_read_insn (gdbarch
, cur_pc
);
1086 if (INSN_OPCODE (insn
) != stq_opcode
1087 || MEM_RA (insn
) != 0x1f
1088 || MEM_RB (insn
) != reg_probe
)
1091 /* subq REG_INDEX,0x1,REG_INDEX */
1093 cur_pc
+= ALPHA_INSN_SIZE
;
1094 insn
= alpha_read_insn (gdbarch
, cur_pc
);
1095 if (INSN_OPCODE (insn
) != subq_opcode
1096 || !OPR_HAS_IMMEDIATE (insn
)
1097 || OPR_FUNCTION (insn
) != subq_function
1098 || OPR_LIT(insn
) != 1
1099 || OPR_RA (insn
) != reg_index
1100 || OPR_RC (insn
) != reg_index
)
1103 /* lda REG_PROBE,<immediate>(REG_PROBE) */
1105 cur_pc
+= ALPHA_INSN_SIZE
;
1106 insn
= alpha_read_insn (gdbarch
, cur_pc
);
1107 if (INSN_OPCODE (insn
) != lda_opcode
1108 || MEM_RA (insn
) != reg_probe
1109 || MEM_RB (insn
) != reg_probe
)
1111 cur_frame_size
-= MEM_DISP (insn
) * nb_of_iterations
;
1113 /* bne REG_INDEX, LOOP_START */
1115 cur_pc
+= ALPHA_INSN_SIZE
;
1116 insn
= alpha_read_insn (gdbarch
, cur_pc
);
1117 if (INSN_OPCODE (insn
) != bne_opcode
1118 || MEM_RA (insn
) != reg_index
)
1121 /* lda sp,<immediate>(REG_PROBE) */
1123 cur_pc
+= ALPHA_INSN_SIZE
;
1124 insn
= alpha_read_insn (gdbarch
, cur_pc
);
1125 if (INSN_OPCODE (insn
) != lda_opcode
1126 || MEM_RA (insn
) != ALPHA_SP_REGNUM
1127 || MEM_RB (insn
) != reg_probe
)
1129 cur_frame_size
-= MEM_DISP (insn
);
1132 *frame_size
= cur_frame_size
;
1135 static struct alpha_heuristic_unwind_cache
*
1136 alpha_heuristic_frame_unwind_cache (struct frame_info
*this_frame
,
1137 void **this_prologue_cache
,
1140 struct gdbarch
*gdbarch
= get_frame_arch (this_frame
);
1141 struct alpha_heuristic_unwind_cache
*info
;
1143 CORE_ADDR limit_pc
, cur_pc
;
1144 int frame_reg
, frame_size
, return_reg
, reg
;
1146 if (*this_prologue_cache
)
1147 return *this_prologue_cache
;
1149 info
= FRAME_OBSTACK_ZALLOC (struct alpha_heuristic_unwind_cache
);
1150 *this_prologue_cache
= info
;
1151 info
->saved_regs
= trad_frame_alloc_saved_regs (this_frame
);
1153 limit_pc
= get_frame_pc (this_frame
);
1155 start_pc
= alpha_heuristic_proc_start (gdbarch
, limit_pc
);
1156 info
->start_pc
= start_pc
;
1158 frame_reg
= ALPHA_SP_REGNUM
;
1162 /* If we've identified a likely place to start, do code scanning. */
1165 /* Limit the forward search to 50 instructions. */
1166 if (start_pc
+ 200 < limit_pc
)
1167 limit_pc
= start_pc
+ 200;
1169 for (cur_pc
= start_pc
; cur_pc
< limit_pc
; cur_pc
+= ALPHA_INSN_SIZE
)
1171 unsigned int word
= alpha_read_insn (gdbarch
, cur_pc
);
1173 if ((word
& 0xffff0000) == 0x23de0000) /* lda $sp,n($sp) */
1177 /* Consider only the first stack allocation instruction
1178 to contain the static size of the frame. */
1179 if (frame_size
== 0)
1180 frame_size
= (-word
) & 0xffff;
1184 /* Exit loop if a positive stack adjustment is found, which
1185 usually means that the stack cleanup code in the function
1186 epilogue is reached. */
1190 else if ((word
& 0xfc1f0000) == 0xb41e0000) /* stq reg,n($sp) */
1192 reg
= (word
& 0x03e00000) >> 21;
1194 /* Ignore this instruction if we have already encountered
1195 an instruction saving the same register earlier in the
1196 function code. The current instruction does not tell
1197 us where the original value upon function entry is saved.
1198 All it says is that the function we are scanning reused
1199 that register for some computation of its own, and is now
1200 saving its result. */
1201 if (trad_frame_addr_p(info
->saved_regs
, reg
))
1207 /* Do not compute the address where the register was saved yet,
1208 because we don't know yet if the offset will need to be
1209 relative to $sp or $fp (we can not compute the address
1210 relative to $sp if $sp is updated during the execution of
1211 the current subroutine, for instance when doing some alloca).
1212 So just store the offset for the moment, and compute the
1213 address later when we know whether this frame has a frame
1215 /* Hack: temporarily add one, so that the offset is non-zero
1216 and we can tell which registers have save offsets below. */
1217 info
->saved_regs
[reg
].addr
= (word
& 0xffff) + 1;
1219 /* Starting with OSF/1-3.2C, the system libraries are shipped
1220 without local symbols, but they still contain procedure
1221 descriptors without a symbol reference. GDB is currently
1222 unable to find these procedure descriptors and uses
1223 heuristic_proc_desc instead.
1224 As some low level compiler support routines (__div*, __add*)
1225 use a non-standard return address register, we have to
1226 add some heuristics to determine the return address register,
1227 or stepping over these routines will fail.
1228 Usually the return address register is the first register
1229 saved on the stack, but assembler optimization might
1230 rearrange the register saves.
1231 So we recognize only a few registers (t7, t9, ra) within
1232 the procedure prologue as valid return address registers.
1233 If we encounter a return instruction, we extract the
1234 the return address register from it.
1236 FIXME: Rewriting GDB to access the procedure descriptors,
1237 e.g. via the minimal symbol table, might obviate this hack. */
1238 if (return_reg
== -1
1239 && cur_pc
< (start_pc
+ 80)
1240 && (reg
== ALPHA_T7_REGNUM
1241 || reg
== ALPHA_T9_REGNUM
1242 || reg
== ALPHA_RA_REGNUM
))
1245 else if ((word
& 0xffe0ffff) == 0x6be08001) /* ret zero,reg,1 */
1246 return_reg
= (word
>> 16) & 0x1f;
1247 else if (word
== 0x47de040f) /* bis sp,sp,fp */
1248 frame_reg
= ALPHA_GCC_FP_REGNUM
;
1249 else if (word
== 0x47fe040f) /* bis zero,sp,fp */
1250 frame_reg
= ALPHA_GCC_FP_REGNUM
;
1252 alpha_heuristic_analyze_probing_loop (gdbarch
, &cur_pc
, &frame_size
);
1255 /* If we haven't found a valid return address register yet, keep
1256 searching in the procedure prologue. */
1257 if (return_reg
== -1)
1259 while (cur_pc
< (limit_pc
+ 80) && cur_pc
< (start_pc
+ 80))
1261 unsigned int word
= alpha_read_insn (gdbarch
, cur_pc
);
1263 if ((word
& 0xfc1f0000) == 0xb41e0000) /* stq reg,n($sp) */
1265 reg
= (word
& 0x03e00000) >> 21;
1266 if (reg
== ALPHA_T7_REGNUM
1267 || reg
== ALPHA_T9_REGNUM
1268 || reg
== ALPHA_RA_REGNUM
)
1274 else if ((word
& 0xffe0ffff) == 0x6be08001) /* ret zero,reg,1 */
1276 return_reg
= (word
>> 16) & 0x1f;
1280 cur_pc
+= ALPHA_INSN_SIZE
;
1285 /* Failing that, do default to the customary RA. */
1286 if (return_reg
== -1)
1287 return_reg
= ALPHA_RA_REGNUM
;
1288 info
->return_reg
= return_reg
;
1290 val
= get_frame_register_unsigned (this_frame
, frame_reg
);
1291 info
->vfp
= val
+ frame_size
;
1293 /* Convert offsets to absolute addresses. See above about adding
1294 one to the offsets to make all detected offsets non-zero. */
1295 for (reg
= 0; reg
< ALPHA_NUM_REGS
; ++reg
)
1296 if (trad_frame_addr_p(info
->saved_regs
, reg
))
1297 info
->saved_regs
[reg
].addr
+= val
- 1;
1299 /* The stack pointer of the previous frame is computed by popping
1300 the current stack frame. */
1301 if (!trad_frame_addr_p (info
->saved_regs
, ALPHA_SP_REGNUM
))
1302 trad_frame_set_value (info
->saved_regs
, ALPHA_SP_REGNUM
, info
->vfp
);
1307 /* Given a GDB frame, determine the address of the calling function's
1308 frame. This will be used to create a new GDB frame struct. */
1311 alpha_heuristic_frame_this_id (struct frame_info
*this_frame
,
1312 void **this_prologue_cache
,
1313 struct frame_id
*this_id
)
1315 struct alpha_heuristic_unwind_cache
*info
1316 = alpha_heuristic_frame_unwind_cache (this_frame
, this_prologue_cache
, 0);
1318 *this_id
= frame_id_build (info
->vfp
, info
->start_pc
);
1321 /* Retrieve the value of REGNUM in FRAME. Don't give up! */
1323 static struct value
*
1324 alpha_heuristic_frame_prev_register (struct frame_info
*this_frame
,
1325 void **this_prologue_cache
, int regnum
)
1327 struct alpha_heuristic_unwind_cache
*info
1328 = alpha_heuristic_frame_unwind_cache (this_frame
, this_prologue_cache
, 0);
1330 /* The PC of the previous frame is stored in the link register of
1331 the current frame. Frob regnum so that we pull the value from
1332 the correct place. */
1333 if (regnum
== ALPHA_PC_REGNUM
)
1334 regnum
= info
->return_reg
;
1336 return trad_frame_get_prev_register (this_frame
, info
->saved_regs
, regnum
);
1339 static const struct frame_unwind alpha_heuristic_frame_unwind
= {
1341 alpha_heuristic_frame_this_id
,
1342 alpha_heuristic_frame_prev_register
,
1344 default_frame_sniffer
1348 alpha_heuristic_frame_base_address (struct frame_info
*this_frame
,
1349 void **this_prologue_cache
)
1351 struct alpha_heuristic_unwind_cache
*info
1352 = alpha_heuristic_frame_unwind_cache (this_frame
, this_prologue_cache
, 0);
1357 static const struct frame_base alpha_heuristic_frame_base
= {
1358 &alpha_heuristic_frame_unwind
,
1359 alpha_heuristic_frame_base_address
,
1360 alpha_heuristic_frame_base_address
,
1361 alpha_heuristic_frame_base_address
1364 /* Just like reinit_frame_cache, but with the right arguments to be
1365 callable as an sfunc. Used by the "set heuristic-fence-post" command. */
1368 reinit_frame_cache_sfunc (char *args
, int from_tty
, struct cmd_list_element
*c
)
1370 reinit_frame_cache ();
1374 /* Assuming NEXT_FRAME->prev is a dummy, return the frame ID of that
1375 dummy frame. The frame ID's base needs to match the TOS value
1376 saved by save_dummy_frame_tos(), and the PC match the dummy frame's
1379 static struct frame_id
1380 alpha_dummy_id (struct gdbarch
*gdbarch
, struct frame_info
*this_frame
)
1383 base
= get_frame_register_unsigned (this_frame
, ALPHA_SP_REGNUM
);
1384 return frame_id_build (base
, get_frame_pc (this_frame
));
1388 alpha_unwind_pc (struct gdbarch
*gdbarch
, struct frame_info
*next_frame
)
1391 pc
= frame_unwind_register_unsigned (next_frame
, ALPHA_PC_REGNUM
);
1396 /* Helper routines for alpha*-nat.c files to move register sets to and
1397 from core files. The UNIQUE pointer is allowed to be NULL, as most
1398 targets don't supply this value in their core files. */
1401 alpha_supply_int_regs (struct regcache
*regcache
, int regno
,
1402 const void *r0_r30
, const void *pc
, const void *unique
)
1404 const gdb_byte
*regs
= r0_r30
;
1407 for (i
= 0; i
< 31; ++i
)
1408 if (regno
== i
|| regno
== -1)
1409 regcache_raw_supply (regcache
, i
, regs
+ i
* 8);
1411 if (regno
== ALPHA_ZERO_REGNUM
|| regno
== -1)
1412 regcache_raw_supply (regcache
, ALPHA_ZERO_REGNUM
, NULL
);
1414 if (regno
== ALPHA_PC_REGNUM
|| regno
== -1)
1415 regcache_raw_supply (regcache
, ALPHA_PC_REGNUM
, pc
);
1417 if (regno
== ALPHA_UNIQUE_REGNUM
|| regno
== -1)
1418 regcache_raw_supply (regcache
, ALPHA_UNIQUE_REGNUM
, unique
);
1422 alpha_fill_int_regs (const struct regcache
*regcache
,
1423 int regno
, void *r0_r30
, void *pc
, void *unique
)
1425 gdb_byte
*regs
= r0_r30
;
1428 for (i
= 0; i
< 31; ++i
)
1429 if (regno
== i
|| regno
== -1)
1430 regcache_raw_collect (regcache
, i
, regs
+ i
* 8);
1432 if (regno
== ALPHA_PC_REGNUM
|| regno
== -1)
1433 regcache_raw_collect (regcache
, ALPHA_PC_REGNUM
, pc
);
1435 if (unique
&& (regno
== ALPHA_UNIQUE_REGNUM
|| regno
== -1))
1436 regcache_raw_collect (regcache
, ALPHA_UNIQUE_REGNUM
, unique
);
1440 alpha_supply_fp_regs (struct regcache
*regcache
, int regno
,
1441 const void *f0_f30
, const void *fpcr
)
1443 const gdb_byte
*regs
= f0_f30
;
1446 for (i
= ALPHA_FP0_REGNUM
; i
< ALPHA_FP0_REGNUM
+ 31; ++i
)
1447 if (regno
== i
|| regno
== -1)
1448 regcache_raw_supply (regcache
, i
,
1449 regs
+ (i
- ALPHA_FP0_REGNUM
) * 8);
1451 if (regno
== ALPHA_FPCR_REGNUM
|| regno
== -1)
1452 regcache_raw_supply (regcache
, ALPHA_FPCR_REGNUM
, fpcr
);
1456 alpha_fill_fp_regs (const struct regcache
*regcache
,
1457 int regno
, void *f0_f30
, void *fpcr
)
1459 gdb_byte
*regs
= f0_f30
;
1462 for (i
= ALPHA_FP0_REGNUM
; i
< ALPHA_FP0_REGNUM
+ 31; ++i
)
1463 if (regno
== i
|| regno
== -1)
1464 regcache_raw_collect (regcache
, i
,
1465 regs
+ (i
- ALPHA_FP0_REGNUM
) * 8);
1467 if (regno
== ALPHA_FPCR_REGNUM
|| regno
== -1)
1468 regcache_raw_collect (regcache
, ALPHA_FPCR_REGNUM
, fpcr
);
1473 /* Return nonzero if the G_floating register value in REG is equal to
1474 zero for FP control instructions. */
1477 fp_register_zero_p (LONGEST reg
)
1479 /* Check that all bits except the sign bit are zero. */
1480 const LONGEST zero_mask
= ((LONGEST
) 1 << 63) ^ -1;
1482 return ((reg
& zero_mask
) == 0);
1485 /* Return the value of the sign bit for the G_floating register
1486 value held in REG. */
1489 fp_register_sign_bit (LONGEST reg
)
1491 const LONGEST sign_mask
= (LONGEST
) 1 << 63;
1493 return ((reg
& sign_mask
) != 0);
1496 /* alpha_software_single_step() is called just before we want to resume
1497 the inferior, if we want to single-step it but there is no hardware
1498 or kernel single-step support (NetBSD on Alpha, for example). We find
1499 the target of the coming instruction and breakpoint it. */
1502 alpha_next_pc (struct frame_info
*frame
, CORE_ADDR pc
)
1504 struct gdbarch
*gdbarch
= get_frame_arch (frame
);
1511 insn
= alpha_read_insn (gdbarch
, pc
);
1513 /* Opcode is top 6 bits. */
1514 op
= (insn
>> 26) & 0x3f;
1518 /* Jump format: target PC is:
1520 return (get_frame_register_unsigned (frame
, (insn
>> 16) & 0x1f) & ~3);
1523 if ((op
& 0x30) == 0x30)
1525 /* Branch format: target PC is:
1526 (new PC) + (4 * sext(displacement)) */
1527 if (op
== 0x30 /* BR */
1528 || op
== 0x34) /* BSR */
1531 offset
= (insn
& 0x001fffff);
1532 if (offset
& 0x00100000)
1533 offset
|= 0xffe00000;
1534 offset
*= ALPHA_INSN_SIZE
;
1535 return (pc
+ ALPHA_INSN_SIZE
+ offset
);
1538 /* Need to determine if branch is taken; read RA. */
1539 regno
= (insn
>> 21) & 0x1f;
1542 case 0x31: /* FBEQ */
1543 case 0x36: /* FBGE */
1544 case 0x37: /* FBGT */
1545 case 0x33: /* FBLE */
1546 case 0x32: /* FBLT */
1547 case 0x35: /* FBNE */
1548 regno
+= gdbarch_fp0_regnum (gdbarch
);
1551 rav
= get_frame_register_signed (frame
, regno
);
1555 case 0x38: /* BLBC */
1559 case 0x3c: /* BLBS */
1563 case 0x39: /* BEQ */
1567 case 0x3d: /* BNE */
1571 case 0x3a: /* BLT */
1575 case 0x3b: /* BLE */
1579 case 0x3f: /* BGT */
1583 case 0x3e: /* BGE */
1588 /* Floating point branches. */
1590 case 0x31: /* FBEQ */
1591 if (fp_register_zero_p (rav
))
1594 case 0x36: /* FBGE */
1595 if (fp_register_sign_bit (rav
) == 0 || fp_register_zero_p (rav
))
1598 case 0x37: /* FBGT */
1599 if (fp_register_sign_bit (rav
) == 0 && ! fp_register_zero_p (rav
))
1602 case 0x33: /* FBLE */
1603 if (fp_register_sign_bit (rav
) == 1 || fp_register_zero_p (rav
))
1606 case 0x32: /* FBLT */
1607 if (fp_register_sign_bit (rav
) == 1 && ! fp_register_zero_p (rav
))
1610 case 0x35: /* FBNE */
1611 if (! fp_register_zero_p (rav
))
1617 /* Not a branch or branch not taken; target PC is:
1619 return (pc
+ ALPHA_INSN_SIZE
);
1623 alpha_software_single_step (struct frame_info
*frame
)
1625 struct gdbarch
*gdbarch
= get_frame_arch (frame
);
1626 struct address_space
*aspace
= get_frame_address_space (frame
);
1627 CORE_ADDR pc
, next_pc
;
1629 pc
= get_frame_pc (frame
);
1630 next_pc
= alpha_next_pc (frame
, pc
);
1632 insert_single_step_breakpoint (gdbarch
, aspace
, next_pc
);
1637 /* Initialize the current architecture based on INFO. If possible, re-use an
1638 architecture from ARCHES, which is a list of architectures already created
1639 during this debugging session.
1641 Called e.g. at program startup, when reading a core file, and when reading
1644 static struct gdbarch
*
1645 alpha_gdbarch_init (struct gdbarch_info info
, struct gdbarch_list
*arches
)
1647 struct gdbarch_tdep
*tdep
;
1648 struct gdbarch
*gdbarch
;
1650 /* Try to determine the ABI of the object we are loading. */
1651 if (info
.abfd
!= NULL
&& info
.osabi
== GDB_OSABI_UNKNOWN
)
1653 /* If it's an ECOFF file, assume it's OSF/1. */
1654 if (bfd_get_flavour (info
.abfd
) == bfd_target_ecoff_flavour
)
1655 info
.osabi
= GDB_OSABI_OSF1
;
1658 /* Find a candidate among extant architectures. */
1659 arches
= gdbarch_list_lookup_by_info (arches
, &info
);
1661 return arches
->gdbarch
;
1663 tdep
= xmalloc (sizeof (struct gdbarch_tdep
));
1664 gdbarch
= gdbarch_alloc (&info
, tdep
);
1666 /* Lowest text address. This is used by heuristic_proc_start()
1667 to decide when to stop looking. */
1668 tdep
->vm_min_address
= (CORE_ADDR
) 0x120000000LL
;
1670 tdep
->dynamic_sigtramp_offset
= NULL
;
1671 tdep
->sigcontext_addr
= NULL
;
1672 tdep
->sc_pc_offset
= 2 * 8;
1673 tdep
->sc_regs_offset
= 4 * 8;
1674 tdep
->sc_fpregs_offset
= tdep
->sc_regs_offset
+ 32 * 8 + 8;
1676 tdep
->jb_pc
= -1; /* longjmp support not enabled by default */
1678 tdep
->return_in_memory
= alpha_return_in_memory_always
;
1681 set_gdbarch_short_bit (gdbarch
, 16);
1682 set_gdbarch_int_bit (gdbarch
, 32);
1683 set_gdbarch_long_bit (gdbarch
, 64);
1684 set_gdbarch_long_long_bit (gdbarch
, 64);
1685 set_gdbarch_float_bit (gdbarch
, 32);
1686 set_gdbarch_double_bit (gdbarch
, 64);
1687 set_gdbarch_long_double_bit (gdbarch
, 64);
1688 set_gdbarch_ptr_bit (gdbarch
, 64);
1691 set_gdbarch_num_regs (gdbarch
, ALPHA_NUM_REGS
);
1692 set_gdbarch_sp_regnum (gdbarch
, ALPHA_SP_REGNUM
);
1693 set_gdbarch_pc_regnum (gdbarch
, ALPHA_PC_REGNUM
);
1694 set_gdbarch_fp0_regnum (gdbarch
, ALPHA_FP0_REGNUM
);
1696 set_gdbarch_register_name (gdbarch
, alpha_register_name
);
1697 set_gdbarch_register_type (gdbarch
, alpha_register_type
);
1699 set_gdbarch_cannot_fetch_register (gdbarch
, alpha_cannot_fetch_register
);
1700 set_gdbarch_cannot_store_register (gdbarch
, alpha_cannot_store_register
);
1702 set_gdbarch_convert_register_p (gdbarch
, alpha_convert_register_p
);
1703 set_gdbarch_register_to_value (gdbarch
, alpha_register_to_value
);
1704 set_gdbarch_value_to_register (gdbarch
, alpha_value_to_register
);
1706 set_gdbarch_register_reggroup_p (gdbarch
, alpha_register_reggroup_p
);
1708 /* Prologue heuristics. */
1709 set_gdbarch_skip_prologue (gdbarch
, alpha_skip_prologue
);
1712 set_gdbarch_print_insn (gdbarch
, print_insn_alpha
);
1716 set_gdbarch_return_value (gdbarch
, alpha_return_value
);
1718 /* Settings for calling functions in the inferior. */
1719 set_gdbarch_push_dummy_call (gdbarch
, alpha_push_dummy_call
);
1721 /* Methods for saving / extracting a dummy frame's ID. */
1722 set_gdbarch_dummy_id (gdbarch
, alpha_dummy_id
);
1724 /* Return the unwound PC value. */
1725 set_gdbarch_unwind_pc (gdbarch
, alpha_unwind_pc
);
1727 set_gdbarch_inner_than (gdbarch
, core_addr_lessthan
);
1728 set_gdbarch_skip_trampoline_code (gdbarch
, find_solib_trampoline_target
);
1730 set_gdbarch_breakpoint_from_pc (gdbarch
, alpha_breakpoint_from_pc
);
1731 set_gdbarch_decr_pc_after_break (gdbarch
, ALPHA_INSN_SIZE
);
1732 set_gdbarch_cannot_step_breakpoint (gdbarch
, 1);
1734 /* Hook in ABI-specific overrides, if they have been registered. */
1735 gdbarch_init_osabi (info
, gdbarch
);
1737 /* Now that we have tuned the configuration, set a few final things
1738 based on what the OS ABI has told us. */
1740 if (tdep
->jb_pc
>= 0)
1741 set_gdbarch_get_longjmp_target (gdbarch
, alpha_get_longjmp_target
);
1743 frame_unwind_append_unwinder (gdbarch
, &alpha_sigtramp_frame_unwind
);
1744 frame_unwind_append_unwinder (gdbarch
, &alpha_heuristic_frame_unwind
);
1746 frame_base_set_default (gdbarch
, &alpha_heuristic_frame_base
);
1752 alpha_dwarf2_init_abi (struct gdbarch_info info
, struct gdbarch
*gdbarch
)
1754 dwarf2_append_unwinders (gdbarch
);
1755 frame_base_append_sniffer (gdbarch
, dwarf2_frame_base_sniffer
);
1758 extern initialize_file_ftype _initialize_alpha_tdep
; /* -Wmissing-prototypes */
1761 _initialize_alpha_tdep (void)
1763 struct cmd_list_element
*c
;
1765 gdbarch_register (bfd_arch_alpha
, alpha_gdbarch_init
, NULL
);
1767 /* Let the user set the fence post for heuristic_proc_start. */
1769 /* We really would like to have both "0" and "unlimited" work, but
1770 command.c doesn't deal with that. So make it a var_zinteger
1771 because the user can always use "999999" or some such for unlimited. */
1772 /* We need to throw away the frame cache when we set this, since it
1773 might change our ability to get backtraces. */
1774 add_setshow_zinteger_cmd ("heuristic-fence-post", class_support
,
1775 &heuristic_fence_post
, _("\
1776 Set the distance searched for the start of a function."), _("\
1777 Show the distance searched for the start of a function."), _("\
1778 If you are debugging a stripped executable, GDB needs to search through the\n\
1779 program for the start of a function. This command sets the distance of the\n\
1780 search. The only need to set it is when debugging a stripped executable."),
1781 reinit_frame_cache_sfunc
,
1782 NULL
, /* FIXME: i18n: The distance searched for the start of a function is \"%d\". */
1783 &setlist
, &showlist
);