2011-01-07 Michael Snyder <msnyder@vmware.com>
[deliverable/binutils-gdb.git] / gdb / alpha-tdep.c
1 /* Target-dependent code for the ALPHA architecture, for GDB, the GNU Debugger.
2
3 Copyright (C) 1993, 1994, 1995, 1996, 1997, 1998, 1999, 2000, 2001, 2002,
4 2003, 2005, 2006, 2007, 2008, 2009, 2010, 2011
5 Free Software Foundation, Inc.
6
7 This file is part of GDB.
8
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 3 of the License, or
12 (at your option) any later version.
13
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
18
19 You should have received a copy of the GNU General Public License
20 along with this program. If not, see <http://www.gnu.org/licenses/>. */
21
22 #include "defs.h"
23 #include "doublest.h"
24 #include "frame.h"
25 #include "frame-unwind.h"
26 #include "frame-base.h"
27 #include "dwarf2-frame.h"
28 #include "inferior.h"
29 #include "symtab.h"
30 #include "value.h"
31 #include "gdbcmd.h"
32 #include "gdbcore.h"
33 #include "dis-asm.h"
34 #include "symfile.h"
35 #include "objfiles.h"
36 #include "gdb_string.h"
37 #include "linespec.h"
38 #include "regcache.h"
39 #include "reggroups.h"
40 #include "arch-utils.h"
41 #include "osabi.h"
42 #include "block.h"
43 #include "infcall.h"
44 #include "trad-frame.h"
45
46 #include "elf-bfd.h"
47
48 #include "alpha-tdep.h"
49
50 /* Instruction decoding. The notations for registers, immediates and
51 opcodes are the same as the one used in Compaq's Alpha architecture
52 handbook. */
53
54 #define INSN_OPCODE(insn) ((insn & 0xfc000000) >> 26)
55
56 /* Memory instruction format */
57 #define MEM_RA(insn) ((insn & 0x03e00000) >> 21)
58 #define MEM_RB(insn) ((insn & 0x001f0000) >> 16)
59 #define MEM_DISP(insn) \
60 (((insn & 0x8000) == 0) ? (insn & 0xffff) : -((-insn) & 0xffff))
61
62 static const int lda_opcode = 0x08;
63 static const int stq_opcode = 0x2d;
64
65 /* Branch instruction format */
66 #define BR_RA(insn) MEM_RA(insn)
67
68 static const int bne_opcode = 0x3d;
69
70 /* Operate instruction format */
71 #define OPR_FUNCTION(insn) ((insn & 0xfe0) >> 5)
72 #define OPR_HAS_IMMEDIATE(insn) ((insn & 0x1000) == 0x1000)
73 #define OPR_RA(insn) MEM_RA(insn)
74 #define OPR_RC(insn) ((insn & 0x1f))
75 #define OPR_LIT(insn) ((insn & 0x1fe000) >> 13)
76
77 static const int subq_opcode = 0x10;
78 static const int subq_function = 0x29;
79
80 \f
81 /* Return the name of the REGNO register.
82
83 An empty name corresponds to a register number that used to
84 be used for a virtual register. That virtual register has
85 been removed, but the index is still reserved to maintain
86 compatibility with existing remote alpha targets. */
87
88 static const char *
89 alpha_register_name (struct gdbarch *gdbarch, int regno)
90 {
91 static const char * const register_names[] =
92 {
93 "v0", "t0", "t1", "t2", "t3", "t4", "t5", "t6",
94 "t7", "s0", "s1", "s2", "s3", "s4", "s5", "fp",
95 "a0", "a1", "a2", "a3", "a4", "a5", "t8", "t9",
96 "t10", "t11", "ra", "t12", "at", "gp", "sp", "zero",
97 "f0", "f1", "f2", "f3", "f4", "f5", "f6", "f7",
98 "f8", "f9", "f10", "f11", "f12", "f13", "f14", "f15",
99 "f16", "f17", "f18", "f19", "f20", "f21", "f22", "f23",
100 "f24", "f25", "f26", "f27", "f28", "f29", "f30", "fpcr",
101 "pc", "", "unique"
102 };
103
104 if (regno < 0)
105 return NULL;
106 if (regno >= ARRAY_SIZE(register_names))
107 return NULL;
108 return register_names[regno];
109 }
110
111 static int
112 alpha_cannot_fetch_register (struct gdbarch *gdbarch, int regno)
113 {
114 return (regno == ALPHA_ZERO_REGNUM
115 || strlen (alpha_register_name (gdbarch, regno)) == 0);
116 }
117
118 static int
119 alpha_cannot_store_register (struct gdbarch *gdbarch, int regno)
120 {
121 return (regno == ALPHA_ZERO_REGNUM
122 || strlen (alpha_register_name (gdbarch, regno)) == 0);
123 }
124
125 static struct type *
126 alpha_register_type (struct gdbarch *gdbarch, int regno)
127 {
128 if (regno == ALPHA_SP_REGNUM || regno == ALPHA_GP_REGNUM)
129 return builtin_type (gdbarch)->builtin_data_ptr;
130 if (regno == ALPHA_PC_REGNUM)
131 return builtin_type (gdbarch)->builtin_func_ptr;
132
133 /* Don't need to worry about little vs big endian until
134 some jerk tries to port to alpha-unicosmk. */
135 if (regno >= ALPHA_FP0_REGNUM && regno < ALPHA_FP0_REGNUM + 31)
136 return builtin_type (gdbarch)->builtin_double;
137
138 return builtin_type (gdbarch)->builtin_int64;
139 }
140
141 /* Is REGNUM a member of REGGROUP? */
142
143 static int
144 alpha_register_reggroup_p (struct gdbarch *gdbarch, int regnum,
145 struct reggroup *group)
146 {
147 /* Filter out any registers eliminated, but whose regnum is
148 reserved for backward compatibility, e.g. the vfp. */
149 if (gdbarch_register_name (gdbarch, regnum) == NULL
150 || *gdbarch_register_name (gdbarch, regnum) == '\0')
151 return 0;
152
153 if (group == all_reggroup)
154 return 1;
155
156 /* Zero should not be saved or restored. Technically it is a general
157 register (just as $f31 would be a float if we represented it), but
158 there's no point displaying it during "info regs", so leave it out
159 of all groups except for "all". */
160 if (regnum == ALPHA_ZERO_REGNUM)
161 return 0;
162
163 /* All other registers are saved and restored. */
164 if (group == save_reggroup || group == restore_reggroup)
165 return 1;
166
167 /* All other groups are non-overlapping. */
168
169 /* Since this is really a PALcode memory slot... */
170 if (regnum == ALPHA_UNIQUE_REGNUM)
171 return group == system_reggroup;
172
173 /* Force the FPCR to be considered part of the floating point state. */
174 if (regnum == ALPHA_FPCR_REGNUM)
175 return group == float_reggroup;
176
177 if (regnum >= ALPHA_FP0_REGNUM && regnum < ALPHA_FP0_REGNUM + 31)
178 return group == float_reggroup;
179 else
180 return group == general_reggroup;
181 }
182
183 /* The following represents exactly the conversion performed by
184 the LDS instruction. This applies to both single-precision
185 floating point and 32-bit integers. */
186
187 static void
188 alpha_lds (struct gdbarch *gdbarch, void *out, const void *in)
189 {
190 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
191 ULONGEST mem = extract_unsigned_integer (in, 4, byte_order);
192 ULONGEST frac = (mem >> 0) & 0x7fffff;
193 ULONGEST sign = (mem >> 31) & 1;
194 ULONGEST exp_msb = (mem >> 30) & 1;
195 ULONGEST exp_low = (mem >> 23) & 0x7f;
196 ULONGEST exp, reg;
197
198 exp = (exp_msb << 10) | exp_low;
199 if (exp_msb)
200 {
201 if (exp_low == 0x7f)
202 exp = 0x7ff;
203 }
204 else
205 {
206 if (exp_low != 0x00)
207 exp |= 0x380;
208 }
209
210 reg = (sign << 63) | (exp << 52) | (frac << 29);
211 store_unsigned_integer (out, 8, byte_order, reg);
212 }
213
214 /* Similarly, this represents exactly the conversion performed by
215 the STS instruction. */
216
217 static void
218 alpha_sts (struct gdbarch *gdbarch, void *out, const void *in)
219 {
220 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
221 ULONGEST reg, mem;
222
223 reg = extract_unsigned_integer (in, 8, byte_order);
224 mem = ((reg >> 32) & 0xc0000000) | ((reg >> 29) & 0x3fffffff);
225 store_unsigned_integer (out, 4, byte_order, mem);
226 }
227
228 /* The alpha needs a conversion between register and memory format if the
229 register is a floating point register and memory format is float, as the
230 register format must be double or memory format is an integer with 4
231 bytes or less, as the representation of integers in floating point
232 registers is different. */
233
234 static int
235 alpha_convert_register_p (struct gdbarch *gdbarch, int regno,
236 struct type *type)
237 {
238 return (regno >= ALPHA_FP0_REGNUM && regno < ALPHA_FP0_REGNUM + 31
239 && TYPE_LENGTH (type) != 8);
240 }
241
242 static void
243 alpha_register_to_value (struct frame_info *frame, int regnum,
244 struct type *valtype, gdb_byte *out)
245 {
246 gdb_byte in[MAX_REGISTER_SIZE];
247
248 frame_register_read (frame, regnum, in);
249 switch (TYPE_LENGTH (valtype))
250 {
251 case 4:
252 alpha_sts (get_frame_arch (frame), out, in);
253 break;
254 default:
255 error (_("Cannot retrieve value from floating point register"));
256 }
257 }
258
259 static void
260 alpha_value_to_register (struct frame_info *frame, int regnum,
261 struct type *valtype, const gdb_byte *in)
262 {
263 gdb_byte out[MAX_REGISTER_SIZE];
264
265 switch (TYPE_LENGTH (valtype))
266 {
267 case 4:
268 alpha_lds (get_frame_arch (frame), out, in);
269 break;
270 default:
271 error (_("Cannot store value in floating point register"));
272 }
273 put_frame_register (frame, regnum, out);
274 }
275
276 \f
277 /* The alpha passes the first six arguments in the registers, the rest on
278 the stack. The register arguments are stored in ARG_REG_BUFFER, and
279 then moved into the register file; this simplifies the passing of a
280 large struct which extends from the registers to the stack, plus avoids
281 three ptrace invocations per word.
282
283 We don't bother tracking which register values should go in integer
284 regs or fp regs; we load the same values into both.
285
286 If the called function is returning a structure, the address of the
287 structure to be returned is passed as a hidden first argument. */
288
289 static CORE_ADDR
290 alpha_push_dummy_call (struct gdbarch *gdbarch, struct value *function,
291 struct regcache *regcache, CORE_ADDR bp_addr,
292 int nargs, struct value **args, CORE_ADDR sp,
293 int struct_return, CORE_ADDR struct_addr)
294 {
295 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
296 int i;
297 int accumulate_size = struct_return ? 8 : 0;
298 struct alpha_arg
299 {
300 const gdb_byte *contents;
301 int len;
302 int offset;
303 };
304 struct alpha_arg *alpha_args
305 = (struct alpha_arg *) alloca (nargs * sizeof (struct alpha_arg));
306 struct alpha_arg *m_arg;
307 gdb_byte arg_reg_buffer[ALPHA_REGISTER_SIZE * ALPHA_NUM_ARG_REGS];
308 int required_arg_regs;
309 CORE_ADDR func_addr = find_function_addr (function, NULL);
310
311 /* The ABI places the address of the called function in T12. */
312 regcache_cooked_write_signed (regcache, ALPHA_T12_REGNUM, func_addr);
313
314 /* Set the return address register to point to the entry point
315 of the program, where a breakpoint lies in wait. */
316 regcache_cooked_write_signed (regcache, ALPHA_RA_REGNUM, bp_addr);
317
318 /* Lay out the arguments in memory. */
319 for (i = 0, m_arg = alpha_args; i < nargs; i++, m_arg++)
320 {
321 struct value *arg = args[i];
322 struct type *arg_type = check_typedef (value_type (arg));
323
324 /* Cast argument to long if necessary as the compiler does it too. */
325 switch (TYPE_CODE (arg_type))
326 {
327 case TYPE_CODE_INT:
328 case TYPE_CODE_BOOL:
329 case TYPE_CODE_CHAR:
330 case TYPE_CODE_RANGE:
331 case TYPE_CODE_ENUM:
332 if (TYPE_LENGTH (arg_type) == 4)
333 {
334 /* 32-bit values must be sign-extended to 64 bits
335 even if the base data type is unsigned. */
336 arg_type = builtin_type (gdbarch)->builtin_int32;
337 arg = value_cast (arg_type, arg);
338 }
339 if (TYPE_LENGTH (arg_type) < ALPHA_REGISTER_SIZE)
340 {
341 arg_type = builtin_type (gdbarch)->builtin_int64;
342 arg = value_cast (arg_type, arg);
343 }
344 break;
345
346 case TYPE_CODE_FLT:
347 /* "float" arguments loaded in registers must be passed in
348 register format, aka "double". */
349 if (accumulate_size < sizeof (arg_reg_buffer)
350 && TYPE_LENGTH (arg_type) == 4)
351 {
352 arg_type = builtin_type (gdbarch)->builtin_double;
353 arg = value_cast (arg_type, arg);
354 }
355 /* Tru64 5.1 has a 128-bit long double, and passes this by
356 invisible reference. No one else uses this data type. */
357 else if (TYPE_LENGTH (arg_type) == 16)
358 {
359 /* Allocate aligned storage. */
360 sp = (sp & -16) - 16;
361
362 /* Write the real data into the stack. */
363 write_memory (sp, value_contents (arg), 16);
364
365 /* Construct the indirection. */
366 arg_type = lookup_pointer_type (arg_type);
367 arg = value_from_pointer (arg_type, sp);
368 }
369 break;
370
371 case TYPE_CODE_COMPLEX:
372 /* ??? The ABI says that complex values are passed as two
373 separate scalar values. This distinction only matters
374 for complex float. However, GCC does not implement this. */
375
376 /* Tru64 5.1 has a 128-bit long double, and passes this by
377 invisible reference. */
378 if (TYPE_LENGTH (arg_type) == 32)
379 {
380 /* Allocate aligned storage. */
381 sp = (sp & -16) - 16;
382
383 /* Write the real data into the stack. */
384 write_memory (sp, value_contents (arg), 32);
385
386 /* Construct the indirection. */
387 arg_type = lookup_pointer_type (arg_type);
388 arg = value_from_pointer (arg_type, sp);
389 }
390 break;
391
392 default:
393 break;
394 }
395 m_arg->len = TYPE_LENGTH (arg_type);
396 m_arg->offset = accumulate_size;
397 accumulate_size = (accumulate_size + m_arg->len + 7) & ~7;
398 m_arg->contents = value_contents (arg);
399 }
400
401 /* Determine required argument register loads, loading an argument register
402 is expensive as it uses three ptrace calls. */
403 required_arg_regs = accumulate_size / 8;
404 if (required_arg_regs > ALPHA_NUM_ARG_REGS)
405 required_arg_regs = ALPHA_NUM_ARG_REGS;
406
407 /* Make room for the arguments on the stack. */
408 if (accumulate_size < sizeof(arg_reg_buffer))
409 accumulate_size = 0;
410 else
411 accumulate_size -= sizeof(arg_reg_buffer);
412 sp -= accumulate_size;
413
414 /* Keep sp aligned to a multiple of 16 as the ABI requires. */
415 sp &= ~15;
416
417 /* `Push' arguments on the stack. */
418 for (i = nargs; m_arg--, --i >= 0;)
419 {
420 const gdb_byte *contents = m_arg->contents;
421 int offset = m_arg->offset;
422 int len = m_arg->len;
423
424 /* Copy the bytes destined for registers into arg_reg_buffer. */
425 if (offset < sizeof(arg_reg_buffer))
426 {
427 if (offset + len <= sizeof(arg_reg_buffer))
428 {
429 memcpy (arg_reg_buffer + offset, contents, len);
430 continue;
431 }
432 else
433 {
434 int tlen = sizeof(arg_reg_buffer) - offset;
435 memcpy (arg_reg_buffer + offset, contents, tlen);
436 offset += tlen;
437 contents += tlen;
438 len -= tlen;
439 }
440 }
441
442 /* Everything else goes to the stack. */
443 write_memory (sp + offset - sizeof(arg_reg_buffer), contents, len);
444 }
445 if (struct_return)
446 store_unsigned_integer (arg_reg_buffer, ALPHA_REGISTER_SIZE,
447 byte_order, struct_addr);
448
449 /* Load the argument registers. */
450 for (i = 0; i < required_arg_regs; i++)
451 {
452 regcache_cooked_write (regcache, ALPHA_A0_REGNUM + i,
453 arg_reg_buffer + i*ALPHA_REGISTER_SIZE);
454 regcache_cooked_write (regcache, ALPHA_FPA0_REGNUM + i,
455 arg_reg_buffer + i*ALPHA_REGISTER_SIZE);
456 }
457
458 /* Finally, update the stack pointer. */
459 regcache_cooked_write_signed (regcache, ALPHA_SP_REGNUM, sp);
460
461 return sp;
462 }
463
464 /* Extract from REGCACHE the value about to be returned from a function
465 and copy it into VALBUF. */
466
467 static void
468 alpha_extract_return_value (struct type *valtype, struct regcache *regcache,
469 gdb_byte *valbuf)
470 {
471 struct gdbarch *gdbarch = get_regcache_arch (regcache);
472 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
473 int length = TYPE_LENGTH (valtype);
474 gdb_byte raw_buffer[ALPHA_REGISTER_SIZE];
475 ULONGEST l;
476
477 switch (TYPE_CODE (valtype))
478 {
479 case TYPE_CODE_FLT:
480 switch (length)
481 {
482 case 4:
483 regcache_cooked_read (regcache, ALPHA_FP0_REGNUM, raw_buffer);
484 alpha_sts (gdbarch, valbuf, raw_buffer);
485 break;
486
487 case 8:
488 regcache_cooked_read (regcache, ALPHA_FP0_REGNUM, valbuf);
489 break;
490
491 case 16:
492 regcache_cooked_read_unsigned (regcache, ALPHA_V0_REGNUM, &l);
493 read_memory (l, valbuf, 16);
494 break;
495
496 default:
497 internal_error (__FILE__, __LINE__,
498 _("unknown floating point width"));
499 }
500 break;
501
502 case TYPE_CODE_COMPLEX:
503 switch (length)
504 {
505 case 8:
506 /* ??? This isn't correct wrt the ABI, but it's what GCC does. */
507 regcache_cooked_read (regcache, ALPHA_FP0_REGNUM, valbuf);
508 break;
509
510 case 16:
511 regcache_cooked_read (regcache, ALPHA_FP0_REGNUM, valbuf);
512 regcache_cooked_read (regcache, ALPHA_FP0_REGNUM + 1, valbuf + 8);
513 break;
514
515 case 32:
516 regcache_cooked_read_signed (regcache, ALPHA_V0_REGNUM, &l);
517 read_memory (l, valbuf, 32);
518 break;
519
520 default:
521 internal_error (__FILE__, __LINE__,
522 _("unknown floating point width"));
523 }
524 break;
525
526 default:
527 /* Assume everything else degenerates to an integer. */
528 regcache_cooked_read_unsigned (regcache, ALPHA_V0_REGNUM, &l);
529 store_unsigned_integer (valbuf, length, byte_order, l);
530 break;
531 }
532 }
533
534 /* Insert the given value into REGCACHE as if it was being
535 returned by a function. */
536
537 static void
538 alpha_store_return_value (struct type *valtype, struct regcache *regcache,
539 const gdb_byte *valbuf)
540 {
541 struct gdbarch *gdbarch = get_regcache_arch (regcache);
542 int length = TYPE_LENGTH (valtype);
543 gdb_byte raw_buffer[ALPHA_REGISTER_SIZE];
544 ULONGEST l;
545
546 switch (TYPE_CODE (valtype))
547 {
548 case TYPE_CODE_FLT:
549 switch (length)
550 {
551 case 4:
552 alpha_lds (gdbarch, raw_buffer, valbuf);
553 regcache_cooked_write (regcache, ALPHA_FP0_REGNUM, raw_buffer);
554 break;
555
556 case 8:
557 regcache_cooked_write (regcache, ALPHA_FP0_REGNUM, valbuf);
558 break;
559
560 case 16:
561 /* FIXME: 128-bit long doubles are returned like structures:
562 by writing into indirect storage provided by the caller
563 as the first argument. */
564 error (_("Cannot set a 128-bit long double return value."));
565
566 default:
567 internal_error (__FILE__, __LINE__,
568 _("unknown floating point width"));
569 }
570 break;
571
572 case TYPE_CODE_COMPLEX:
573 switch (length)
574 {
575 case 8:
576 /* ??? This isn't correct wrt the ABI, but it's what GCC does. */
577 regcache_cooked_write (regcache, ALPHA_FP0_REGNUM, valbuf);
578 break;
579
580 case 16:
581 regcache_cooked_write (regcache, ALPHA_FP0_REGNUM, valbuf);
582 regcache_cooked_write (regcache, ALPHA_FP0_REGNUM + 1, valbuf + 8);
583 break;
584
585 case 32:
586 /* FIXME: 128-bit long doubles are returned like structures:
587 by writing into indirect storage provided by the caller
588 as the first argument. */
589 error (_("Cannot set a 128-bit long double return value."));
590
591 default:
592 internal_error (__FILE__, __LINE__,
593 _("unknown floating point width"));
594 }
595 break;
596
597 default:
598 /* Assume everything else degenerates to an integer. */
599 /* 32-bit values must be sign-extended to 64 bits
600 even if the base data type is unsigned. */
601 if (length == 4)
602 valtype = builtin_type (gdbarch)->builtin_int32;
603 l = unpack_long (valtype, valbuf);
604 regcache_cooked_write_unsigned (regcache, ALPHA_V0_REGNUM, l);
605 break;
606 }
607 }
608
609 static enum return_value_convention
610 alpha_return_value (struct gdbarch *gdbarch, struct type *func_type,
611 struct type *type, struct regcache *regcache,
612 gdb_byte *readbuf, const gdb_byte *writebuf)
613 {
614 enum type_code code = TYPE_CODE (type);
615
616 if ((code == TYPE_CODE_STRUCT
617 || code == TYPE_CODE_UNION
618 || code == TYPE_CODE_ARRAY)
619 && gdbarch_tdep (gdbarch)->return_in_memory (type))
620 {
621 if (readbuf)
622 {
623 ULONGEST addr;
624 regcache_raw_read_unsigned (regcache, ALPHA_V0_REGNUM, &addr);
625 read_memory (addr, readbuf, TYPE_LENGTH (type));
626 }
627
628 return RETURN_VALUE_ABI_RETURNS_ADDRESS;
629 }
630
631 if (readbuf)
632 alpha_extract_return_value (type, regcache, readbuf);
633 if (writebuf)
634 alpha_store_return_value (type, regcache, writebuf);
635
636 return RETURN_VALUE_REGISTER_CONVENTION;
637 }
638
639 static int
640 alpha_return_in_memory_always (struct type *type)
641 {
642 return 1;
643 }
644 \f
645 static const gdb_byte *
646 alpha_breakpoint_from_pc (struct gdbarch *gdbarch, CORE_ADDR *pc, int *len)
647 {
648 static const gdb_byte break_insn[] = { 0x80, 0, 0, 0 }; /* call_pal bpt */
649
650 *len = sizeof(break_insn);
651 return break_insn;
652 }
653
654 \f
655 /* This returns the PC of the first insn after the prologue.
656 If we can't find the prologue, then return 0. */
657
658 CORE_ADDR
659 alpha_after_prologue (CORE_ADDR pc)
660 {
661 struct symtab_and_line sal;
662 CORE_ADDR func_addr, func_end;
663
664 if (!find_pc_partial_function (pc, NULL, &func_addr, &func_end))
665 return 0;
666
667 sal = find_pc_line (func_addr, 0);
668 if (sal.end < func_end)
669 return sal.end;
670
671 /* The line after the prologue is after the end of the function. In this
672 case, tell the caller to find the prologue the hard way. */
673 return 0;
674 }
675
676 /* Read an instruction from memory at PC, looking through breakpoints. */
677
678 unsigned int
679 alpha_read_insn (struct gdbarch *gdbarch, CORE_ADDR pc)
680 {
681 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
682 gdb_byte buf[ALPHA_INSN_SIZE];
683 int status;
684
685 status = target_read_memory (pc, buf, sizeof (buf));
686 if (status)
687 memory_error (status, pc);
688 return extract_unsigned_integer (buf, sizeof (buf), byte_order);
689 }
690
691 /* To skip prologues, I use this predicate. Returns either PC itself
692 if the code at PC does not look like a function prologue; otherwise
693 returns an address that (if we're lucky) follows the prologue. If
694 LENIENT, then we must skip everything which is involved in setting
695 up the frame (it's OK to skip more, just so long as we don't skip
696 anything which might clobber the registers which are being saved. */
697
698 static CORE_ADDR
699 alpha_skip_prologue (struct gdbarch *gdbarch, CORE_ADDR pc)
700 {
701 unsigned long inst;
702 int offset;
703 CORE_ADDR post_prologue_pc;
704 gdb_byte buf[ALPHA_INSN_SIZE];
705
706 /* Silently return the unaltered pc upon memory errors.
707 This could happen on OSF/1 if decode_line_1 tries to skip the
708 prologue for quickstarted shared library functions when the
709 shared library is not yet mapped in.
710 Reading target memory is slow over serial lines, so we perform
711 this check only if the target has shared libraries (which all
712 Alpha targets do). */
713 if (target_read_memory (pc, buf, sizeof (buf)))
714 return pc;
715
716 /* See if we can determine the end of the prologue via the symbol table.
717 If so, then return either PC, or the PC after the prologue, whichever
718 is greater. */
719
720 post_prologue_pc = alpha_after_prologue (pc);
721 if (post_prologue_pc != 0)
722 return max (pc, post_prologue_pc);
723
724 /* Can't determine prologue from the symbol table, need to examine
725 instructions. */
726
727 /* Skip the typical prologue instructions. These are the stack adjustment
728 instruction and the instructions that save registers on the stack
729 or in the gcc frame. */
730 for (offset = 0; offset < 100; offset += ALPHA_INSN_SIZE)
731 {
732 inst = alpha_read_insn (gdbarch, pc + offset);
733
734 if ((inst & 0xffff0000) == 0x27bb0000) /* ldah $gp,n($t12) */
735 continue;
736 if ((inst & 0xffff0000) == 0x23bd0000) /* lda $gp,n($gp) */
737 continue;
738 if ((inst & 0xffff0000) == 0x23de0000) /* lda $sp,n($sp) */
739 continue;
740 if ((inst & 0xffe01fff) == 0x43c0153e) /* subq $sp,n,$sp */
741 continue;
742
743 if (((inst & 0xfc1f0000) == 0xb41e0000 /* stq reg,n($sp) */
744 || (inst & 0xfc1f0000) == 0x9c1e0000) /* stt reg,n($sp) */
745 && (inst & 0x03e00000) != 0x03e00000) /* reg != $zero */
746 continue;
747
748 if (inst == 0x47de040f) /* bis sp,sp,fp */
749 continue;
750 if (inst == 0x47fe040f) /* bis zero,sp,fp */
751 continue;
752
753 break;
754 }
755 return pc + offset;
756 }
757
758 \f
759 /* Figure out where the longjmp will land.
760 We expect the first arg to be a pointer to the jmp_buf structure from
761 which we extract the PC (JB_PC) that we will land at. The PC is copied
762 into the "pc". This routine returns true on success. */
763
764 static int
765 alpha_get_longjmp_target (struct frame_info *frame, CORE_ADDR *pc)
766 {
767 struct gdbarch *gdbarch = get_frame_arch (frame);
768 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
769 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
770 CORE_ADDR jb_addr;
771 gdb_byte raw_buffer[ALPHA_REGISTER_SIZE];
772
773 jb_addr = get_frame_register_unsigned (frame, ALPHA_A0_REGNUM);
774
775 if (target_read_memory (jb_addr + (tdep->jb_pc * tdep->jb_elt_size),
776 raw_buffer, tdep->jb_elt_size))
777 return 0;
778
779 *pc = extract_unsigned_integer (raw_buffer, tdep->jb_elt_size, byte_order);
780 return 1;
781 }
782
783 \f
784 /* Frame unwinder for signal trampolines. We use alpha tdep bits that
785 describe the location and shape of the sigcontext structure. After
786 that, all registers are in memory, so it's easy. */
787 /* ??? Shouldn't we be able to do this generically, rather than with
788 OSABI data specific to Alpha? */
789
790 struct alpha_sigtramp_unwind_cache
791 {
792 CORE_ADDR sigcontext_addr;
793 };
794
795 static struct alpha_sigtramp_unwind_cache *
796 alpha_sigtramp_frame_unwind_cache (struct frame_info *this_frame,
797 void **this_prologue_cache)
798 {
799 struct alpha_sigtramp_unwind_cache *info;
800 struct gdbarch_tdep *tdep;
801
802 if (*this_prologue_cache)
803 return *this_prologue_cache;
804
805 info = FRAME_OBSTACK_ZALLOC (struct alpha_sigtramp_unwind_cache);
806 *this_prologue_cache = info;
807
808 tdep = gdbarch_tdep (get_frame_arch (this_frame));
809 info->sigcontext_addr = tdep->sigcontext_addr (this_frame);
810
811 return info;
812 }
813
814 /* Return the address of REGNUM in a sigtramp frame. Since this is
815 all arithmetic, it doesn't seem worthwhile to cache it. */
816
817 static CORE_ADDR
818 alpha_sigtramp_register_address (struct gdbarch *gdbarch,
819 CORE_ADDR sigcontext_addr, int regnum)
820 {
821 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
822
823 if (regnum >= 0 && regnum < 32)
824 return sigcontext_addr + tdep->sc_regs_offset + regnum * 8;
825 else if (regnum >= ALPHA_FP0_REGNUM && regnum < ALPHA_FP0_REGNUM + 32)
826 return sigcontext_addr + tdep->sc_fpregs_offset + regnum * 8;
827 else if (regnum == ALPHA_PC_REGNUM)
828 return sigcontext_addr + tdep->sc_pc_offset;
829
830 return 0;
831 }
832
833 /* Given a GDB frame, determine the address of the calling function's
834 frame. This will be used to create a new GDB frame struct. */
835
836 static void
837 alpha_sigtramp_frame_this_id (struct frame_info *this_frame,
838 void **this_prologue_cache,
839 struct frame_id *this_id)
840 {
841 struct gdbarch *gdbarch = get_frame_arch (this_frame);
842 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
843 struct alpha_sigtramp_unwind_cache *info
844 = alpha_sigtramp_frame_unwind_cache (this_frame, this_prologue_cache);
845 CORE_ADDR stack_addr, code_addr;
846
847 /* If the OSABI couldn't locate the sigcontext, give up. */
848 if (info->sigcontext_addr == 0)
849 return;
850
851 /* If we have dynamic signal trampolines, find their start.
852 If we do not, then we must assume there is a symbol record
853 that can provide the start address. */
854 if (tdep->dynamic_sigtramp_offset)
855 {
856 int offset;
857 code_addr = get_frame_pc (this_frame);
858 offset = tdep->dynamic_sigtramp_offset (gdbarch, code_addr);
859 if (offset >= 0)
860 code_addr -= offset;
861 else
862 code_addr = 0;
863 }
864 else
865 code_addr = get_frame_func (this_frame);
866
867 /* The stack address is trivially read from the sigcontext. */
868 stack_addr = alpha_sigtramp_register_address (gdbarch, info->sigcontext_addr,
869 ALPHA_SP_REGNUM);
870 stack_addr = get_frame_memory_unsigned (this_frame, stack_addr,
871 ALPHA_REGISTER_SIZE);
872
873 *this_id = frame_id_build (stack_addr, code_addr);
874 }
875
876 /* Retrieve the value of REGNUM in FRAME. Don't give up! */
877
878 static struct value *
879 alpha_sigtramp_frame_prev_register (struct frame_info *this_frame,
880 void **this_prologue_cache, int regnum)
881 {
882 struct alpha_sigtramp_unwind_cache *info
883 = alpha_sigtramp_frame_unwind_cache (this_frame, this_prologue_cache);
884 CORE_ADDR addr;
885
886 if (info->sigcontext_addr != 0)
887 {
888 /* All integer and fp registers are stored in memory. */
889 addr = alpha_sigtramp_register_address (get_frame_arch (this_frame),
890 info->sigcontext_addr, regnum);
891 if (addr != 0)
892 return frame_unwind_got_memory (this_frame, regnum, addr);
893 }
894
895 /* This extra register may actually be in the sigcontext, but our
896 current description of it in alpha_sigtramp_frame_unwind_cache
897 doesn't include it. Too bad. Fall back on whatever's in the
898 outer frame. */
899 return frame_unwind_got_register (this_frame, regnum, regnum);
900 }
901
902 static int
903 alpha_sigtramp_frame_sniffer (const struct frame_unwind *self,
904 struct frame_info *this_frame,
905 void **this_prologue_cache)
906 {
907 struct gdbarch *gdbarch = get_frame_arch (this_frame);
908 CORE_ADDR pc = get_frame_pc (this_frame);
909 char *name;
910
911 /* NOTE: cagney/2004-04-30: Do not copy/clone this code. Instead
912 look at tramp-frame.h and other simplier per-architecture
913 sigtramp unwinders. */
914
915 /* We shouldn't even bother to try if the OSABI didn't register a
916 sigcontext_addr handler or pc_in_sigtramp hander. */
917 if (gdbarch_tdep (gdbarch)->sigcontext_addr == NULL)
918 return 0;
919 if (gdbarch_tdep (gdbarch)->pc_in_sigtramp == NULL)
920 return 0;
921
922 /* Otherwise we should be in a signal frame. */
923 find_pc_partial_function (pc, &name, NULL, NULL);
924 if (gdbarch_tdep (gdbarch)->pc_in_sigtramp (gdbarch, pc, name))
925 return 1;
926
927 return 0;
928 }
929
930 static const struct frame_unwind alpha_sigtramp_frame_unwind = {
931 SIGTRAMP_FRAME,
932 alpha_sigtramp_frame_this_id,
933 alpha_sigtramp_frame_prev_register,
934 NULL,
935 alpha_sigtramp_frame_sniffer
936 };
937
938 \f
939
940 /* Heuristic_proc_start may hunt through the text section for a long
941 time across a 2400 baud serial line. Allows the user to limit this
942 search. */
943 static unsigned int heuristic_fence_post = 0;
944
945 /* Attempt to locate the start of the function containing PC. We assume that
946 the previous function ends with an about_to_return insn. Not foolproof by
947 any means, since gcc is happy to put the epilogue in the middle of a
948 function. But we're guessing anyway... */
949
950 static CORE_ADDR
951 alpha_heuristic_proc_start (struct gdbarch *gdbarch, CORE_ADDR pc)
952 {
953 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
954 CORE_ADDR last_non_nop = pc;
955 CORE_ADDR fence = pc - heuristic_fence_post;
956 CORE_ADDR orig_pc = pc;
957 CORE_ADDR func;
958 struct inferior *inf;
959
960 if (pc == 0)
961 return 0;
962
963 /* First see if we can find the start of the function from minimal
964 symbol information. This can succeed with a binary that doesn't
965 have debug info, but hasn't been stripped. */
966 func = get_pc_function_start (pc);
967 if (func)
968 return func;
969
970 if (heuristic_fence_post == UINT_MAX
971 || fence < tdep->vm_min_address)
972 fence = tdep->vm_min_address;
973
974 /* Search back for previous return; also stop at a 0, which might be
975 seen for instance before the start of a code section. Don't include
976 nops, since this usually indicates padding between functions. */
977 for (pc -= ALPHA_INSN_SIZE; pc >= fence; pc -= ALPHA_INSN_SIZE)
978 {
979 unsigned int insn = alpha_read_insn (gdbarch, pc);
980 switch (insn)
981 {
982 case 0: /* invalid insn */
983 case 0x6bfa8001: /* ret $31,($26),1 */
984 return last_non_nop;
985
986 case 0x2ffe0000: /* unop: ldq_u $31,0($30) */
987 case 0x47ff041f: /* nop: bis $31,$31,$31 */
988 break;
989
990 default:
991 last_non_nop = pc;
992 break;
993 }
994 }
995
996 inf = current_inferior ();
997
998 /* It's not clear to me why we reach this point when stopping quietly,
999 but with this test, at least we don't print out warnings for every
1000 child forked (eg, on decstation). 22apr93 rich@cygnus.com. */
1001 if (inf->control.stop_soon == NO_STOP_QUIETLY)
1002 {
1003 static int blurb_printed = 0;
1004
1005 if (fence == tdep->vm_min_address)
1006 warning (_("Hit beginning of text section without finding \
1007 enclosing function for address %s"), paddress (gdbarch, orig_pc));
1008 else
1009 warning (_("Hit heuristic-fence-post without finding \
1010 enclosing function for address %s"), paddress (gdbarch, orig_pc));
1011
1012 if (!blurb_printed)
1013 {
1014 printf_filtered (_("\
1015 This warning occurs if you are debugging a function without any symbols\n\
1016 (for example, in a stripped executable). In that case, you may wish to\n\
1017 increase the size of the search with the `set heuristic-fence-post' command.\n\
1018 \n\
1019 Otherwise, you told GDB there was a function where there isn't one, or\n\
1020 (more likely) you have encountered a bug in GDB.\n"));
1021 blurb_printed = 1;
1022 }
1023 }
1024
1025 return 0;
1026 }
1027
1028 /* Fallback alpha frame unwinder. Uses instruction scanning and knows
1029 something about the traditional layout of alpha stack frames. */
1030
1031 struct alpha_heuristic_unwind_cache
1032 {
1033 CORE_ADDR vfp;
1034 CORE_ADDR start_pc;
1035 struct trad_frame_saved_reg *saved_regs;
1036 int return_reg;
1037 };
1038
1039 /* If a probing loop sequence starts at PC, simulate it and compute
1040 FRAME_SIZE and PC after its execution. Otherwise, return with PC and
1041 FRAME_SIZE unchanged. */
1042
1043 static void
1044 alpha_heuristic_analyze_probing_loop (struct gdbarch *gdbarch, CORE_ADDR *pc,
1045 int *frame_size)
1046 {
1047 CORE_ADDR cur_pc = *pc;
1048 int cur_frame_size = *frame_size;
1049 int nb_of_iterations, reg_index, reg_probe;
1050 unsigned int insn;
1051
1052 /* The following pattern is recognized as a probing loop:
1053
1054 lda REG_INDEX,NB_OF_ITERATIONS
1055 lda REG_PROBE,<immediate>(sp)
1056
1057 LOOP_START:
1058 stq zero,<immediate>(REG_PROBE)
1059 subq REG_INDEX,0x1,REG_INDEX
1060 lda REG_PROBE,<immediate>(REG_PROBE)
1061 bne REG_INDEX, LOOP_START
1062
1063 lda sp,<immediate>(REG_PROBE)
1064
1065 If anything different is found, the function returns without
1066 changing PC and FRAME_SIZE. Otherwise, PC will point immediately
1067 after this sequence, and FRAME_SIZE will be updated. */
1068
1069 /* lda REG_INDEX,NB_OF_ITERATIONS */
1070
1071 insn = alpha_read_insn (gdbarch, cur_pc);
1072 if (INSN_OPCODE (insn) != lda_opcode)
1073 return;
1074 reg_index = MEM_RA (insn);
1075 nb_of_iterations = MEM_DISP (insn);
1076
1077 /* lda REG_PROBE,<immediate>(sp) */
1078
1079 cur_pc += ALPHA_INSN_SIZE;
1080 insn = alpha_read_insn (gdbarch, cur_pc);
1081 if (INSN_OPCODE (insn) != lda_opcode
1082 || MEM_RB (insn) != ALPHA_SP_REGNUM)
1083 return;
1084 reg_probe = MEM_RA (insn);
1085 cur_frame_size -= MEM_DISP (insn);
1086
1087 /* stq zero,<immediate>(REG_PROBE) */
1088
1089 cur_pc += ALPHA_INSN_SIZE;
1090 insn = alpha_read_insn (gdbarch, cur_pc);
1091 if (INSN_OPCODE (insn) != stq_opcode
1092 || MEM_RA (insn) != 0x1f
1093 || MEM_RB (insn) != reg_probe)
1094 return;
1095
1096 /* subq REG_INDEX,0x1,REG_INDEX */
1097
1098 cur_pc += ALPHA_INSN_SIZE;
1099 insn = alpha_read_insn (gdbarch, cur_pc);
1100 if (INSN_OPCODE (insn) != subq_opcode
1101 || !OPR_HAS_IMMEDIATE (insn)
1102 || OPR_FUNCTION (insn) != subq_function
1103 || OPR_LIT(insn) != 1
1104 || OPR_RA (insn) != reg_index
1105 || OPR_RC (insn) != reg_index)
1106 return;
1107
1108 /* lda REG_PROBE,<immediate>(REG_PROBE) */
1109
1110 cur_pc += ALPHA_INSN_SIZE;
1111 insn = alpha_read_insn (gdbarch, cur_pc);
1112 if (INSN_OPCODE (insn) != lda_opcode
1113 || MEM_RA (insn) != reg_probe
1114 || MEM_RB (insn) != reg_probe)
1115 return;
1116 cur_frame_size -= MEM_DISP (insn) * nb_of_iterations;
1117
1118 /* bne REG_INDEX, LOOP_START */
1119
1120 cur_pc += ALPHA_INSN_SIZE;
1121 insn = alpha_read_insn (gdbarch, cur_pc);
1122 if (INSN_OPCODE (insn) != bne_opcode
1123 || MEM_RA (insn) != reg_index)
1124 return;
1125
1126 /* lda sp,<immediate>(REG_PROBE) */
1127
1128 cur_pc += ALPHA_INSN_SIZE;
1129 insn = alpha_read_insn (gdbarch, cur_pc);
1130 if (INSN_OPCODE (insn) != lda_opcode
1131 || MEM_RA (insn) != ALPHA_SP_REGNUM
1132 || MEM_RB (insn) != reg_probe)
1133 return;
1134 cur_frame_size -= MEM_DISP (insn);
1135
1136 *pc = cur_pc;
1137 *frame_size = cur_frame_size;
1138 }
1139
1140 static struct alpha_heuristic_unwind_cache *
1141 alpha_heuristic_frame_unwind_cache (struct frame_info *this_frame,
1142 void **this_prologue_cache,
1143 CORE_ADDR start_pc)
1144 {
1145 struct gdbarch *gdbarch = get_frame_arch (this_frame);
1146 struct alpha_heuristic_unwind_cache *info;
1147 ULONGEST val;
1148 CORE_ADDR limit_pc, cur_pc;
1149 int frame_reg, frame_size, return_reg, reg;
1150
1151 if (*this_prologue_cache)
1152 return *this_prologue_cache;
1153
1154 info = FRAME_OBSTACK_ZALLOC (struct alpha_heuristic_unwind_cache);
1155 *this_prologue_cache = info;
1156 info->saved_regs = trad_frame_alloc_saved_regs (this_frame);
1157
1158 limit_pc = get_frame_pc (this_frame);
1159 if (start_pc == 0)
1160 start_pc = alpha_heuristic_proc_start (gdbarch, limit_pc);
1161 info->start_pc = start_pc;
1162
1163 frame_reg = ALPHA_SP_REGNUM;
1164 frame_size = 0;
1165 return_reg = -1;
1166
1167 /* If we've identified a likely place to start, do code scanning. */
1168 if (start_pc != 0)
1169 {
1170 /* Limit the forward search to 50 instructions. */
1171 if (start_pc + 200 < limit_pc)
1172 limit_pc = start_pc + 200;
1173
1174 for (cur_pc = start_pc; cur_pc < limit_pc; cur_pc += ALPHA_INSN_SIZE)
1175 {
1176 unsigned int word = alpha_read_insn (gdbarch, cur_pc);
1177
1178 if ((word & 0xffff0000) == 0x23de0000) /* lda $sp,n($sp) */
1179 {
1180 if (word & 0x8000)
1181 {
1182 /* Consider only the first stack allocation instruction
1183 to contain the static size of the frame. */
1184 if (frame_size == 0)
1185 frame_size = (-word) & 0xffff;
1186 }
1187 else
1188 {
1189 /* Exit loop if a positive stack adjustment is found, which
1190 usually means that the stack cleanup code in the function
1191 epilogue is reached. */
1192 break;
1193 }
1194 }
1195 else if ((word & 0xfc1f0000) == 0xb41e0000) /* stq reg,n($sp) */
1196 {
1197 reg = (word & 0x03e00000) >> 21;
1198
1199 /* Ignore this instruction if we have already encountered
1200 an instruction saving the same register earlier in the
1201 function code. The current instruction does not tell
1202 us where the original value upon function entry is saved.
1203 All it says is that the function we are scanning reused
1204 that register for some computation of its own, and is now
1205 saving its result. */
1206 if (trad_frame_addr_p(info->saved_regs, reg))
1207 continue;
1208
1209 if (reg == 31)
1210 continue;
1211
1212 /* Do not compute the address where the register was saved yet,
1213 because we don't know yet if the offset will need to be
1214 relative to $sp or $fp (we can not compute the address
1215 relative to $sp if $sp is updated during the execution of
1216 the current subroutine, for instance when doing some alloca).
1217 So just store the offset for the moment, and compute the
1218 address later when we know whether this frame has a frame
1219 pointer or not. */
1220 /* Hack: temporarily add one, so that the offset is non-zero
1221 and we can tell which registers have save offsets below. */
1222 info->saved_regs[reg].addr = (word & 0xffff) + 1;
1223
1224 /* Starting with OSF/1-3.2C, the system libraries are shipped
1225 without local symbols, but they still contain procedure
1226 descriptors without a symbol reference. GDB is currently
1227 unable to find these procedure descriptors and uses
1228 heuristic_proc_desc instead.
1229 As some low level compiler support routines (__div*, __add*)
1230 use a non-standard return address register, we have to
1231 add some heuristics to determine the return address register,
1232 or stepping over these routines will fail.
1233 Usually the return address register is the first register
1234 saved on the stack, but assembler optimization might
1235 rearrange the register saves.
1236 So we recognize only a few registers (t7, t9, ra) within
1237 the procedure prologue as valid return address registers.
1238 If we encounter a return instruction, we extract the
1239 the return address register from it.
1240
1241 FIXME: Rewriting GDB to access the procedure descriptors,
1242 e.g. via the minimal symbol table, might obviate this
1243 hack. */
1244 if (return_reg == -1
1245 && cur_pc < (start_pc + 80)
1246 && (reg == ALPHA_T7_REGNUM
1247 || reg == ALPHA_T9_REGNUM
1248 || reg == ALPHA_RA_REGNUM))
1249 return_reg = reg;
1250 }
1251 else if ((word & 0xffe0ffff) == 0x6be08001) /* ret zero,reg,1 */
1252 return_reg = (word >> 16) & 0x1f;
1253 else if (word == 0x47de040f) /* bis sp,sp,fp */
1254 frame_reg = ALPHA_GCC_FP_REGNUM;
1255 else if (word == 0x47fe040f) /* bis zero,sp,fp */
1256 frame_reg = ALPHA_GCC_FP_REGNUM;
1257
1258 alpha_heuristic_analyze_probing_loop (gdbarch, &cur_pc, &frame_size);
1259 }
1260
1261 /* If we haven't found a valid return address register yet, keep
1262 searching in the procedure prologue. */
1263 if (return_reg == -1)
1264 {
1265 while (cur_pc < (limit_pc + 80) && cur_pc < (start_pc + 80))
1266 {
1267 unsigned int word = alpha_read_insn (gdbarch, cur_pc);
1268
1269 if ((word & 0xfc1f0000) == 0xb41e0000) /* stq reg,n($sp) */
1270 {
1271 reg = (word & 0x03e00000) >> 21;
1272 if (reg == ALPHA_T7_REGNUM
1273 || reg == ALPHA_T9_REGNUM
1274 || reg == ALPHA_RA_REGNUM)
1275 {
1276 return_reg = reg;
1277 break;
1278 }
1279 }
1280 else if ((word & 0xffe0ffff) == 0x6be08001) /* ret zero,reg,1 */
1281 {
1282 return_reg = (word >> 16) & 0x1f;
1283 break;
1284 }
1285
1286 cur_pc += ALPHA_INSN_SIZE;
1287 }
1288 }
1289 }
1290
1291 /* Failing that, do default to the customary RA. */
1292 if (return_reg == -1)
1293 return_reg = ALPHA_RA_REGNUM;
1294 info->return_reg = return_reg;
1295
1296 val = get_frame_register_unsigned (this_frame, frame_reg);
1297 info->vfp = val + frame_size;
1298
1299 /* Convert offsets to absolute addresses. See above about adding
1300 one to the offsets to make all detected offsets non-zero. */
1301 for (reg = 0; reg < ALPHA_NUM_REGS; ++reg)
1302 if (trad_frame_addr_p(info->saved_regs, reg))
1303 info->saved_regs[reg].addr += val - 1;
1304
1305 /* The stack pointer of the previous frame is computed by popping
1306 the current stack frame. */
1307 if (!trad_frame_addr_p (info->saved_regs, ALPHA_SP_REGNUM))
1308 trad_frame_set_value (info->saved_regs, ALPHA_SP_REGNUM, info->vfp);
1309
1310 return info;
1311 }
1312
1313 /* Given a GDB frame, determine the address of the calling function's
1314 frame. This will be used to create a new GDB frame struct. */
1315
1316 static void
1317 alpha_heuristic_frame_this_id (struct frame_info *this_frame,
1318 void **this_prologue_cache,
1319 struct frame_id *this_id)
1320 {
1321 struct alpha_heuristic_unwind_cache *info
1322 = alpha_heuristic_frame_unwind_cache (this_frame, this_prologue_cache, 0);
1323
1324 *this_id = frame_id_build (info->vfp, info->start_pc);
1325 }
1326
1327 /* Retrieve the value of REGNUM in FRAME. Don't give up! */
1328
1329 static struct value *
1330 alpha_heuristic_frame_prev_register (struct frame_info *this_frame,
1331 void **this_prologue_cache, int regnum)
1332 {
1333 struct alpha_heuristic_unwind_cache *info
1334 = alpha_heuristic_frame_unwind_cache (this_frame, this_prologue_cache, 0);
1335
1336 /* The PC of the previous frame is stored in the link register of
1337 the current frame. Frob regnum so that we pull the value from
1338 the correct place. */
1339 if (regnum == ALPHA_PC_REGNUM)
1340 regnum = info->return_reg;
1341
1342 return trad_frame_get_prev_register (this_frame, info->saved_regs, regnum);
1343 }
1344
1345 static const struct frame_unwind alpha_heuristic_frame_unwind = {
1346 NORMAL_FRAME,
1347 alpha_heuristic_frame_this_id,
1348 alpha_heuristic_frame_prev_register,
1349 NULL,
1350 default_frame_sniffer
1351 };
1352
1353 static CORE_ADDR
1354 alpha_heuristic_frame_base_address (struct frame_info *this_frame,
1355 void **this_prologue_cache)
1356 {
1357 struct alpha_heuristic_unwind_cache *info
1358 = alpha_heuristic_frame_unwind_cache (this_frame, this_prologue_cache, 0);
1359
1360 return info->vfp;
1361 }
1362
1363 static const struct frame_base alpha_heuristic_frame_base = {
1364 &alpha_heuristic_frame_unwind,
1365 alpha_heuristic_frame_base_address,
1366 alpha_heuristic_frame_base_address,
1367 alpha_heuristic_frame_base_address
1368 };
1369
1370 /* Just like reinit_frame_cache, but with the right arguments to be
1371 callable as an sfunc. Used by the "set heuristic-fence-post" command. */
1372
1373 static void
1374 reinit_frame_cache_sfunc (char *args, int from_tty, struct cmd_list_element *c)
1375 {
1376 reinit_frame_cache ();
1377 }
1378
1379 \f
1380 /* Assuming NEXT_FRAME->prev is a dummy, return the frame ID of that
1381 dummy frame. The frame ID's base needs to match the TOS value
1382 saved by save_dummy_frame_tos(), and the PC match the dummy frame's
1383 breakpoint. */
1384
1385 static struct frame_id
1386 alpha_dummy_id (struct gdbarch *gdbarch, struct frame_info *this_frame)
1387 {
1388 ULONGEST base;
1389 base = get_frame_register_unsigned (this_frame, ALPHA_SP_REGNUM);
1390 return frame_id_build (base, get_frame_pc (this_frame));
1391 }
1392
1393 static CORE_ADDR
1394 alpha_unwind_pc (struct gdbarch *gdbarch, struct frame_info *next_frame)
1395 {
1396 ULONGEST pc;
1397 pc = frame_unwind_register_unsigned (next_frame, ALPHA_PC_REGNUM);
1398 return pc;
1399 }
1400
1401 \f
1402 /* Helper routines for alpha*-nat.c files to move register sets to and
1403 from core files. The UNIQUE pointer is allowed to be NULL, as most
1404 targets don't supply this value in their core files. */
1405
1406 void
1407 alpha_supply_int_regs (struct regcache *regcache, int regno,
1408 const void *r0_r30, const void *pc, const void *unique)
1409 {
1410 const gdb_byte *regs = r0_r30;
1411 int i;
1412
1413 for (i = 0; i < 31; ++i)
1414 if (regno == i || regno == -1)
1415 regcache_raw_supply (regcache, i, regs + i * 8);
1416
1417 if (regno == ALPHA_ZERO_REGNUM || regno == -1)
1418 regcache_raw_supply (regcache, ALPHA_ZERO_REGNUM, NULL);
1419
1420 if (regno == ALPHA_PC_REGNUM || regno == -1)
1421 regcache_raw_supply (regcache, ALPHA_PC_REGNUM, pc);
1422
1423 if (regno == ALPHA_UNIQUE_REGNUM || regno == -1)
1424 regcache_raw_supply (regcache, ALPHA_UNIQUE_REGNUM, unique);
1425 }
1426
1427 void
1428 alpha_fill_int_regs (const struct regcache *regcache,
1429 int regno, void *r0_r30, void *pc, void *unique)
1430 {
1431 gdb_byte *regs = r0_r30;
1432 int i;
1433
1434 for (i = 0; i < 31; ++i)
1435 if (regno == i || regno == -1)
1436 regcache_raw_collect (regcache, i, regs + i * 8);
1437
1438 if (regno == ALPHA_PC_REGNUM || regno == -1)
1439 regcache_raw_collect (regcache, ALPHA_PC_REGNUM, pc);
1440
1441 if (unique && (regno == ALPHA_UNIQUE_REGNUM || regno == -1))
1442 regcache_raw_collect (regcache, ALPHA_UNIQUE_REGNUM, unique);
1443 }
1444
1445 void
1446 alpha_supply_fp_regs (struct regcache *regcache, int regno,
1447 const void *f0_f30, const void *fpcr)
1448 {
1449 const gdb_byte *regs = f0_f30;
1450 int i;
1451
1452 for (i = ALPHA_FP0_REGNUM; i < ALPHA_FP0_REGNUM + 31; ++i)
1453 if (regno == i || regno == -1)
1454 regcache_raw_supply (regcache, i,
1455 regs + (i - ALPHA_FP0_REGNUM) * 8);
1456
1457 if (regno == ALPHA_FPCR_REGNUM || regno == -1)
1458 regcache_raw_supply (regcache, ALPHA_FPCR_REGNUM, fpcr);
1459 }
1460
1461 void
1462 alpha_fill_fp_regs (const struct regcache *regcache,
1463 int regno, void *f0_f30, void *fpcr)
1464 {
1465 gdb_byte *regs = f0_f30;
1466 int i;
1467
1468 for (i = ALPHA_FP0_REGNUM; i < ALPHA_FP0_REGNUM + 31; ++i)
1469 if (regno == i || regno == -1)
1470 regcache_raw_collect (regcache, i,
1471 regs + (i - ALPHA_FP0_REGNUM) * 8);
1472
1473 if (regno == ALPHA_FPCR_REGNUM || regno == -1)
1474 regcache_raw_collect (regcache, ALPHA_FPCR_REGNUM, fpcr);
1475 }
1476
1477 \f
1478
1479 /* Return nonzero if the G_floating register value in REG is equal to
1480 zero for FP control instructions. */
1481
1482 static int
1483 fp_register_zero_p (LONGEST reg)
1484 {
1485 /* Check that all bits except the sign bit are zero. */
1486 const LONGEST zero_mask = ((LONGEST) 1 << 63) ^ -1;
1487
1488 return ((reg & zero_mask) == 0);
1489 }
1490
1491 /* Return the value of the sign bit for the G_floating register
1492 value held in REG. */
1493
1494 static int
1495 fp_register_sign_bit (LONGEST reg)
1496 {
1497 const LONGEST sign_mask = (LONGEST) 1 << 63;
1498
1499 return ((reg & sign_mask) != 0);
1500 }
1501
1502 /* alpha_software_single_step() is called just before we want to resume
1503 the inferior, if we want to single-step it but there is no hardware
1504 or kernel single-step support (NetBSD on Alpha, for example). We find
1505 the target of the coming instruction and breakpoint it. */
1506
1507 static CORE_ADDR
1508 alpha_next_pc (struct frame_info *frame, CORE_ADDR pc)
1509 {
1510 struct gdbarch *gdbarch = get_frame_arch (frame);
1511 unsigned int insn;
1512 unsigned int op;
1513 int regno;
1514 int offset;
1515 LONGEST rav;
1516
1517 insn = alpha_read_insn (gdbarch, pc);
1518
1519 /* Opcode is top 6 bits. */
1520 op = (insn >> 26) & 0x3f;
1521
1522 if (op == 0x1a)
1523 {
1524 /* Jump format: target PC is:
1525 RB & ~3 */
1526 return (get_frame_register_unsigned (frame, (insn >> 16) & 0x1f) & ~3);
1527 }
1528
1529 if ((op & 0x30) == 0x30)
1530 {
1531 /* Branch format: target PC is:
1532 (new PC) + (4 * sext(displacement)) */
1533 if (op == 0x30 /* BR */
1534 || op == 0x34) /* BSR */
1535 {
1536 branch_taken:
1537 offset = (insn & 0x001fffff);
1538 if (offset & 0x00100000)
1539 offset |= 0xffe00000;
1540 offset *= ALPHA_INSN_SIZE;
1541 return (pc + ALPHA_INSN_SIZE + offset);
1542 }
1543
1544 /* Need to determine if branch is taken; read RA. */
1545 regno = (insn >> 21) & 0x1f;
1546 switch (op)
1547 {
1548 case 0x31: /* FBEQ */
1549 case 0x36: /* FBGE */
1550 case 0x37: /* FBGT */
1551 case 0x33: /* FBLE */
1552 case 0x32: /* FBLT */
1553 case 0x35: /* FBNE */
1554 regno += gdbarch_fp0_regnum (gdbarch);
1555 }
1556
1557 rav = get_frame_register_signed (frame, regno);
1558
1559 switch (op)
1560 {
1561 case 0x38: /* BLBC */
1562 if ((rav & 1) == 0)
1563 goto branch_taken;
1564 break;
1565 case 0x3c: /* BLBS */
1566 if (rav & 1)
1567 goto branch_taken;
1568 break;
1569 case 0x39: /* BEQ */
1570 if (rav == 0)
1571 goto branch_taken;
1572 break;
1573 case 0x3d: /* BNE */
1574 if (rav != 0)
1575 goto branch_taken;
1576 break;
1577 case 0x3a: /* BLT */
1578 if (rav < 0)
1579 goto branch_taken;
1580 break;
1581 case 0x3b: /* BLE */
1582 if (rav <= 0)
1583 goto branch_taken;
1584 break;
1585 case 0x3f: /* BGT */
1586 if (rav > 0)
1587 goto branch_taken;
1588 break;
1589 case 0x3e: /* BGE */
1590 if (rav >= 0)
1591 goto branch_taken;
1592 break;
1593
1594 /* Floating point branches. */
1595
1596 case 0x31: /* FBEQ */
1597 if (fp_register_zero_p (rav))
1598 goto branch_taken;
1599 break;
1600 case 0x36: /* FBGE */
1601 if (fp_register_sign_bit (rav) == 0 || fp_register_zero_p (rav))
1602 goto branch_taken;
1603 break;
1604 case 0x37: /* FBGT */
1605 if (fp_register_sign_bit (rav) == 0 && ! fp_register_zero_p (rav))
1606 goto branch_taken;
1607 break;
1608 case 0x33: /* FBLE */
1609 if (fp_register_sign_bit (rav) == 1 || fp_register_zero_p (rav))
1610 goto branch_taken;
1611 break;
1612 case 0x32: /* FBLT */
1613 if (fp_register_sign_bit (rav) == 1 && ! fp_register_zero_p (rav))
1614 goto branch_taken;
1615 break;
1616 case 0x35: /* FBNE */
1617 if (! fp_register_zero_p (rav))
1618 goto branch_taken;
1619 break;
1620 }
1621 }
1622
1623 /* Not a branch or branch not taken; target PC is:
1624 pc + 4 */
1625 return (pc + ALPHA_INSN_SIZE);
1626 }
1627
1628 int
1629 alpha_software_single_step (struct frame_info *frame)
1630 {
1631 struct gdbarch *gdbarch = get_frame_arch (frame);
1632 struct address_space *aspace = get_frame_address_space (frame);
1633 CORE_ADDR pc, next_pc;
1634
1635 pc = get_frame_pc (frame);
1636 next_pc = alpha_next_pc (frame, pc);
1637
1638 insert_single_step_breakpoint (gdbarch, aspace, next_pc);
1639 return 1;
1640 }
1641
1642 \f
1643 /* Initialize the current architecture based on INFO. If possible, re-use an
1644 architecture from ARCHES, which is a list of architectures already created
1645 during this debugging session.
1646
1647 Called e.g. at program startup, when reading a core file, and when reading
1648 a binary file. */
1649
1650 static struct gdbarch *
1651 alpha_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
1652 {
1653 struct gdbarch_tdep *tdep;
1654 struct gdbarch *gdbarch;
1655
1656 /* Try to determine the ABI of the object we are loading. */
1657 if (info.abfd != NULL && info.osabi == GDB_OSABI_UNKNOWN)
1658 {
1659 /* If it's an ECOFF file, assume it's OSF/1. */
1660 if (bfd_get_flavour (info.abfd) == bfd_target_ecoff_flavour)
1661 info.osabi = GDB_OSABI_OSF1;
1662 }
1663
1664 /* Find a candidate among extant architectures. */
1665 arches = gdbarch_list_lookup_by_info (arches, &info);
1666 if (arches != NULL)
1667 return arches->gdbarch;
1668
1669 tdep = xmalloc (sizeof (struct gdbarch_tdep));
1670 gdbarch = gdbarch_alloc (&info, tdep);
1671
1672 /* Lowest text address. This is used by heuristic_proc_start()
1673 to decide when to stop looking. */
1674 tdep->vm_min_address = (CORE_ADDR) 0x120000000LL;
1675
1676 tdep->dynamic_sigtramp_offset = NULL;
1677 tdep->sigcontext_addr = NULL;
1678 tdep->sc_pc_offset = 2 * 8;
1679 tdep->sc_regs_offset = 4 * 8;
1680 tdep->sc_fpregs_offset = tdep->sc_regs_offset + 32 * 8 + 8;
1681
1682 tdep->jb_pc = -1; /* longjmp support not enabled by default. */
1683
1684 tdep->return_in_memory = alpha_return_in_memory_always;
1685
1686 /* Type sizes */
1687 set_gdbarch_short_bit (gdbarch, 16);
1688 set_gdbarch_int_bit (gdbarch, 32);
1689 set_gdbarch_long_bit (gdbarch, 64);
1690 set_gdbarch_long_long_bit (gdbarch, 64);
1691 set_gdbarch_float_bit (gdbarch, 32);
1692 set_gdbarch_double_bit (gdbarch, 64);
1693 set_gdbarch_long_double_bit (gdbarch, 64);
1694 set_gdbarch_ptr_bit (gdbarch, 64);
1695
1696 /* Register info */
1697 set_gdbarch_num_regs (gdbarch, ALPHA_NUM_REGS);
1698 set_gdbarch_sp_regnum (gdbarch, ALPHA_SP_REGNUM);
1699 set_gdbarch_pc_regnum (gdbarch, ALPHA_PC_REGNUM);
1700 set_gdbarch_fp0_regnum (gdbarch, ALPHA_FP0_REGNUM);
1701
1702 set_gdbarch_register_name (gdbarch, alpha_register_name);
1703 set_gdbarch_register_type (gdbarch, alpha_register_type);
1704
1705 set_gdbarch_cannot_fetch_register (gdbarch, alpha_cannot_fetch_register);
1706 set_gdbarch_cannot_store_register (gdbarch, alpha_cannot_store_register);
1707
1708 set_gdbarch_convert_register_p (gdbarch, alpha_convert_register_p);
1709 set_gdbarch_register_to_value (gdbarch, alpha_register_to_value);
1710 set_gdbarch_value_to_register (gdbarch, alpha_value_to_register);
1711
1712 set_gdbarch_register_reggroup_p (gdbarch, alpha_register_reggroup_p);
1713
1714 /* Prologue heuristics. */
1715 set_gdbarch_skip_prologue (gdbarch, alpha_skip_prologue);
1716
1717 /* Disassembler. */
1718 set_gdbarch_print_insn (gdbarch, print_insn_alpha);
1719
1720 /* Call info. */
1721
1722 set_gdbarch_return_value (gdbarch, alpha_return_value);
1723
1724 /* Settings for calling functions in the inferior. */
1725 set_gdbarch_push_dummy_call (gdbarch, alpha_push_dummy_call);
1726
1727 /* Methods for saving / extracting a dummy frame's ID. */
1728 set_gdbarch_dummy_id (gdbarch, alpha_dummy_id);
1729
1730 /* Return the unwound PC value. */
1731 set_gdbarch_unwind_pc (gdbarch, alpha_unwind_pc);
1732
1733 set_gdbarch_inner_than (gdbarch, core_addr_lessthan);
1734 set_gdbarch_skip_trampoline_code (gdbarch, find_solib_trampoline_target);
1735
1736 set_gdbarch_breakpoint_from_pc (gdbarch, alpha_breakpoint_from_pc);
1737 set_gdbarch_decr_pc_after_break (gdbarch, ALPHA_INSN_SIZE);
1738 set_gdbarch_cannot_step_breakpoint (gdbarch, 1);
1739
1740 /* Hook in ABI-specific overrides, if they have been registered. */
1741 gdbarch_init_osabi (info, gdbarch);
1742
1743 /* Now that we have tuned the configuration, set a few final things
1744 based on what the OS ABI has told us. */
1745
1746 if (tdep->jb_pc >= 0)
1747 set_gdbarch_get_longjmp_target (gdbarch, alpha_get_longjmp_target);
1748
1749 frame_unwind_append_unwinder (gdbarch, &alpha_sigtramp_frame_unwind);
1750 frame_unwind_append_unwinder (gdbarch, &alpha_heuristic_frame_unwind);
1751
1752 frame_base_set_default (gdbarch, &alpha_heuristic_frame_base);
1753
1754 return gdbarch;
1755 }
1756
1757 void
1758 alpha_dwarf2_init_abi (struct gdbarch_info info, struct gdbarch *gdbarch)
1759 {
1760 dwarf2_append_unwinders (gdbarch);
1761 frame_base_append_sniffer (gdbarch, dwarf2_frame_base_sniffer);
1762 }
1763
1764 extern initialize_file_ftype _initialize_alpha_tdep; /* -Wmissing-prototypes */
1765
1766 void
1767 _initialize_alpha_tdep (void)
1768 {
1769 struct cmd_list_element *c;
1770
1771 gdbarch_register (bfd_arch_alpha, alpha_gdbarch_init, NULL);
1772
1773 /* Let the user set the fence post for heuristic_proc_start. */
1774
1775 /* We really would like to have both "0" and "unlimited" work, but
1776 command.c doesn't deal with that. So make it a var_zinteger
1777 because the user can always use "999999" or some such for unlimited. */
1778 /* We need to throw away the frame cache when we set this, since it
1779 might change our ability to get backtraces. */
1780 add_setshow_zinteger_cmd ("heuristic-fence-post", class_support,
1781 &heuristic_fence_post, _("\
1782 Set the distance searched for the start of a function."), _("\
1783 Show the distance searched for the start of a function."), _("\
1784 If you are debugging a stripped executable, GDB needs to search through the\n\
1785 program for the start of a function. This command sets the distance of the\n\
1786 search. The only need to set it is when debugging a stripped executable."),
1787 reinit_frame_cache_sfunc,
1788 NULL, /* FIXME: i18n: The distance searched for
1789 the start of a function is \"%d\". */
1790 &setlist, &showlist);
1791 }
This page took 0.107347 seconds and 4 git commands to generate.