afe1d2fc47a224abce588fe80cbb47cae5a2f04e
[deliverable/binutils-gdb.git] / gdb / alpha-tdep.c
1 /* Target-dependent code for the ALPHA architecture, for GDB, the GNU Debugger.
2
3 Copyright (C) 1993, 1994, 1995, 1996, 1997, 1998, 1999, 2000, 2001,
4 2002, 2003, 2005 Free Software Foundation, Inc.
5
6 This file is part of GDB.
7
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 2 of the License, or
11 (at your option) any later version.
12
13 This program is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with this program; if not, write to the Free Software
20 Foundation, Inc., 51 Franklin Street, Fifth Floor,
21 Boston, MA 02110-1301, USA. */
22
23 #include "defs.h"
24 #include "doublest.h"
25 #include "frame.h"
26 #include "frame-unwind.h"
27 #include "frame-base.h"
28 #include "dwarf2-frame.h"
29 #include "inferior.h"
30 #include "symtab.h"
31 #include "value.h"
32 #include "gdbcmd.h"
33 #include "gdbcore.h"
34 #include "dis-asm.h"
35 #include "symfile.h"
36 #include "objfiles.h"
37 #include "gdb_string.h"
38 #include "linespec.h"
39 #include "regcache.h"
40 #include "reggroups.h"
41 #include "arch-utils.h"
42 #include "osabi.h"
43 #include "block.h"
44 #include "infcall.h"
45
46 #include "elf-bfd.h"
47
48 #include "alpha-tdep.h"
49
50 \f
51 /* Return the name of the REGNO register.
52
53 An empty name corresponds to a register number that used to
54 be used for a virtual register. That virtual register has
55 been removed, but the index is still reserved to maintain
56 compatibility with existing remote alpha targets. */
57
58 static const char *
59 alpha_register_name (int regno)
60 {
61 static const char * const register_names[] =
62 {
63 "v0", "t0", "t1", "t2", "t3", "t4", "t5", "t6",
64 "t7", "s0", "s1", "s2", "s3", "s4", "s5", "fp",
65 "a0", "a1", "a2", "a3", "a4", "a5", "t8", "t9",
66 "t10", "t11", "ra", "t12", "at", "gp", "sp", "zero",
67 "f0", "f1", "f2", "f3", "f4", "f5", "f6", "f7",
68 "f8", "f9", "f10", "f11", "f12", "f13", "f14", "f15",
69 "f16", "f17", "f18", "f19", "f20", "f21", "f22", "f23",
70 "f24", "f25", "f26", "f27", "f28", "f29", "f30", "fpcr",
71 "pc", "", "unique"
72 };
73
74 if (regno < 0)
75 return NULL;
76 if (regno >= (sizeof(register_names) / sizeof(*register_names)))
77 return NULL;
78 return register_names[regno];
79 }
80
81 static int
82 alpha_cannot_fetch_register (int regno)
83 {
84 return (regno == ALPHA_ZERO_REGNUM
85 || strlen (alpha_register_name (regno)) == 0);
86 }
87
88 static int
89 alpha_cannot_store_register (int regno)
90 {
91 return (regno == ALPHA_ZERO_REGNUM
92 || strlen (alpha_register_name (regno)) == 0);
93 }
94
95 static struct type *
96 alpha_register_type (struct gdbarch *gdbarch, int regno)
97 {
98 if (regno == ALPHA_SP_REGNUM || regno == ALPHA_GP_REGNUM)
99 return builtin_type_void_data_ptr;
100 if (regno == ALPHA_PC_REGNUM)
101 return builtin_type_void_func_ptr;
102
103 /* Don't need to worry about little vs big endian until
104 some jerk tries to port to alpha-unicosmk. */
105 if (regno >= ALPHA_FP0_REGNUM && regno < ALPHA_FP0_REGNUM + 31)
106 return builtin_type_ieee_double_little;
107
108 return builtin_type_int64;
109 }
110
111 /* Is REGNUM a member of REGGROUP? */
112
113 static int
114 alpha_register_reggroup_p (struct gdbarch *gdbarch, int regnum,
115 struct reggroup *group)
116 {
117 /* Filter out any registers eliminated, but whose regnum is
118 reserved for backward compatibility, e.g. the vfp. */
119 if (REGISTER_NAME (regnum) == NULL || *REGISTER_NAME (regnum) == '\0')
120 return 0;
121
122 if (group == all_reggroup)
123 return 1;
124
125 /* Zero should not be saved or restored. Technically it is a general
126 register (just as $f31 would be a float if we represented it), but
127 there's no point displaying it during "info regs", so leave it out
128 of all groups except for "all". */
129 if (regnum == ALPHA_ZERO_REGNUM)
130 return 0;
131
132 /* All other registers are saved and restored. */
133 if (group == save_reggroup || group == restore_reggroup)
134 return 1;
135
136 /* All other groups are non-overlapping. */
137
138 /* Since this is really a PALcode memory slot... */
139 if (regnum == ALPHA_UNIQUE_REGNUM)
140 return group == system_reggroup;
141
142 /* Force the FPCR to be considered part of the floating point state. */
143 if (regnum == ALPHA_FPCR_REGNUM)
144 return group == float_reggroup;
145
146 if (regnum >= ALPHA_FP0_REGNUM && regnum < ALPHA_FP0_REGNUM + 31)
147 return group == float_reggroup;
148 else
149 return group == general_reggroup;
150 }
151
152 /* The following represents exactly the conversion performed by
153 the LDS instruction. This applies to both single-precision
154 floating point and 32-bit integers. */
155
156 static void
157 alpha_lds (void *out, const void *in)
158 {
159 ULONGEST mem = extract_unsigned_integer (in, 4);
160 ULONGEST frac = (mem >> 0) & 0x7fffff;
161 ULONGEST sign = (mem >> 31) & 1;
162 ULONGEST exp_msb = (mem >> 30) & 1;
163 ULONGEST exp_low = (mem >> 23) & 0x7f;
164 ULONGEST exp, reg;
165
166 exp = (exp_msb << 10) | exp_low;
167 if (exp_msb)
168 {
169 if (exp_low == 0x7f)
170 exp = 0x7ff;
171 }
172 else
173 {
174 if (exp_low != 0x00)
175 exp |= 0x380;
176 }
177
178 reg = (sign << 63) | (exp << 52) | (frac << 29);
179 store_unsigned_integer (out, 8, reg);
180 }
181
182 /* Similarly, this represents exactly the conversion performed by
183 the STS instruction. */
184
185 static void
186 alpha_sts (void *out, const void *in)
187 {
188 ULONGEST reg, mem;
189
190 reg = extract_unsigned_integer (in, 8);
191 mem = ((reg >> 32) & 0xc0000000) | ((reg >> 29) & 0x3fffffff);
192 store_unsigned_integer (out, 4, mem);
193 }
194
195 /* The alpha needs a conversion between register and memory format if the
196 register is a floating point register and memory format is float, as the
197 register format must be double or memory format is an integer with 4
198 bytes or less, as the representation of integers in floating point
199 registers is different. */
200
201 static int
202 alpha_convert_register_p (int regno, struct type *type)
203 {
204 return (regno >= ALPHA_FP0_REGNUM && regno < ALPHA_FP0_REGNUM + 31);
205 }
206
207 static void
208 alpha_register_to_value (struct frame_info *frame, int regnum,
209 struct type *valtype, gdb_byte *out)
210 {
211 char in[MAX_REGISTER_SIZE];
212 frame_register_read (frame, regnum, in);
213 switch (TYPE_LENGTH (valtype))
214 {
215 case 4:
216 alpha_sts (out, in);
217 break;
218 case 8:
219 memcpy (out, in, 8);
220 break;
221 default:
222 error (_("Cannot retrieve value from floating point register"));
223 }
224 }
225
226 static void
227 alpha_value_to_register (struct frame_info *frame, int regnum,
228 struct type *valtype, const gdb_byte *in)
229 {
230 char out[MAX_REGISTER_SIZE];
231 switch (TYPE_LENGTH (valtype))
232 {
233 case 4:
234 alpha_lds (out, in);
235 break;
236 case 8:
237 memcpy (out, in, 8);
238 break;
239 default:
240 error (_("Cannot store value in floating point register"));
241 }
242 put_frame_register (frame, regnum, out);
243 }
244
245 \f
246 /* The alpha passes the first six arguments in the registers, the rest on
247 the stack. The register arguments are stored in ARG_REG_BUFFER, and
248 then moved into the register file; this simplifies the passing of a
249 large struct which extends from the registers to the stack, plus avoids
250 three ptrace invocations per word.
251
252 We don't bother tracking which register values should go in integer
253 regs or fp regs; we load the same values into both.
254
255 If the called function is returning a structure, the address of the
256 structure to be returned is passed as a hidden first argument. */
257
258 static CORE_ADDR
259 alpha_push_dummy_call (struct gdbarch *gdbarch, struct value *function,
260 struct regcache *regcache, CORE_ADDR bp_addr,
261 int nargs, struct value **args, CORE_ADDR sp,
262 int struct_return, CORE_ADDR struct_addr)
263 {
264 int i;
265 int accumulate_size = struct_return ? 8 : 0;
266 struct alpha_arg
267 {
268 char *contents;
269 int len;
270 int offset;
271 };
272 struct alpha_arg *alpha_args
273 = (struct alpha_arg *) alloca (nargs * sizeof (struct alpha_arg));
274 struct alpha_arg *m_arg;
275 char arg_reg_buffer[ALPHA_REGISTER_SIZE * ALPHA_NUM_ARG_REGS];
276 int required_arg_regs;
277 CORE_ADDR func_addr = find_function_addr (function, NULL);
278
279 /* The ABI places the address of the called function in T12. */
280 regcache_cooked_write_signed (regcache, ALPHA_T12_REGNUM, func_addr);
281
282 /* Set the return address register to point to the entry point
283 of the program, where a breakpoint lies in wait. */
284 regcache_cooked_write_signed (regcache, ALPHA_RA_REGNUM, bp_addr);
285
286 /* Lay out the arguments in memory. */
287 for (i = 0, m_arg = alpha_args; i < nargs; i++, m_arg++)
288 {
289 struct value *arg = args[i];
290 struct type *arg_type = check_typedef (value_type (arg));
291
292 /* Cast argument to long if necessary as the compiler does it too. */
293 switch (TYPE_CODE (arg_type))
294 {
295 case TYPE_CODE_INT:
296 case TYPE_CODE_BOOL:
297 case TYPE_CODE_CHAR:
298 case TYPE_CODE_RANGE:
299 case TYPE_CODE_ENUM:
300 if (TYPE_LENGTH (arg_type) == 4)
301 {
302 /* 32-bit values must be sign-extended to 64 bits
303 even if the base data type is unsigned. */
304 arg_type = builtin_type_int32;
305 arg = value_cast (arg_type, arg);
306 }
307 if (TYPE_LENGTH (arg_type) < ALPHA_REGISTER_SIZE)
308 {
309 arg_type = builtin_type_int64;
310 arg = value_cast (arg_type, arg);
311 }
312 break;
313
314 case TYPE_CODE_FLT:
315 /* "float" arguments loaded in registers must be passed in
316 register format, aka "double". */
317 if (accumulate_size < sizeof (arg_reg_buffer)
318 && TYPE_LENGTH (arg_type) == 4)
319 {
320 arg_type = builtin_type_ieee_double_little;
321 arg = value_cast (arg_type, arg);
322 }
323 /* Tru64 5.1 has a 128-bit long double, and passes this by
324 invisible reference. No one else uses this data type. */
325 else if (TYPE_LENGTH (arg_type) == 16)
326 {
327 /* Allocate aligned storage. */
328 sp = (sp & -16) - 16;
329
330 /* Write the real data into the stack. */
331 write_memory (sp, value_contents (arg), 16);
332
333 /* Construct the indirection. */
334 arg_type = lookup_pointer_type (arg_type);
335 arg = value_from_pointer (arg_type, sp);
336 }
337 break;
338
339 case TYPE_CODE_COMPLEX:
340 /* ??? The ABI says that complex values are passed as two
341 separate scalar values. This distinction only matters
342 for complex float. However, GCC does not implement this. */
343
344 /* Tru64 5.1 has a 128-bit long double, and passes this by
345 invisible reference. */
346 if (TYPE_LENGTH (arg_type) == 32)
347 {
348 /* Allocate aligned storage. */
349 sp = (sp & -16) - 16;
350
351 /* Write the real data into the stack. */
352 write_memory (sp, value_contents (arg), 32);
353
354 /* Construct the indirection. */
355 arg_type = lookup_pointer_type (arg_type);
356 arg = value_from_pointer (arg_type, sp);
357 }
358 break;
359
360 default:
361 break;
362 }
363 m_arg->len = TYPE_LENGTH (arg_type);
364 m_arg->offset = accumulate_size;
365 accumulate_size = (accumulate_size + m_arg->len + 7) & ~7;
366 m_arg->contents = value_contents_writeable (arg);
367 }
368
369 /* Determine required argument register loads, loading an argument register
370 is expensive as it uses three ptrace calls. */
371 required_arg_regs = accumulate_size / 8;
372 if (required_arg_regs > ALPHA_NUM_ARG_REGS)
373 required_arg_regs = ALPHA_NUM_ARG_REGS;
374
375 /* Make room for the arguments on the stack. */
376 if (accumulate_size < sizeof(arg_reg_buffer))
377 accumulate_size = 0;
378 else
379 accumulate_size -= sizeof(arg_reg_buffer);
380 sp -= accumulate_size;
381
382 /* Keep sp aligned to a multiple of 16 as the ABI requires. */
383 sp &= ~15;
384
385 /* `Push' arguments on the stack. */
386 for (i = nargs; m_arg--, --i >= 0;)
387 {
388 char *contents = m_arg->contents;
389 int offset = m_arg->offset;
390 int len = m_arg->len;
391
392 /* Copy the bytes destined for registers into arg_reg_buffer. */
393 if (offset < sizeof(arg_reg_buffer))
394 {
395 if (offset + len <= sizeof(arg_reg_buffer))
396 {
397 memcpy (arg_reg_buffer + offset, contents, len);
398 continue;
399 }
400 else
401 {
402 int tlen = sizeof(arg_reg_buffer) - offset;
403 memcpy (arg_reg_buffer + offset, contents, tlen);
404 offset += tlen;
405 contents += tlen;
406 len -= tlen;
407 }
408 }
409
410 /* Everything else goes to the stack. */
411 write_memory (sp + offset - sizeof(arg_reg_buffer), contents, len);
412 }
413 if (struct_return)
414 store_unsigned_integer (arg_reg_buffer, ALPHA_REGISTER_SIZE, struct_addr);
415
416 /* Load the argument registers. */
417 for (i = 0; i < required_arg_regs; i++)
418 {
419 regcache_cooked_write (regcache, ALPHA_A0_REGNUM + i,
420 arg_reg_buffer + i*ALPHA_REGISTER_SIZE);
421 regcache_cooked_write (regcache, ALPHA_FPA0_REGNUM + i,
422 arg_reg_buffer + i*ALPHA_REGISTER_SIZE);
423 }
424
425 /* Finally, update the stack pointer. */
426 regcache_cooked_write_signed (regcache, ALPHA_SP_REGNUM, sp);
427
428 return sp;
429 }
430
431 /* Extract from REGCACHE the value about to be returned from a function
432 and copy it into VALBUF. */
433
434 static void
435 alpha_extract_return_value (struct type *valtype, struct regcache *regcache,
436 gdb_byte *valbuf)
437 {
438 int length = TYPE_LENGTH (valtype);
439 char raw_buffer[ALPHA_REGISTER_SIZE];
440 ULONGEST l;
441
442 switch (TYPE_CODE (valtype))
443 {
444 case TYPE_CODE_FLT:
445 switch (length)
446 {
447 case 4:
448 regcache_cooked_read (regcache, ALPHA_FP0_REGNUM, raw_buffer);
449 alpha_sts (valbuf, raw_buffer);
450 break;
451
452 case 8:
453 regcache_cooked_read (regcache, ALPHA_FP0_REGNUM, valbuf);
454 break;
455
456 case 16:
457 regcache_cooked_read_unsigned (regcache, ALPHA_V0_REGNUM, &l);
458 read_memory (l, valbuf, 16);
459 break;
460
461 default:
462 internal_error (__FILE__, __LINE__, _("unknown floating point width"));
463 }
464 break;
465
466 case TYPE_CODE_COMPLEX:
467 switch (length)
468 {
469 case 8:
470 /* ??? This isn't correct wrt the ABI, but it's what GCC does. */
471 regcache_cooked_read (regcache, ALPHA_FP0_REGNUM, valbuf);
472 break;
473
474 case 16:
475 regcache_cooked_read (regcache, ALPHA_FP0_REGNUM, valbuf);
476 regcache_cooked_read (regcache, ALPHA_FP0_REGNUM+1,
477 (char *)valbuf + 8);
478 break;
479
480 case 32:
481 regcache_cooked_read_signed (regcache, ALPHA_V0_REGNUM, &l);
482 read_memory (l, valbuf, 32);
483 break;
484
485 default:
486 internal_error (__FILE__, __LINE__, _("unknown floating point width"));
487 }
488 break;
489
490 default:
491 /* Assume everything else degenerates to an integer. */
492 regcache_cooked_read_unsigned (regcache, ALPHA_V0_REGNUM, &l);
493 store_unsigned_integer (valbuf, length, l);
494 break;
495 }
496 }
497
498 /* Insert the given value into REGCACHE as if it was being
499 returned by a function. */
500
501 static void
502 alpha_store_return_value (struct type *valtype, struct regcache *regcache,
503 const gdb_byte *valbuf)
504 {
505 int length = TYPE_LENGTH (valtype);
506 char raw_buffer[ALPHA_REGISTER_SIZE];
507 ULONGEST l;
508
509 switch (TYPE_CODE (valtype))
510 {
511 case TYPE_CODE_FLT:
512 switch (length)
513 {
514 case 4:
515 alpha_lds (raw_buffer, valbuf);
516 regcache_cooked_write (regcache, ALPHA_FP0_REGNUM, raw_buffer);
517 break;
518
519 case 8:
520 regcache_cooked_write (regcache, ALPHA_FP0_REGNUM, valbuf);
521 break;
522
523 case 16:
524 /* FIXME: 128-bit long doubles are returned like structures:
525 by writing into indirect storage provided by the caller
526 as the first argument. */
527 error (_("Cannot set a 128-bit long double return value."));
528
529 default:
530 internal_error (__FILE__, __LINE__, _("unknown floating point width"));
531 }
532 break;
533
534 case TYPE_CODE_COMPLEX:
535 switch (length)
536 {
537 case 8:
538 /* ??? This isn't correct wrt the ABI, but it's what GCC does. */
539 regcache_cooked_write (regcache, ALPHA_FP0_REGNUM, valbuf);
540 break;
541
542 case 16:
543 regcache_cooked_write (regcache, ALPHA_FP0_REGNUM, valbuf);
544 regcache_cooked_write (regcache, ALPHA_FP0_REGNUM+1,
545 (const char *)valbuf + 8);
546 break;
547
548 case 32:
549 /* FIXME: 128-bit long doubles are returned like structures:
550 by writing into indirect storage provided by the caller
551 as the first argument. */
552 error (_("Cannot set a 128-bit long double return value."));
553
554 default:
555 internal_error (__FILE__, __LINE__, _("unknown floating point width"));
556 }
557 break;
558
559 default:
560 /* Assume everything else degenerates to an integer. */
561 /* 32-bit values must be sign-extended to 64 bits
562 even if the base data type is unsigned. */
563 if (length == 4)
564 valtype = builtin_type_int32;
565 l = unpack_long (valtype, valbuf);
566 regcache_cooked_write_unsigned (regcache, ALPHA_V0_REGNUM, l);
567 break;
568 }
569 }
570
571 static enum return_value_convention
572 alpha_return_value (struct gdbarch *gdbarch, struct type *type,
573 struct regcache *regcache, gdb_byte *readbuf,
574 const gdb_byte *writebuf)
575 {
576 enum type_code code = TYPE_CODE (type);
577
578 if ((code == TYPE_CODE_STRUCT
579 || code == TYPE_CODE_UNION
580 || code == TYPE_CODE_ARRAY)
581 && gdbarch_tdep (gdbarch)->return_in_memory (type))
582 {
583 if (readbuf)
584 {
585 ULONGEST addr;
586 regcache_raw_read_unsigned (regcache, ALPHA_V0_REGNUM, &addr);
587 read_memory (addr, readbuf, TYPE_LENGTH (type));
588 }
589
590 return RETURN_VALUE_ABI_RETURNS_ADDRESS;
591 }
592
593 if (readbuf)
594 alpha_extract_return_value (type, regcache, readbuf);
595 if (writebuf)
596 alpha_store_return_value (type, regcache, writebuf);
597
598 return RETURN_VALUE_REGISTER_CONVENTION;
599 }
600
601 static int
602 alpha_return_in_memory_always (struct type *type)
603 {
604 return 1;
605 }
606 \f
607 static const unsigned char *
608 alpha_breakpoint_from_pc (CORE_ADDR *pcptr, int *lenptr)
609 {
610 static const unsigned char alpha_breakpoint[] =
611 { 0x80, 0, 0, 0 }; /* call_pal bpt */
612
613 *lenptr = sizeof(alpha_breakpoint);
614 return (alpha_breakpoint);
615 }
616
617 \f
618 /* This returns the PC of the first insn after the prologue.
619 If we can't find the prologue, then return 0. */
620
621 CORE_ADDR
622 alpha_after_prologue (CORE_ADDR pc)
623 {
624 struct symtab_and_line sal;
625 CORE_ADDR func_addr, func_end;
626
627 if (!find_pc_partial_function (pc, NULL, &func_addr, &func_end))
628 return 0;
629
630 sal = find_pc_line (func_addr, 0);
631 if (sal.end < func_end)
632 return sal.end;
633
634 /* The line after the prologue is after the end of the function. In this
635 case, tell the caller to find the prologue the hard way. */
636 return 0;
637 }
638
639 /* Read an instruction from memory at PC, looking through breakpoints. */
640
641 unsigned int
642 alpha_read_insn (CORE_ADDR pc)
643 {
644 char buf[4];
645 int status;
646
647 status = deprecated_read_memory_nobpt (pc, buf, 4);
648 if (status)
649 memory_error (status, pc);
650 return extract_unsigned_integer (buf, 4);
651 }
652
653 /* To skip prologues, I use this predicate. Returns either PC itself
654 if the code at PC does not look like a function prologue; otherwise
655 returns an address that (if we're lucky) follows the prologue. If
656 LENIENT, then we must skip everything which is involved in setting
657 up the frame (it's OK to skip more, just so long as we don't skip
658 anything which might clobber the registers which are being saved. */
659
660 static CORE_ADDR
661 alpha_skip_prologue (CORE_ADDR pc)
662 {
663 unsigned long inst;
664 int offset;
665 CORE_ADDR post_prologue_pc;
666 char buf[4];
667
668 /* Silently return the unaltered pc upon memory errors.
669 This could happen on OSF/1 if decode_line_1 tries to skip the
670 prologue for quickstarted shared library functions when the
671 shared library is not yet mapped in.
672 Reading target memory is slow over serial lines, so we perform
673 this check only if the target has shared libraries (which all
674 Alpha targets do). */
675 if (target_read_memory (pc, buf, 4))
676 return pc;
677
678 /* See if we can determine the end of the prologue via the symbol table.
679 If so, then return either PC, or the PC after the prologue, whichever
680 is greater. */
681
682 post_prologue_pc = alpha_after_prologue (pc);
683 if (post_prologue_pc != 0)
684 return max (pc, post_prologue_pc);
685
686 /* Can't determine prologue from the symbol table, need to examine
687 instructions. */
688
689 /* Skip the typical prologue instructions. These are the stack adjustment
690 instruction and the instructions that save registers on the stack
691 or in the gcc frame. */
692 for (offset = 0; offset < 100; offset += 4)
693 {
694 inst = alpha_read_insn (pc + offset);
695
696 if ((inst & 0xffff0000) == 0x27bb0000) /* ldah $gp,n($t12) */
697 continue;
698 if ((inst & 0xffff0000) == 0x23bd0000) /* lda $gp,n($gp) */
699 continue;
700 if ((inst & 0xffff0000) == 0x23de0000) /* lda $sp,n($sp) */
701 continue;
702 if ((inst & 0xffe01fff) == 0x43c0153e) /* subq $sp,n,$sp */
703 continue;
704
705 if (((inst & 0xfc1f0000) == 0xb41e0000 /* stq reg,n($sp) */
706 || (inst & 0xfc1f0000) == 0x9c1e0000) /* stt reg,n($sp) */
707 && (inst & 0x03e00000) != 0x03e00000) /* reg != $zero */
708 continue;
709
710 if (inst == 0x47de040f) /* bis sp,sp,fp */
711 continue;
712 if (inst == 0x47fe040f) /* bis zero,sp,fp */
713 continue;
714
715 break;
716 }
717 return pc + offset;
718 }
719
720 \f
721 /* Figure out where the longjmp will land.
722 We expect the first arg to be a pointer to the jmp_buf structure from
723 which we extract the PC (JB_PC) that we will land at. The PC is copied
724 into the "pc". This routine returns true on success. */
725
726 static int
727 alpha_get_longjmp_target (CORE_ADDR *pc)
728 {
729 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
730 CORE_ADDR jb_addr;
731 char raw_buffer[ALPHA_REGISTER_SIZE];
732
733 jb_addr = read_register (ALPHA_A0_REGNUM);
734
735 if (target_read_memory (jb_addr + (tdep->jb_pc * tdep->jb_elt_size),
736 raw_buffer, tdep->jb_elt_size))
737 return 0;
738
739 *pc = extract_unsigned_integer (raw_buffer, tdep->jb_elt_size);
740 return 1;
741 }
742
743 \f
744 /* Frame unwinder for signal trampolines. We use alpha tdep bits that
745 describe the location and shape of the sigcontext structure. After
746 that, all registers are in memory, so it's easy. */
747 /* ??? Shouldn't we be able to do this generically, rather than with
748 OSABI data specific to Alpha? */
749
750 struct alpha_sigtramp_unwind_cache
751 {
752 CORE_ADDR sigcontext_addr;
753 };
754
755 static struct alpha_sigtramp_unwind_cache *
756 alpha_sigtramp_frame_unwind_cache (struct frame_info *next_frame,
757 void **this_prologue_cache)
758 {
759 struct alpha_sigtramp_unwind_cache *info;
760 struct gdbarch_tdep *tdep;
761
762 if (*this_prologue_cache)
763 return *this_prologue_cache;
764
765 info = FRAME_OBSTACK_ZALLOC (struct alpha_sigtramp_unwind_cache);
766 *this_prologue_cache = info;
767
768 tdep = gdbarch_tdep (current_gdbarch);
769 info->sigcontext_addr = tdep->sigcontext_addr (next_frame);
770
771 return info;
772 }
773
774 /* Return the address of REGNUM in a sigtramp frame. Since this is
775 all arithmetic, it doesn't seem worthwhile to cache it. */
776
777 static CORE_ADDR
778 alpha_sigtramp_register_address (CORE_ADDR sigcontext_addr, int regnum)
779 {
780 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
781
782 if (regnum >= 0 && regnum < 32)
783 return sigcontext_addr + tdep->sc_regs_offset + regnum * 8;
784 else if (regnum >= ALPHA_FP0_REGNUM && regnum < ALPHA_FP0_REGNUM + 32)
785 return sigcontext_addr + tdep->sc_fpregs_offset + regnum * 8;
786 else if (regnum == ALPHA_PC_REGNUM)
787 return sigcontext_addr + tdep->sc_pc_offset;
788
789 return 0;
790 }
791
792 /* Given a GDB frame, determine the address of the calling function's
793 frame. This will be used to create a new GDB frame struct. */
794
795 static void
796 alpha_sigtramp_frame_this_id (struct frame_info *next_frame,
797 void **this_prologue_cache,
798 struct frame_id *this_id)
799 {
800 struct alpha_sigtramp_unwind_cache *info
801 = alpha_sigtramp_frame_unwind_cache (next_frame, this_prologue_cache);
802 struct gdbarch_tdep *tdep;
803 CORE_ADDR stack_addr, code_addr;
804
805 /* If the OSABI couldn't locate the sigcontext, give up. */
806 if (info->sigcontext_addr == 0)
807 return;
808
809 /* If we have dynamic signal trampolines, find their start.
810 If we do not, then we must assume there is a symbol record
811 that can provide the start address. */
812 tdep = gdbarch_tdep (current_gdbarch);
813 if (tdep->dynamic_sigtramp_offset)
814 {
815 int offset;
816 code_addr = frame_pc_unwind (next_frame);
817 offset = tdep->dynamic_sigtramp_offset (code_addr);
818 if (offset >= 0)
819 code_addr -= offset;
820 else
821 code_addr = 0;
822 }
823 else
824 code_addr = frame_func_unwind (next_frame);
825
826 /* The stack address is trivially read from the sigcontext. */
827 stack_addr = alpha_sigtramp_register_address (info->sigcontext_addr,
828 ALPHA_SP_REGNUM);
829 stack_addr = get_frame_memory_unsigned (next_frame, stack_addr,
830 ALPHA_REGISTER_SIZE);
831
832 *this_id = frame_id_build (stack_addr, code_addr);
833 }
834
835 /* Retrieve the value of REGNUM in FRAME. Don't give up! */
836
837 static void
838 alpha_sigtramp_frame_prev_register (struct frame_info *next_frame,
839 void **this_prologue_cache,
840 int regnum, int *optimizedp,
841 enum lval_type *lvalp, CORE_ADDR *addrp,
842 int *realnump, gdb_byte *bufferp)
843 {
844 struct alpha_sigtramp_unwind_cache *info
845 = alpha_sigtramp_frame_unwind_cache (next_frame, this_prologue_cache);
846 CORE_ADDR addr;
847
848 if (info->sigcontext_addr != 0)
849 {
850 /* All integer and fp registers are stored in memory. */
851 addr = alpha_sigtramp_register_address (info->sigcontext_addr, regnum);
852 if (addr != 0)
853 {
854 *optimizedp = 0;
855 *lvalp = lval_memory;
856 *addrp = addr;
857 *realnump = -1;
858 if (bufferp != NULL)
859 get_frame_memory (next_frame, addr, bufferp, ALPHA_REGISTER_SIZE);
860 return;
861 }
862 }
863
864 /* This extra register may actually be in the sigcontext, but our
865 current description of it in alpha_sigtramp_frame_unwind_cache
866 doesn't include it. Too bad. Fall back on whatever's in the
867 outer frame. */
868 frame_register (next_frame, regnum, optimizedp, lvalp, addrp,
869 realnump, bufferp);
870 }
871
872 static const struct frame_unwind alpha_sigtramp_frame_unwind = {
873 SIGTRAMP_FRAME,
874 alpha_sigtramp_frame_this_id,
875 alpha_sigtramp_frame_prev_register
876 };
877
878 static const struct frame_unwind *
879 alpha_sigtramp_frame_sniffer (struct frame_info *next_frame)
880 {
881 CORE_ADDR pc = frame_pc_unwind (next_frame);
882 char *name;
883
884 /* NOTE: cagney/2004-04-30: Do not copy/clone this code. Instead
885 look at tramp-frame.h and other simplier per-architecture
886 sigtramp unwinders. */
887
888 /* We shouldn't even bother to try if the OSABI didn't register a
889 sigcontext_addr handler or pc_in_sigtramp hander. */
890 if (gdbarch_tdep (current_gdbarch)->sigcontext_addr == NULL)
891 return NULL;
892 if (gdbarch_tdep (current_gdbarch)->pc_in_sigtramp == NULL)
893 return NULL;
894
895 /* Otherwise we should be in a signal frame. */
896 find_pc_partial_function (pc, &name, NULL, NULL);
897 if (gdbarch_tdep (current_gdbarch)->pc_in_sigtramp (pc, name))
898 return &alpha_sigtramp_frame_unwind;
899
900 return NULL;
901 }
902 \f
903 /* Fallback alpha frame unwinder. Uses instruction scanning and knows
904 something about the traditional layout of alpha stack frames. */
905
906 struct alpha_heuristic_unwind_cache
907 {
908 CORE_ADDR *saved_regs;
909 CORE_ADDR vfp;
910 CORE_ADDR start_pc;
911 int return_reg;
912 };
913
914 /* Heuristic_proc_start may hunt through the text section for a long
915 time across a 2400 baud serial line. Allows the user to limit this
916 search. */
917 static unsigned int heuristic_fence_post = 0;
918
919 /* Attempt to locate the start of the function containing PC. We assume that
920 the previous function ends with an about_to_return insn. Not foolproof by
921 any means, since gcc is happy to put the epilogue in the middle of a
922 function. But we're guessing anyway... */
923
924 static CORE_ADDR
925 alpha_heuristic_proc_start (CORE_ADDR pc)
926 {
927 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
928 CORE_ADDR last_non_nop = pc;
929 CORE_ADDR fence = pc - heuristic_fence_post;
930 CORE_ADDR orig_pc = pc;
931 CORE_ADDR func;
932
933 if (pc == 0)
934 return 0;
935
936 /* First see if we can find the start of the function from minimal
937 symbol information. This can succeed with a binary that doesn't
938 have debug info, but hasn't been stripped. */
939 func = get_pc_function_start (pc);
940 if (func)
941 return func;
942
943 if (heuristic_fence_post == UINT_MAX
944 || fence < tdep->vm_min_address)
945 fence = tdep->vm_min_address;
946
947 /* Search back for previous return; also stop at a 0, which might be
948 seen for instance before the start of a code section. Don't include
949 nops, since this usually indicates padding between functions. */
950 for (pc -= 4; pc >= fence; pc -= 4)
951 {
952 unsigned int insn = alpha_read_insn (pc);
953 switch (insn)
954 {
955 case 0: /* invalid insn */
956 case 0x6bfa8001: /* ret $31,($26),1 */
957 return last_non_nop;
958
959 case 0x2ffe0000: /* unop: ldq_u $31,0($30) */
960 case 0x47ff041f: /* nop: bis $31,$31,$31 */
961 break;
962
963 default:
964 last_non_nop = pc;
965 break;
966 }
967 }
968
969 /* It's not clear to me why we reach this point when stopping quietly,
970 but with this test, at least we don't print out warnings for every
971 child forked (eg, on decstation). 22apr93 rich@cygnus.com. */
972 if (stop_soon == NO_STOP_QUIETLY)
973 {
974 static int blurb_printed = 0;
975
976 if (fence == tdep->vm_min_address)
977 warning (_("Hit beginning of text section without finding \
978 enclosing function for address 0x%s"), paddr_nz (orig_pc));
979 else
980 warning (_("Hit heuristic-fence-post without finding \
981 enclosing function for address 0x%s"), paddr_nz (orig_pc));
982
983 if (!blurb_printed)
984 {
985 printf_filtered (_("\
986 This warning occurs if you are debugging a function without any symbols\n\
987 (for example, in a stripped executable). In that case, you may wish to\n\
988 increase the size of the search with the `set heuristic-fence-post' command.\n\
989 \n\
990 Otherwise, you told GDB there was a function where there isn't one, or\n\
991 (more likely) you have encountered a bug in GDB.\n"));
992 blurb_printed = 1;
993 }
994 }
995
996 return 0;
997 }
998
999 static struct alpha_heuristic_unwind_cache *
1000 alpha_heuristic_frame_unwind_cache (struct frame_info *next_frame,
1001 void **this_prologue_cache,
1002 CORE_ADDR start_pc)
1003 {
1004 struct alpha_heuristic_unwind_cache *info;
1005 ULONGEST val;
1006 CORE_ADDR limit_pc, cur_pc;
1007 int frame_reg, frame_size, return_reg, reg;
1008
1009 if (*this_prologue_cache)
1010 return *this_prologue_cache;
1011
1012 info = FRAME_OBSTACK_ZALLOC (struct alpha_heuristic_unwind_cache);
1013 *this_prologue_cache = info;
1014 info->saved_regs = frame_obstack_zalloc (SIZEOF_FRAME_SAVED_REGS);
1015
1016 limit_pc = frame_pc_unwind (next_frame);
1017 if (start_pc == 0)
1018 start_pc = alpha_heuristic_proc_start (limit_pc);
1019 info->start_pc = start_pc;
1020
1021 frame_reg = ALPHA_SP_REGNUM;
1022 frame_size = 0;
1023 return_reg = -1;
1024
1025 /* If we've identified a likely place to start, do code scanning. */
1026 if (start_pc != 0)
1027 {
1028 /* Limit the forward search to 50 instructions. */
1029 if (start_pc + 200 < limit_pc)
1030 limit_pc = start_pc + 200;
1031
1032 for (cur_pc = start_pc; cur_pc < limit_pc; cur_pc += 4)
1033 {
1034 unsigned int word = alpha_read_insn (cur_pc);
1035
1036 if ((word & 0xffff0000) == 0x23de0000) /* lda $sp,n($sp) */
1037 {
1038 if (word & 0x8000)
1039 {
1040 /* Consider only the first stack allocation instruction
1041 to contain the static size of the frame. */
1042 if (frame_size == 0)
1043 frame_size = (-word) & 0xffff;
1044 }
1045 else
1046 {
1047 /* Exit loop if a positive stack adjustment is found, which
1048 usually means that the stack cleanup code in the function
1049 epilogue is reached. */
1050 break;
1051 }
1052 }
1053 else if ((word & 0xfc1f0000) == 0xb41e0000) /* stq reg,n($sp) */
1054 {
1055 reg = (word & 0x03e00000) >> 21;
1056
1057 /* Ignore this instruction if we have already encountered
1058 an instruction saving the same register earlier in the
1059 function code. The current instruction does not tell
1060 us where the original value upon function entry is saved.
1061 All it says is that the function we are scanning reused
1062 that register for some computation of its own, and is now
1063 saving its result. */
1064 if (info->saved_regs[reg])
1065 continue;
1066
1067 if (reg == 31)
1068 continue;
1069
1070 /* Do not compute the address where the register was saved yet,
1071 because we don't know yet if the offset will need to be
1072 relative to $sp or $fp (we can not compute the address
1073 relative to $sp if $sp is updated during the execution of
1074 the current subroutine, for instance when doing some alloca).
1075 So just store the offset for the moment, and compute the
1076 address later when we know whether this frame has a frame
1077 pointer or not. */
1078 /* Hack: temporarily add one, so that the offset is non-zero
1079 and we can tell which registers have save offsets below. */
1080 info->saved_regs[reg] = (word & 0xffff) + 1;
1081
1082 /* Starting with OSF/1-3.2C, the system libraries are shipped
1083 without local symbols, but they still contain procedure
1084 descriptors without a symbol reference. GDB is currently
1085 unable to find these procedure descriptors and uses
1086 heuristic_proc_desc instead.
1087 As some low level compiler support routines (__div*, __add*)
1088 use a non-standard return address register, we have to
1089 add some heuristics to determine the return address register,
1090 or stepping over these routines will fail.
1091 Usually the return address register is the first register
1092 saved on the stack, but assembler optimization might
1093 rearrange the register saves.
1094 So we recognize only a few registers (t7, t9, ra) within
1095 the procedure prologue as valid return address registers.
1096 If we encounter a return instruction, we extract the
1097 the return address register from it.
1098
1099 FIXME: Rewriting GDB to access the procedure descriptors,
1100 e.g. via the minimal symbol table, might obviate this hack. */
1101 if (return_reg == -1
1102 && cur_pc < (start_pc + 80)
1103 && (reg == ALPHA_T7_REGNUM
1104 || reg == ALPHA_T9_REGNUM
1105 || reg == ALPHA_RA_REGNUM))
1106 return_reg = reg;
1107 }
1108 else if ((word & 0xffe0ffff) == 0x6be08001) /* ret zero,reg,1 */
1109 return_reg = (word >> 16) & 0x1f;
1110 else if (word == 0x47de040f) /* bis sp,sp,fp */
1111 frame_reg = ALPHA_GCC_FP_REGNUM;
1112 else if (word == 0x47fe040f) /* bis zero,sp,fp */
1113 frame_reg = ALPHA_GCC_FP_REGNUM;
1114 }
1115
1116 /* If we haven't found a valid return address register yet, keep
1117 searching in the procedure prologue. */
1118 if (return_reg == -1)
1119 {
1120 while (cur_pc < (limit_pc + 80) && cur_pc < (start_pc + 80))
1121 {
1122 unsigned int word = alpha_read_insn (cur_pc);
1123
1124 if ((word & 0xfc1f0000) == 0xb41e0000) /* stq reg,n($sp) */
1125 {
1126 reg = (word & 0x03e00000) >> 21;
1127 if (reg == ALPHA_T7_REGNUM
1128 || reg == ALPHA_T9_REGNUM
1129 || reg == ALPHA_RA_REGNUM)
1130 {
1131 return_reg = reg;
1132 break;
1133 }
1134 }
1135 else if ((word & 0xffe0ffff) == 0x6be08001) /* ret zero,reg,1 */
1136 {
1137 return_reg = (word >> 16) & 0x1f;
1138 break;
1139 }
1140
1141 cur_pc += 4;
1142 }
1143 }
1144 }
1145
1146 /* Failing that, do default to the customary RA. */
1147 if (return_reg == -1)
1148 return_reg = ALPHA_RA_REGNUM;
1149 info->return_reg = return_reg;
1150
1151 frame_unwind_unsigned_register (next_frame, frame_reg, &val);
1152 info->vfp = val + frame_size;
1153
1154 /* Convert offsets to absolute addresses. See above about adding
1155 one to the offsets to make all detected offsets non-zero. */
1156 for (reg = 0; reg < ALPHA_NUM_REGS; ++reg)
1157 if (info->saved_regs[reg])
1158 info->saved_regs[reg] += val - 1;
1159
1160 return info;
1161 }
1162
1163 /* Given a GDB frame, determine the address of the calling function's
1164 frame. This will be used to create a new GDB frame struct. */
1165
1166 static void
1167 alpha_heuristic_frame_this_id (struct frame_info *next_frame,
1168 void **this_prologue_cache,
1169 struct frame_id *this_id)
1170 {
1171 struct alpha_heuristic_unwind_cache *info
1172 = alpha_heuristic_frame_unwind_cache (next_frame, this_prologue_cache, 0);
1173
1174 *this_id = frame_id_build (info->vfp, info->start_pc);
1175 }
1176
1177 /* Retrieve the value of REGNUM in FRAME. Don't give up! */
1178
1179 static void
1180 alpha_heuristic_frame_prev_register (struct frame_info *next_frame,
1181 void **this_prologue_cache,
1182 int regnum, int *optimizedp,
1183 enum lval_type *lvalp, CORE_ADDR *addrp,
1184 int *realnump, gdb_byte *bufferp)
1185 {
1186 struct alpha_heuristic_unwind_cache *info
1187 = alpha_heuristic_frame_unwind_cache (next_frame, this_prologue_cache, 0);
1188
1189 /* The PC of the previous frame is stored in the link register of
1190 the current frame. Frob regnum so that we pull the value from
1191 the correct place. */
1192 if (regnum == ALPHA_PC_REGNUM)
1193 regnum = info->return_reg;
1194
1195 /* For all registers known to be saved in the current frame,
1196 do the obvious and pull the value out. */
1197 if (info->saved_regs[regnum])
1198 {
1199 *optimizedp = 0;
1200 *lvalp = lval_memory;
1201 *addrp = info->saved_regs[regnum];
1202 *realnump = -1;
1203 if (bufferp != NULL)
1204 get_frame_memory (next_frame, *addrp, bufferp, ALPHA_REGISTER_SIZE);
1205 return;
1206 }
1207
1208 /* The stack pointer of the previous frame is computed by popping
1209 the current stack frame. */
1210 if (regnum == ALPHA_SP_REGNUM)
1211 {
1212 *optimizedp = 0;
1213 *lvalp = not_lval;
1214 *addrp = 0;
1215 *realnump = -1;
1216 if (bufferp != NULL)
1217 store_unsigned_integer (bufferp, ALPHA_REGISTER_SIZE, info->vfp);
1218 return;
1219 }
1220
1221 /* Otherwise assume the next frame has the same register value. */
1222 frame_register_unwind (next_frame, regnum, optimizedp, lvalp, addrp,
1223 realnump, bufferp);
1224 }
1225
1226 static const struct frame_unwind alpha_heuristic_frame_unwind = {
1227 NORMAL_FRAME,
1228 alpha_heuristic_frame_this_id,
1229 alpha_heuristic_frame_prev_register
1230 };
1231
1232 static const struct frame_unwind *
1233 alpha_heuristic_frame_sniffer (struct frame_info *next_frame)
1234 {
1235 return &alpha_heuristic_frame_unwind;
1236 }
1237
1238 static CORE_ADDR
1239 alpha_heuristic_frame_base_address (struct frame_info *next_frame,
1240 void **this_prologue_cache)
1241 {
1242 struct alpha_heuristic_unwind_cache *info
1243 = alpha_heuristic_frame_unwind_cache (next_frame, this_prologue_cache, 0);
1244
1245 return info->vfp;
1246 }
1247
1248 static const struct frame_base alpha_heuristic_frame_base = {
1249 &alpha_heuristic_frame_unwind,
1250 alpha_heuristic_frame_base_address,
1251 alpha_heuristic_frame_base_address,
1252 alpha_heuristic_frame_base_address
1253 };
1254
1255 /* Just like reinit_frame_cache, but with the right arguments to be
1256 callable as an sfunc. Used by the "set heuristic-fence-post" command. */
1257
1258 static void
1259 reinit_frame_cache_sfunc (char *args, int from_tty, struct cmd_list_element *c)
1260 {
1261 reinit_frame_cache ();
1262 }
1263
1264 \f
1265 /* Assuming NEXT_FRAME->prev is a dummy, return the frame ID of that
1266 dummy frame. The frame ID's base needs to match the TOS value
1267 saved by save_dummy_frame_tos(), and the PC match the dummy frame's
1268 breakpoint. */
1269
1270 static struct frame_id
1271 alpha_unwind_dummy_id (struct gdbarch *gdbarch, struct frame_info *next_frame)
1272 {
1273 ULONGEST base;
1274 frame_unwind_unsigned_register (next_frame, ALPHA_SP_REGNUM, &base);
1275 return frame_id_build (base, frame_pc_unwind (next_frame));
1276 }
1277
1278 static CORE_ADDR
1279 alpha_unwind_pc (struct gdbarch *gdbarch, struct frame_info *next_frame)
1280 {
1281 ULONGEST pc;
1282 frame_unwind_unsigned_register (next_frame, ALPHA_PC_REGNUM, &pc);
1283 return pc;
1284 }
1285
1286 \f
1287 /* Helper routines for alpha*-nat.c files to move register sets to and
1288 from core files. The UNIQUE pointer is allowed to be NULL, as most
1289 targets don't supply this value in their core files. */
1290
1291 void
1292 alpha_supply_int_regs (int regno, const void *r0_r30,
1293 const void *pc, const void *unique)
1294 {
1295 int i;
1296
1297 for (i = 0; i < 31; ++i)
1298 if (regno == i || regno == -1)
1299 regcache_raw_supply (current_regcache, i, (const char *)r0_r30 + i*8);
1300
1301 if (regno == ALPHA_ZERO_REGNUM || regno == -1)
1302 regcache_raw_supply (current_regcache, ALPHA_ZERO_REGNUM, NULL);
1303
1304 if (regno == ALPHA_PC_REGNUM || regno == -1)
1305 regcache_raw_supply (current_regcache, ALPHA_PC_REGNUM, pc);
1306
1307 if (regno == ALPHA_UNIQUE_REGNUM || regno == -1)
1308 regcache_raw_supply (current_regcache, ALPHA_UNIQUE_REGNUM, unique);
1309 }
1310
1311 void
1312 alpha_fill_int_regs (int regno, void *r0_r30, void *pc, void *unique)
1313 {
1314 int i;
1315
1316 for (i = 0; i < 31; ++i)
1317 if (regno == i || regno == -1)
1318 regcache_raw_collect (current_regcache, i, (char *)r0_r30 + i*8);
1319
1320 if (regno == ALPHA_PC_REGNUM || regno == -1)
1321 regcache_raw_collect (current_regcache, ALPHA_PC_REGNUM, pc);
1322
1323 if (unique && (regno == ALPHA_UNIQUE_REGNUM || regno == -1))
1324 regcache_raw_collect (current_regcache, ALPHA_UNIQUE_REGNUM, unique);
1325 }
1326
1327 void
1328 alpha_supply_fp_regs (int regno, const void *f0_f30, const void *fpcr)
1329 {
1330 int i;
1331
1332 for (i = ALPHA_FP0_REGNUM; i < ALPHA_FP0_REGNUM + 31; ++i)
1333 if (regno == i || regno == -1)
1334 regcache_raw_supply (current_regcache, i,
1335 (const char *)f0_f30 + (i - ALPHA_FP0_REGNUM) * 8);
1336
1337 if (regno == ALPHA_FPCR_REGNUM || regno == -1)
1338 regcache_raw_supply (current_regcache, ALPHA_FPCR_REGNUM, fpcr);
1339 }
1340
1341 void
1342 alpha_fill_fp_regs (int regno, void *f0_f30, void *fpcr)
1343 {
1344 int i;
1345
1346 for (i = ALPHA_FP0_REGNUM; i < ALPHA_FP0_REGNUM + 31; ++i)
1347 if (regno == i || regno == -1)
1348 regcache_raw_collect (current_regcache, i,
1349 (char *)f0_f30 + (i - ALPHA_FP0_REGNUM) * 8);
1350
1351 if (regno == ALPHA_FPCR_REGNUM || regno == -1)
1352 regcache_raw_collect (current_regcache, ALPHA_FPCR_REGNUM, fpcr);
1353 }
1354
1355 \f
1356
1357 /* Return nonzero if the G_floating register value in REG is equal to
1358 zero for FP control instructions. */
1359
1360 static int
1361 fp_register_zero_p (LONGEST reg)
1362 {
1363 /* Check that all bits except the sign bit are zero. */
1364 const LONGEST zero_mask = ((LONGEST) 1 << 63) ^ -1;
1365
1366 return ((reg & zero_mask) == 0);
1367 }
1368
1369 /* Return the value of the sign bit for the G_floating register
1370 value held in REG. */
1371
1372 static int
1373 fp_register_sign_bit (LONGEST reg)
1374 {
1375 const LONGEST sign_mask = (LONGEST) 1 << 63;
1376
1377 return ((reg & sign_mask) != 0);
1378 }
1379
1380 /* alpha_software_single_step() is called just before we want to resume
1381 the inferior, if we want to single-step it but there is no hardware
1382 or kernel single-step support (NetBSD on Alpha, for example). We find
1383 the target of the coming instruction and breakpoint it.
1384
1385 single_step is also called just after the inferior stops. If we had
1386 set up a simulated single-step, we undo our damage. */
1387
1388 static CORE_ADDR
1389 alpha_next_pc (CORE_ADDR pc)
1390 {
1391 unsigned int insn;
1392 unsigned int op;
1393 int regno;
1394 int offset;
1395 LONGEST rav;
1396 char reg[8];
1397
1398 insn = alpha_read_insn (pc);
1399
1400 /* Opcode is top 6 bits. */
1401 op = (insn >> 26) & 0x3f;
1402
1403 if (op == 0x1a)
1404 {
1405 /* Jump format: target PC is:
1406 RB & ~3 */
1407 return (read_register ((insn >> 16) & 0x1f) & ~3);
1408 }
1409
1410 if ((op & 0x30) == 0x30)
1411 {
1412 /* Branch format: target PC is:
1413 (new PC) + (4 * sext(displacement)) */
1414 if (op == 0x30 || /* BR */
1415 op == 0x34) /* BSR */
1416 {
1417 branch_taken:
1418 offset = (insn & 0x001fffff);
1419 if (offset & 0x00100000)
1420 offset |= 0xffe00000;
1421 offset *= 4;
1422 return (pc + 4 + offset);
1423 }
1424
1425 /* Need to determine if branch is taken; read RA. */
1426 regno = (insn >> 21) & 0x1f;
1427 switch (op)
1428 {
1429 case 0x31: /* FBEQ */
1430 case 0x36: /* FBGE */
1431 case 0x37: /* FBGT */
1432 case 0x33: /* FBLE */
1433 case 0x32: /* FBLT */
1434 case 0x35: /* FBNE */
1435 regno += FP0_REGNUM;
1436 }
1437
1438 regcache_cooked_read (current_regcache, regno, reg);
1439 rav = extract_signed_integer (reg, 8);
1440
1441 switch (op)
1442 {
1443 case 0x38: /* BLBC */
1444 if ((rav & 1) == 0)
1445 goto branch_taken;
1446 break;
1447 case 0x3c: /* BLBS */
1448 if (rav & 1)
1449 goto branch_taken;
1450 break;
1451 case 0x39: /* BEQ */
1452 if (rav == 0)
1453 goto branch_taken;
1454 break;
1455 case 0x3d: /* BNE */
1456 if (rav != 0)
1457 goto branch_taken;
1458 break;
1459 case 0x3a: /* BLT */
1460 if (rav < 0)
1461 goto branch_taken;
1462 break;
1463 case 0x3b: /* BLE */
1464 if (rav <= 0)
1465 goto branch_taken;
1466 break;
1467 case 0x3f: /* BGT */
1468 if (rav > 0)
1469 goto branch_taken;
1470 break;
1471 case 0x3e: /* BGE */
1472 if (rav >= 0)
1473 goto branch_taken;
1474 break;
1475
1476 /* Floating point branches. */
1477
1478 case 0x31: /* FBEQ */
1479 if (fp_register_zero_p (rav))
1480 goto branch_taken;
1481 break;
1482 case 0x36: /* FBGE */
1483 if (fp_register_sign_bit (rav) == 0 || fp_register_zero_p (rav))
1484 goto branch_taken;
1485 break;
1486 case 0x37: /* FBGT */
1487 if (fp_register_sign_bit (rav) == 0 && ! fp_register_zero_p (rav))
1488 goto branch_taken;
1489 break;
1490 case 0x33: /* FBLE */
1491 if (fp_register_sign_bit (rav) == 1 || fp_register_zero_p (rav))
1492 goto branch_taken;
1493 break;
1494 case 0x32: /* FBLT */
1495 if (fp_register_sign_bit (rav) == 1 && ! fp_register_zero_p (rav))
1496 goto branch_taken;
1497 break;
1498 case 0x35: /* FBNE */
1499 if (! fp_register_zero_p (rav))
1500 goto branch_taken;
1501 break;
1502 }
1503 }
1504
1505 /* Not a branch or branch not taken; target PC is:
1506 pc + 4 */
1507 return (pc + 4);
1508 }
1509
1510 void
1511 alpha_software_single_step (enum target_signal sig, int insert_breakpoints_p)
1512 {
1513 static CORE_ADDR next_pc;
1514 CORE_ADDR pc;
1515
1516 if (insert_breakpoints_p)
1517 {
1518 pc = read_pc ();
1519 next_pc = alpha_next_pc (pc);
1520
1521 insert_single_step_breakpoint (next_pc);
1522 }
1523 else
1524 {
1525 remove_single_step_breakpoints ();
1526 write_pc (next_pc);
1527 }
1528 }
1529
1530 \f
1531 /* Initialize the current architecture based on INFO. If possible, re-use an
1532 architecture from ARCHES, which is a list of architectures already created
1533 during this debugging session.
1534
1535 Called e.g. at program startup, when reading a core file, and when reading
1536 a binary file. */
1537
1538 static struct gdbarch *
1539 alpha_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
1540 {
1541 struct gdbarch_tdep *tdep;
1542 struct gdbarch *gdbarch;
1543
1544 /* Try to determine the ABI of the object we are loading. */
1545 if (info.abfd != NULL && info.osabi == GDB_OSABI_UNKNOWN)
1546 {
1547 /* If it's an ECOFF file, assume it's OSF/1. */
1548 if (bfd_get_flavour (info.abfd) == bfd_target_ecoff_flavour)
1549 info.osabi = GDB_OSABI_OSF1;
1550 }
1551
1552 /* Find a candidate among extant architectures. */
1553 arches = gdbarch_list_lookup_by_info (arches, &info);
1554 if (arches != NULL)
1555 return arches->gdbarch;
1556
1557 tdep = xmalloc (sizeof (struct gdbarch_tdep));
1558 gdbarch = gdbarch_alloc (&info, tdep);
1559
1560 /* Lowest text address. This is used by heuristic_proc_start()
1561 to decide when to stop looking. */
1562 tdep->vm_min_address = (CORE_ADDR) 0x120000000LL;
1563
1564 tdep->dynamic_sigtramp_offset = NULL;
1565 tdep->sigcontext_addr = NULL;
1566 tdep->sc_pc_offset = 2 * 8;
1567 tdep->sc_regs_offset = 4 * 8;
1568 tdep->sc_fpregs_offset = tdep->sc_regs_offset + 32 * 8 + 8;
1569
1570 tdep->jb_pc = -1; /* longjmp support not enabled by default */
1571
1572 tdep->return_in_memory = alpha_return_in_memory_always;
1573
1574 /* Type sizes */
1575 set_gdbarch_short_bit (gdbarch, 16);
1576 set_gdbarch_int_bit (gdbarch, 32);
1577 set_gdbarch_long_bit (gdbarch, 64);
1578 set_gdbarch_long_long_bit (gdbarch, 64);
1579 set_gdbarch_float_bit (gdbarch, 32);
1580 set_gdbarch_double_bit (gdbarch, 64);
1581 set_gdbarch_long_double_bit (gdbarch, 64);
1582 set_gdbarch_ptr_bit (gdbarch, 64);
1583
1584 /* Register info */
1585 set_gdbarch_num_regs (gdbarch, ALPHA_NUM_REGS);
1586 set_gdbarch_sp_regnum (gdbarch, ALPHA_SP_REGNUM);
1587 set_gdbarch_pc_regnum (gdbarch, ALPHA_PC_REGNUM);
1588 set_gdbarch_fp0_regnum (gdbarch, ALPHA_FP0_REGNUM);
1589
1590 set_gdbarch_register_name (gdbarch, alpha_register_name);
1591 set_gdbarch_register_type (gdbarch, alpha_register_type);
1592
1593 set_gdbarch_cannot_fetch_register (gdbarch, alpha_cannot_fetch_register);
1594 set_gdbarch_cannot_store_register (gdbarch, alpha_cannot_store_register);
1595
1596 set_gdbarch_convert_register_p (gdbarch, alpha_convert_register_p);
1597 set_gdbarch_register_to_value (gdbarch, alpha_register_to_value);
1598 set_gdbarch_value_to_register (gdbarch, alpha_value_to_register);
1599
1600 set_gdbarch_register_reggroup_p (gdbarch, alpha_register_reggroup_p);
1601
1602 /* Prologue heuristics. */
1603 set_gdbarch_skip_prologue (gdbarch, alpha_skip_prologue);
1604
1605 /* Disassembler. */
1606 set_gdbarch_print_insn (gdbarch, print_insn_alpha);
1607
1608 /* Call info. */
1609
1610 set_gdbarch_return_value (gdbarch, alpha_return_value);
1611
1612 /* Settings for calling functions in the inferior. */
1613 set_gdbarch_push_dummy_call (gdbarch, alpha_push_dummy_call);
1614
1615 /* Methods for saving / extracting a dummy frame's ID. */
1616 set_gdbarch_unwind_dummy_id (gdbarch, alpha_unwind_dummy_id);
1617
1618 /* Return the unwound PC value. */
1619 set_gdbarch_unwind_pc (gdbarch, alpha_unwind_pc);
1620
1621 set_gdbarch_inner_than (gdbarch, core_addr_lessthan);
1622 set_gdbarch_skip_trampoline_code (gdbarch, find_solib_trampoline_target);
1623
1624 set_gdbarch_breakpoint_from_pc (gdbarch, alpha_breakpoint_from_pc);
1625 set_gdbarch_decr_pc_after_break (gdbarch, 4);
1626 set_gdbarch_cannot_step_breakpoint (gdbarch, 1);
1627
1628 /* Hook in ABI-specific overrides, if they have been registered. */
1629 gdbarch_init_osabi (info, gdbarch);
1630
1631 /* Now that we have tuned the configuration, set a few final things
1632 based on what the OS ABI has told us. */
1633
1634 if (tdep->jb_pc >= 0)
1635 set_gdbarch_get_longjmp_target (gdbarch, alpha_get_longjmp_target);
1636
1637 frame_unwind_append_sniffer (gdbarch, alpha_sigtramp_frame_sniffer);
1638 frame_unwind_append_sniffer (gdbarch, alpha_heuristic_frame_sniffer);
1639
1640 frame_base_set_default (gdbarch, &alpha_heuristic_frame_base);
1641
1642 return gdbarch;
1643 }
1644
1645 void
1646 alpha_dwarf2_init_abi (struct gdbarch_info info, struct gdbarch *gdbarch)
1647 {
1648 frame_unwind_append_sniffer (gdbarch, dwarf2_frame_sniffer);
1649 frame_base_append_sniffer (gdbarch, dwarf2_frame_base_sniffer);
1650 }
1651
1652 extern initialize_file_ftype _initialize_alpha_tdep; /* -Wmissing-prototypes */
1653
1654 void
1655 _initialize_alpha_tdep (void)
1656 {
1657 struct cmd_list_element *c;
1658
1659 gdbarch_register (bfd_arch_alpha, alpha_gdbarch_init, NULL);
1660
1661 /* Let the user set the fence post for heuristic_proc_start. */
1662
1663 /* We really would like to have both "0" and "unlimited" work, but
1664 command.c doesn't deal with that. So make it a var_zinteger
1665 because the user can always use "999999" or some such for unlimited. */
1666 /* We need to throw away the frame cache when we set this, since it
1667 might change our ability to get backtraces. */
1668 add_setshow_zinteger_cmd ("heuristic-fence-post", class_support,
1669 &heuristic_fence_post, _("\
1670 Set the distance searched for the start of a function."), _("\
1671 Show the distance searched for the start of a function."), _("\
1672 If you are debugging a stripped executable, GDB needs to search through the\n\
1673 program for the start of a function. This command sets the distance of the\n\
1674 search. The only need to set it is when debugging a stripped executable."),
1675 reinit_frame_cache_sfunc,
1676 NULL, /* FIXME: i18n: The distance searched for the start of a function is \"%d\". */
1677 &setlist, &showlist);
1678 }
This page took 0.0654090000000001 seconds and 4 git commands to generate.