gdb
[deliverable/binutils-gdb.git] / gdb / alpha-tdep.c
1 /* Target-dependent code for the ALPHA architecture, for GDB, the GNU Debugger.
2
3 Copyright (C) 1993, 1994, 1995, 1996, 1997, 1998, 1999, 2000, 2001, 2002,
4 2003, 2005, 2006, 2007, 2008, 2009 Free Software Foundation, Inc.
5
6 This file is part of GDB.
7
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 3 of the License, or
11 (at your option) any later version.
12
13 This program is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with this program. If not, see <http://www.gnu.org/licenses/>. */
20
21 #include "defs.h"
22 #include "doublest.h"
23 #include "frame.h"
24 #include "frame-unwind.h"
25 #include "frame-base.h"
26 #include "dwarf2-frame.h"
27 #include "inferior.h"
28 #include "symtab.h"
29 #include "value.h"
30 #include "gdbcmd.h"
31 #include "gdbcore.h"
32 #include "dis-asm.h"
33 #include "symfile.h"
34 #include "objfiles.h"
35 #include "gdb_string.h"
36 #include "linespec.h"
37 #include "regcache.h"
38 #include "reggroups.h"
39 #include "arch-utils.h"
40 #include "osabi.h"
41 #include "block.h"
42 #include "infcall.h"
43 #include "trad-frame.h"
44
45 #include "elf-bfd.h"
46
47 #include "alpha-tdep.h"
48
49 \f
50 /* Return the name of the REGNO register.
51
52 An empty name corresponds to a register number that used to
53 be used for a virtual register. That virtual register has
54 been removed, but the index is still reserved to maintain
55 compatibility with existing remote alpha targets. */
56
57 static const char *
58 alpha_register_name (struct gdbarch *gdbarch, int regno)
59 {
60 static const char * const register_names[] =
61 {
62 "v0", "t0", "t1", "t2", "t3", "t4", "t5", "t6",
63 "t7", "s0", "s1", "s2", "s3", "s4", "s5", "fp",
64 "a0", "a1", "a2", "a3", "a4", "a5", "t8", "t9",
65 "t10", "t11", "ra", "t12", "at", "gp", "sp", "zero",
66 "f0", "f1", "f2", "f3", "f4", "f5", "f6", "f7",
67 "f8", "f9", "f10", "f11", "f12", "f13", "f14", "f15",
68 "f16", "f17", "f18", "f19", "f20", "f21", "f22", "f23",
69 "f24", "f25", "f26", "f27", "f28", "f29", "f30", "fpcr",
70 "pc", "", "unique"
71 };
72
73 if (regno < 0)
74 return NULL;
75 if (regno >= ARRAY_SIZE(register_names))
76 return NULL;
77 return register_names[regno];
78 }
79
80 static int
81 alpha_cannot_fetch_register (struct gdbarch *gdbarch, int regno)
82 {
83 return (regno == ALPHA_ZERO_REGNUM
84 || strlen (alpha_register_name (gdbarch, regno)) == 0);
85 }
86
87 static int
88 alpha_cannot_store_register (struct gdbarch *gdbarch, int regno)
89 {
90 return (regno == ALPHA_ZERO_REGNUM
91 || strlen (alpha_register_name (gdbarch, regno)) == 0);
92 }
93
94 static struct type *
95 alpha_register_type (struct gdbarch *gdbarch, int regno)
96 {
97 if (regno == ALPHA_SP_REGNUM || regno == ALPHA_GP_REGNUM)
98 return builtin_type (gdbarch)->builtin_data_ptr;
99 if (regno == ALPHA_PC_REGNUM)
100 return builtin_type (gdbarch)->builtin_func_ptr;
101
102 /* Don't need to worry about little vs big endian until
103 some jerk tries to port to alpha-unicosmk. */
104 if (regno >= ALPHA_FP0_REGNUM && regno < ALPHA_FP0_REGNUM + 31)
105 return builtin_type_ieee_double;
106
107 return builtin_type_int64;
108 }
109
110 /* Is REGNUM a member of REGGROUP? */
111
112 static int
113 alpha_register_reggroup_p (struct gdbarch *gdbarch, int regnum,
114 struct reggroup *group)
115 {
116 /* Filter out any registers eliminated, but whose regnum is
117 reserved for backward compatibility, e.g. the vfp. */
118 if (gdbarch_register_name (gdbarch, regnum) == NULL
119 || *gdbarch_register_name (gdbarch, regnum) == '\0')
120 return 0;
121
122 if (group == all_reggroup)
123 return 1;
124
125 /* Zero should not be saved or restored. Technically it is a general
126 register (just as $f31 would be a float if we represented it), but
127 there's no point displaying it during "info regs", so leave it out
128 of all groups except for "all". */
129 if (regnum == ALPHA_ZERO_REGNUM)
130 return 0;
131
132 /* All other registers are saved and restored. */
133 if (group == save_reggroup || group == restore_reggroup)
134 return 1;
135
136 /* All other groups are non-overlapping. */
137
138 /* Since this is really a PALcode memory slot... */
139 if (regnum == ALPHA_UNIQUE_REGNUM)
140 return group == system_reggroup;
141
142 /* Force the FPCR to be considered part of the floating point state. */
143 if (regnum == ALPHA_FPCR_REGNUM)
144 return group == float_reggroup;
145
146 if (regnum >= ALPHA_FP0_REGNUM && regnum < ALPHA_FP0_REGNUM + 31)
147 return group == float_reggroup;
148 else
149 return group == general_reggroup;
150 }
151
152 /* The following represents exactly the conversion performed by
153 the LDS instruction. This applies to both single-precision
154 floating point and 32-bit integers. */
155
156 static void
157 alpha_lds (void *out, const void *in)
158 {
159 ULONGEST mem = extract_unsigned_integer (in, 4);
160 ULONGEST frac = (mem >> 0) & 0x7fffff;
161 ULONGEST sign = (mem >> 31) & 1;
162 ULONGEST exp_msb = (mem >> 30) & 1;
163 ULONGEST exp_low = (mem >> 23) & 0x7f;
164 ULONGEST exp, reg;
165
166 exp = (exp_msb << 10) | exp_low;
167 if (exp_msb)
168 {
169 if (exp_low == 0x7f)
170 exp = 0x7ff;
171 }
172 else
173 {
174 if (exp_low != 0x00)
175 exp |= 0x380;
176 }
177
178 reg = (sign << 63) | (exp << 52) | (frac << 29);
179 store_unsigned_integer (out, 8, reg);
180 }
181
182 /* Similarly, this represents exactly the conversion performed by
183 the STS instruction. */
184
185 static void
186 alpha_sts (void *out, const void *in)
187 {
188 ULONGEST reg, mem;
189
190 reg = extract_unsigned_integer (in, 8);
191 mem = ((reg >> 32) & 0xc0000000) | ((reg >> 29) & 0x3fffffff);
192 store_unsigned_integer (out, 4, mem);
193 }
194
195 /* The alpha needs a conversion between register and memory format if the
196 register is a floating point register and memory format is float, as the
197 register format must be double or memory format is an integer with 4
198 bytes or less, as the representation of integers in floating point
199 registers is different. */
200
201 static int
202 alpha_convert_register_p (struct gdbarch *gdbarch, int regno, struct type *type)
203 {
204 return (regno >= ALPHA_FP0_REGNUM && regno < ALPHA_FP0_REGNUM + 31
205 && TYPE_LENGTH (type) != 8);
206 }
207
208 static void
209 alpha_register_to_value (struct frame_info *frame, int regnum,
210 struct type *valtype, gdb_byte *out)
211 {
212 gdb_byte in[MAX_REGISTER_SIZE];
213
214 frame_register_read (frame, regnum, in);
215 switch (TYPE_LENGTH (valtype))
216 {
217 case 4:
218 alpha_sts (out, in);
219 break;
220 default:
221 error (_("Cannot retrieve value from floating point register"));
222 }
223 }
224
225 static void
226 alpha_value_to_register (struct frame_info *frame, int regnum,
227 struct type *valtype, const gdb_byte *in)
228 {
229 gdb_byte out[MAX_REGISTER_SIZE];
230
231 switch (TYPE_LENGTH (valtype))
232 {
233 case 4:
234 alpha_lds (out, in);
235 break;
236 default:
237 error (_("Cannot store value in floating point register"));
238 }
239 put_frame_register (frame, regnum, out);
240 }
241
242 \f
243 /* The alpha passes the first six arguments in the registers, the rest on
244 the stack. The register arguments are stored in ARG_REG_BUFFER, and
245 then moved into the register file; this simplifies the passing of a
246 large struct which extends from the registers to the stack, plus avoids
247 three ptrace invocations per word.
248
249 We don't bother tracking which register values should go in integer
250 regs or fp regs; we load the same values into both.
251
252 If the called function is returning a structure, the address of the
253 structure to be returned is passed as a hidden first argument. */
254
255 static CORE_ADDR
256 alpha_push_dummy_call (struct gdbarch *gdbarch, struct value *function,
257 struct regcache *regcache, CORE_ADDR bp_addr,
258 int nargs, struct value **args, CORE_ADDR sp,
259 int struct_return, CORE_ADDR struct_addr)
260 {
261 int i;
262 int accumulate_size = struct_return ? 8 : 0;
263 struct alpha_arg
264 {
265 gdb_byte *contents;
266 int len;
267 int offset;
268 };
269 struct alpha_arg *alpha_args
270 = (struct alpha_arg *) alloca (nargs * sizeof (struct alpha_arg));
271 struct alpha_arg *m_arg;
272 gdb_byte arg_reg_buffer[ALPHA_REGISTER_SIZE * ALPHA_NUM_ARG_REGS];
273 int required_arg_regs;
274 CORE_ADDR func_addr = find_function_addr (function, NULL);
275
276 /* The ABI places the address of the called function in T12. */
277 regcache_cooked_write_signed (regcache, ALPHA_T12_REGNUM, func_addr);
278
279 /* Set the return address register to point to the entry point
280 of the program, where a breakpoint lies in wait. */
281 regcache_cooked_write_signed (regcache, ALPHA_RA_REGNUM, bp_addr);
282
283 /* Lay out the arguments in memory. */
284 for (i = 0, m_arg = alpha_args; i < nargs; i++, m_arg++)
285 {
286 struct value *arg = args[i];
287 struct type *arg_type = check_typedef (value_type (arg));
288
289 /* Cast argument to long if necessary as the compiler does it too. */
290 switch (TYPE_CODE (arg_type))
291 {
292 case TYPE_CODE_INT:
293 case TYPE_CODE_BOOL:
294 case TYPE_CODE_CHAR:
295 case TYPE_CODE_RANGE:
296 case TYPE_CODE_ENUM:
297 if (TYPE_LENGTH (arg_type) == 4)
298 {
299 /* 32-bit values must be sign-extended to 64 bits
300 even if the base data type is unsigned. */
301 arg_type = builtin_type_int32;
302 arg = value_cast (arg_type, arg);
303 }
304 if (TYPE_LENGTH (arg_type) < ALPHA_REGISTER_SIZE)
305 {
306 arg_type = builtin_type_int64;
307 arg = value_cast (arg_type, arg);
308 }
309 break;
310
311 case TYPE_CODE_FLT:
312 /* "float" arguments loaded in registers must be passed in
313 register format, aka "double". */
314 if (accumulate_size < sizeof (arg_reg_buffer)
315 && TYPE_LENGTH (arg_type) == 4)
316 {
317 arg_type = builtin_type_ieee_double;
318 arg = value_cast (arg_type, arg);
319 }
320 /* Tru64 5.1 has a 128-bit long double, and passes this by
321 invisible reference. No one else uses this data type. */
322 else if (TYPE_LENGTH (arg_type) == 16)
323 {
324 /* Allocate aligned storage. */
325 sp = (sp & -16) - 16;
326
327 /* Write the real data into the stack. */
328 write_memory (sp, value_contents (arg), 16);
329
330 /* Construct the indirection. */
331 arg_type = lookup_pointer_type (arg_type);
332 arg = value_from_pointer (arg_type, sp);
333 }
334 break;
335
336 case TYPE_CODE_COMPLEX:
337 /* ??? The ABI says that complex values are passed as two
338 separate scalar values. This distinction only matters
339 for complex float. However, GCC does not implement this. */
340
341 /* Tru64 5.1 has a 128-bit long double, and passes this by
342 invisible reference. */
343 if (TYPE_LENGTH (arg_type) == 32)
344 {
345 /* Allocate aligned storage. */
346 sp = (sp & -16) - 16;
347
348 /* Write the real data into the stack. */
349 write_memory (sp, value_contents (arg), 32);
350
351 /* Construct the indirection. */
352 arg_type = lookup_pointer_type (arg_type);
353 arg = value_from_pointer (arg_type, sp);
354 }
355 break;
356
357 default:
358 break;
359 }
360 m_arg->len = TYPE_LENGTH (arg_type);
361 m_arg->offset = accumulate_size;
362 accumulate_size = (accumulate_size + m_arg->len + 7) & ~7;
363 m_arg->contents = value_contents_writeable (arg);
364 }
365
366 /* Determine required argument register loads, loading an argument register
367 is expensive as it uses three ptrace calls. */
368 required_arg_regs = accumulate_size / 8;
369 if (required_arg_regs > ALPHA_NUM_ARG_REGS)
370 required_arg_regs = ALPHA_NUM_ARG_REGS;
371
372 /* Make room for the arguments on the stack. */
373 if (accumulate_size < sizeof(arg_reg_buffer))
374 accumulate_size = 0;
375 else
376 accumulate_size -= sizeof(arg_reg_buffer);
377 sp -= accumulate_size;
378
379 /* Keep sp aligned to a multiple of 16 as the ABI requires. */
380 sp &= ~15;
381
382 /* `Push' arguments on the stack. */
383 for (i = nargs; m_arg--, --i >= 0;)
384 {
385 gdb_byte *contents = m_arg->contents;
386 int offset = m_arg->offset;
387 int len = m_arg->len;
388
389 /* Copy the bytes destined for registers into arg_reg_buffer. */
390 if (offset < sizeof(arg_reg_buffer))
391 {
392 if (offset + len <= sizeof(arg_reg_buffer))
393 {
394 memcpy (arg_reg_buffer + offset, contents, len);
395 continue;
396 }
397 else
398 {
399 int tlen = sizeof(arg_reg_buffer) - offset;
400 memcpy (arg_reg_buffer + offset, contents, tlen);
401 offset += tlen;
402 contents += tlen;
403 len -= tlen;
404 }
405 }
406
407 /* Everything else goes to the stack. */
408 write_memory (sp + offset - sizeof(arg_reg_buffer), contents, len);
409 }
410 if (struct_return)
411 store_unsigned_integer (arg_reg_buffer, ALPHA_REGISTER_SIZE, struct_addr);
412
413 /* Load the argument registers. */
414 for (i = 0; i < required_arg_regs; i++)
415 {
416 regcache_cooked_write (regcache, ALPHA_A0_REGNUM + i,
417 arg_reg_buffer + i*ALPHA_REGISTER_SIZE);
418 regcache_cooked_write (regcache, ALPHA_FPA0_REGNUM + i,
419 arg_reg_buffer + i*ALPHA_REGISTER_SIZE);
420 }
421
422 /* Finally, update the stack pointer. */
423 regcache_cooked_write_signed (regcache, ALPHA_SP_REGNUM, sp);
424
425 return sp;
426 }
427
428 /* Extract from REGCACHE the value about to be returned from a function
429 and copy it into VALBUF. */
430
431 static void
432 alpha_extract_return_value (struct type *valtype, struct regcache *regcache,
433 gdb_byte *valbuf)
434 {
435 int length = TYPE_LENGTH (valtype);
436 gdb_byte raw_buffer[ALPHA_REGISTER_SIZE];
437 ULONGEST l;
438
439 switch (TYPE_CODE (valtype))
440 {
441 case TYPE_CODE_FLT:
442 switch (length)
443 {
444 case 4:
445 regcache_cooked_read (regcache, ALPHA_FP0_REGNUM, raw_buffer);
446 alpha_sts (valbuf, raw_buffer);
447 break;
448
449 case 8:
450 regcache_cooked_read (regcache, ALPHA_FP0_REGNUM, valbuf);
451 break;
452
453 case 16:
454 regcache_cooked_read_unsigned (regcache, ALPHA_V0_REGNUM, &l);
455 read_memory (l, valbuf, 16);
456 break;
457
458 default:
459 internal_error (__FILE__, __LINE__, _("unknown floating point width"));
460 }
461 break;
462
463 case TYPE_CODE_COMPLEX:
464 switch (length)
465 {
466 case 8:
467 /* ??? This isn't correct wrt the ABI, but it's what GCC does. */
468 regcache_cooked_read (regcache, ALPHA_FP0_REGNUM, valbuf);
469 break;
470
471 case 16:
472 regcache_cooked_read (regcache, ALPHA_FP0_REGNUM, valbuf);
473 regcache_cooked_read (regcache, ALPHA_FP0_REGNUM + 1, valbuf + 8);
474 break;
475
476 case 32:
477 regcache_cooked_read_signed (regcache, ALPHA_V0_REGNUM, &l);
478 read_memory (l, valbuf, 32);
479 break;
480
481 default:
482 internal_error (__FILE__, __LINE__, _("unknown floating point width"));
483 }
484 break;
485
486 default:
487 /* Assume everything else degenerates to an integer. */
488 regcache_cooked_read_unsigned (regcache, ALPHA_V0_REGNUM, &l);
489 store_unsigned_integer (valbuf, length, l);
490 break;
491 }
492 }
493
494 /* Insert the given value into REGCACHE as if it was being
495 returned by a function. */
496
497 static void
498 alpha_store_return_value (struct type *valtype, struct regcache *regcache,
499 const gdb_byte *valbuf)
500 {
501 int length = TYPE_LENGTH (valtype);
502 gdb_byte raw_buffer[ALPHA_REGISTER_SIZE];
503 ULONGEST l;
504
505 switch (TYPE_CODE (valtype))
506 {
507 case TYPE_CODE_FLT:
508 switch (length)
509 {
510 case 4:
511 alpha_lds (raw_buffer, valbuf);
512 regcache_cooked_write (regcache, ALPHA_FP0_REGNUM, raw_buffer);
513 break;
514
515 case 8:
516 regcache_cooked_write (regcache, ALPHA_FP0_REGNUM, valbuf);
517 break;
518
519 case 16:
520 /* FIXME: 128-bit long doubles are returned like structures:
521 by writing into indirect storage provided by the caller
522 as the first argument. */
523 error (_("Cannot set a 128-bit long double return value."));
524
525 default:
526 internal_error (__FILE__, __LINE__, _("unknown floating point width"));
527 }
528 break;
529
530 case TYPE_CODE_COMPLEX:
531 switch (length)
532 {
533 case 8:
534 /* ??? This isn't correct wrt the ABI, but it's what GCC does. */
535 regcache_cooked_write (regcache, ALPHA_FP0_REGNUM, valbuf);
536 break;
537
538 case 16:
539 regcache_cooked_write (regcache, ALPHA_FP0_REGNUM, valbuf);
540 regcache_cooked_write (regcache, ALPHA_FP0_REGNUM + 1, valbuf + 8);
541 break;
542
543 case 32:
544 /* FIXME: 128-bit long doubles are returned like structures:
545 by writing into indirect storage provided by the caller
546 as the first argument. */
547 error (_("Cannot set a 128-bit long double return value."));
548
549 default:
550 internal_error (__FILE__, __LINE__, _("unknown floating point width"));
551 }
552 break;
553
554 default:
555 /* Assume everything else degenerates to an integer. */
556 /* 32-bit values must be sign-extended to 64 bits
557 even if the base data type is unsigned. */
558 if (length == 4)
559 valtype = builtin_type_int32;
560 l = unpack_long (valtype, valbuf);
561 regcache_cooked_write_unsigned (regcache, ALPHA_V0_REGNUM, l);
562 break;
563 }
564 }
565
566 static enum return_value_convention
567 alpha_return_value (struct gdbarch *gdbarch, struct type *func_type,
568 struct type *type, struct regcache *regcache,
569 gdb_byte *readbuf, const gdb_byte *writebuf)
570 {
571 enum type_code code = TYPE_CODE (type);
572
573 if ((code == TYPE_CODE_STRUCT
574 || code == TYPE_CODE_UNION
575 || code == TYPE_CODE_ARRAY)
576 && gdbarch_tdep (gdbarch)->return_in_memory (type))
577 {
578 if (readbuf)
579 {
580 ULONGEST addr;
581 regcache_raw_read_unsigned (regcache, ALPHA_V0_REGNUM, &addr);
582 read_memory (addr, readbuf, TYPE_LENGTH (type));
583 }
584
585 return RETURN_VALUE_ABI_RETURNS_ADDRESS;
586 }
587
588 if (readbuf)
589 alpha_extract_return_value (type, regcache, readbuf);
590 if (writebuf)
591 alpha_store_return_value (type, regcache, writebuf);
592
593 return RETURN_VALUE_REGISTER_CONVENTION;
594 }
595
596 static int
597 alpha_return_in_memory_always (struct type *type)
598 {
599 return 1;
600 }
601 \f
602 static const gdb_byte *
603 alpha_breakpoint_from_pc (struct gdbarch *gdbarch, CORE_ADDR *pc, int *len)
604 {
605 static const gdb_byte break_insn[] = { 0x80, 0, 0, 0 }; /* call_pal bpt */
606
607 *len = sizeof(break_insn);
608 return break_insn;
609 }
610
611 \f
612 /* This returns the PC of the first insn after the prologue.
613 If we can't find the prologue, then return 0. */
614
615 CORE_ADDR
616 alpha_after_prologue (CORE_ADDR pc)
617 {
618 struct symtab_and_line sal;
619 CORE_ADDR func_addr, func_end;
620
621 if (!find_pc_partial_function (pc, NULL, &func_addr, &func_end))
622 return 0;
623
624 sal = find_pc_line (func_addr, 0);
625 if (sal.end < func_end)
626 return sal.end;
627
628 /* The line after the prologue is after the end of the function. In this
629 case, tell the caller to find the prologue the hard way. */
630 return 0;
631 }
632
633 /* Read an instruction from memory at PC, looking through breakpoints. */
634
635 unsigned int
636 alpha_read_insn (CORE_ADDR pc)
637 {
638 gdb_byte buf[ALPHA_INSN_SIZE];
639 int status;
640
641 status = target_read_memory (pc, buf, sizeof (buf));
642 if (status)
643 memory_error (status, pc);
644 return extract_unsigned_integer (buf, sizeof (buf));
645 }
646
647 /* To skip prologues, I use this predicate. Returns either PC itself
648 if the code at PC does not look like a function prologue; otherwise
649 returns an address that (if we're lucky) follows the prologue. If
650 LENIENT, then we must skip everything which is involved in setting
651 up the frame (it's OK to skip more, just so long as we don't skip
652 anything which might clobber the registers which are being saved. */
653
654 static CORE_ADDR
655 alpha_skip_prologue (struct gdbarch *gdbarch, CORE_ADDR pc)
656 {
657 unsigned long inst;
658 int offset;
659 CORE_ADDR post_prologue_pc;
660 gdb_byte buf[ALPHA_INSN_SIZE];
661
662 /* Silently return the unaltered pc upon memory errors.
663 This could happen on OSF/1 if decode_line_1 tries to skip the
664 prologue for quickstarted shared library functions when the
665 shared library is not yet mapped in.
666 Reading target memory is slow over serial lines, so we perform
667 this check only if the target has shared libraries (which all
668 Alpha targets do). */
669 if (target_read_memory (pc, buf, sizeof (buf)))
670 return pc;
671
672 /* See if we can determine the end of the prologue via the symbol table.
673 If so, then return either PC, or the PC after the prologue, whichever
674 is greater. */
675
676 post_prologue_pc = alpha_after_prologue (pc);
677 if (post_prologue_pc != 0)
678 return max (pc, post_prologue_pc);
679
680 /* Can't determine prologue from the symbol table, need to examine
681 instructions. */
682
683 /* Skip the typical prologue instructions. These are the stack adjustment
684 instruction and the instructions that save registers on the stack
685 or in the gcc frame. */
686 for (offset = 0; offset < 100; offset += ALPHA_INSN_SIZE)
687 {
688 inst = alpha_read_insn (pc + offset);
689
690 if ((inst & 0xffff0000) == 0x27bb0000) /* ldah $gp,n($t12) */
691 continue;
692 if ((inst & 0xffff0000) == 0x23bd0000) /* lda $gp,n($gp) */
693 continue;
694 if ((inst & 0xffff0000) == 0x23de0000) /* lda $sp,n($sp) */
695 continue;
696 if ((inst & 0xffe01fff) == 0x43c0153e) /* subq $sp,n,$sp */
697 continue;
698
699 if (((inst & 0xfc1f0000) == 0xb41e0000 /* stq reg,n($sp) */
700 || (inst & 0xfc1f0000) == 0x9c1e0000) /* stt reg,n($sp) */
701 && (inst & 0x03e00000) != 0x03e00000) /* reg != $zero */
702 continue;
703
704 if (inst == 0x47de040f) /* bis sp,sp,fp */
705 continue;
706 if (inst == 0x47fe040f) /* bis zero,sp,fp */
707 continue;
708
709 break;
710 }
711 return pc + offset;
712 }
713
714 \f
715 /* Figure out where the longjmp will land.
716 We expect the first arg to be a pointer to the jmp_buf structure from
717 which we extract the PC (JB_PC) that we will land at. The PC is copied
718 into the "pc". This routine returns true on success. */
719
720 static int
721 alpha_get_longjmp_target (struct frame_info *frame, CORE_ADDR *pc)
722 {
723 struct gdbarch_tdep *tdep = gdbarch_tdep (get_frame_arch (frame));
724 CORE_ADDR jb_addr;
725 gdb_byte raw_buffer[ALPHA_REGISTER_SIZE];
726
727 jb_addr = get_frame_register_unsigned (frame, ALPHA_A0_REGNUM);
728
729 if (target_read_memory (jb_addr + (tdep->jb_pc * tdep->jb_elt_size),
730 raw_buffer, tdep->jb_elt_size))
731 return 0;
732
733 *pc = extract_unsigned_integer (raw_buffer, tdep->jb_elt_size);
734 return 1;
735 }
736
737 \f
738 /* Frame unwinder for signal trampolines. We use alpha tdep bits that
739 describe the location and shape of the sigcontext structure. After
740 that, all registers are in memory, so it's easy. */
741 /* ??? Shouldn't we be able to do this generically, rather than with
742 OSABI data specific to Alpha? */
743
744 struct alpha_sigtramp_unwind_cache
745 {
746 CORE_ADDR sigcontext_addr;
747 };
748
749 static struct alpha_sigtramp_unwind_cache *
750 alpha_sigtramp_frame_unwind_cache (struct frame_info *this_frame,
751 void **this_prologue_cache)
752 {
753 struct alpha_sigtramp_unwind_cache *info;
754 struct gdbarch_tdep *tdep;
755
756 if (*this_prologue_cache)
757 return *this_prologue_cache;
758
759 info = FRAME_OBSTACK_ZALLOC (struct alpha_sigtramp_unwind_cache);
760 *this_prologue_cache = info;
761
762 tdep = gdbarch_tdep (get_frame_arch (this_frame));
763 info->sigcontext_addr = tdep->sigcontext_addr (this_frame);
764
765 return info;
766 }
767
768 /* Return the address of REGNUM in a sigtramp frame. Since this is
769 all arithmetic, it doesn't seem worthwhile to cache it. */
770
771 static CORE_ADDR
772 alpha_sigtramp_register_address (struct gdbarch *gdbarch,
773 CORE_ADDR sigcontext_addr, int regnum)
774 {
775 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
776
777 if (regnum >= 0 && regnum < 32)
778 return sigcontext_addr + tdep->sc_regs_offset + regnum * 8;
779 else if (regnum >= ALPHA_FP0_REGNUM && regnum < ALPHA_FP0_REGNUM + 32)
780 return sigcontext_addr + tdep->sc_fpregs_offset + regnum * 8;
781 else if (regnum == ALPHA_PC_REGNUM)
782 return sigcontext_addr + tdep->sc_pc_offset;
783
784 return 0;
785 }
786
787 /* Given a GDB frame, determine the address of the calling function's
788 frame. This will be used to create a new GDB frame struct. */
789
790 static void
791 alpha_sigtramp_frame_this_id (struct frame_info *this_frame,
792 void **this_prologue_cache,
793 struct frame_id *this_id)
794 {
795 struct gdbarch *gdbarch = get_frame_arch (this_frame);
796 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
797 struct alpha_sigtramp_unwind_cache *info
798 = alpha_sigtramp_frame_unwind_cache (this_frame, this_prologue_cache);
799 CORE_ADDR stack_addr, code_addr;
800
801 /* If the OSABI couldn't locate the sigcontext, give up. */
802 if (info->sigcontext_addr == 0)
803 return;
804
805 /* If we have dynamic signal trampolines, find their start.
806 If we do not, then we must assume there is a symbol record
807 that can provide the start address. */
808 if (tdep->dynamic_sigtramp_offset)
809 {
810 int offset;
811 code_addr = get_frame_pc (this_frame);
812 offset = tdep->dynamic_sigtramp_offset (code_addr);
813 if (offset >= 0)
814 code_addr -= offset;
815 else
816 code_addr = 0;
817 }
818 else
819 code_addr = get_frame_func (this_frame);
820
821 /* The stack address is trivially read from the sigcontext. */
822 stack_addr = alpha_sigtramp_register_address (gdbarch, info->sigcontext_addr,
823 ALPHA_SP_REGNUM);
824 stack_addr = get_frame_memory_unsigned (this_frame, stack_addr,
825 ALPHA_REGISTER_SIZE);
826
827 *this_id = frame_id_build (stack_addr, code_addr);
828 }
829
830 /* Retrieve the value of REGNUM in FRAME. Don't give up! */
831
832 static struct value *
833 alpha_sigtramp_frame_prev_register (struct frame_info *this_frame,
834 void **this_prologue_cache, int regnum)
835 {
836 struct alpha_sigtramp_unwind_cache *info
837 = alpha_sigtramp_frame_unwind_cache (this_frame, this_prologue_cache);
838 CORE_ADDR addr;
839
840 if (info->sigcontext_addr != 0)
841 {
842 /* All integer and fp registers are stored in memory. */
843 addr = alpha_sigtramp_register_address (get_frame_arch (this_frame),
844 info->sigcontext_addr, regnum);
845 if (addr != 0)
846 return frame_unwind_got_memory (this_frame, regnum, addr);
847 }
848
849 /* This extra register may actually be in the sigcontext, but our
850 current description of it in alpha_sigtramp_frame_unwind_cache
851 doesn't include it. Too bad. Fall back on whatever's in the
852 outer frame. */
853 return frame_unwind_got_register (this_frame, regnum, regnum);
854 }
855
856 static int
857 alpha_sigtramp_frame_sniffer (const struct frame_unwind *self,
858 struct frame_info *this_frame,
859 void **this_prologue_cache)
860 {
861 struct gdbarch *gdbarch = get_frame_arch (this_frame);
862 CORE_ADDR pc = get_frame_pc (this_frame);
863 char *name;
864
865 /* NOTE: cagney/2004-04-30: Do not copy/clone this code. Instead
866 look at tramp-frame.h and other simplier per-architecture
867 sigtramp unwinders. */
868
869 /* We shouldn't even bother to try if the OSABI didn't register a
870 sigcontext_addr handler or pc_in_sigtramp hander. */
871 if (gdbarch_tdep (gdbarch)->sigcontext_addr == NULL)
872 return 0;
873 if (gdbarch_tdep (gdbarch)->pc_in_sigtramp == NULL)
874 return 0;
875
876 /* Otherwise we should be in a signal frame. */
877 find_pc_partial_function (pc, &name, NULL, NULL);
878 if (gdbarch_tdep (gdbarch)->pc_in_sigtramp (pc, name))
879 return 1;
880
881 return 0;
882 }
883
884 static const struct frame_unwind alpha_sigtramp_frame_unwind = {
885 SIGTRAMP_FRAME,
886 alpha_sigtramp_frame_this_id,
887 alpha_sigtramp_frame_prev_register,
888 NULL,
889 alpha_sigtramp_frame_sniffer
890 };
891
892 \f
893
894 /* Heuristic_proc_start may hunt through the text section for a long
895 time across a 2400 baud serial line. Allows the user to limit this
896 search. */
897 static unsigned int heuristic_fence_post = 0;
898
899 /* Attempt to locate the start of the function containing PC. We assume that
900 the previous function ends with an about_to_return insn. Not foolproof by
901 any means, since gcc is happy to put the epilogue in the middle of a
902 function. But we're guessing anyway... */
903
904 static CORE_ADDR
905 alpha_heuristic_proc_start (struct gdbarch *gdbarch, CORE_ADDR pc)
906 {
907 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
908 CORE_ADDR last_non_nop = pc;
909 CORE_ADDR fence = pc - heuristic_fence_post;
910 CORE_ADDR orig_pc = pc;
911 CORE_ADDR func;
912 struct inferior *inf;
913
914 if (pc == 0)
915 return 0;
916
917 /* First see if we can find the start of the function from minimal
918 symbol information. This can succeed with a binary that doesn't
919 have debug info, but hasn't been stripped. */
920 func = get_pc_function_start (pc);
921 if (func)
922 return func;
923
924 if (heuristic_fence_post == UINT_MAX
925 || fence < tdep->vm_min_address)
926 fence = tdep->vm_min_address;
927
928 /* Search back for previous return; also stop at a 0, which might be
929 seen for instance before the start of a code section. Don't include
930 nops, since this usually indicates padding between functions. */
931 for (pc -= ALPHA_INSN_SIZE; pc >= fence; pc -= ALPHA_INSN_SIZE)
932 {
933 unsigned int insn = alpha_read_insn (pc);
934 switch (insn)
935 {
936 case 0: /* invalid insn */
937 case 0x6bfa8001: /* ret $31,($26),1 */
938 return last_non_nop;
939
940 case 0x2ffe0000: /* unop: ldq_u $31,0($30) */
941 case 0x47ff041f: /* nop: bis $31,$31,$31 */
942 break;
943
944 default:
945 last_non_nop = pc;
946 break;
947 }
948 }
949
950 inf = current_inferior ();
951
952 /* It's not clear to me why we reach this point when stopping quietly,
953 but with this test, at least we don't print out warnings for every
954 child forked (eg, on decstation). 22apr93 rich@cygnus.com. */
955 if (inf->stop_soon == NO_STOP_QUIETLY)
956 {
957 static int blurb_printed = 0;
958
959 if (fence == tdep->vm_min_address)
960 warning (_("Hit beginning of text section without finding \
961 enclosing function for address 0x%s"), paddr_nz (orig_pc));
962 else
963 warning (_("Hit heuristic-fence-post without finding \
964 enclosing function for address 0x%s"), paddr_nz (orig_pc));
965
966 if (!blurb_printed)
967 {
968 printf_filtered (_("\
969 This warning occurs if you are debugging a function without any symbols\n\
970 (for example, in a stripped executable). In that case, you may wish to\n\
971 increase the size of the search with the `set heuristic-fence-post' command.\n\
972 \n\
973 Otherwise, you told GDB there was a function where there isn't one, or\n\
974 (more likely) you have encountered a bug in GDB.\n"));
975 blurb_printed = 1;
976 }
977 }
978
979 return 0;
980 }
981
982 /* Fallback alpha frame unwinder. Uses instruction scanning and knows
983 something about the traditional layout of alpha stack frames. */
984
985 struct alpha_heuristic_unwind_cache
986 {
987 CORE_ADDR vfp;
988 CORE_ADDR start_pc;
989 struct trad_frame_saved_reg *saved_regs;
990 int return_reg;
991 };
992
993 static struct alpha_heuristic_unwind_cache *
994 alpha_heuristic_frame_unwind_cache (struct frame_info *this_frame,
995 void **this_prologue_cache,
996 CORE_ADDR start_pc)
997 {
998 struct gdbarch *gdbarch = get_frame_arch (this_frame);
999 struct alpha_heuristic_unwind_cache *info;
1000 ULONGEST val;
1001 CORE_ADDR limit_pc, cur_pc;
1002 int frame_reg, frame_size, return_reg, reg;
1003
1004 if (*this_prologue_cache)
1005 return *this_prologue_cache;
1006
1007 info = FRAME_OBSTACK_ZALLOC (struct alpha_heuristic_unwind_cache);
1008 *this_prologue_cache = info;
1009 info->saved_regs = trad_frame_alloc_saved_regs (this_frame);
1010
1011 limit_pc = get_frame_pc (this_frame);
1012 if (start_pc == 0)
1013 start_pc = alpha_heuristic_proc_start (gdbarch, limit_pc);
1014 info->start_pc = start_pc;
1015
1016 frame_reg = ALPHA_SP_REGNUM;
1017 frame_size = 0;
1018 return_reg = -1;
1019
1020 /* If we've identified a likely place to start, do code scanning. */
1021 if (start_pc != 0)
1022 {
1023 /* Limit the forward search to 50 instructions. */
1024 if (start_pc + 200 < limit_pc)
1025 limit_pc = start_pc + 200;
1026
1027 for (cur_pc = start_pc; cur_pc < limit_pc; cur_pc += ALPHA_INSN_SIZE)
1028 {
1029 unsigned int word = alpha_read_insn (cur_pc);
1030
1031 if ((word & 0xffff0000) == 0x23de0000) /* lda $sp,n($sp) */
1032 {
1033 if (word & 0x8000)
1034 {
1035 /* Consider only the first stack allocation instruction
1036 to contain the static size of the frame. */
1037 if (frame_size == 0)
1038 frame_size = (-word) & 0xffff;
1039 }
1040 else
1041 {
1042 /* Exit loop if a positive stack adjustment is found, which
1043 usually means that the stack cleanup code in the function
1044 epilogue is reached. */
1045 break;
1046 }
1047 }
1048 else if ((word & 0xfc1f0000) == 0xb41e0000) /* stq reg,n($sp) */
1049 {
1050 reg = (word & 0x03e00000) >> 21;
1051
1052 /* Ignore this instruction if we have already encountered
1053 an instruction saving the same register earlier in the
1054 function code. The current instruction does not tell
1055 us where the original value upon function entry is saved.
1056 All it says is that the function we are scanning reused
1057 that register for some computation of its own, and is now
1058 saving its result. */
1059 if (trad_frame_addr_p(info->saved_regs, reg))
1060 continue;
1061
1062 if (reg == 31)
1063 continue;
1064
1065 /* Do not compute the address where the register was saved yet,
1066 because we don't know yet if the offset will need to be
1067 relative to $sp or $fp (we can not compute the address
1068 relative to $sp if $sp is updated during the execution of
1069 the current subroutine, for instance when doing some alloca).
1070 So just store the offset for the moment, and compute the
1071 address later when we know whether this frame has a frame
1072 pointer or not. */
1073 /* Hack: temporarily add one, so that the offset is non-zero
1074 and we can tell which registers have save offsets below. */
1075 info->saved_regs[reg].addr = (word & 0xffff) + 1;
1076
1077 /* Starting with OSF/1-3.2C, the system libraries are shipped
1078 without local symbols, but they still contain procedure
1079 descriptors without a symbol reference. GDB is currently
1080 unable to find these procedure descriptors and uses
1081 heuristic_proc_desc instead.
1082 As some low level compiler support routines (__div*, __add*)
1083 use a non-standard return address register, we have to
1084 add some heuristics to determine the return address register,
1085 or stepping over these routines will fail.
1086 Usually the return address register is the first register
1087 saved on the stack, but assembler optimization might
1088 rearrange the register saves.
1089 So we recognize only a few registers (t7, t9, ra) within
1090 the procedure prologue as valid return address registers.
1091 If we encounter a return instruction, we extract the
1092 the return address register from it.
1093
1094 FIXME: Rewriting GDB to access the procedure descriptors,
1095 e.g. via the minimal symbol table, might obviate this hack. */
1096 if (return_reg == -1
1097 && cur_pc < (start_pc + 80)
1098 && (reg == ALPHA_T7_REGNUM
1099 || reg == ALPHA_T9_REGNUM
1100 || reg == ALPHA_RA_REGNUM))
1101 return_reg = reg;
1102 }
1103 else if ((word & 0xffe0ffff) == 0x6be08001) /* ret zero,reg,1 */
1104 return_reg = (word >> 16) & 0x1f;
1105 else if (word == 0x47de040f) /* bis sp,sp,fp */
1106 frame_reg = ALPHA_GCC_FP_REGNUM;
1107 else if (word == 0x47fe040f) /* bis zero,sp,fp */
1108 frame_reg = ALPHA_GCC_FP_REGNUM;
1109 }
1110
1111 /* If we haven't found a valid return address register yet, keep
1112 searching in the procedure prologue. */
1113 if (return_reg == -1)
1114 {
1115 while (cur_pc < (limit_pc + 80) && cur_pc < (start_pc + 80))
1116 {
1117 unsigned int word = alpha_read_insn (cur_pc);
1118
1119 if ((word & 0xfc1f0000) == 0xb41e0000) /* stq reg,n($sp) */
1120 {
1121 reg = (word & 0x03e00000) >> 21;
1122 if (reg == ALPHA_T7_REGNUM
1123 || reg == ALPHA_T9_REGNUM
1124 || reg == ALPHA_RA_REGNUM)
1125 {
1126 return_reg = reg;
1127 break;
1128 }
1129 }
1130 else if ((word & 0xffe0ffff) == 0x6be08001) /* ret zero,reg,1 */
1131 {
1132 return_reg = (word >> 16) & 0x1f;
1133 break;
1134 }
1135
1136 cur_pc += ALPHA_INSN_SIZE;
1137 }
1138 }
1139 }
1140
1141 /* Failing that, do default to the customary RA. */
1142 if (return_reg == -1)
1143 return_reg = ALPHA_RA_REGNUM;
1144 info->return_reg = return_reg;
1145
1146 val = get_frame_register_unsigned (this_frame, frame_reg);
1147 info->vfp = val + frame_size;
1148
1149 /* Convert offsets to absolute addresses. See above about adding
1150 one to the offsets to make all detected offsets non-zero. */
1151 for (reg = 0; reg < ALPHA_NUM_REGS; ++reg)
1152 if (trad_frame_addr_p(info->saved_regs, reg))
1153 info->saved_regs[reg].addr += val - 1;
1154
1155 /* The stack pointer of the previous frame is computed by popping
1156 the current stack frame. */
1157 if (!trad_frame_addr_p (info->saved_regs, ALPHA_SP_REGNUM))
1158 trad_frame_set_value (info->saved_regs, ALPHA_SP_REGNUM, info->vfp);
1159
1160 return info;
1161 }
1162
1163 /* Given a GDB frame, determine the address of the calling function's
1164 frame. This will be used to create a new GDB frame struct. */
1165
1166 static void
1167 alpha_heuristic_frame_this_id (struct frame_info *this_frame,
1168 void **this_prologue_cache,
1169 struct frame_id *this_id)
1170 {
1171 struct alpha_heuristic_unwind_cache *info
1172 = alpha_heuristic_frame_unwind_cache (this_frame, this_prologue_cache, 0);
1173
1174 *this_id = frame_id_build (info->vfp, info->start_pc);
1175 }
1176
1177 /* Retrieve the value of REGNUM in FRAME. Don't give up! */
1178
1179 static struct value *
1180 alpha_heuristic_frame_prev_register (struct frame_info *this_frame,
1181 void **this_prologue_cache, int regnum)
1182 {
1183 struct alpha_heuristic_unwind_cache *info
1184 = alpha_heuristic_frame_unwind_cache (this_frame, this_prologue_cache, 0);
1185
1186 /* The PC of the previous frame is stored in the link register of
1187 the current frame. Frob regnum so that we pull the value from
1188 the correct place. */
1189 if (regnum == ALPHA_PC_REGNUM)
1190 regnum = info->return_reg;
1191
1192 return trad_frame_get_prev_register (this_frame, info->saved_regs, regnum);
1193 }
1194
1195 static const struct frame_unwind alpha_heuristic_frame_unwind = {
1196 NORMAL_FRAME,
1197 alpha_heuristic_frame_this_id,
1198 alpha_heuristic_frame_prev_register,
1199 NULL,
1200 default_frame_sniffer
1201 };
1202
1203 static CORE_ADDR
1204 alpha_heuristic_frame_base_address (struct frame_info *this_frame,
1205 void **this_prologue_cache)
1206 {
1207 struct alpha_heuristic_unwind_cache *info
1208 = alpha_heuristic_frame_unwind_cache (this_frame, this_prologue_cache, 0);
1209
1210 return info->vfp;
1211 }
1212
1213 static const struct frame_base alpha_heuristic_frame_base = {
1214 &alpha_heuristic_frame_unwind,
1215 alpha_heuristic_frame_base_address,
1216 alpha_heuristic_frame_base_address,
1217 alpha_heuristic_frame_base_address
1218 };
1219
1220 /* Just like reinit_frame_cache, but with the right arguments to be
1221 callable as an sfunc. Used by the "set heuristic-fence-post" command. */
1222
1223 static void
1224 reinit_frame_cache_sfunc (char *args, int from_tty, struct cmd_list_element *c)
1225 {
1226 reinit_frame_cache ();
1227 }
1228
1229 \f
1230 /* Assuming NEXT_FRAME->prev is a dummy, return the frame ID of that
1231 dummy frame. The frame ID's base needs to match the TOS value
1232 saved by save_dummy_frame_tos(), and the PC match the dummy frame's
1233 breakpoint. */
1234
1235 static struct frame_id
1236 alpha_dummy_id (struct gdbarch *gdbarch, struct frame_info *this_frame)
1237 {
1238 ULONGEST base;
1239 base = get_frame_register_unsigned (this_frame, ALPHA_SP_REGNUM);
1240 return frame_id_build (base, get_frame_pc (this_frame));
1241 }
1242
1243 static CORE_ADDR
1244 alpha_unwind_pc (struct gdbarch *gdbarch, struct frame_info *next_frame)
1245 {
1246 ULONGEST pc;
1247 pc = frame_unwind_register_unsigned (next_frame, ALPHA_PC_REGNUM);
1248 return pc;
1249 }
1250
1251 \f
1252 /* Helper routines for alpha*-nat.c files to move register sets to and
1253 from core files. The UNIQUE pointer is allowed to be NULL, as most
1254 targets don't supply this value in their core files. */
1255
1256 void
1257 alpha_supply_int_regs (struct regcache *regcache, int regno,
1258 const void *r0_r30, const void *pc, const void *unique)
1259 {
1260 const gdb_byte *regs = r0_r30;
1261 int i;
1262
1263 for (i = 0; i < 31; ++i)
1264 if (regno == i || regno == -1)
1265 regcache_raw_supply (regcache, i, regs + i * 8);
1266
1267 if (regno == ALPHA_ZERO_REGNUM || regno == -1)
1268 regcache_raw_supply (regcache, ALPHA_ZERO_REGNUM, NULL);
1269
1270 if (regno == ALPHA_PC_REGNUM || regno == -1)
1271 regcache_raw_supply (regcache, ALPHA_PC_REGNUM, pc);
1272
1273 if (regno == ALPHA_UNIQUE_REGNUM || regno == -1)
1274 regcache_raw_supply (regcache, ALPHA_UNIQUE_REGNUM, unique);
1275 }
1276
1277 void
1278 alpha_fill_int_regs (const struct regcache *regcache,
1279 int regno, void *r0_r30, void *pc, void *unique)
1280 {
1281 gdb_byte *regs = r0_r30;
1282 int i;
1283
1284 for (i = 0; i < 31; ++i)
1285 if (regno == i || regno == -1)
1286 regcache_raw_collect (regcache, i, regs + i * 8);
1287
1288 if (regno == ALPHA_PC_REGNUM || regno == -1)
1289 regcache_raw_collect (regcache, ALPHA_PC_REGNUM, pc);
1290
1291 if (unique && (regno == ALPHA_UNIQUE_REGNUM || regno == -1))
1292 regcache_raw_collect (regcache, ALPHA_UNIQUE_REGNUM, unique);
1293 }
1294
1295 void
1296 alpha_supply_fp_regs (struct regcache *regcache, int regno,
1297 const void *f0_f30, const void *fpcr)
1298 {
1299 const gdb_byte *regs = f0_f30;
1300 int i;
1301
1302 for (i = ALPHA_FP0_REGNUM; i < ALPHA_FP0_REGNUM + 31; ++i)
1303 if (regno == i || regno == -1)
1304 regcache_raw_supply (regcache, i,
1305 regs + (i - ALPHA_FP0_REGNUM) * 8);
1306
1307 if (regno == ALPHA_FPCR_REGNUM || regno == -1)
1308 regcache_raw_supply (regcache, ALPHA_FPCR_REGNUM, fpcr);
1309 }
1310
1311 void
1312 alpha_fill_fp_regs (const struct regcache *regcache,
1313 int regno, void *f0_f30, void *fpcr)
1314 {
1315 gdb_byte *regs = f0_f30;
1316 int i;
1317
1318 for (i = ALPHA_FP0_REGNUM; i < ALPHA_FP0_REGNUM + 31; ++i)
1319 if (regno == i || regno == -1)
1320 regcache_raw_collect (regcache, i,
1321 regs + (i - ALPHA_FP0_REGNUM) * 8);
1322
1323 if (regno == ALPHA_FPCR_REGNUM || regno == -1)
1324 regcache_raw_collect (regcache, ALPHA_FPCR_REGNUM, fpcr);
1325 }
1326
1327 \f
1328
1329 /* Return nonzero if the G_floating register value in REG is equal to
1330 zero for FP control instructions. */
1331
1332 static int
1333 fp_register_zero_p (LONGEST reg)
1334 {
1335 /* Check that all bits except the sign bit are zero. */
1336 const LONGEST zero_mask = ((LONGEST) 1 << 63) ^ -1;
1337
1338 return ((reg & zero_mask) == 0);
1339 }
1340
1341 /* Return the value of the sign bit for the G_floating register
1342 value held in REG. */
1343
1344 static int
1345 fp_register_sign_bit (LONGEST reg)
1346 {
1347 const LONGEST sign_mask = (LONGEST) 1 << 63;
1348
1349 return ((reg & sign_mask) != 0);
1350 }
1351
1352 /* alpha_software_single_step() is called just before we want to resume
1353 the inferior, if we want to single-step it but there is no hardware
1354 or kernel single-step support (NetBSD on Alpha, for example). We find
1355 the target of the coming instruction and breakpoint it. */
1356
1357 static CORE_ADDR
1358 alpha_next_pc (struct frame_info *frame, CORE_ADDR pc)
1359 {
1360 unsigned int insn;
1361 unsigned int op;
1362 int regno;
1363 int offset;
1364 LONGEST rav;
1365
1366 insn = alpha_read_insn (pc);
1367
1368 /* Opcode is top 6 bits. */
1369 op = (insn >> 26) & 0x3f;
1370
1371 if (op == 0x1a)
1372 {
1373 /* Jump format: target PC is:
1374 RB & ~3 */
1375 return (get_frame_register_unsigned (frame, (insn >> 16) & 0x1f) & ~3);
1376 }
1377
1378 if ((op & 0x30) == 0x30)
1379 {
1380 /* Branch format: target PC is:
1381 (new PC) + (4 * sext(displacement)) */
1382 if (op == 0x30 || /* BR */
1383 op == 0x34) /* BSR */
1384 {
1385 branch_taken:
1386 offset = (insn & 0x001fffff);
1387 if (offset & 0x00100000)
1388 offset |= 0xffe00000;
1389 offset *= ALPHA_INSN_SIZE;
1390 return (pc + ALPHA_INSN_SIZE + offset);
1391 }
1392
1393 /* Need to determine if branch is taken; read RA. */
1394 regno = (insn >> 21) & 0x1f;
1395 switch (op)
1396 {
1397 case 0x31: /* FBEQ */
1398 case 0x36: /* FBGE */
1399 case 0x37: /* FBGT */
1400 case 0x33: /* FBLE */
1401 case 0x32: /* FBLT */
1402 case 0x35: /* FBNE */
1403 regno += gdbarch_fp0_regnum (get_frame_arch (frame));
1404 }
1405
1406 rav = get_frame_register_signed (frame, regno);
1407
1408 switch (op)
1409 {
1410 case 0x38: /* BLBC */
1411 if ((rav & 1) == 0)
1412 goto branch_taken;
1413 break;
1414 case 0x3c: /* BLBS */
1415 if (rav & 1)
1416 goto branch_taken;
1417 break;
1418 case 0x39: /* BEQ */
1419 if (rav == 0)
1420 goto branch_taken;
1421 break;
1422 case 0x3d: /* BNE */
1423 if (rav != 0)
1424 goto branch_taken;
1425 break;
1426 case 0x3a: /* BLT */
1427 if (rav < 0)
1428 goto branch_taken;
1429 break;
1430 case 0x3b: /* BLE */
1431 if (rav <= 0)
1432 goto branch_taken;
1433 break;
1434 case 0x3f: /* BGT */
1435 if (rav > 0)
1436 goto branch_taken;
1437 break;
1438 case 0x3e: /* BGE */
1439 if (rav >= 0)
1440 goto branch_taken;
1441 break;
1442
1443 /* Floating point branches. */
1444
1445 case 0x31: /* FBEQ */
1446 if (fp_register_zero_p (rav))
1447 goto branch_taken;
1448 break;
1449 case 0x36: /* FBGE */
1450 if (fp_register_sign_bit (rav) == 0 || fp_register_zero_p (rav))
1451 goto branch_taken;
1452 break;
1453 case 0x37: /* FBGT */
1454 if (fp_register_sign_bit (rav) == 0 && ! fp_register_zero_p (rav))
1455 goto branch_taken;
1456 break;
1457 case 0x33: /* FBLE */
1458 if (fp_register_sign_bit (rav) == 1 || fp_register_zero_p (rav))
1459 goto branch_taken;
1460 break;
1461 case 0x32: /* FBLT */
1462 if (fp_register_sign_bit (rav) == 1 && ! fp_register_zero_p (rav))
1463 goto branch_taken;
1464 break;
1465 case 0x35: /* FBNE */
1466 if (! fp_register_zero_p (rav))
1467 goto branch_taken;
1468 break;
1469 }
1470 }
1471
1472 /* Not a branch or branch not taken; target PC is:
1473 pc + 4 */
1474 return (pc + ALPHA_INSN_SIZE);
1475 }
1476
1477 int
1478 alpha_software_single_step (struct frame_info *frame)
1479 {
1480 CORE_ADDR pc, next_pc;
1481
1482 pc = get_frame_pc (frame);
1483 next_pc = alpha_next_pc (frame, pc);
1484
1485 insert_single_step_breakpoint (next_pc);
1486 return 1;
1487 }
1488
1489 \f
1490 /* Initialize the current architecture based on INFO. If possible, re-use an
1491 architecture from ARCHES, which is a list of architectures already created
1492 during this debugging session.
1493
1494 Called e.g. at program startup, when reading a core file, and when reading
1495 a binary file. */
1496
1497 static struct gdbarch *
1498 alpha_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
1499 {
1500 struct gdbarch_tdep *tdep;
1501 struct gdbarch *gdbarch;
1502
1503 /* Try to determine the ABI of the object we are loading. */
1504 if (info.abfd != NULL && info.osabi == GDB_OSABI_UNKNOWN)
1505 {
1506 /* If it's an ECOFF file, assume it's OSF/1. */
1507 if (bfd_get_flavour (info.abfd) == bfd_target_ecoff_flavour)
1508 info.osabi = GDB_OSABI_OSF1;
1509 }
1510
1511 /* Find a candidate among extant architectures. */
1512 arches = gdbarch_list_lookup_by_info (arches, &info);
1513 if (arches != NULL)
1514 return arches->gdbarch;
1515
1516 tdep = xmalloc (sizeof (struct gdbarch_tdep));
1517 gdbarch = gdbarch_alloc (&info, tdep);
1518
1519 /* Lowest text address. This is used by heuristic_proc_start()
1520 to decide when to stop looking. */
1521 tdep->vm_min_address = (CORE_ADDR) 0x120000000LL;
1522
1523 tdep->dynamic_sigtramp_offset = NULL;
1524 tdep->sigcontext_addr = NULL;
1525 tdep->sc_pc_offset = 2 * 8;
1526 tdep->sc_regs_offset = 4 * 8;
1527 tdep->sc_fpregs_offset = tdep->sc_regs_offset + 32 * 8 + 8;
1528
1529 tdep->jb_pc = -1; /* longjmp support not enabled by default */
1530
1531 tdep->return_in_memory = alpha_return_in_memory_always;
1532
1533 /* Type sizes */
1534 set_gdbarch_short_bit (gdbarch, 16);
1535 set_gdbarch_int_bit (gdbarch, 32);
1536 set_gdbarch_long_bit (gdbarch, 64);
1537 set_gdbarch_long_long_bit (gdbarch, 64);
1538 set_gdbarch_float_bit (gdbarch, 32);
1539 set_gdbarch_double_bit (gdbarch, 64);
1540 set_gdbarch_long_double_bit (gdbarch, 64);
1541 set_gdbarch_ptr_bit (gdbarch, 64);
1542
1543 /* Register info */
1544 set_gdbarch_num_regs (gdbarch, ALPHA_NUM_REGS);
1545 set_gdbarch_sp_regnum (gdbarch, ALPHA_SP_REGNUM);
1546 set_gdbarch_pc_regnum (gdbarch, ALPHA_PC_REGNUM);
1547 set_gdbarch_fp0_regnum (gdbarch, ALPHA_FP0_REGNUM);
1548
1549 set_gdbarch_register_name (gdbarch, alpha_register_name);
1550 set_gdbarch_register_type (gdbarch, alpha_register_type);
1551
1552 set_gdbarch_cannot_fetch_register (gdbarch, alpha_cannot_fetch_register);
1553 set_gdbarch_cannot_store_register (gdbarch, alpha_cannot_store_register);
1554
1555 set_gdbarch_convert_register_p (gdbarch, alpha_convert_register_p);
1556 set_gdbarch_register_to_value (gdbarch, alpha_register_to_value);
1557 set_gdbarch_value_to_register (gdbarch, alpha_value_to_register);
1558
1559 set_gdbarch_register_reggroup_p (gdbarch, alpha_register_reggroup_p);
1560
1561 /* Prologue heuristics. */
1562 set_gdbarch_skip_prologue (gdbarch, alpha_skip_prologue);
1563
1564 /* Disassembler. */
1565 set_gdbarch_print_insn (gdbarch, print_insn_alpha);
1566
1567 /* Call info. */
1568
1569 set_gdbarch_return_value (gdbarch, alpha_return_value);
1570
1571 /* Settings for calling functions in the inferior. */
1572 set_gdbarch_push_dummy_call (gdbarch, alpha_push_dummy_call);
1573
1574 /* Methods for saving / extracting a dummy frame's ID. */
1575 set_gdbarch_dummy_id (gdbarch, alpha_dummy_id);
1576
1577 /* Return the unwound PC value. */
1578 set_gdbarch_unwind_pc (gdbarch, alpha_unwind_pc);
1579
1580 set_gdbarch_inner_than (gdbarch, core_addr_lessthan);
1581 set_gdbarch_skip_trampoline_code (gdbarch, find_solib_trampoline_target);
1582
1583 set_gdbarch_breakpoint_from_pc (gdbarch, alpha_breakpoint_from_pc);
1584 set_gdbarch_decr_pc_after_break (gdbarch, ALPHA_INSN_SIZE);
1585 set_gdbarch_cannot_step_breakpoint (gdbarch, 1);
1586
1587 /* Hook in ABI-specific overrides, if they have been registered. */
1588 gdbarch_init_osabi (info, gdbarch);
1589
1590 /* Now that we have tuned the configuration, set a few final things
1591 based on what the OS ABI has told us. */
1592
1593 if (tdep->jb_pc >= 0)
1594 set_gdbarch_get_longjmp_target (gdbarch, alpha_get_longjmp_target);
1595
1596 frame_unwind_append_unwinder (gdbarch, &alpha_sigtramp_frame_unwind);
1597 frame_unwind_append_unwinder (gdbarch, &alpha_heuristic_frame_unwind);
1598
1599 frame_base_set_default (gdbarch, &alpha_heuristic_frame_base);
1600
1601 return gdbarch;
1602 }
1603
1604 void
1605 alpha_dwarf2_init_abi (struct gdbarch_info info, struct gdbarch *gdbarch)
1606 {
1607 dwarf2_append_unwinders (gdbarch);
1608 frame_base_append_sniffer (gdbarch, dwarf2_frame_base_sniffer);
1609 }
1610
1611 extern initialize_file_ftype _initialize_alpha_tdep; /* -Wmissing-prototypes */
1612
1613 void
1614 _initialize_alpha_tdep (void)
1615 {
1616 struct cmd_list_element *c;
1617
1618 gdbarch_register (bfd_arch_alpha, alpha_gdbarch_init, NULL);
1619
1620 /* Let the user set the fence post for heuristic_proc_start. */
1621
1622 /* We really would like to have both "0" and "unlimited" work, but
1623 command.c doesn't deal with that. So make it a var_zinteger
1624 because the user can always use "999999" or some such for unlimited. */
1625 /* We need to throw away the frame cache when we set this, since it
1626 might change our ability to get backtraces. */
1627 add_setshow_zinteger_cmd ("heuristic-fence-post", class_support,
1628 &heuristic_fence_post, _("\
1629 Set the distance searched for the start of a function."), _("\
1630 Show the distance searched for the start of a function."), _("\
1631 If you are debugging a stripped executable, GDB needs to search through the\n\
1632 program for the start of a function. This command sets the distance of the\n\
1633 search. The only need to set it is when debugging a stripped executable."),
1634 reinit_frame_cache_sfunc,
1635 NULL, /* FIXME: i18n: The distance searched for the start of a function is \"%d\". */
1636 &setlist, &showlist);
1637 }
This page took 0.087026 seconds and 4 git commands to generate.