* win32-low.c (create_process): New.
[deliverable/binutils-gdb.git] / gdb / alpha-tdep.c
1 /* Target-dependent code for the ALPHA architecture, for GDB, the GNU Debugger.
2
3 Copyright (C) 1993, 1994, 1995, 1996, 1997, 1998, 1999, 2000, 2001, 2002,
4 2003, 2005, 2006, 2007 Free Software Foundation, Inc.
5
6 This file is part of GDB.
7
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 3 of the License, or
11 (at your option) any later version.
12
13 This program is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with this program. If not, see <http://www.gnu.org/licenses/>. */
20
21 #include "defs.h"
22 #include "doublest.h"
23 #include "frame.h"
24 #include "frame-unwind.h"
25 #include "frame-base.h"
26 #include "dwarf2-frame.h"
27 #include "inferior.h"
28 #include "symtab.h"
29 #include "value.h"
30 #include "gdbcmd.h"
31 #include "gdbcore.h"
32 #include "dis-asm.h"
33 #include "symfile.h"
34 #include "objfiles.h"
35 #include "gdb_string.h"
36 #include "linespec.h"
37 #include "regcache.h"
38 #include "reggroups.h"
39 #include "arch-utils.h"
40 #include "osabi.h"
41 #include "block.h"
42 #include "infcall.h"
43
44 #include "elf-bfd.h"
45
46 #include "alpha-tdep.h"
47
48 \f
49 /* Return the name of the REGNO register.
50
51 An empty name corresponds to a register number that used to
52 be used for a virtual register. That virtual register has
53 been removed, but the index is still reserved to maintain
54 compatibility with existing remote alpha targets. */
55
56 static const char *
57 alpha_register_name (int regno)
58 {
59 static const char * const register_names[] =
60 {
61 "v0", "t0", "t1", "t2", "t3", "t4", "t5", "t6",
62 "t7", "s0", "s1", "s2", "s3", "s4", "s5", "fp",
63 "a0", "a1", "a2", "a3", "a4", "a5", "t8", "t9",
64 "t10", "t11", "ra", "t12", "at", "gp", "sp", "zero",
65 "f0", "f1", "f2", "f3", "f4", "f5", "f6", "f7",
66 "f8", "f9", "f10", "f11", "f12", "f13", "f14", "f15",
67 "f16", "f17", "f18", "f19", "f20", "f21", "f22", "f23",
68 "f24", "f25", "f26", "f27", "f28", "f29", "f30", "fpcr",
69 "pc", "", "unique"
70 };
71
72 if (regno < 0)
73 return NULL;
74 if (regno >= ARRAY_SIZE(register_names))
75 return NULL;
76 return register_names[regno];
77 }
78
79 static int
80 alpha_cannot_fetch_register (int regno)
81 {
82 return (regno == ALPHA_ZERO_REGNUM
83 || strlen (alpha_register_name (regno)) == 0);
84 }
85
86 static int
87 alpha_cannot_store_register (int regno)
88 {
89 return (regno == ALPHA_ZERO_REGNUM
90 || strlen (alpha_register_name (regno)) == 0);
91 }
92
93 static struct type *
94 alpha_register_type (struct gdbarch *gdbarch, int regno)
95 {
96 if (regno == ALPHA_SP_REGNUM || regno == ALPHA_GP_REGNUM)
97 return builtin_type_void_data_ptr;
98 if (regno == ALPHA_PC_REGNUM)
99 return builtin_type_void_func_ptr;
100
101 /* Don't need to worry about little vs big endian until
102 some jerk tries to port to alpha-unicosmk. */
103 if (regno >= ALPHA_FP0_REGNUM && regno < ALPHA_FP0_REGNUM + 31)
104 return builtin_type_ieee_double;
105
106 return builtin_type_int64;
107 }
108
109 /* Is REGNUM a member of REGGROUP? */
110
111 static int
112 alpha_register_reggroup_p (struct gdbarch *gdbarch, int regnum,
113 struct reggroup *group)
114 {
115 /* Filter out any registers eliminated, but whose regnum is
116 reserved for backward compatibility, e.g. the vfp. */
117 if (gdbarch_register_name (current_gdbarch, regnum) == NULL
118 || *gdbarch_register_name (current_gdbarch, regnum) == '\0')
119 return 0;
120
121 if (group == all_reggroup)
122 return 1;
123
124 /* Zero should not be saved or restored. Technically it is a general
125 register (just as $f31 would be a float if we represented it), but
126 there's no point displaying it during "info regs", so leave it out
127 of all groups except for "all". */
128 if (regnum == ALPHA_ZERO_REGNUM)
129 return 0;
130
131 /* All other registers are saved and restored. */
132 if (group == save_reggroup || group == restore_reggroup)
133 return 1;
134
135 /* All other groups are non-overlapping. */
136
137 /* Since this is really a PALcode memory slot... */
138 if (regnum == ALPHA_UNIQUE_REGNUM)
139 return group == system_reggroup;
140
141 /* Force the FPCR to be considered part of the floating point state. */
142 if (regnum == ALPHA_FPCR_REGNUM)
143 return group == float_reggroup;
144
145 if (regnum >= ALPHA_FP0_REGNUM && regnum < ALPHA_FP0_REGNUM + 31)
146 return group == float_reggroup;
147 else
148 return group == general_reggroup;
149 }
150
151 /* The following represents exactly the conversion performed by
152 the LDS instruction. This applies to both single-precision
153 floating point and 32-bit integers. */
154
155 static void
156 alpha_lds (void *out, const void *in)
157 {
158 ULONGEST mem = extract_unsigned_integer (in, 4);
159 ULONGEST frac = (mem >> 0) & 0x7fffff;
160 ULONGEST sign = (mem >> 31) & 1;
161 ULONGEST exp_msb = (mem >> 30) & 1;
162 ULONGEST exp_low = (mem >> 23) & 0x7f;
163 ULONGEST exp, reg;
164
165 exp = (exp_msb << 10) | exp_low;
166 if (exp_msb)
167 {
168 if (exp_low == 0x7f)
169 exp = 0x7ff;
170 }
171 else
172 {
173 if (exp_low != 0x00)
174 exp |= 0x380;
175 }
176
177 reg = (sign << 63) | (exp << 52) | (frac << 29);
178 store_unsigned_integer (out, 8, reg);
179 }
180
181 /* Similarly, this represents exactly the conversion performed by
182 the STS instruction. */
183
184 static void
185 alpha_sts (void *out, const void *in)
186 {
187 ULONGEST reg, mem;
188
189 reg = extract_unsigned_integer (in, 8);
190 mem = ((reg >> 32) & 0xc0000000) | ((reg >> 29) & 0x3fffffff);
191 store_unsigned_integer (out, 4, mem);
192 }
193
194 /* The alpha needs a conversion between register and memory format if the
195 register is a floating point register and memory format is float, as the
196 register format must be double or memory format is an integer with 4
197 bytes or less, as the representation of integers in floating point
198 registers is different. */
199
200 static int
201 alpha_convert_register_p (int regno, struct type *type)
202 {
203 return (regno >= ALPHA_FP0_REGNUM && regno < ALPHA_FP0_REGNUM + 31);
204 }
205
206 static void
207 alpha_register_to_value (struct frame_info *frame, int regnum,
208 struct type *valtype, gdb_byte *out)
209 {
210 gdb_byte in[MAX_REGISTER_SIZE];
211
212 frame_register_read (frame, regnum, in);
213 switch (TYPE_LENGTH (valtype))
214 {
215 case 4:
216 alpha_sts (out, in);
217 break;
218 case 8:
219 memcpy (out, in, 8);
220 break;
221 default:
222 error (_("Cannot retrieve value from floating point register"));
223 }
224 }
225
226 static void
227 alpha_value_to_register (struct frame_info *frame, int regnum,
228 struct type *valtype, const gdb_byte *in)
229 {
230 gdb_byte out[MAX_REGISTER_SIZE];
231
232 switch (TYPE_LENGTH (valtype))
233 {
234 case 4:
235 alpha_lds (out, in);
236 break;
237 case 8:
238 memcpy (out, in, 8);
239 break;
240 default:
241 error (_("Cannot store value in floating point register"));
242 }
243 put_frame_register (frame, regnum, out);
244 }
245
246 \f
247 /* The alpha passes the first six arguments in the registers, the rest on
248 the stack. The register arguments are stored in ARG_REG_BUFFER, and
249 then moved into the register file; this simplifies the passing of a
250 large struct which extends from the registers to the stack, plus avoids
251 three ptrace invocations per word.
252
253 We don't bother tracking which register values should go in integer
254 regs or fp regs; we load the same values into both.
255
256 If the called function is returning a structure, the address of the
257 structure to be returned is passed as a hidden first argument. */
258
259 static CORE_ADDR
260 alpha_push_dummy_call (struct gdbarch *gdbarch, struct value *function,
261 struct regcache *regcache, CORE_ADDR bp_addr,
262 int nargs, struct value **args, CORE_ADDR sp,
263 int struct_return, CORE_ADDR struct_addr)
264 {
265 int i;
266 int accumulate_size = struct_return ? 8 : 0;
267 struct alpha_arg
268 {
269 gdb_byte *contents;
270 int len;
271 int offset;
272 };
273 struct alpha_arg *alpha_args
274 = (struct alpha_arg *) alloca (nargs * sizeof (struct alpha_arg));
275 struct alpha_arg *m_arg;
276 gdb_byte arg_reg_buffer[ALPHA_REGISTER_SIZE * ALPHA_NUM_ARG_REGS];
277 int required_arg_regs;
278 CORE_ADDR func_addr = find_function_addr (function, NULL);
279
280 /* The ABI places the address of the called function in T12. */
281 regcache_cooked_write_signed (regcache, ALPHA_T12_REGNUM, func_addr);
282
283 /* Set the return address register to point to the entry point
284 of the program, where a breakpoint lies in wait. */
285 regcache_cooked_write_signed (regcache, ALPHA_RA_REGNUM, bp_addr);
286
287 /* Lay out the arguments in memory. */
288 for (i = 0, m_arg = alpha_args; i < nargs; i++, m_arg++)
289 {
290 struct value *arg = args[i];
291 struct type *arg_type = check_typedef (value_type (arg));
292
293 /* Cast argument to long if necessary as the compiler does it too. */
294 switch (TYPE_CODE (arg_type))
295 {
296 case TYPE_CODE_INT:
297 case TYPE_CODE_BOOL:
298 case TYPE_CODE_CHAR:
299 case TYPE_CODE_RANGE:
300 case TYPE_CODE_ENUM:
301 if (TYPE_LENGTH (arg_type) == 4)
302 {
303 /* 32-bit values must be sign-extended to 64 bits
304 even if the base data type is unsigned. */
305 arg_type = builtin_type_int32;
306 arg = value_cast (arg_type, arg);
307 }
308 if (TYPE_LENGTH (arg_type) < ALPHA_REGISTER_SIZE)
309 {
310 arg_type = builtin_type_int64;
311 arg = value_cast (arg_type, arg);
312 }
313 break;
314
315 case TYPE_CODE_FLT:
316 /* "float" arguments loaded in registers must be passed in
317 register format, aka "double". */
318 if (accumulate_size < sizeof (arg_reg_buffer)
319 && TYPE_LENGTH (arg_type) == 4)
320 {
321 arg_type = builtin_type_ieee_double;
322 arg = value_cast (arg_type, arg);
323 }
324 /* Tru64 5.1 has a 128-bit long double, and passes this by
325 invisible reference. No one else uses this data type. */
326 else if (TYPE_LENGTH (arg_type) == 16)
327 {
328 /* Allocate aligned storage. */
329 sp = (sp & -16) - 16;
330
331 /* Write the real data into the stack. */
332 write_memory (sp, value_contents (arg), 16);
333
334 /* Construct the indirection. */
335 arg_type = lookup_pointer_type (arg_type);
336 arg = value_from_pointer (arg_type, sp);
337 }
338 break;
339
340 case TYPE_CODE_COMPLEX:
341 /* ??? The ABI says that complex values are passed as two
342 separate scalar values. This distinction only matters
343 for complex float. However, GCC does not implement this. */
344
345 /* Tru64 5.1 has a 128-bit long double, and passes this by
346 invisible reference. */
347 if (TYPE_LENGTH (arg_type) == 32)
348 {
349 /* Allocate aligned storage. */
350 sp = (sp & -16) - 16;
351
352 /* Write the real data into the stack. */
353 write_memory (sp, value_contents (arg), 32);
354
355 /* Construct the indirection. */
356 arg_type = lookup_pointer_type (arg_type);
357 arg = value_from_pointer (arg_type, sp);
358 }
359 break;
360
361 default:
362 break;
363 }
364 m_arg->len = TYPE_LENGTH (arg_type);
365 m_arg->offset = accumulate_size;
366 accumulate_size = (accumulate_size + m_arg->len + 7) & ~7;
367 m_arg->contents = value_contents_writeable (arg);
368 }
369
370 /* Determine required argument register loads, loading an argument register
371 is expensive as it uses three ptrace calls. */
372 required_arg_regs = accumulate_size / 8;
373 if (required_arg_regs > ALPHA_NUM_ARG_REGS)
374 required_arg_regs = ALPHA_NUM_ARG_REGS;
375
376 /* Make room for the arguments on the stack. */
377 if (accumulate_size < sizeof(arg_reg_buffer))
378 accumulate_size = 0;
379 else
380 accumulate_size -= sizeof(arg_reg_buffer);
381 sp -= accumulate_size;
382
383 /* Keep sp aligned to a multiple of 16 as the ABI requires. */
384 sp &= ~15;
385
386 /* `Push' arguments on the stack. */
387 for (i = nargs; m_arg--, --i >= 0;)
388 {
389 gdb_byte *contents = m_arg->contents;
390 int offset = m_arg->offset;
391 int len = m_arg->len;
392
393 /* Copy the bytes destined for registers into arg_reg_buffer. */
394 if (offset < sizeof(arg_reg_buffer))
395 {
396 if (offset + len <= sizeof(arg_reg_buffer))
397 {
398 memcpy (arg_reg_buffer + offset, contents, len);
399 continue;
400 }
401 else
402 {
403 int tlen = sizeof(arg_reg_buffer) - offset;
404 memcpy (arg_reg_buffer + offset, contents, tlen);
405 offset += tlen;
406 contents += tlen;
407 len -= tlen;
408 }
409 }
410
411 /* Everything else goes to the stack. */
412 write_memory (sp + offset - sizeof(arg_reg_buffer), contents, len);
413 }
414 if (struct_return)
415 store_unsigned_integer (arg_reg_buffer, ALPHA_REGISTER_SIZE, struct_addr);
416
417 /* Load the argument registers. */
418 for (i = 0; i < required_arg_regs; i++)
419 {
420 regcache_cooked_write (regcache, ALPHA_A0_REGNUM + i,
421 arg_reg_buffer + i*ALPHA_REGISTER_SIZE);
422 regcache_cooked_write (regcache, ALPHA_FPA0_REGNUM + i,
423 arg_reg_buffer + i*ALPHA_REGISTER_SIZE);
424 }
425
426 /* Finally, update the stack pointer. */
427 regcache_cooked_write_signed (regcache, ALPHA_SP_REGNUM, sp);
428
429 return sp;
430 }
431
432 /* Extract from REGCACHE the value about to be returned from a function
433 and copy it into VALBUF. */
434
435 static void
436 alpha_extract_return_value (struct type *valtype, struct regcache *regcache,
437 gdb_byte *valbuf)
438 {
439 int length = TYPE_LENGTH (valtype);
440 gdb_byte raw_buffer[ALPHA_REGISTER_SIZE];
441 ULONGEST l;
442
443 switch (TYPE_CODE (valtype))
444 {
445 case TYPE_CODE_FLT:
446 switch (length)
447 {
448 case 4:
449 regcache_cooked_read (regcache, ALPHA_FP0_REGNUM, raw_buffer);
450 alpha_sts (valbuf, raw_buffer);
451 break;
452
453 case 8:
454 regcache_cooked_read (regcache, ALPHA_FP0_REGNUM, valbuf);
455 break;
456
457 case 16:
458 regcache_cooked_read_unsigned (regcache, ALPHA_V0_REGNUM, &l);
459 read_memory (l, valbuf, 16);
460 break;
461
462 default:
463 internal_error (__FILE__, __LINE__, _("unknown floating point width"));
464 }
465 break;
466
467 case TYPE_CODE_COMPLEX:
468 switch (length)
469 {
470 case 8:
471 /* ??? This isn't correct wrt the ABI, but it's what GCC does. */
472 regcache_cooked_read (regcache, ALPHA_FP0_REGNUM, valbuf);
473 break;
474
475 case 16:
476 regcache_cooked_read (regcache, ALPHA_FP0_REGNUM, valbuf);
477 regcache_cooked_read (regcache, ALPHA_FP0_REGNUM + 1, valbuf + 8);
478 break;
479
480 case 32:
481 regcache_cooked_read_signed (regcache, ALPHA_V0_REGNUM, &l);
482 read_memory (l, valbuf, 32);
483 break;
484
485 default:
486 internal_error (__FILE__, __LINE__, _("unknown floating point width"));
487 }
488 break;
489
490 default:
491 /* Assume everything else degenerates to an integer. */
492 regcache_cooked_read_unsigned (regcache, ALPHA_V0_REGNUM, &l);
493 store_unsigned_integer (valbuf, length, l);
494 break;
495 }
496 }
497
498 /* Insert the given value into REGCACHE as if it was being
499 returned by a function. */
500
501 static void
502 alpha_store_return_value (struct type *valtype, struct regcache *regcache,
503 const gdb_byte *valbuf)
504 {
505 int length = TYPE_LENGTH (valtype);
506 gdb_byte raw_buffer[ALPHA_REGISTER_SIZE];
507 ULONGEST l;
508
509 switch (TYPE_CODE (valtype))
510 {
511 case TYPE_CODE_FLT:
512 switch (length)
513 {
514 case 4:
515 alpha_lds (raw_buffer, valbuf);
516 regcache_cooked_write (regcache, ALPHA_FP0_REGNUM, raw_buffer);
517 break;
518
519 case 8:
520 regcache_cooked_write (regcache, ALPHA_FP0_REGNUM, valbuf);
521 break;
522
523 case 16:
524 /* FIXME: 128-bit long doubles are returned like structures:
525 by writing into indirect storage provided by the caller
526 as the first argument. */
527 error (_("Cannot set a 128-bit long double return value."));
528
529 default:
530 internal_error (__FILE__, __LINE__, _("unknown floating point width"));
531 }
532 break;
533
534 case TYPE_CODE_COMPLEX:
535 switch (length)
536 {
537 case 8:
538 /* ??? This isn't correct wrt the ABI, but it's what GCC does. */
539 regcache_cooked_write (regcache, ALPHA_FP0_REGNUM, valbuf);
540 break;
541
542 case 16:
543 regcache_cooked_write (regcache, ALPHA_FP0_REGNUM, valbuf);
544 regcache_cooked_write (regcache, ALPHA_FP0_REGNUM + 1, valbuf + 8);
545 break;
546
547 case 32:
548 /* FIXME: 128-bit long doubles are returned like structures:
549 by writing into indirect storage provided by the caller
550 as the first argument. */
551 error (_("Cannot set a 128-bit long double return value."));
552
553 default:
554 internal_error (__FILE__, __LINE__, _("unknown floating point width"));
555 }
556 break;
557
558 default:
559 /* Assume everything else degenerates to an integer. */
560 /* 32-bit values must be sign-extended to 64 bits
561 even if the base data type is unsigned. */
562 if (length == 4)
563 valtype = builtin_type_int32;
564 l = unpack_long (valtype, valbuf);
565 regcache_cooked_write_unsigned (regcache, ALPHA_V0_REGNUM, l);
566 break;
567 }
568 }
569
570 static enum return_value_convention
571 alpha_return_value (struct gdbarch *gdbarch, struct type *type,
572 struct regcache *regcache, gdb_byte *readbuf,
573 const gdb_byte *writebuf)
574 {
575 enum type_code code = TYPE_CODE (type);
576
577 if ((code == TYPE_CODE_STRUCT
578 || code == TYPE_CODE_UNION
579 || code == TYPE_CODE_ARRAY)
580 && gdbarch_tdep (gdbarch)->return_in_memory (type))
581 {
582 if (readbuf)
583 {
584 ULONGEST addr;
585 regcache_raw_read_unsigned (regcache, ALPHA_V0_REGNUM, &addr);
586 read_memory (addr, readbuf, TYPE_LENGTH (type));
587 }
588
589 return RETURN_VALUE_ABI_RETURNS_ADDRESS;
590 }
591
592 if (readbuf)
593 alpha_extract_return_value (type, regcache, readbuf);
594 if (writebuf)
595 alpha_store_return_value (type, regcache, writebuf);
596
597 return RETURN_VALUE_REGISTER_CONVENTION;
598 }
599
600 static int
601 alpha_return_in_memory_always (struct type *type)
602 {
603 return 1;
604 }
605 \f
606 static const gdb_byte *
607 alpha_breakpoint_from_pc (CORE_ADDR *pc, int *len)
608 {
609 static const gdb_byte break_insn[] = { 0x80, 0, 0, 0 }; /* call_pal bpt */
610
611 *len = sizeof(break_insn);
612 return break_insn;
613 }
614
615 \f
616 /* This returns the PC of the first insn after the prologue.
617 If we can't find the prologue, then return 0. */
618
619 CORE_ADDR
620 alpha_after_prologue (CORE_ADDR pc)
621 {
622 struct symtab_and_line sal;
623 CORE_ADDR func_addr, func_end;
624
625 if (!find_pc_partial_function (pc, NULL, &func_addr, &func_end))
626 return 0;
627
628 sal = find_pc_line (func_addr, 0);
629 if (sal.end < func_end)
630 return sal.end;
631
632 /* The line after the prologue is after the end of the function. In this
633 case, tell the caller to find the prologue the hard way. */
634 return 0;
635 }
636
637 /* Read an instruction from memory at PC, looking through breakpoints. */
638
639 unsigned int
640 alpha_read_insn (CORE_ADDR pc)
641 {
642 gdb_byte buf[ALPHA_INSN_SIZE];
643 int status;
644
645 status = read_memory_nobpt (pc, buf, sizeof (buf));
646 if (status)
647 memory_error (status, pc);
648 return extract_unsigned_integer (buf, sizeof (buf));
649 }
650
651 /* To skip prologues, I use this predicate. Returns either PC itself
652 if the code at PC does not look like a function prologue; otherwise
653 returns an address that (if we're lucky) follows the prologue. If
654 LENIENT, then we must skip everything which is involved in setting
655 up the frame (it's OK to skip more, just so long as we don't skip
656 anything which might clobber the registers which are being saved. */
657
658 static CORE_ADDR
659 alpha_skip_prologue (CORE_ADDR pc)
660 {
661 unsigned long inst;
662 int offset;
663 CORE_ADDR post_prologue_pc;
664 gdb_byte buf[ALPHA_INSN_SIZE];
665
666 /* Silently return the unaltered pc upon memory errors.
667 This could happen on OSF/1 if decode_line_1 tries to skip the
668 prologue for quickstarted shared library functions when the
669 shared library is not yet mapped in.
670 Reading target memory is slow over serial lines, so we perform
671 this check only if the target has shared libraries (which all
672 Alpha targets do). */
673 if (target_read_memory (pc, buf, sizeof (buf)))
674 return pc;
675
676 /* See if we can determine the end of the prologue via the symbol table.
677 If so, then return either PC, or the PC after the prologue, whichever
678 is greater. */
679
680 post_prologue_pc = alpha_after_prologue (pc);
681 if (post_prologue_pc != 0)
682 return max (pc, post_prologue_pc);
683
684 /* Can't determine prologue from the symbol table, need to examine
685 instructions. */
686
687 /* Skip the typical prologue instructions. These are the stack adjustment
688 instruction and the instructions that save registers on the stack
689 or in the gcc frame. */
690 for (offset = 0; offset < 100; offset += ALPHA_INSN_SIZE)
691 {
692 inst = alpha_read_insn (pc + offset);
693
694 if ((inst & 0xffff0000) == 0x27bb0000) /* ldah $gp,n($t12) */
695 continue;
696 if ((inst & 0xffff0000) == 0x23bd0000) /* lda $gp,n($gp) */
697 continue;
698 if ((inst & 0xffff0000) == 0x23de0000) /* lda $sp,n($sp) */
699 continue;
700 if ((inst & 0xffe01fff) == 0x43c0153e) /* subq $sp,n,$sp */
701 continue;
702
703 if (((inst & 0xfc1f0000) == 0xb41e0000 /* stq reg,n($sp) */
704 || (inst & 0xfc1f0000) == 0x9c1e0000) /* stt reg,n($sp) */
705 && (inst & 0x03e00000) != 0x03e00000) /* reg != $zero */
706 continue;
707
708 if (inst == 0x47de040f) /* bis sp,sp,fp */
709 continue;
710 if (inst == 0x47fe040f) /* bis zero,sp,fp */
711 continue;
712
713 break;
714 }
715 return pc + offset;
716 }
717
718 \f
719 /* Figure out where the longjmp will land.
720 We expect the first arg to be a pointer to the jmp_buf structure from
721 which we extract the PC (JB_PC) that we will land at. The PC is copied
722 into the "pc". This routine returns true on success. */
723
724 static int
725 alpha_get_longjmp_target (struct frame_info *frame, CORE_ADDR *pc)
726 {
727 struct gdbarch_tdep *tdep = gdbarch_tdep (get_frame_arch (frame));
728 CORE_ADDR jb_addr;
729 gdb_byte raw_buffer[ALPHA_REGISTER_SIZE];
730
731 jb_addr = get_frame_register_unsigned (frame, ALPHA_A0_REGNUM);
732
733 if (target_read_memory (jb_addr + (tdep->jb_pc * tdep->jb_elt_size),
734 raw_buffer, tdep->jb_elt_size))
735 return 0;
736
737 *pc = extract_unsigned_integer (raw_buffer, tdep->jb_elt_size);
738 return 1;
739 }
740
741 \f
742 /* Frame unwinder for signal trampolines. We use alpha tdep bits that
743 describe the location and shape of the sigcontext structure. After
744 that, all registers are in memory, so it's easy. */
745 /* ??? Shouldn't we be able to do this generically, rather than with
746 OSABI data specific to Alpha? */
747
748 struct alpha_sigtramp_unwind_cache
749 {
750 CORE_ADDR sigcontext_addr;
751 };
752
753 static struct alpha_sigtramp_unwind_cache *
754 alpha_sigtramp_frame_unwind_cache (struct frame_info *next_frame,
755 void **this_prologue_cache)
756 {
757 struct alpha_sigtramp_unwind_cache *info;
758 struct gdbarch_tdep *tdep;
759
760 if (*this_prologue_cache)
761 return *this_prologue_cache;
762
763 info = FRAME_OBSTACK_ZALLOC (struct alpha_sigtramp_unwind_cache);
764 *this_prologue_cache = info;
765
766 tdep = gdbarch_tdep (current_gdbarch);
767 info->sigcontext_addr = tdep->sigcontext_addr (next_frame);
768
769 return info;
770 }
771
772 /* Return the address of REGNUM in a sigtramp frame. Since this is
773 all arithmetic, it doesn't seem worthwhile to cache it. */
774
775 static CORE_ADDR
776 alpha_sigtramp_register_address (CORE_ADDR sigcontext_addr, int regnum)
777 {
778 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
779
780 if (regnum >= 0 && regnum < 32)
781 return sigcontext_addr + tdep->sc_regs_offset + regnum * 8;
782 else if (regnum >= ALPHA_FP0_REGNUM && regnum < ALPHA_FP0_REGNUM + 32)
783 return sigcontext_addr + tdep->sc_fpregs_offset + regnum * 8;
784 else if (regnum == ALPHA_PC_REGNUM)
785 return sigcontext_addr + tdep->sc_pc_offset;
786
787 return 0;
788 }
789
790 /* Given a GDB frame, determine the address of the calling function's
791 frame. This will be used to create a new GDB frame struct. */
792
793 static void
794 alpha_sigtramp_frame_this_id (struct frame_info *next_frame,
795 void **this_prologue_cache,
796 struct frame_id *this_id)
797 {
798 struct alpha_sigtramp_unwind_cache *info
799 = alpha_sigtramp_frame_unwind_cache (next_frame, this_prologue_cache);
800 struct gdbarch_tdep *tdep;
801 CORE_ADDR stack_addr, code_addr;
802
803 /* If the OSABI couldn't locate the sigcontext, give up. */
804 if (info->sigcontext_addr == 0)
805 return;
806
807 /* If we have dynamic signal trampolines, find their start.
808 If we do not, then we must assume there is a symbol record
809 that can provide the start address. */
810 tdep = gdbarch_tdep (current_gdbarch);
811 if (tdep->dynamic_sigtramp_offset)
812 {
813 int offset;
814 code_addr = frame_pc_unwind (next_frame);
815 offset = tdep->dynamic_sigtramp_offset (code_addr);
816 if (offset >= 0)
817 code_addr -= offset;
818 else
819 code_addr = 0;
820 }
821 else
822 code_addr = frame_func_unwind (next_frame, SIGTRAMP_FRAME);
823
824 /* The stack address is trivially read from the sigcontext. */
825 stack_addr = alpha_sigtramp_register_address (info->sigcontext_addr,
826 ALPHA_SP_REGNUM);
827 stack_addr = get_frame_memory_unsigned (next_frame, stack_addr,
828 ALPHA_REGISTER_SIZE);
829
830 *this_id = frame_id_build (stack_addr, code_addr);
831 }
832
833 /* Retrieve the value of REGNUM in FRAME. Don't give up! */
834
835 static void
836 alpha_sigtramp_frame_prev_register (struct frame_info *next_frame,
837 void **this_prologue_cache,
838 int regnum, int *optimizedp,
839 enum lval_type *lvalp, CORE_ADDR *addrp,
840 int *realnump, gdb_byte *bufferp)
841 {
842 struct alpha_sigtramp_unwind_cache *info
843 = alpha_sigtramp_frame_unwind_cache (next_frame, this_prologue_cache);
844 CORE_ADDR addr;
845
846 if (info->sigcontext_addr != 0)
847 {
848 /* All integer and fp registers are stored in memory. */
849 addr = alpha_sigtramp_register_address (info->sigcontext_addr, regnum);
850 if (addr != 0)
851 {
852 *optimizedp = 0;
853 *lvalp = lval_memory;
854 *addrp = addr;
855 *realnump = -1;
856 if (bufferp != NULL)
857 get_frame_memory (next_frame, addr, bufferp, ALPHA_REGISTER_SIZE);
858 return;
859 }
860 }
861
862 /* This extra register may actually be in the sigcontext, but our
863 current description of it in alpha_sigtramp_frame_unwind_cache
864 doesn't include it. Too bad. Fall back on whatever's in the
865 outer frame. */
866 *optimizedp = 0;
867 *lvalp = lval_register;
868 *addrp = 0;
869 *realnump = regnum;
870 if (bufferp)
871 frame_unwind_register (next_frame, *realnump, bufferp);
872 }
873
874 static const struct frame_unwind alpha_sigtramp_frame_unwind = {
875 SIGTRAMP_FRAME,
876 alpha_sigtramp_frame_this_id,
877 alpha_sigtramp_frame_prev_register
878 };
879
880 static const struct frame_unwind *
881 alpha_sigtramp_frame_sniffer (struct frame_info *next_frame)
882 {
883 CORE_ADDR pc = frame_pc_unwind (next_frame);
884 char *name;
885
886 /* NOTE: cagney/2004-04-30: Do not copy/clone this code. Instead
887 look at tramp-frame.h and other simplier per-architecture
888 sigtramp unwinders. */
889
890 /* We shouldn't even bother to try if the OSABI didn't register a
891 sigcontext_addr handler or pc_in_sigtramp hander. */
892 if (gdbarch_tdep (current_gdbarch)->sigcontext_addr == NULL)
893 return NULL;
894 if (gdbarch_tdep (current_gdbarch)->pc_in_sigtramp == NULL)
895 return NULL;
896
897 /* Otherwise we should be in a signal frame. */
898 find_pc_partial_function (pc, &name, NULL, NULL);
899 if (gdbarch_tdep (current_gdbarch)->pc_in_sigtramp (pc, name))
900 return &alpha_sigtramp_frame_unwind;
901
902 return NULL;
903 }
904 \f
905 /* Fallback alpha frame unwinder. Uses instruction scanning and knows
906 something about the traditional layout of alpha stack frames. */
907
908 struct alpha_heuristic_unwind_cache
909 {
910 CORE_ADDR *saved_regs;
911 CORE_ADDR vfp;
912 CORE_ADDR start_pc;
913 int return_reg;
914 };
915
916 /* Heuristic_proc_start may hunt through the text section for a long
917 time across a 2400 baud serial line. Allows the user to limit this
918 search. */
919 static unsigned int heuristic_fence_post = 0;
920
921 /* Attempt to locate the start of the function containing PC. We assume that
922 the previous function ends with an about_to_return insn. Not foolproof by
923 any means, since gcc is happy to put the epilogue in the middle of a
924 function. But we're guessing anyway... */
925
926 static CORE_ADDR
927 alpha_heuristic_proc_start (CORE_ADDR pc)
928 {
929 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
930 CORE_ADDR last_non_nop = pc;
931 CORE_ADDR fence = pc - heuristic_fence_post;
932 CORE_ADDR orig_pc = pc;
933 CORE_ADDR func;
934
935 if (pc == 0)
936 return 0;
937
938 /* First see if we can find the start of the function from minimal
939 symbol information. This can succeed with a binary that doesn't
940 have debug info, but hasn't been stripped. */
941 func = get_pc_function_start (pc);
942 if (func)
943 return func;
944
945 if (heuristic_fence_post == UINT_MAX
946 || fence < tdep->vm_min_address)
947 fence = tdep->vm_min_address;
948
949 /* Search back for previous return; also stop at a 0, which might be
950 seen for instance before the start of a code section. Don't include
951 nops, since this usually indicates padding between functions. */
952 for (pc -= ALPHA_INSN_SIZE; pc >= fence; pc -= ALPHA_INSN_SIZE)
953 {
954 unsigned int insn = alpha_read_insn (pc);
955 switch (insn)
956 {
957 case 0: /* invalid insn */
958 case 0x6bfa8001: /* ret $31,($26),1 */
959 return last_non_nop;
960
961 case 0x2ffe0000: /* unop: ldq_u $31,0($30) */
962 case 0x47ff041f: /* nop: bis $31,$31,$31 */
963 break;
964
965 default:
966 last_non_nop = pc;
967 break;
968 }
969 }
970
971 /* It's not clear to me why we reach this point when stopping quietly,
972 but with this test, at least we don't print out warnings for every
973 child forked (eg, on decstation). 22apr93 rich@cygnus.com. */
974 if (stop_soon == NO_STOP_QUIETLY)
975 {
976 static int blurb_printed = 0;
977
978 if (fence == tdep->vm_min_address)
979 warning (_("Hit beginning of text section without finding \
980 enclosing function for address 0x%s"), paddr_nz (orig_pc));
981 else
982 warning (_("Hit heuristic-fence-post without finding \
983 enclosing function for address 0x%s"), paddr_nz (orig_pc));
984
985 if (!blurb_printed)
986 {
987 printf_filtered (_("\
988 This warning occurs if you are debugging a function without any symbols\n\
989 (for example, in a stripped executable). In that case, you may wish to\n\
990 increase the size of the search with the `set heuristic-fence-post' command.\n\
991 \n\
992 Otherwise, you told GDB there was a function where there isn't one, or\n\
993 (more likely) you have encountered a bug in GDB.\n"));
994 blurb_printed = 1;
995 }
996 }
997
998 return 0;
999 }
1000
1001 static struct alpha_heuristic_unwind_cache *
1002 alpha_heuristic_frame_unwind_cache (struct frame_info *next_frame,
1003 void **this_prologue_cache,
1004 CORE_ADDR start_pc)
1005 {
1006 struct alpha_heuristic_unwind_cache *info;
1007 ULONGEST val;
1008 CORE_ADDR limit_pc, cur_pc;
1009 int frame_reg, frame_size, return_reg, reg;
1010
1011 if (*this_prologue_cache)
1012 return *this_prologue_cache;
1013
1014 info = FRAME_OBSTACK_ZALLOC (struct alpha_heuristic_unwind_cache);
1015 *this_prologue_cache = info;
1016 info->saved_regs = frame_obstack_zalloc (SIZEOF_FRAME_SAVED_REGS);
1017
1018 limit_pc = frame_pc_unwind (next_frame);
1019 if (start_pc == 0)
1020 start_pc = alpha_heuristic_proc_start (limit_pc);
1021 info->start_pc = start_pc;
1022
1023 frame_reg = ALPHA_SP_REGNUM;
1024 frame_size = 0;
1025 return_reg = -1;
1026
1027 /* If we've identified a likely place to start, do code scanning. */
1028 if (start_pc != 0)
1029 {
1030 /* Limit the forward search to 50 instructions. */
1031 if (start_pc + 200 < limit_pc)
1032 limit_pc = start_pc + 200;
1033
1034 for (cur_pc = start_pc; cur_pc < limit_pc; cur_pc += ALPHA_INSN_SIZE)
1035 {
1036 unsigned int word = alpha_read_insn (cur_pc);
1037
1038 if ((word & 0xffff0000) == 0x23de0000) /* lda $sp,n($sp) */
1039 {
1040 if (word & 0x8000)
1041 {
1042 /* Consider only the first stack allocation instruction
1043 to contain the static size of the frame. */
1044 if (frame_size == 0)
1045 frame_size = (-word) & 0xffff;
1046 }
1047 else
1048 {
1049 /* Exit loop if a positive stack adjustment is found, which
1050 usually means that the stack cleanup code in the function
1051 epilogue is reached. */
1052 break;
1053 }
1054 }
1055 else if ((word & 0xfc1f0000) == 0xb41e0000) /* stq reg,n($sp) */
1056 {
1057 reg = (word & 0x03e00000) >> 21;
1058
1059 /* Ignore this instruction if we have already encountered
1060 an instruction saving the same register earlier in the
1061 function code. The current instruction does not tell
1062 us where the original value upon function entry is saved.
1063 All it says is that the function we are scanning reused
1064 that register for some computation of its own, and is now
1065 saving its result. */
1066 if (info->saved_regs[reg])
1067 continue;
1068
1069 if (reg == 31)
1070 continue;
1071
1072 /* Do not compute the address where the register was saved yet,
1073 because we don't know yet if the offset will need to be
1074 relative to $sp or $fp (we can not compute the address
1075 relative to $sp if $sp is updated during the execution of
1076 the current subroutine, for instance when doing some alloca).
1077 So just store the offset for the moment, and compute the
1078 address later when we know whether this frame has a frame
1079 pointer or not. */
1080 /* Hack: temporarily add one, so that the offset is non-zero
1081 and we can tell which registers have save offsets below. */
1082 info->saved_regs[reg] = (word & 0xffff) + 1;
1083
1084 /* Starting with OSF/1-3.2C, the system libraries are shipped
1085 without local symbols, but they still contain procedure
1086 descriptors without a symbol reference. GDB is currently
1087 unable to find these procedure descriptors and uses
1088 heuristic_proc_desc instead.
1089 As some low level compiler support routines (__div*, __add*)
1090 use a non-standard return address register, we have to
1091 add some heuristics to determine the return address register,
1092 or stepping over these routines will fail.
1093 Usually the return address register is the first register
1094 saved on the stack, but assembler optimization might
1095 rearrange the register saves.
1096 So we recognize only a few registers (t7, t9, ra) within
1097 the procedure prologue as valid return address registers.
1098 If we encounter a return instruction, we extract the
1099 the return address register from it.
1100
1101 FIXME: Rewriting GDB to access the procedure descriptors,
1102 e.g. via the minimal symbol table, might obviate this hack. */
1103 if (return_reg == -1
1104 && cur_pc < (start_pc + 80)
1105 && (reg == ALPHA_T7_REGNUM
1106 || reg == ALPHA_T9_REGNUM
1107 || reg == ALPHA_RA_REGNUM))
1108 return_reg = reg;
1109 }
1110 else if ((word & 0xffe0ffff) == 0x6be08001) /* ret zero,reg,1 */
1111 return_reg = (word >> 16) & 0x1f;
1112 else if (word == 0x47de040f) /* bis sp,sp,fp */
1113 frame_reg = ALPHA_GCC_FP_REGNUM;
1114 else if (word == 0x47fe040f) /* bis zero,sp,fp */
1115 frame_reg = ALPHA_GCC_FP_REGNUM;
1116 }
1117
1118 /* If we haven't found a valid return address register yet, keep
1119 searching in the procedure prologue. */
1120 if (return_reg == -1)
1121 {
1122 while (cur_pc < (limit_pc + 80) && cur_pc < (start_pc + 80))
1123 {
1124 unsigned int word = alpha_read_insn (cur_pc);
1125
1126 if ((word & 0xfc1f0000) == 0xb41e0000) /* stq reg,n($sp) */
1127 {
1128 reg = (word & 0x03e00000) >> 21;
1129 if (reg == ALPHA_T7_REGNUM
1130 || reg == ALPHA_T9_REGNUM
1131 || reg == ALPHA_RA_REGNUM)
1132 {
1133 return_reg = reg;
1134 break;
1135 }
1136 }
1137 else if ((word & 0xffe0ffff) == 0x6be08001) /* ret zero,reg,1 */
1138 {
1139 return_reg = (word >> 16) & 0x1f;
1140 break;
1141 }
1142
1143 cur_pc += ALPHA_INSN_SIZE;
1144 }
1145 }
1146 }
1147
1148 /* Failing that, do default to the customary RA. */
1149 if (return_reg == -1)
1150 return_reg = ALPHA_RA_REGNUM;
1151 info->return_reg = return_reg;
1152
1153 frame_unwind_unsigned_register (next_frame, frame_reg, &val);
1154 info->vfp = val + frame_size;
1155
1156 /* Convert offsets to absolute addresses. See above about adding
1157 one to the offsets to make all detected offsets non-zero. */
1158 for (reg = 0; reg < ALPHA_NUM_REGS; ++reg)
1159 if (info->saved_regs[reg])
1160 info->saved_regs[reg] += val - 1;
1161
1162 return info;
1163 }
1164
1165 /* Given a GDB frame, determine the address of the calling function's
1166 frame. This will be used to create a new GDB frame struct. */
1167
1168 static void
1169 alpha_heuristic_frame_this_id (struct frame_info *next_frame,
1170 void **this_prologue_cache,
1171 struct frame_id *this_id)
1172 {
1173 struct alpha_heuristic_unwind_cache *info
1174 = alpha_heuristic_frame_unwind_cache (next_frame, this_prologue_cache, 0);
1175
1176 *this_id = frame_id_build (info->vfp, info->start_pc);
1177 }
1178
1179 /* Retrieve the value of REGNUM in FRAME. Don't give up! */
1180
1181 static void
1182 alpha_heuristic_frame_prev_register (struct frame_info *next_frame,
1183 void **this_prologue_cache,
1184 int regnum, int *optimizedp,
1185 enum lval_type *lvalp, CORE_ADDR *addrp,
1186 int *realnump, gdb_byte *bufferp)
1187 {
1188 struct alpha_heuristic_unwind_cache *info
1189 = alpha_heuristic_frame_unwind_cache (next_frame, this_prologue_cache, 0);
1190
1191 /* The PC of the previous frame is stored in the link register of
1192 the current frame. Frob regnum so that we pull the value from
1193 the correct place. */
1194 if (regnum == ALPHA_PC_REGNUM)
1195 regnum = info->return_reg;
1196
1197 /* For all registers known to be saved in the current frame,
1198 do the obvious and pull the value out. */
1199 if (info->saved_regs[regnum])
1200 {
1201 *optimizedp = 0;
1202 *lvalp = lval_memory;
1203 *addrp = info->saved_regs[regnum];
1204 *realnump = -1;
1205 if (bufferp != NULL)
1206 get_frame_memory (next_frame, *addrp, bufferp, ALPHA_REGISTER_SIZE);
1207 return;
1208 }
1209
1210 /* The stack pointer of the previous frame is computed by popping
1211 the current stack frame. */
1212 if (regnum == ALPHA_SP_REGNUM)
1213 {
1214 *optimizedp = 0;
1215 *lvalp = not_lval;
1216 *addrp = 0;
1217 *realnump = -1;
1218 if (bufferp != NULL)
1219 store_unsigned_integer (bufferp, ALPHA_REGISTER_SIZE, info->vfp);
1220 return;
1221 }
1222
1223 /* Otherwise assume the next frame has the same register value. */
1224 *optimizedp = 0;
1225 *lvalp = lval_register;
1226 *addrp = 0;
1227 *realnump = regnum;
1228 if (bufferp)
1229 frame_unwind_register (next_frame, *realnump, bufferp);
1230 }
1231
1232 static const struct frame_unwind alpha_heuristic_frame_unwind = {
1233 NORMAL_FRAME,
1234 alpha_heuristic_frame_this_id,
1235 alpha_heuristic_frame_prev_register
1236 };
1237
1238 static const struct frame_unwind *
1239 alpha_heuristic_frame_sniffer (struct frame_info *next_frame)
1240 {
1241 return &alpha_heuristic_frame_unwind;
1242 }
1243
1244 static CORE_ADDR
1245 alpha_heuristic_frame_base_address (struct frame_info *next_frame,
1246 void **this_prologue_cache)
1247 {
1248 struct alpha_heuristic_unwind_cache *info
1249 = alpha_heuristic_frame_unwind_cache (next_frame, this_prologue_cache, 0);
1250
1251 return info->vfp;
1252 }
1253
1254 static const struct frame_base alpha_heuristic_frame_base = {
1255 &alpha_heuristic_frame_unwind,
1256 alpha_heuristic_frame_base_address,
1257 alpha_heuristic_frame_base_address,
1258 alpha_heuristic_frame_base_address
1259 };
1260
1261 /* Just like reinit_frame_cache, but with the right arguments to be
1262 callable as an sfunc. Used by the "set heuristic-fence-post" command. */
1263
1264 static void
1265 reinit_frame_cache_sfunc (char *args, int from_tty, struct cmd_list_element *c)
1266 {
1267 reinit_frame_cache ();
1268 }
1269
1270 \f
1271 /* Assuming NEXT_FRAME->prev is a dummy, return the frame ID of that
1272 dummy frame. The frame ID's base needs to match the TOS value
1273 saved by save_dummy_frame_tos(), and the PC match the dummy frame's
1274 breakpoint. */
1275
1276 static struct frame_id
1277 alpha_unwind_dummy_id (struct gdbarch *gdbarch, struct frame_info *next_frame)
1278 {
1279 ULONGEST base;
1280 frame_unwind_unsigned_register (next_frame, ALPHA_SP_REGNUM, &base);
1281 return frame_id_build (base, frame_pc_unwind (next_frame));
1282 }
1283
1284 static CORE_ADDR
1285 alpha_unwind_pc (struct gdbarch *gdbarch, struct frame_info *next_frame)
1286 {
1287 ULONGEST pc;
1288 frame_unwind_unsigned_register (next_frame, ALPHA_PC_REGNUM, &pc);
1289 return pc;
1290 }
1291
1292 \f
1293 /* Helper routines for alpha*-nat.c files to move register sets to and
1294 from core files. The UNIQUE pointer is allowed to be NULL, as most
1295 targets don't supply this value in their core files. */
1296
1297 void
1298 alpha_supply_int_regs (struct regcache *regcache, int regno,
1299 const void *r0_r30, const void *pc, const void *unique)
1300 {
1301 const gdb_byte *regs = r0_r30;
1302 int i;
1303
1304 for (i = 0; i < 31; ++i)
1305 if (regno == i || regno == -1)
1306 regcache_raw_supply (regcache, i, regs + i * 8);
1307
1308 if (regno == ALPHA_ZERO_REGNUM || regno == -1)
1309 regcache_raw_supply (regcache, ALPHA_ZERO_REGNUM, NULL);
1310
1311 if (regno == ALPHA_PC_REGNUM || regno == -1)
1312 regcache_raw_supply (regcache, ALPHA_PC_REGNUM, pc);
1313
1314 if (regno == ALPHA_UNIQUE_REGNUM || regno == -1)
1315 regcache_raw_supply (regcache, ALPHA_UNIQUE_REGNUM, unique);
1316 }
1317
1318 void
1319 alpha_fill_int_regs (const struct regcache *regcache,
1320 int regno, void *r0_r30, void *pc, void *unique)
1321 {
1322 gdb_byte *regs = r0_r30;
1323 int i;
1324
1325 for (i = 0; i < 31; ++i)
1326 if (regno == i || regno == -1)
1327 regcache_raw_collect (regcache, i, regs + i * 8);
1328
1329 if (regno == ALPHA_PC_REGNUM || regno == -1)
1330 regcache_raw_collect (regcache, ALPHA_PC_REGNUM, pc);
1331
1332 if (unique && (regno == ALPHA_UNIQUE_REGNUM || regno == -1))
1333 regcache_raw_collect (regcache, ALPHA_UNIQUE_REGNUM, unique);
1334 }
1335
1336 void
1337 alpha_supply_fp_regs (struct regcache *regcache, int regno,
1338 const void *f0_f30, const void *fpcr)
1339 {
1340 const gdb_byte *regs = f0_f30;
1341 int i;
1342
1343 for (i = ALPHA_FP0_REGNUM; i < ALPHA_FP0_REGNUM + 31; ++i)
1344 if (regno == i || regno == -1)
1345 regcache_raw_supply (regcache, i,
1346 regs + (i - ALPHA_FP0_REGNUM) * 8);
1347
1348 if (regno == ALPHA_FPCR_REGNUM || regno == -1)
1349 regcache_raw_supply (regcache, ALPHA_FPCR_REGNUM, fpcr);
1350 }
1351
1352 void
1353 alpha_fill_fp_regs (const struct regcache *regcache,
1354 int regno, void *f0_f30, void *fpcr)
1355 {
1356 gdb_byte *regs = f0_f30;
1357 int i;
1358
1359 for (i = ALPHA_FP0_REGNUM; i < ALPHA_FP0_REGNUM + 31; ++i)
1360 if (regno == i || regno == -1)
1361 regcache_raw_collect (regcache, i,
1362 regs + (i - ALPHA_FP0_REGNUM) * 8);
1363
1364 if (regno == ALPHA_FPCR_REGNUM || regno == -1)
1365 regcache_raw_collect (regcache, ALPHA_FPCR_REGNUM, fpcr);
1366 }
1367
1368 \f
1369
1370 /* Return nonzero if the G_floating register value in REG is equal to
1371 zero for FP control instructions. */
1372
1373 static int
1374 fp_register_zero_p (LONGEST reg)
1375 {
1376 /* Check that all bits except the sign bit are zero. */
1377 const LONGEST zero_mask = ((LONGEST) 1 << 63) ^ -1;
1378
1379 return ((reg & zero_mask) == 0);
1380 }
1381
1382 /* Return the value of the sign bit for the G_floating register
1383 value held in REG. */
1384
1385 static int
1386 fp_register_sign_bit (LONGEST reg)
1387 {
1388 const LONGEST sign_mask = (LONGEST) 1 << 63;
1389
1390 return ((reg & sign_mask) != 0);
1391 }
1392
1393 /* alpha_software_single_step() is called just before we want to resume
1394 the inferior, if we want to single-step it but there is no hardware
1395 or kernel single-step support (NetBSD on Alpha, for example). We find
1396 the target of the coming instruction and breakpoint it. */
1397
1398 static CORE_ADDR
1399 alpha_next_pc (struct frame_info *frame, CORE_ADDR pc)
1400 {
1401 unsigned int insn;
1402 unsigned int op;
1403 int regno;
1404 int offset;
1405 LONGEST rav;
1406
1407 insn = alpha_read_insn (pc);
1408
1409 /* Opcode is top 6 bits. */
1410 op = (insn >> 26) & 0x3f;
1411
1412 if (op == 0x1a)
1413 {
1414 /* Jump format: target PC is:
1415 RB & ~3 */
1416 return (get_frame_register_unsigned (frame, (insn >> 16) & 0x1f) & ~3);
1417 }
1418
1419 if ((op & 0x30) == 0x30)
1420 {
1421 /* Branch format: target PC is:
1422 (new PC) + (4 * sext(displacement)) */
1423 if (op == 0x30 || /* BR */
1424 op == 0x34) /* BSR */
1425 {
1426 branch_taken:
1427 offset = (insn & 0x001fffff);
1428 if (offset & 0x00100000)
1429 offset |= 0xffe00000;
1430 offset *= ALPHA_INSN_SIZE;
1431 return (pc + ALPHA_INSN_SIZE + offset);
1432 }
1433
1434 /* Need to determine if branch is taken; read RA. */
1435 regno = (insn >> 21) & 0x1f;
1436 switch (op)
1437 {
1438 case 0x31: /* FBEQ */
1439 case 0x36: /* FBGE */
1440 case 0x37: /* FBGT */
1441 case 0x33: /* FBLE */
1442 case 0x32: /* FBLT */
1443 case 0x35: /* FBNE */
1444 regno += gdbarch_fp0_regnum (current_gdbarch);
1445 }
1446
1447 rav = get_frame_register_signed (frame, regno);
1448
1449 switch (op)
1450 {
1451 case 0x38: /* BLBC */
1452 if ((rav & 1) == 0)
1453 goto branch_taken;
1454 break;
1455 case 0x3c: /* BLBS */
1456 if (rav & 1)
1457 goto branch_taken;
1458 break;
1459 case 0x39: /* BEQ */
1460 if (rav == 0)
1461 goto branch_taken;
1462 break;
1463 case 0x3d: /* BNE */
1464 if (rav != 0)
1465 goto branch_taken;
1466 break;
1467 case 0x3a: /* BLT */
1468 if (rav < 0)
1469 goto branch_taken;
1470 break;
1471 case 0x3b: /* BLE */
1472 if (rav <= 0)
1473 goto branch_taken;
1474 break;
1475 case 0x3f: /* BGT */
1476 if (rav > 0)
1477 goto branch_taken;
1478 break;
1479 case 0x3e: /* BGE */
1480 if (rav >= 0)
1481 goto branch_taken;
1482 break;
1483
1484 /* Floating point branches. */
1485
1486 case 0x31: /* FBEQ */
1487 if (fp_register_zero_p (rav))
1488 goto branch_taken;
1489 break;
1490 case 0x36: /* FBGE */
1491 if (fp_register_sign_bit (rav) == 0 || fp_register_zero_p (rav))
1492 goto branch_taken;
1493 break;
1494 case 0x37: /* FBGT */
1495 if (fp_register_sign_bit (rav) == 0 && ! fp_register_zero_p (rav))
1496 goto branch_taken;
1497 break;
1498 case 0x33: /* FBLE */
1499 if (fp_register_sign_bit (rav) == 1 || fp_register_zero_p (rav))
1500 goto branch_taken;
1501 break;
1502 case 0x32: /* FBLT */
1503 if (fp_register_sign_bit (rav) == 1 && ! fp_register_zero_p (rav))
1504 goto branch_taken;
1505 break;
1506 case 0x35: /* FBNE */
1507 if (! fp_register_zero_p (rav))
1508 goto branch_taken;
1509 break;
1510 }
1511 }
1512
1513 /* Not a branch or branch not taken; target PC is:
1514 pc + 4 */
1515 return (pc + ALPHA_INSN_SIZE);
1516 }
1517
1518 int
1519 alpha_software_single_step (struct frame_info *frame)
1520 {
1521 CORE_ADDR pc, next_pc;
1522
1523 pc = get_frame_pc (frame);
1524 next_pc = alpha_next_pc (frame, pc);
1525
1526 insert_single_step_breakpoint (next_pc);
1527 return 1;
1528 }
1529
1530 \f
1531 /* Initialize the current architecture based on INFO. If possible, re-use an
1532 architecture from ARCHES, which is a list of architectures already created
1533 during this debugging session.
1534
1535 Called e.g. at program startup, when reading a core file, and when reading
1536 a binary file. */
1537
1538 static struct gdbarch *
1539 alpha_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
1540 {
1541 struct gdbarch_tdep *tdep;
1542 struct gdbarch *gdbarch;
1543
1544 /* Try to determine the ABI of the object we are loading. */
1545 if (info.abfd != NULL && info.osabi == GDB_OSABI_UNKNOWN)
1546 {
1547 /* If it's an ECOFF file, assume it's OSF/1. */
1548 if (bfd_get_flavour (info.abfd) == bfd_target_ecoff_flavour)
1549 info.osabi = GDB_OSABI_OSF1;
1550 }
1551
1552 /* Find a candidate among extant architectures. */
1553 arches = gdbarch_list_lookup_by_info (arches, &info);
1554 if (arches != NULL)
1555 return arches->gdbarch;
1556
1557 tdep = xmalloc (sizeof (struct gdbarch_tdep));
1558 gdbarch = gdbarch_alloc (&info, tdep);
1559
1560 /* Lowest text address. This is used by heuristic_proc_start()
1561 to decide when to stop looking. */
1562 tdep->vm_min_address = (CORE_ADDR) 0x120000000LL;
1563
1564 tdep->dynamic_sigtramp_offset = NULL;
1565 tdep->sigcontext_addr = NULL;
1566 tdep->sc_pc_offset = 2 * 8;
1567 tdep->sc_regs_offset = 4 * 8;
1568 tdep->sc_fpregs_offset = tdep->sc_regs_offset + 32 * 8 + 8;
1569
1570 tdep->jb_pc = -1; /* longjmp support not enabled by default */
1571
1572 tdep->return_in_memory = alpha_return_in_memory_always;
1573
1574 /* Type sizes */
1575 set_gdbarch_short_bit (gdbarch, 16);
1576 set_gdbarch_int_bit (gdbarch, 32);
1577 set_gdbarch_long_bit (gdbarch, 64);
1578 set_gdbarch_long_long_bit (gdbarch, 64);
1579 set_gdbarch_float_bit (gdbarch, 32);
1580 set_gdbarch_double_bit (gdbarch, 64);
1581 set_gdbarch_long_double_bit (gdbarch, 64);
1582 set_gdbarch_ptr_bit (gdbarch, 64);
1583
1584 /* Register info */
1585 set_gdbarch_num_regs (gdbarch, ALPHA_NUM_REGS);
1586 set_gdbarch_sp_regnum (gdbarch, ALPHA_SP_REGNUM);
1587 set_gdbarch_pc_regnum (gdbarch, ALPHA_PC_REGNUM);
1588 set_gdbarch_fp0_regnum (gdbarch, ALPHA_FP0_REGNUM);
1589
1590 set_gdbarch_register_name (gdbarch, alpha_register_name);
1591 set_gdbarch_register_type (gdbarch, alpha_register_type);
1592
1593 set_gdbarch_cannot_fetch_register (gdbarch, alpha_cannot_fetch_register);
1594 set_gdbarch_cannot_store_register (gdbarch, alpha_cannot_store_register);
1595
1596 set_gdbarch_convert_register_p (gdbarch, alpha_convert_register_p);
1597 set_gdbarch_register_to_value (gdbarch, alpha_register_to_value);
1598 set_gdbarch_value_to_register (gdbarch, alpha_value_to_register);
1599
1600 set_gdbarch_register_reggroup_p (gdbarch, alpha_register_reggroup_p);
1601
1602 /* Prologue heuristics. */
1603 set_gdbarch_skip_prologue (gdbarch, alpha_skip_prologue);
1604
1605 /* Disassembler. */
1606 set_gdbarch_print_insn (gdbarch, print_insn_alpha);
1607
1608 /* Call info. */
1609
1610 set_gdbarch_return_value (gdbarch, alpha_return_value);
1611
1612 /* Settings for calling functions in the inferior. */
1613 set_gdbarch_push_dummy_call (gdbarch, alpha_push_dummy_call);
1614
1615 /* Methods for saving / extracting a dummy frame's ID. */
1616 set_gdbarch_unwind_dummy_id (gdbarch, alpha_unwind_dummy_id);
1617
1618 /* Return the unwound PC value. */
1619 set_gdbarch_unwind_pc (gdbarch, alpha_unwind_pc);
1620
1621 set_gdbarch_inner_than (gdbarch, core_addr_lessthan);
1622 set_gdbarch_skip_trampoline_code (gdbarch, find_solib_trampoline_target);
1623
1624 set_gdbarch_breakpoint_from_pc (gdbarch, alpha_breakpoint_from_pc);
1625 set_gdbarch_decr_pc_after_break (gdbarch, ALPHA_INSN_SIZE);
1626 set_gdbarch_cannot_step_breakpoint (gdbarch, 1);
1627
1628 /* Hook in ABI-specific overrides, if they have been registered. */
1629 gdbarch_init_osabi (info, gdbarch);
1630
1631 /* Now that we have tuned the configuration, set a few final things
1632 based on what the OS ABI has told us. */
1633
1634 if (tdep->jb_pc >= 0)
1635 set_gdbarch_get_longjmp_target (gdbarch, alpha_get_longjmp_target);
1636
1637 frame_unwind_append_sniffer (gdbarch, alpha_sigtramp_frame_sniffer);
1638 frame_unwind_append_sniffer (gdbarch, alpha_heuristic_frame_sniffer);
1639
1640 frame_base_set_default (gdbarch, &alpha_heuristic_frame_base);
1641
1642 return gdbarch;
1643 }
1644
1645 void
1646 alpha_dwarf2_init_abi (struct gdbarch_info info, struct gdbarch *gdbarch)
1647 {
1648 frame_unwind_append_sniffer (gdbarch, dwarf2_frame_sniffer);
1649 frame_base_append_sniffer (gdbarch, dwarf2_frame_base_sniffer);
1650 }
1651
1652 extern initialize_file_ftype _initialize_alpha_tdep; /* -Wmissing-prototypes */
1653
1654 void
1655 _initialize_alpha_tdep (void)
1656 {
1657 struct cmd_list_element *c;
1658
1659 gdbarch_register (bfd_arch_alpha, alpha_gdbarch_init, NULL);
1660
1661 /* Let the user set the fence post for heuristic_proc_start. */
1662
1663 /* We really would like to have both "0" and "unlimited" work, but
1664 command.c doesn't deal with that. So make it a var_zinteger
1665 because the user can always use "999999" or some such for unlimited. */
1666 /* We need to throw away the frame cache when we set this, since it
1667 might change our ability to get backtraces. */
1668 add_setshow_zinteger_cmd ("heuristic-fence-post", class_support,
1669 &heuristic_fence_post, _("\
1670 Set the distance searched for the start of a function."), _("\
1671 Show the distance searched for the start of a function."), _("\
1672 If you are debugging a stripped executable, GDB needs to search through the\n\
1673 program for the start of a function. This command sets the distance of the\n\
1674 search. The only need to set it is when debugging a stripped executable."),
1675 reinit_frame_cache_sfunc,
1676 NULL, /* FIXME: i18n: The distance searched for the start of a function is \"%d\". */
1677 &setlist, &showlist);
1678 }
This page took 0.069734 seconds and 4 git commands to generate.