* Makefile.in (ALLDEPFILES): Add alpha-osf1-tdep.c.
[deliverable/binutils-gdb.git] / gdb / alpha-tdep.c
1 /* Target-dependent code for the ALPHA architecture, for GDB, the GNU Debugger.
2 Copyright 1993, 1994, 1995, 1996, 1997, 1998, 1999, 2000, 2001, 2002
3 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 2 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program; if not, write to the Free Software
19 Foundation, Inc., 59 Temple Place - Suite 330,
20 Boston, MA 02111-1307, USA. */
21
22 #include "defs.h"
23 #include "frame.h"
24 #include "inferior.h"
25 #include "symtab.h"
26 #include "value.h"
27 #include "gdbcmd.h"
28 #include "gdbcore.h"
29 #include "dis-asm.h"
30 #include "symfile.h"
31 #include "objfiles.h"
32 #include "gdb_string.h"
33 #include "linespec.h"
34 #include "regcache.h"
35 #include "doublest.h"
36 #include "arch-utils.h"
37
38 #include "elf-bfd.h"
39
40 #include "alpha-tdep.h"
41
42 static gdbarch_init_ftype alpha_gdbarch_init;
43
44 static gdbarch_register_name_ftype alpha_register_name;
45 static gdbarch_register_raw_size_ftype alpha_register_raw_size;
46 static gdbarch_register_virtual_size_ftype alpha_register_virtual_size;
47 static gdbarch_register_virtual_type_ftype alpha_register_virtual_type;
48 static gdbarch_register_byte_ftype alpha_register_byte;
49 static gdbarch_cannot_fetch_register_ftype alpha_cannot_fetch_register;
50 static gdbarch_cannot_store_register_ftype alpha_cannot_store_register;
51 static gdbarch_register_convertible_ftype alpha_register_convertible;
52 static gdbarch_register_convert_to_virtual_ftype
53 alpha_register_convert_to_virtual;
54 static gdbarch_register_convert_to_raw_ftype alpha_register_convert_to_raw;
55 static gdbarch_store_struct_return_ftype alpha_store_struct_return;
56 static gdbarch_extract_return_value_ftype alpha_extract_return_value;
57 static gdbarch_store_return_value_ftype alpha_store_return_value;
58 static gdbarch_extract_struct_value_address_ftype
59 alpha_extract_struct_value_address;
60 static gdbarch_use_struct_convention_ftype alpha_use_struct_convention;
61
62 static gdbarch_frame_args_address_ftype alpha_frame_args_address;
63 static gdbarch_frame_locals_address_ftype alpha_frame_locals_address;
64
65 static gdbarch_skip_prologue_ftype alpha_skip_prologue;
66 static gdbarch_get_saved_register_ftype alpha_get_saved_register;
67 static gdbarch_saved_pc_after_call_ftype alpha_saved_pc_after_call;
68 static gdbarch_frame_chain_ftype alpha_frame_chain;
69 static gdbarch_frame_saved_pc_ftype alpha_frame_saved_pc;
70 static gdbarch_frame_init_saved_regs_ftype alpha_frame_init_saved_regs;
71
72 static gdbarch_push_arguments_ftype alpha_push_arguments;
73 static gdbarch_push_dummy_frame_ftype alpha_push_dummy_frame;
74 static gdbarch_pop_frame_ftype alpha_pop_frame;
75 static gdbarch_fix_call_dummy_ftype alpha_fix_call_dummy;
76 static gdbarch_init_frame_pc_first_ftype alpha_init_frame_pc_first;
77 static gdbarch_init_extra_frame_info_ftype alpha_init_extra_frame_info;
78
79 struct frame_extra_info
80 {
81 alpha_extra_func_info_t proc_desc;
82 int localoff;
83 int pc_reg;
84 };
85
86 /* FIXME: Some of this code should perhaps be merged with mips-tdep.c. */
87
88 /* Prototypes for local functions. */
89
90 static void alpha_find_saved_regs (struct frame_info *);
91
92 static alpha_extra_func_info_t push_sigtramp_desc (CORE_ADDR low_addr);
93
94 static CORE_ADDR read_next_frame_reg (struct frame_info *, int);
95
96 static CORE_ADDR heuristic_proc_start (CORE_ADDR);
97
98 static alpha_extra_func_info_t heuristic_proc_desc (CORE_ADDR,
99 CORE_ADDR,
100 struct frame_info *);
101
102 static alpha_extra_func_info_t find_proc_desc (CORE_ADDR,
103 struct frame_info *);
104
105 #if 0
106 static int alpha_in_lenient_prologue (CORE_ADDR, CORE_ADDR);
107 #endif
108
109 static void reinit_frame_cache_sfunc (char *, int, struct cmd_list_element *);
110
111 static CORE_ADDR after_prologue (CORE_ADDR pc,
112 alpha_extra_func_info_t proc_desc);
113
114 static int alpha_in_prologue (CORE_ADDR pc,
115 alpha_extra_func_info_t proc_desc);
116
117 static int alpha_about_to_return (CORE_ADDR pc);
118
119 void _initialize_alpha_tdep (void);
120
121 /* Heuristic_proc_start may hunt through the text section for a long
122 time across a 2400 baud serial line. Allows the user to limit this
123 search. */
124 static unsigned int heuristic_fence_post = 0;
125 /* *INDENT-OFF* */
126 /* Layout of a stack frame on the alpha:
127
128 | |
129 pdr members: | 7th ... nth arg, |
130 | `pushed' by caller. |
131 | |
132 ----------------|-------------------------------|<-- old_sp == vfp
133 ^ ^ ^ ^ | |
134 | | | | | |
135 | |localoff | Copies of 1st .. 6th |
136 | | | | | argument if necessary. |
137 | | | v | |
138 | | | --- |-------------------------------|<-- FRAME_LOCALS_ADDRESS
139 | | | | |
140 | | | | Locals and temporaries. |
141 | | | | |
142 | | | |-------------------------------|
143 | | | | |
144 |-fregoffset | Saved float registers. |
145 | | | | F9 |
146 | | | | . |
147 | | | | . |
148 | | | | F2 |
149 | | v | |
150 | | -------|-------------------------------|
151 | | | |
152 | | | Saved registers. |
153 | | | S6 |
154 |-regoffset | . |
155 | | | . |
156 | | | S0 |
157 | | | pdr.pcreg |
158 | v | |
159 | ----------|-------------------------------|
160 | | |
161 frameoffset | Argument build area, gets |
162 | | 7th ... nth arg for any |
163 | | called procedure. |
164 v | |
165 -------------|-------------------------------|<-- sp
166 | |
167 */
168 /* *INDENT-ON* */
169
170 #define PROC_LOW_ADDR(proc) ((proc)->pdr.adr) /* least address */
171 /* These next two fields are kind of being hijacked. I wonder if
172 iline is too small for the values it needs to hold, if GDB is
173 running on a 32-bit host. */
174 #define PROC_HIGH_ADDR(proc) ((proc)->pdr.iline) /* upper address bound */
175 #define PROC_DUMMY_FRAME(proc) ((proc)->pdr.cbLineOffset) /*CALL_DUMMY frame */
176 #define PROC_FRAME_OFFSET(proc) ((proc)->pdr.frameoffset)
177 #define PROC_FRAME_REG(proc) ((proc)->pdr.framereg)
178 #define PROC_REG_MASK(proc) ((proc)->pdr.regmask)
179 #define PROC_FREG_MASK(proc) ((proc)->pdr.fregmask)
180 #define PROC_REG_OFFSET(proc) ((proc)->pdr.regoffset)
181 #define PROC_FREG_OFFSET(proc) ((proc)->pdr.fregoffset)
182 #define PROC_PC_REG(proc) ((proc)->pdr.pcreg)
183 #define PROC_LOCALOFF(proc) ((proc)->pdr.localoff)
184 #define PROC_SYMBOL(proc) (*(struct symbol**)&(proc)->pdr.isym)
185 #define _PROC_MAGIC_ 0x0F0F0F0F
186 #define PROC_DESC_IS_DUMMY(proc) ((proc)->pdr.isym == _PROC_MAGIC_)
187 #define SET_PROC_DESC_IS_DUMMY(proc) ((proc)->pdr.isym = _PROC_MAGIC_)
188
189 struct linked_proc_info
190 {
191 struct alpha_extra_func_info info;
192 struct linked_proc_info *next;
193 }
194 *linked_proc_desc_table = NULL;
195 \f
196 int
197 alpha_osf_in_sigtramp (CORE_ADDR pc, char *func_name)
198 {
199 return (func_name != NULL && STREQ ("__sigtramp", func_name));
200 }
201
202 static CORE_ADDR
203 alpha_frame_past_sigtramp_frame (struct frame_info *frame, CORE_ADDR pc)
204 {
205 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
206
207 if (tdep->skip_sigtramp_frame != NULL)
208 return (tdep->skip_sigtramp_frame (frame, pc));
209
210 return (0);
211 }
212
213 static LONGEST
214 alpha_dynamic_sigtramp_offset (CORE_ADDR pc)
215 {
216 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
217
218 /* Must be provided by OS/ABI variant code if supported. */
219 if (tdep->dynamic_sigtramp_offset != NULL)
220 return (tdep->dynamic_sigtramp_offset (pc));
221
222 return (-1);
223 }
224
225 #define ALPHA_PROC_SIGTRAMP_MAGIC 0x0e0f0f0f
226
227 /* Return TRUE if the procedure descriptor PROC is a procedure
228 descriptor that refers to a dynamically generated signal
229 trampoline routine. */
230 static int
231 alpha_proc_desc_is_dyn_sigtramp (struct alpha_extra_func_info *proc)
232 {
233 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
234
235 if (tdep->dynamic_sigtramp_offset != NULL)
236 return (proc->pdr.isym == ALPHA_PROC_SIGTRAMP_MAGIC);
237
238 return (0);
239 }
240
241 static void
242 alpha_set_proc_desc_is_dyn_sigtramp (struct alpha_extra_func_info *proc)
243 {
244 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
245
246 if (tdep->dynamic_sigtramp_offset != NULL)
247 proc->pdr.isym = ALPHA_PROC_SIGTRAMP_MAGIC;
248 }
249
250 /* Dynamically create a signal-handler caller procedure descriptor for
251 the signal-handler return code starting at address LOW_ADDR. The
252 descriptor is added to the linked_proc_desc_table. */
253
254 static alpha_extra_func_info_t
255 push_sigtramp_desc (CORE_ADDR low_addr)
256 {
257 struct linked_proc_info *link;
258 alpha_extra_func_info_t proc_desc;
259
260 link = (struct linked_proc_info *)
261 xmalloc (sizeof (struct linked_proc_info));
262 link->next = linked_proc_desc_table;
263 linked_proc_desc_table = link;
264
265 proc_desc = &link->info;
266
267 proc_desc->numargs = 0;
268 PROC_LOW_ADDR (proc_desc) = low_addr;
269 PROC_HIGH_ADDR (proc_desc) = low_addr + 3 * 4;
270 PROC_DUMMY_FRAME (proc_desc) = 0;
271 PROC_FRAME_OFFSET (proc_desc) = 0x298; /* sizeof(struct sigcontext_struct) */
272 PROC_FRAME_REG (proc_desc) = SP_REGNUM;
273 PROC_REG_MASK (proc_desc) = 0xffff;
274 PROC_FREG_MASK (proc_desc) = 0xffff;
275 PROC_PC_REG (proc_desc) = 26;
276 PROC_LOCALOFF (proc_desc) = 0;
277 alpha_set_proc_desc_is_dyn_sigtramp (proc_desc);
278 return (proc_desc);
279 }
280 \f
281
282 static char *
283 alpha_register_name (int regno)
284 {
285 static char *register_names[] =
286 {
287 "v0", "t0", "t1", "t2", "t3", "t4", "t5", "t6",
288 "t7", "s0", "s1", "s2", "s3", "s4", "s5", "fp",
289 "a0", "a1", "a2", "a3", "a4", "a5", "t8", "t9",
290 "t10", "t11", "ra", "t12", "at", "gp", "sp", "zero",
291 "f0", "f1", "f2", "f3", "f4", "f5", "f6", "f7",
292 "f8", "f9", "f10", "f11", "f12", "f13", "f14", "f15",
293 "f16", "f17", "f18", "f19", "f20", "f21", "f22", "f23",
294 "f24", "f25", "f26", "f27", "f28", "f29", "f30", "fpcr",
295 "pc", "vfp",
296 };
297
298 if (regno < 0)
299 return (NULL);
300 if (regno >= (sizeof(register_names) / sizeof(*register_names)))
301 return (NULL);
302 return (register_names[regno]);
303 }
304
305 static int
306 alpha_cannot_fetch_register (int regno)
307 {
308 return (regno == FP_REGNUM || regno == ALPHA_ZERO_REGNUM);
309 }
310
311 static int
312 alpha_cannot_store_register (int regno)
313 {
314 return (regno == FP_REGNUM || regno == ALPHA_ZERO_REGNUM);
315 }
316
317 static int
318 alpha_register_convertible (int regno)
319 {
320 return (regno >= FP0_REGNUM && regno <= FP0_REGNUM + 31);
321 }
322
323 static struct type *
324 alpha_register_virtual_type (int regno)
325 {
326 return ((regno >= FP0_REGNUM && regno < (FP0_REGNUM+31))
327 ? builtin_type_double : builtin_type_long);
328 }
329
330 static int
331 alpha_register_byte (int regno)
332 {
333 return (regno * 8);
334 }
335
336 static int
337 alpha_register_raw_size (int regno)
338 {
339 return 8;
340 }
341
342 static int
343 alpha_register_virtual_size (int regno)
344 {
345 return 8;
346 }
347 \f
348
349 /* Guaranteed to set frame->saved_regs to some values (it never leaves it
350 NULL). */
351
352 static void
353 alpha_find_saved_regs (struct frame_info *frame)
354 {
355 int ireg;
356 CORE_ADDR reg_position;
357 unsigned long mask;
358 alpha_extra_func_info_t proc_desc;
359 int returnreg;
360
361 frame_saved_regs_zalloc (frame);
362
363 /* If it is the frame for __sigtramp, the saved registers are located
364 in a sigcontext structure somewhere on the stack. __sigtramp
365 passes a pointer to the sigcontext structure on the stack.
366 If the stack layout for __sigtramp changes, or if sigcontext offsets
367 change, we might have to update this code. */
368 #ifndef SIGFRAME_PC_OFF
369 #define SIGFRAME_PC_OFF (2 * 8)
370 #define SIGFRAME_REGSAVE_OFF (4 * 8)
371 #define SIGFRAME_FPREGSAVE_OFF (SIGFRAME_REGSAVE_OFF + 32 * 8 + 8)
372 #endif
373 if (frame->signal_handler_caller)
374 {
375 CORE_ADDR sigcontext_addr;
376
377 sigcontext_addr = SIGCONTEXT_ADDR (frame);
378 for (ireg = 0; ireg < 32; ireg++)
379 {
380 reg_position = sigcontext_addr + SIGFRAME_REGSAVE_OFF + ireg * 8;
381 frame->saved_regs[ireg] = reg_position;
382 }
383 for (ireg = 0; ireg < 32; ireg++)
384 {
385 reg_position = sigcontext_addr + SIGFRAME_FPREGSAVE_OFF + ireg * 8;
386 frame->saved_regs[FP0_REGNUM + ireg] = reg_position;
387 }
388 frame->saved_regs[PC_REGNUM] = sigcontext_addr + SIGFRAME_PC_OFF;
389 return;
390 }
391
392 proc_desc = frame->extra_info->proc_desc;
393 if (proc_desc == NULL)
394 /* I'm not sure how/whether this can happen. Normally when we can't
395 find a proc_desc, we "synthesize" one using heuristic_proc_desc
396 and set the saved_regs right away. */
397 return;
398
399 /* Fill in the offsets for the registers which gen_mask says
400 were saved. */
401
402 reg_position = frame->frame + PROC_REG_OFFSET (proc_desc);
403 mask = PROC_REG_MASK (proc_desc);
404
405 returnreg = PROC_PC_REG (proc_desc);
406
407 /* Note that RA is always saved first, regardless of its actual
408 register number. */
409 if (mask & (1 << returnreg))
410 {
411 frame->saved_regs[returnreg] = reg_position;
412 reg_position += 8;
413 mask &= ~(1 << returnreg); /* Clear bit for RA so we
414 don't save again later. */
415 }
416
417 for (ireg = 0; ireg <= 31; ++ireg)
418 if (mask & (1 << ireg))
419 {
420 frame->saved_regs[ireg] = reg_position;
421 reg_position += 8;
422 }
423
424 /* Fill in the offsets for the registers which float_mask says
425 were saved. */
426
427 reg_position = frame->frame + PROC_FREG_OFFSET (proc_desc);
428 mask = PROC_FREG_MASK (proc_desc);
429
430 for (ireg = 0; ireg <= 31; ++ireg)
431 if (mask & (1 << ireg))
432 {
433 frame->saved_regs[FP0_REGNUM + ireg] = reg_position;
434 reg_position += 8;
435 }
436
437 frame->saved_regs[PC_REGNUM] = frame->saved_regs[returnreg];
438 }
439
440 static void
441 alpha_frame_init_saved_regs (struct frame_info *fi)
442 {
443 if (fi->saved_regs == NULL)
444 alpha_find_saved_regs (fi);
445 fi->saved_regs[SP_REGNUM] = fi->frame;
446 }
447
448 static void
449 alpha_init_frame_pc_first (int fromleaf, struct frame_info *prev)
450 {
451 prev->pc = (fromleaf ? SAVED_PC_AFTER_CALL (prev->next) :
452 prev->next ? FRAME_SAVED_PC (prev->next) : read_pc ());
453 }
454
455 static CORE_ADDR
456 read_next_frame_reg (struct frame_info *fi, int regno)
457 {
458 for (; fi; fi = fi->next)
459 {
460 /* We have to get the saved sp from the sigcontext
461 if it is a signal handler frame. */
462 if (regno == SP_REGNUM && !fi->signal_handler_caller)
463 return fi->frame;
464 else
465 {
466 if (fi->saved_regs == NULL)
467 alpha_find_saved_regs (fi);
468 if (fi->saved_regs[regno])
469 return read_memory_integer (fi->saved_regs[regno], 8);
470 }
471 }
472 return read_register (regno);
473 }
474
475 static CORE_ADDR
476 alpha_frame_saved_pc (struct frame_info *frame)
477 {
478 alpha_extra_func_info_t proc_desc = frame->extra_info->proc_desc;
479 /* We have to get the saved pc from the sigcontext
480 if it is a signal handler frame. */
481 int pcreg = frame->signal_handler_caller ? PC_REGNUM
482 : frame->extra_info->pc_reg;
483
484 if (proc_desc && PROC_DESC_IS_DUMMY (proc_desc))
485 return read_memory_integer (frame->frame - 8, 8);
486
487 return read_next_frame_reg (frame, pcreg);
488 }
489
490 static void
491 alpha_get_saved_register (char *raw_buffer,
492 int *optimized,
493 CORE_ADDR *addrp,
494 struct frame_info *frame,
495 int regnum,
496 enum lval_type *lval)
497 {
498 CORE_ADDR addr;
499
500 if (!target_has_registers)
501 error ("No registers.");
502
503 /* Normal systems don't optimize out things with register numbers. */
504 if (optimized != NULL)
505 *optimized = 0;
506 addr = find_saved_register (frame, regnum);
507 if (addr != 0)
508 {
509 if (lval != NULL)
510 *lval = lval_memory;
511 if (regnum == SP_REGNUM)
512 {
513 if (raw_buffer != NULL)
514 {
515 /* Put it back in target format. */
516 store_address (raw_buffer, REGISTER_RAW_SIZE (regnum),
517 (LONGEST) addr);
518 }
519 if (addrp != NULL)
520 *addrp = 0;
521 return;
522 }
523 if (raw_buffer != NULL)
524 target_read_memory (addr, raw_buffer, REGISTER_RAW_SIZE (regnum));
525 }
526 else
527 {
528 if (lval != NULL)
529 *lval = lval_register;
530 addr = REGISTER_BYTE (regnum);
531 if (raw_buffer != NULL)
532 read_register_gen (regnum, raw_buffer);
533 }
534 if (addrp != NULL)
535 *addrp = addr;
536 }
537
538 static CORE_ADDR
539 alpha_saved_pc_after_call (struct frame_info *frame)
540 {
541 CORE_ADDR pc = frame->pc;
542 CORE_ADDR tmp;
543 alpha_extra_func_info_t proc_desc;
544 int pcreg;
545
546 /* Skip over shared library trampoline if necessary. */
547 tmp = SKIP_TRAMPOLINE_CODE (pc);
548 if (tmp != 0)
549 pc = tmp;
550
551 proc_desc = find_proc_desc (pc, frame->next);
552 pcreg = proc_desc ? PROC_PC_REG (proc_desc) : ALPHA_RA_REGNUM;
553
554 if (frame->signal_handler_caller)
555 return alpha_frame_saved_pc (frame);
556 else
557 return read_register (pcreg);
558 }
559
560
561 static struct alpha_extra_func_info temp_proc_desc;
562 static CORE_ADDR temp_saved_regs[ALPHA_NUM_REGS];
563
564 /* Nonzero if instruction at PC is a return instruction. "ret
565 $zero,($ra),1" on alpha. */
566
567 static int
568 alpha_about_to_return (CORE_ADDR pc)
569 {
570 return read_memory_integer (pc, 4) == 0x6bfa8001;
571 }
572
573
574
575 /* This fencepost looks highly suspicious to me. Removing it also
576 seems suspicious as it could affect remote debugging across serial
577 lines. */
578
579 static CORE_ADDR
580 heuristic_proc_start (CORE_ADDR pc)
581 {
582 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
583 CORE_ADDR start_pc = pc;
584 CORE_ADDR fence = start_pc - heuristic_fence_post;
585
586 if (start_pc == 0)
587 return 0;
588
589 if (heuristic_fence_post == UINT_MAX
590 || fence < tdep->vm_min_address)
591 fence = tdep->vm_min_address;
592
593 /* search back for previous return */
594 for (start_pc -= 4;; start_pc -= 4)
595 if (start_pc < fence)
596 {
597 /* It's not clear to me why we reach this point when
598 stop_soon_quietly, but with this test, at least we
599 don't print out warnings for every child forked (eg, on
600 decstation). 22apr93 rich@cygnus.com. */
601 if (!stop_soon_quietly)
602 {
603 static int blurb_printed = 0;
604
605 if (fence == tdep->vm_min_address)
606 warning ("Hit beginning of text section without finding");
607 else
608 warning ("Hit heuristic-fence-post without finding");
609
610 warning ("enclosing function for address 0x%s", paddr_nz (pc));
611 if (!blurb_printed)
612 {
613 printf_filtered ("\
614 This warning occurs if you are debugging a function without any symbols\n\
615 (for example, in a stripped executable). In that case, you may wish to\n\
616 increase the size of the search with the `set heuristic-fence-post' command.\n\
617 \n\
618 Otherwise, you told GDB there was a function where there isn't one, or\n\
619 (more likely) you have encountered a bug in GDB.\n");
620 blurb_printed = 1;
621 }
622 }
623
624 return 0;
625 }
626 else if (alpha_about_to_return (start_pc))
627 break;
628
629 start_pc += 4; /* skip return */
630 return start_pc;
631 }
632
633 static alpha_extra_func_info_t
634 heuristic_proc_desc (CORE_ADDR start_pc, CORE_ADDR limit_pc,
635 struct frame_info *next_frame)
636 {
637 CORE_ADDR sp = read_next_frame_reg (next_frame, SP_REGNUM);
638 CORE_ADDR cur_pc;
639 int frame_size;
640 int has_frame_reg = 0;
641 unsigned long reg_mask = 0;
642 int pcreg = -1;
643
644 if (start_pc == 0)
645 return NULL;
646 memset (&temp_proc_desc, '\0', sizeof (temp_proc_desc));
647 memset (&temp_saved_regs, '\0', SIZEOF_FRAME_SAVED_REGS);
648 PROC_LOW_ADDR (&temp_proc_desc) = start_pc;
649
650 if (start_pc + 200 < limit_pc)
651 limit_pc = start_pc + 200;
652 frame_size = 0;
653 for (cur_pc = start_pc; cur_pc < limit_pc; cur_pc += 4)
654 {
655 char buf[4];
656 unsigned long word;
657 int status;
658
659 status = read_memory_nobpt (cur_pc, buf, 4);
660 if (status)
661 memory_error (status, cur_pc);
662 word = extract_unsigned_integer (buf, 4);
663
664 if ((word & 0xffff0000) == 0x23de0000) /* lda $sp,n($sp) */
665 {
666 if (word & 0x8000)
667 frame_size += (-word) & 0xffff;
668 else
669 /* Exit loop if a positive stack adjustment is found, which
670 usually means that the stack cleanup code in the function
671 epilogue is reached. */
672 break;
673 }
674 else if ((word & 0xfc1f0000) == 0xb41e0000 /* stq reg,n($sp) */
675 && (word & 0xffff0000) != 0xb7fe0000) /* reg != $zero */
676 {
677 int reg = (word & 0x03e00000) >> 21;
678 reg_mask |= 1 << reg;
679 temp_saved_regs[reg] = sp + (short) word;
680
681 /* Starting with OSF/1-3.2C, the system libraries are shipped
682 without local symbols, but they still contain procedure
683 descriptors without a symbol reference. GDB is currently
684 unable to find these procedure descriptors and uses
685 heuristic_proc_desc instead.
686 As some low level compiler support routines (__div*, __add*)
687 use a non-standard return address register, we have to
688 add some heuristics to determine the return address register,
689 or stepping over these routines will fail.
690 Usually the return address register is the first register
691 saved on the stack, but assembler optimization might
692 rearrange the register saves.
693 So we recognize only a few registers (t7, t9, ra) within
694 the procedure prologue as valid return address registers.
695 If we encounter a return instruction, we extract the
696 the return address register from it.
697
698 FIXME: Rewriting GDB to access the procedure descriptors,
699 e.g. via the minimal symbol table, might obviate this hack. */
700 if (pcreg == -1
701 && cur_pc < (start_pc + 80)
702 && (reg == ALPHA_T7_REGNUM || reg == ALPHA_T9_REGNUM
703 || reg == ALPHA_RA_REGNUM))
704 pcreg = reg;
705 }
706 else if ((word & 0xffe0ffff) == 0x6be08001) /* ret zero,reg,1 */
707 pcreg = (word >> 16) & 0x1f;
708 else if (word == 0x47de040f) /* bis sp,sp fp */
709 has_frame_reg = 1;
710 }
711 if (pcreg == -1)
712 {
713 /* If we haven't found a valid return address register yet,
714 keep searching in the procedure prologue. */
715 while (cur_pc < (limit_pc + 80) && cur_pc < (start_pc + 80))
716 {
717 char buf[4];
718 unsigned long word;
719
720 if (read_memory_nobpt (cur_pc, buf, 4))
721 break;
722 cur_pc += 4;
723 word = extract_unsigned_integer (buf, 4);
724
725 if ((word & 0xfc1f0000) == 0xb41e0000 /* stq reg,n($sp) */
726 && (word & 0xffff0000) != 0xb7fe0000) /* reg != $zero */
727 {
728 int reg = (word & 0x03e00000) >> 21;
729 if (reg == ALPHA_T7_REGNUM || reg == ALPHA_T9_REGNUM
730 || reg == ALPHA_RA_REGNUM)
731 {
732 pcreg = reg;
733 break;
734 }
735 }
736 else if ((word & 0xffe0ffff) == 0x6be08001) /* ret zero,reg,1 */
737 {
738 pcreg = (word >> 16) & 0x1f;
739 break;
740 }
741 }
742 }
743
744 if (has_frame_reg)
745 PROC_FRAME_REG (&temp_proc_desc) = ALPHA_GCC_FP_REGNUM;
746 else
747 PROC_FRAME_REG (&temp_proc_desc) = SP_REGNUM;
748 PROC_FRAME_OFFSET (&temp_proc_desc) = frame_size;
749 PROC_REG_MASK (&temp_proc_desc) = reg_mask;
750 PROC_PC_REG (&temp_proc_desc) = (pcreg == -1) ? ALPHA_RA_REGNUM : pcreg;
751 PROC_LOCALOFF (&temp_proc_desc) = 0; /* XXX - bogus */
752 return &temp_proc_desc;
753 }
754
755 /* This returns the PC of the first inst after the prologue. If we can't
756 find the prologue, then return 0. */
757
758 static CORE_ADDR
759 after_prologue (CORE_ADDR pc, alpha_extra_func_info_t proc_desc)
760 {
761 struct symtab_and_line sal;
762 CORE_ADDR func_addr, func_end;
763
764 if (!proc_desc)
765 proc_desc = find_proc_desc (pc, NULL);
766
767 if (proc_desc)
768 {
769 if (alpha_proc_desc_is_dyn_sigtramp (proc_desc))
770 return PROC_LOW_ADDR (proc_desc); /* "prologue" is in kernel */
771
772 /* If function is frameless, then we need to do it the hard way. I
773 strongly suspect that frameless always means prologueless... */
774 if (PROC_FRAME_REG (proc_desc) == SP_REGNUM
775 && PROC_FRAME_OFFSET (proc_desc) == 0)
776 return 0;
777 }
778
779 if (!find_pc_partial_function (pc, NULL, &func_addr, &func_end))
780 return 0; /* Unknown */
781
782 sal = find_pc_line (func_addr, 0);
783
784 if (sal.end < func_end)
785 return sal.end;
786
787 /* The line after the prologue is after the end of the function. In this
788 case, tell the caller to find the prologue the hard way. */
789
790 return 0;
791 }
792
793 /* Return non-zero if we *might* be in a function prologue. Return zero if we
794 are definitively *not* in a function prologue. */
795
796 static int
797 alpha_in_prologue (CORE_ADDR pc, alpha_extra_func_info_t proc_desc)
798 {
799 CORE_ADDR after_prologue_pc;
800
801 after_prologue_pc = after_prologue (pc, proc_desc);
802
803 if (after_prologue_pc == 0
804 || pc < after_prologue_pc)
805 return 1;
806 else
807 return 0;
808 }
809
810 static alpha_extra_func_info_t
811 find_proc_desc (CORE_ADDR pc, struct frame_info *next_frame)
812 {
813 alpha_extra_func_info_t proc_desc;
814 struct block *b;
815 struct symbol *sym;
816 CORE_ADDR startaddr;
817
818 /* Try to get the proc_desc from the linked call dummy proc_descs
819 if the pc is in the call dummy.
820 This is hairy. In the case of nested dummy calls we have to find the
821 right proc_desc, but we might not yet know the frame for the dummy
822 as it will be contained in the proc_desc we are searching for.
823 So we have to find the proc_desc whose frame is closest to the current
824 stack pointer. */
825
826 if (PC_IN_CALL_DUMMY (pc, 0, 0))
827 {
828 struct linked_proc_info *link;
829 CORE_ADDR sp = read_next_frame_reg (next_frame, SP_REGNUM);
830 alpha_extra_func_info_t found_proc_desc = NULL;
831 long min_distance = LONG_MAX;
832
833 for (link = linked_proc_desc_table; link; link = link->next)
834 {
835 long distance = (CORE_ADDR) PROC_DUMMY_FRAME (&link->info) - sp;
836 if (distance > 0 && distance < min_distance)
837 {
838 min_distance = distance;
839 found_proc_desc = &link->info;
840 }
841 }
842 if (found_proc_desc != NULL)
843 return found_proc_desc;
844 }
845
846 b = block_for_pc (pc);
847
848 find_pc_partial_function (pc, NULL, &startaddr, NULL);
849 if (b == NULL)
850 sym = NULL;
851 else
852 {
853 if (startaddr > BLOCK_START (b))
854 /* This is the "pathological" case referred to in a comment in
855 print_frame_info. It might be better to move this check into
856 symbol reading. */
857 sym = NULL;
858 else
859 sym = lookup_symbol (MIPS_EFI_SYMBOL_NAME, b, LABEL_NAMESPACE,
860 0, NULL);
861 }
862
863 /* If we never found a PDR for this function in symbol reading, then
864 examine prologues to find the information. */
865 if (sym && ((mips_extra_func_info_t) SYMBOL_VALUE (sym))->pdr.framereg == -1)
866 sym = NULL;
867
868 if (sym)
869 {
870 /* IF this is the topmost frame AND
871 * (this proc does not have debugging information OR
872 * the PC is in the procedure prologue)
873 * THEN create a "heuristic" proc_desc (by analyzing
874 * the actual code) to replace the "official" proc_desc.
875 */
876 proc_desc = (alpha_extra_func_info_t) SYMBOL_VALUE (sym);
877 if (next_frame == NULL)
878 {
879 if (PROC_DESC_IS_DUMMY (proc_desc) || alpha_in_prologue (pc, proc_desc))
880 {
881 alpha_extra_func_info_t found_heuristic =
882 heuristic_proc_desc (PROC_LOW_ADDR (proc_desc),
883 pc, next_frame);
884 if (found_heuristic)
885 {
886 PROC_LOCALOFF (found_heuristic) =
887 PROC_LOCALOFF (proc_desc);
888 PROC_PC_REG (found_heuristic) = PROC_PC_REG (proc_desc);
889 proc_desc = found_heuristic;
890 }
891 }
892 }
893 }
894 else
895 {
896 long offset;
897
898 /* Is linked_proc_desc_table really necessary? It only seems to be used
899 by procedure call dummys. However, the procedures being called ought
900 to have their own proc_descs, and even if they don't,
901 heuristic_proc_desc knows how to create them! */
902
903 register struct linked_proc_info *link;
904 for (link = linked_proc_desc_table; link; link = link->next)
905 if (PROC_LOW_ADDR (&link->info) <= pc
906 && PROC_HIGH_ADDR (&link->info) > pc)
907 return &link->info;
908
909 /* If PC is inside a dynamically generated sigtramp handler,
910 create and push a procedure descriptor for that code: */
911 offset = alpha_dynamic_sigtramp_offset (pc);
912 if (offset >= 0)
913 return push_sigtramp_desc (pc - offset);
914
915 /* If heuristic_fence_post is non-zero, determine the procedure
916 start address by examining the instructions.
917 This allows us to find the start address of static functions which
918 have no symbolic information, as startaddr would have been set to
919 the preceding global function start address by the
920 find_pc_partial_function call above. */
921 if (startaddr == 0 || heuristic_fence_post != 0)
922 startaddr = heuristic_proc_start (pc);
923
924 proc_desc =
925 heuristic_proc_desc (startaddr, pc, next_frame);
926 }
927 return proc_desc;
928 }
929
930 alpha_extra_func_info_t cached_proc_desc;
931
932 static CORE_ADDR
933 alpha_frame_chain (struct frame_info *frame)
934 {
935 alpha_extra_func_info_t proc_desc;
936 CORE_ADDR saved_pc = FRAME_SAVED_PC (frame);
937
938 if (saved_pc == 0 || inside_entry_file (saved_pc))
939 return 0;
940
941 proc_desc = find_proc_desc (saved_pc, frame);
942 if (!proc_desc)
943 return 0;
944
945 cached_proc_desc = proc_desc;
946
947 /* Fetch the frame pointer for a dummy frame from the procedure
948 descriptor. */
949 if (PROC_DESC_IS_DUMMY (proc_desc))
950 return (CORE_ADDR) PROC_DUMMY_FRAME (proc_desc);
951
952 /* If no frame pointer and frame size is zero, we must be at end
953 of stack (or otherwise hosed). If we don't check frame size,
954 we loop forever if we see a zero size frame. */
955 if (PROC_FRAME_REG (proc_desc) == SP_REGNUM
956 && PROC_FRAME_OFFSET (proc_desc) == 0
957 /* The previous frame from a sigtramp frame might be frameless
958 and have frame size zero. */
959 && !frame->signal_handler_caller)
960 return alpha_frame_past_sigtramp_frame (frame, saved_pc);
961 else
962 return read_next_frame_reg (frame, PROC_FRAME_REG (proc_desc))
963 + PROC_FRAME_OFFSET (proc_desc);
964 }
965
966 void
967 alpha_print_extra_frame_info (struct frame_info *fi)
968 {
969 if (fi
970 && fi->extra_info
971 && fi->extra_info->proc_desc
972 && fi->extra_info->proc_desc->pdr.framereg < NUM_REGS)
973 printf_filtered (" frame pointer is at %s+%s\n",
974 REGISTER_NAME (fi->extra_info->proc_desc->pdr.framereg),
975 paddr_d (fi->extra_info->proc_desc->pdr.frameoffset));
976 }
977
978 static void
979 alpha_init_extra_frame_info (int fromleaf, struct frame_info *frame)
980 {
981 /* Use proc_desc calculated in frame_chain */
982 alpha_extra_func_info_t proc_desc =
983 frame->next ? cached_proc_desc : find_proc_desc (frame->pc, frame->next);
984
985 frame->extra_info = (struct frame_extra_info *)
986 frame_obstack_alloc (sizeof (struct frame_extra_info));
987
988 frame->saved_regs = NULL;
989 frame->extra_info->localoff = 0;
990 frame->extra_info->pc_reg = ALPHA_RA_REGNUM;
991 frame->extra_info->proc_desc = proc_desc == &temp_proc_desc ? 0 : proc_desc;
992 if (proc_desc)
993 {
994 /* Get the locals offset and the saved pc register from the
995 procedure descriptor, they are valid even if we are in the
996 middle of the prologue. */
997 frame->extra_info->localoff = PROC_LOCALOFF (proc_desc);
998 frame->extra_info->pc_reg = PROC_PC_REG (proc_desc);
999
1000 /* Fixup frame-pointer - only needed for top frame */
1001
1002 /* Fetch the frame pointer for a dummy frame from the procedure
1003 descriptor. */
1004 if (PROC_DESC_IS_DUMMY (proc_desc))
1005 frame->frame = (CORE_ADDR) PROC_DUMMY_FRAME (proc_desc);
1006
1007 /* This may not be quite right, if proc has a real frame register.
1008 Get the value of the frame relative sp, procedure might have been
1009 interrupted by a signal at it's very start. */
1010 else if (frame->pc == PROC_LOW_ADDR (proc_desc)
1011 && !alpha_proc_desc_is_dyn_sigtramp (proc_desc))
1012 frame->frame = read_next_frame_reg (frame->next, SP_REGNUM);
1013 else
1014 frame->frame = read_next_frame_reg (frame->next, PROC_FRAME_REG (proc_desc))
1015 + PROC_FRAME_OFFSET (proc_desc);
1016
1017 if (proc_desc == &temp_proc_desc)
1018 {
1019 char *name;
1020
1021 /* Do not set the saved registers for a sigtramp frame,
1022 alpha_find_saved_registers will do that for us.
1023 We can't use frame->signal_handler_caller, it is not yet set. */
1024 find_pc_partial_function (frame->pc, &name,
1025 (CORE_ADDR *) NULL, (CORE_ADDR *) NULL);
1026 if (!PC_IN_SIGTRAMP (frame->pc, name))
1027 {
1028 frame->saved_regs = (CORE_ADDR *)
1029 frame_obstack_alloc (SIZEOF_FRAME_SAVED_REGS);
1030 memcpy (frame->saved_regs, temp_saved_regs,
1031 SIZEOF_FRAME_SAVED_REGS);
1032 frame->saved_regs[PC_REGNUM]
1033 = frame->saved_regs[ALPHA_RA_REGNUM];
1034 }
1035 }
1036 }
1037 }
1038
1039 static CORE_ADDR
1040 alpha_frame_locals_address (struct frame_info *fi)
1041 {
1042 return (fi->frame - fi->extra_info->localoff);
1043 }
1044
1045 static CORE_ADDR
1046 alpha_frame_args_address (struct frame_info *fi)
1047 {
1048 return (fi->frame - (ALPHA_NUM_ARG_REGS * 8));
1049 }
1050
1051 /* ALPHA stack frames are almost impenetrable. When execution stops,
1052 we basically have to look at symbol information for the function
1053 that we stopped in, which tells us *which* register (if any) is
1054 the base of the frame pointer, and what offset from that register
1055 the frame itself is at.
1056
1057 This presents a problem when trying to examine a stack in memory
1058 (that isn't executing at the moment), using the "frame" command. We
1059 don't have a PC, nor do we have any registers except SP.
1060
1061 This routine takes two arguments, SP and PC, and tries to make the
1062 cached frames look as if these two arguments defined a frame on the
1063 cache. This allows the rest of info frame to extract the important
1064 arguments without difficulty. */
1065
1066 struct frame_info *
1067 alpha_setup_arbitrary_frame (int argc, CORE_ADDR *argv)
1068 {
1069 if (argc != 2)
1070 error ("ALPHA frame specifications require two arguments: sp and pc");
1071
1072 return create_new_frame (argv[0], argv[1]);
1073 }
1074
1075 /* The alpha passes the first six arguments in the registers, the rest on
1076 the stack. The register arguments are eventually transferred to the
1077 argument transfer area immediately below the stack by the called function
1078 anyway. So we `push' at least six arguments on the stack, `reload' the
1079 argument registers and then adjust the stack pointer to point past the
1080 sixth argument. This algorithm simplifies the passing of a large struct
1081 which extends from the registers to the stack.
1082 If the called function is returning a structure, the address of the
1083 structure to be returned is passed as a hidden first argument. */
1084
1085 static CORE_ADDR
1086 alpha_push_arguments (int nargs, struct value **args, CORE_ADDR sp,
1087 int struct_return, CORE_ADDR struct_addr)
1088 {
1089 int i;
1090 int accumulate_size = struct_return ? 8 : 0;
1091 int arg_regs_size = ALPHA_NUM_ARG_REGS * 8;
1092 struct alpha_arg
1093 {
1094 char *contents;
1095 int len;
1096 int offset;
1097 };
1098 struct alpha_arg *alpha_args =
1099 (struct alpha_arg *) alloca (nargs * sizeof (struct alpha_arg));
1100 register struct alpha_arg *m_arg;
1101 char raw_buffer[sizeof (CORE_ADDR)];
1102 int required_arg_regs;
1103
1104 for (i = 0, m_arg = alpha_args; i < nargs; i++, m_arg++)
1105 {
1106 struct value *arg = args[i];
1107 struct type *arg_type = check_typedef (VALUE_TYPE (arg));
1108 /* Cast argument to long if necessary as the compiler does it too. */
1109 switch (TYPE_CODE (arg_type))
1110 {
1111 case TYPE_CODE_INT:
1112 case TYPE_CODE_BOOL:
1113 case TYPE_CODE_CHAR:
1114 case TYPE_CODE_RANGE:
1115 case TYPE_CODE_ENUM:
1116 if (TYPE_LENGTH (arg_type) < TYPE_LENGTH (builtin_type_long))
1117 {
1118 arg_type = builtin_type_long;
1119 arg = value_cast (arg_type, arg);
1120 }
1121 break;
1122 default:
1123 break;
1124 }
1125 m_arg->len = TYPE_LENGTH (arg_type);
1126 m_arg->offset = accumulate_size;
1127 accumulate_size = (accumulate_size + m_arg->len + 7) & ~7;
1128 m_arg->contents = VALUE_CONTENTS (arg);
1129 }
1130
1131 /* Determine required argument register loads, loading an argument register
1132 is expensive as it uses three ptrace calls. */
1133 required_arg_regs = accumulate_size / 8;
1134 if (required_arg_regs > ALPHA_NUM_ARG_REGS)
1135 required_arg_regs = ALPHA_NUM_ARG_REGS;
1136
1137 /* Make room for the arguments on the stack. */
1138 if (accumulate_size < arg_regs_size)
1139 accumulate_size = arg_regs_size;
1140 sp -= accumulate_size;
1141
1142 /* Keep sp aligned to a multiple of 16 as the compiler does it too. */
1143 sp &= ~15;
1144
1145 /* `Push' arguments on the stack. */
1146 for (i = nargs; m_arg--, --i >= 0;)
1147 write_memory (sp + m_arg->offset, m_arg->contents, m_arg->len);
1148 if (struct_return)
1149 {
1150 store_address (raw_buffer, sizeof (CORE_ADDR), struct_addr);
1151 write_memory (sp, raw_buffer, sizeof (CORE_ADDR));
1152 }
1153
1154 /* Load the argument registers. */
1155 for (i = 0; i < required_arg_regs; i++)
1156 {
1157 LONGEST val;
1158
1159 val = read_memory_integer (sp + i * 8, 8);
1160 write_register (ALPHA_A0_REGNUM + i, val);
1161 write_register (ALPHA_FPA0_REGNUM + i, val);
1162 }
1163
1164 return sp + arg_regs_size;
1165 }
1166
1167 static void
1168 alpha_push_dummy_frame (void)
1169 {
1170 int ireg;
1171 struct linked_proc_info *link;
1172 alpha_extra_func_info_t proc_desc;
1173 CORE_ADDR sp = read_register (SP_REGNUM);
1174 CORE_ADDR save_address;
1175 char raw_buffer[ALPHA_MAX_REGISTER_RAW_SIZE];
1176 unsigned long mask;
1177
1178 link = (struct linked_proc_info *) xmalloc (sizeof (struct linked_proc_info));
1179 link->next = linked_proc_desc_table;
1180 linked_proc_desc_table = link;
1181
1182 proc_desc = &link->info;
1183
1184 /*
1185 * The registers we must save are all those not preserved across
1186 * procedure calls.
1187 * In addition, we must save the PC and RA.
1188 *
1189 * Dummy frame layout:
1190 * (high memory)
1191 * Saved PC
1192 * Saved F30
1193 * ...
1194 * Saved F0
1195 * Saved R29
1196 * ...
1197 * Saved R0
1198 * Saved R26 (RA)
1199 * Parameter build area
1200 * (low memory)
1201 */
1202
1203 /* MASK(i,j) == (1<<i) + (1<<(i+1)) + ... + (1<<j)). Assume i<=j<31. */
1204 #define MASK(i,j) ((((LONGEST)1 << ((j)+1)) - 1) ^ (((LONGEST)1 << (i)) - 1))
1205 #define GEN_REG_SAVE_MASK (MASK(0,8) | MASK(16,29))
1206 #define GEN_REG_SAVE_COUNT 24
1207 #define FLOAT_REG_SAVE_MASK (MASK(0,1) | MASK(10,30))
1208 #define FLOAT_REG_SAVE_COUNT 23
1209 /* The special register is the PC as we have no bit for it in the save masks.
1210 alpha_frame_saved_pc knows where the pc is saved in a dummy frame. */
1211 #define SPECIAL_REG_SAVE_COUNT 1
1212
1213 PROC_REG_MASK (proc_desc) = GEN_REG_SAVE_MASK;
1214 PROC_FREG_MASK (proc_desc) = FLOAT_REG_SAVE_MASK;
1215 /* PROC_REG_OFFSET is the offset from the dummy frame to the saved RA,
1216 but keep SP aligned to a multiple of 16. */
1217 PROC_REG_OFFSET (proc_desc) =
1218 -((8 * (SPECIAL_REG_SAVE_COUNT
1219 + GEN_REG_SAVE_COUNT
1220 + FLOAT_REG_SAVE_COUNT)
1221 + 15) & ~15);
1222 PROC_FREG_OFFSET (proc_desc) =
1223 PROC_REG_OFFSET (proc_desc) + 8 * GEN_REG_SAVE_COUNT;
1224
1225 /* Save general registers.
1226 The return address register is the first saved register, all other
1227 registers follow in ascending order.
1228 The PC is saved immediately below the SP. */
1229 save_address = sp + PROC_REG_OFFSET (proc_desc);
1230 store_address (raw_buffer, 8, read_register (ALPHA_RA_REGNUM));
1231 write_memory (save_address, raw_buffer, 8);
1232 save_address += 8;
1233 mask = PROC_REG_MASK (proc_desc) & 0xffffffffL;
1234 for (ireg = 0; mask; ireg++, mask >>= 1)
1235 if (mask & 1)
1236 {
1237 if (ireg == ALPHA_RA_REGNUM)
1238 continue;
1239 store_address (raw_buffer, 8, read_register (ireg));
1240 write_memory (save_address, raw_buffer, 8);
1241 save_address += 8;
1242 }
1243
1244 store_address (raw_buffer, 8, read_register (PC_REGNUM));
1245 write_memory (sp - 8, raw_buffer, 8);
1246
1247 /* Save floating point registers. */
1248 save_address = sp + PROC_FREG_OFFSET (proc_desc);
1249 mask = PROC_FREG_MASK (proc_desc) & 0xffffffffL;
1250 for (ireg = 0; mask; ireg++, mask >>= 1)
1251 if (mask & 1)
1252 {
1253 store_address (raw_buffer, 8, read_register (ireg + FP0_REGNUM));
1254 write_memory (save_address, raw_buffer, 8);
1255 save_address += 8;
1256 }
1257
1258 /* Set and save the frame address for the dummy.
1259 This is tricky. The only registers that are suitable for a frame save
1260 are those that are preserved across procedure calls (s0-s6). But if
1261 a read system call is interrupted and then a dummy call is made
1262 (see testsuite/gdb.t17/interrupt.exp) the dummy call hangs till the read
1263 is satisfied. Then it returns with the s0-s6 registers set to the values
1264 on entry to the read system call and our dummy frame pointer would be
1265 destroyed. So we save the dummy frame in the proc_desc and handle the
1266 retrieval of the frame pointer of a dummy specifically. The frame register
1267 is set to the virtual frame (pseudo) register, it's value will always
1268 be read as zero and will help us to catch any errors in the dummy frame
1269 retrieval code. */
1270 PROC_DUMMY_FRAME (proc_desc) = sp;
1271 PROC_FRAME_REG (proc_desc) = FP_REGNUM;
1272 PROC_FRAME_OFFSET (proc_desc) = 0;
1273 sp += PROC_REG_OFFSET (proc_desc);
1274 write_register (SP_REGNUM, sp);
1275
1276 PROC_LOW_ADDR (proc_desc) = CALL_DUMMY_ADDRESS ();
1277 PROC_HIGH_ADDR (proc_desc) = PROC_LOW_ADDR (proc_desc) + 4;
1278
1279 SET_PROC_DESC_IS_DUMMY (proc_desc);
1280 PROC_PC_REG (proc_desc) = ALPHA_RA_REGNUM;
1281 }
1282
1283 static void
1284 alpha_pop_frame (void)
1285 {
1286 register int regnum;
1287 struct frame_info *frame = get_current_frame ();
1288 CORE_ADDR new_sp = frame->frame;
1289
1290 alpha_extra_func_info_t proc_desc = frame->extra_info->proc_desc;
1291
1292 /* we need proc_desc to know how to restore the registers;
1293 if it is NULL, construct (a temporary) one */
1294 if (proc_desc == NULL)
1295 proc_desc = find_proc_desc (frame->pc, frame->next);
1296
1297 /* Question: should we copy this proc_desc and save it in
1298 frame->proc_desc? If we do, who will free it?
1299 For now, we don't save a copy... */
1300
1301 write_register (PC_REGNUM, FRAME_SAVED_PC (frame));
1302 if (frame->saved_regs == NULL)
1303 alpha_find_saved_regs (frame);
1304 if (proc_desc)
1305 {
1306 for (regnum = 32; --regnum >= 0;)
1307 if (PROC_REG_MASK (proc_desc) & (1 << regnum))
1308 write_register (regnum,
1309 read_memory_integer (frame->saved_regs[regnum],
1310 8));
1311 for (regnum = 32; --regnum >= 0;)
1312 if (PROC_FREG_MASK (proc_desc) & (1 << regnum))
1313 write_register (regnum + FP0_REGNUM,
1314 read_memory_integer (frame->saved_regs[regnum + FP0_REGNUM], 8));
1315 }
1316 write_register (SP_REGNUM, new_sp);
1317 flush_cached_frames ();
1318
1319 if (proc_desc && (PROC_DESC_IS_DUMMY (proc_desc)
1320 || alpha_proc_desc_is_dyn_sigtramp (proc_desc)))
1321 {
1322 struct linked_proc_info *pi_ptr, *prev_ptr;
1323
1324 for (pi_ptr = linked_proc_desc_table, prev_ptr = NULL;
1325 pi_ptr != NULL;
1326 prev_ptr = pi_ptr, pi_ptr = pi_ptr->next)
1327 {
1328 if (&pi_ptr->info == proc_desc)
1329 break;
1330 }
1331
1332 if (pi_ptr == NULL)
1333 error ("Can't locate dummy extra frame info\n");
1334
1335 if (prev_ptr != NULL)
1336 prev_ptr->next = pi_ptr->next;
1337 else
1338 linked_proc_desc_table = pi_ptr->next;
1339
1340 xfree (pi_ptr);
1341 }
1342 }
1343 \f
1344 /* To skip prologues, I use this predicate. Returns either PC itself
1345 if the code at PC does not look like a function prologue; otherwise
1346 returns an address that (if we're lucky) follows the prologue. If
1347 LENIENT, then we must skip everything which is involved in setting
1348 up the frame (it's OK to skip more, just so long as we don't skip
1349 anything which might clobber the registers which are being saved.
1350 Currently we must not skip more on the alpha, but we might need the
1351 lenient stuff some day. */
1352
1353 static CORE_ADDR
1354 alpha_skip_prologue_internal (CORE_ADDR pc, int lenient)
1355 {
1356 unsigned long inst;
1357 int offset;
1358 CORE_ADDR post_prologue_pc;
1359 char buf[4];
1360
1361 #ifdef GDB_TARGET_HAS_SHARED_LIBS
1362 /* Silently return the unaltered pc upon memory errors.
1363 This could happen on OSF/1 if decode_line_1 tries to skip the
1364 prologue for quickstarted shared library functions when the
1365 shared library is not yet mapped in.
1366 Reading target memory is slow over serial lines, so we perform
1367 this check only if the target has shared libraries. */
1368 if (target_read_memory (pc, buf, 4))
1369 return pc;
1370 #endif
1371
1372 /* See if we can determine the end of the prologue via the symbol table.
1373 If so, then return either PC, or the PC after the prologue, whichever
1374 is greater. */
1375
1376 post_prologue_pc = after_prologue (pc, NULL);
1377
1378 if (post_prologue_pc != 0)
1379 return max (pc, post_prologue_pc);
1380
1381 /* Can't determine prologue from the symbol table, need to examine
1382 instructions. */
1383
1384 /* Skip the typical prologue instructions. These are the stack adjustment
1385 instruction and the instructions that save registers on the stack
1386 or in the gcc frame. */
1387 for (offset = 0; offset < 100; offset += 4)
1388 {
1389 int status;
1390
1391 status = read_memory_nobpt (pc + offset, buf, 4);
1392 if (status)
1393 memory_error (status, pc + offset);
1394 inst = extract_unsigned_integer (buf, 4);
1395
1396 /* The alpha has no delay slots. But let's keep the lenient stuff,
1397 we might need it for something else in the future. */
1398 if (lenient && 0)
1399 continue;
1400
1401 if ((inst & 0xffff0000) == 0x27bb0000) /* ldah $gp,n($t12) */
1402 continue;
1403 if ((inst & 0xffff0000) == 0x23bd0000) /* lda $gp,n($gp) */
1404 continue;
1405 if ((inst & 0xffff0000) == 0x23de0000) /* lda $sp,n($sp) */
1406 continue;
1407 if ((inst & 0xffe01fff) == 0x43c0153e) /* subq $sp,n,$sp */
1408 continue;
1409
1410 if ((inst & 0xfc1f0000) == 0xb41e0000
1411 && (inst & 0xffff0000) != 0xb7fe0000)
1412 continue; /* stq reg,n($sp) */
1413 /* reg != $zero */
1414 if ((inst & 0xfc1f0000) == 0x9c1e0000
1415 && (inst & 0xffff0000) != 0x9ffe0000)
1416 continue; /* stt reg,n($sp) */
1417 /* reg != $zero */
1418 if (inst == 0x47de040f) /* bis sp,sp,fp */
1419 continue;
1420
1421 break;
1422 }
1423 return pc + offset;
1424 }
1425
1426 static CORE_ADDR
1427 alpha_skip_prologue (CORE_ADDR addr)
1428 {
1429 return (alpha_skip_prologue_internal (addr, 0));
1430 }
1431
1432 #if 0
1433 /* Is address PC in the prologue (loosely defined) for function at
1434 STARTADDR? */
1435
1436 static int
1437 alpha_in_lenient_prologue (CORE_ADDR startaddr, CORE_ADDR pc)
1438 {
1439 CORE_ADDR end_prologue = alpha_skip_prologue_internal (startaddr, 1);
1440 return pc >= startaddr && pc < end_prologue;
1441 }
1442 #endif
1443
1444 /* The alpha needs a conversion between register and memory format if
1445 the register is a floating point register and
1446 memory format is float, as the register format must be double
1447 or
1448 memory format is an integer with 4 bytes or less, as the representation
1449 of integers in floating point registers is different. */
1450 static void
1451 alpha_register_convert_to_virtual (int regnum, struct type *valtype,
1452 char *raw_buffer, char *virtual_buffer)
1453 {
1454 if (TYPE_LENGTH (valtype) >= REGISTER_RAW_SIZE (regnum))
1455 {
1456 memcpy (virtual_buffer, raw_buffer, REGISTER_VIRTUAL_SIZE (regnum));
1457 return;
1458 }
1459
1460 if (TYPE_CODE (valtype) == TYPE_CODE_FLT)
1461 {
1462 double d = extract_floating (raw_buffer, REGISTER_RAW_SIZE (regnum));
1463 store_floating (virtual_buffer, TYPE_LENGTH (valtype), d);
1464 }
1465 else if (TYPE_CODE (valtype) == TYPE_CODE_INT && TYPE_LENGTH (valtype) <= 4)
1466 {
1467 ULONGEST l;
1468 l = extract_unsigned_integer (raw_buffer, REGISTER_RAW_SIZE (regnum));
1469 l = ((l >> 32) & 0xc0000000) | ((l >> 29) & 0x3fffffff);
1470 store_unsigned_integer (virtual_buffer, TYPE_LENGTH (valtype), l);
1471 }
1472 else
1473 error ("Cannot retrieve value from floating point register");
1474 }
1475
1476 static void
1477 alpha_register_convert_to_raw (struct type *valtype, int regnum,
1478 char *virtual_buffer, char *raw_buffer)
1479 {
1480 if (TYPE_LENGTH (valtype) >= REGISTER_RAW_SIZE (regnum))
1481 {
1482 memcpy (raw_buffer, virtual_buffer, REGISTER_RAW_SIZE (regnum));
1483 return;
1484 }
1485
1486 if (TYPE_CODE (valtype) == TYPE_CODE_FLT)
1487 {
1488 double d = extract_floating (virtual_buffer, TYPE_LENGTH (valtype));
1489 store_floating (raw_buffer, REGISTER_RAW_SIZE (regnum), d);
1490 }
1491 else if (TYPE_CODE (valtype) == TYPE_CODE_INT && TYPE_LENGTH (valtype) <= 4)
1492 {
1493 ULONGEST l;
1494 if (TYPE_UNSIGNED (valtype))
1495 l = extract_unsigned_integer (virtual_buffer, TYPE_LENGTH (valtype));
1496 else
1497 l = extract_signed_integer (virtual_buffer, TYPE_LENGTH (valtype));
1498 l = ((l & 0xc0000000) << 32) | ((l & 0x3fffffff) << 29);
1499 store_unsigned_integer (raw_buffer, REGISTER_RAW_SIZE (regnum), l);
1500 }
1501 else
1502 error ("Cannot store value in floating point register");
1503 }
1504
1505 /* Given a return value in `regbuf' with a type `valtype',
1506 extract and copy its value into `valbuf'. */
1507
1508 static void
1509 alpha_extract_return_value (struct type *valtype,
1510 char regbuf[REGISTER_BYTES], char *valbuf)
1511 {
1512 if (TYPE_CODE (valtype) == TYPE_CODE_FLT)
1513 alpha_register_convert_to_virtual (FP0_REGNUM, valtype,
1514 regbuf + REGISTER_BYTE (FP0_REGNUM),
1515 valbuf);
1516 else
1517 memcpy (valbuf, regbuf + REGISTER_BYTE (ALPHA_V0_REGNUM),
1518 TYPE_LENGTH (valtype));
1519 }
1520
1521 /* Given a return value in `regbuf' with a type `valtype',
1522 write its value into the appropriate register. */
1523
1524 static void
1525 alpha_store_return_value (struct type *valtype, char *valbuf)
1526 {
1527 char raw_buffer[ALPHA_MAX_REGISTER_RAW_SIZE];
1528 int regnum = ALPHA_V0_REGNUM;
1529 int length = TYPE_LENGTH (valtype);
1530
1531 if (TYPE_CODE (valtype) == TYPE_CODE_FLT)
1532 {
1533 regnum = FP0_REGNUM;
1534 length = REGISTER_RAW_SIZE (regnum);
1535 alpha_register_convert_to_raw (valtype, regnum, valbuf, raw_buffer);
1536 }
1537 else
1538 memcpy (raw_buffer, valbuf, length);
1539
1540 write_register_bytes (REGISTER_BYTE (regnum), raw_buffer, length);
1541 }
1542
1543 /* Just like reinit_frame_cache, but with the right arguments to be
1544 callable as an sfunc. */
1545
1546 static void
1547 reinit_frame_cache_sfunc (char *args, int from_tty, struct cmd_list_element *c)
1548 {
1549 reinit_frame_cache ();
1550 }
1551
1552 /* This is the definition of CALL_DUMMY_ADDRESS. It's a heuristic that is used
1553 to find a convenient place in the text segment to stick a breakpoint to
1554 detect the completion of a target function call (ala call_function_by_hand).
1555 */
1556
1557 CORE_ADDR
1558 alpha_call_dummy_address (void)
1559 {
1560 CORE_ADDR entry;
1561 struct minimal_symbol *sym;
1562
1563 entry = entry_point_address ();
1564
1565 if (entry != 0)
1566 return entry;
1567
1568 sym = lookup_minimal_symbol ("_Prelude", NULL, symfile_objfile);
1569
1570 if (!sym || MSYMBOL_TYPE (sym) != mst_text)
1571 return 0;
1572 else
1573 return SYMBOL_VALUE_ADDRESS (sym) + 4;
1574 }
1575
1576 static void
1577 alpha_fix_call_dummy (char *dummy, CORE_ADDR pc, CORE_ADDR fun, int nargs,
1578 struct value **args, struct type *type, int gcc_p)
1579 {
1580 CORE_ADDR bp_address = CALL_DUMMY_ADDRESS ();
1581
1582 if (bp_address == 0)
1583 error ("no place to put call");
1584 write_register (ALPHA_RA_REGNUM, bp_address);
1585 write_register (ALPHA_T12_REGNUM, fun);
1586 }
1587
1588 /* On the Alpha, the call dummy code is nevery copied to user space
1589 (see alpha_fix_call_dummy() above). The contents of this do not
1590 matter. */
1591 LONGEST alpha_call_dummy_words[] = { 0 };
1592
1593 static int
1594 alpha_use_struct_convention (int gcc_p, struct type *type)
1595 {
1596 /* Structures are returned by ref in extra arg0. */
1597 return 1;
1598 }
1599
1600 static void
1601 alpha_store_struct_return (CORE_ADDR addr, CORE_ADDR sp)
1602 {
1603 /* Store the address of the place in which to copy the structure the
1604 subroutine will return. Handled by alpha_push_arguments. */
1605 }
1606
1607 static CORE_ADDR
1608 alpha_extract_struct_value_address (char *regbuf)
1609 {
1610 return (extract_address (regbuf + REGISTER_BYTE (ALPHA_V0_REGNUM),
1611 REGISTER_RAW_SIZE (ALPHA_V0_REGNUM)));
1612 }
1613
1614 /* alpha_software_single_step() is called just before we want to resume
1615 the inferior, if we want to single-step it but there is no hardware
1616 or kernel single-step support (NetBSD on Alpha, for example). We find
1617 the target of the coming instruction and breakpoint it.
1618
1619 single_step is also called just after the inferior stops. If we had
1620 set up a simulated single-step, we undo our damage. */
1621
1622 static CORE_ADDR
1623 alpha_next_pc (CORE_ADDR pc)
1624 {
1625 unsigned int insn;
1626 unsigned int op;
1627 int offset;
1628 LONGEST rav;
1629
1630 insn = read_memory_unsigned_integer (pc, sizeof (insn));
1631
1632 /* Opcode is top 6 bits. */
1633 op = (insn >> 26) & 0x3f;
1634
1635 if (op == 0x1a)
1636 {
1637 /* Jump format: target PC is:
1638 RB & ~3 */
1639 return (read_register ((insn >> 16) & 0x1f) & ~3);
1640 }
1641
1642 if ((op & 0x30) == 0x30)
1643 {
1644 /* Branch format: target PC is:
1645 (new PC) + (4 * sext(displacement)) */
1646 if (op == 0x30 || /* BR */
1647 op == 0x34) /* BSR */
1648 {
1649 branch_taken:
1650 offset = (insn & 0x001fffff);
1651 if (offset & 0x00100000)
1652 offset |= 0xffe00000;
1653 offset *= 4;
1654 return (pc + 4 + offset);
1655 }
1656
1657 /* Need to determine if branch is taken; read RA. */
1658 rav = (LONGEST) read_register ((insn >> 21) & 0x1f);
1659 switch (op)
1660 {
1661 case 0x38: /* BLBC */
1662 if ((rav & 1) == 0)
1663 goto branch_taken;
1664 break;
1665 case 0x3c: /* BLBS */
1666 if (rav & 1)
1667 goto branch_taken;
1668 break;
1669 case 0x39: /* BEQ */
1670 if (rav == 0)
1671 goto branch_taken;
1672 break;
1673 case 0x3d: /* BNE */
1674 if (rav != 0)
1675 goto branch_taken;
1676 break;
1677 case 0x3a: /* BLT */
1678 if (rav < 0)
1679 goto branch_taken;
1680 break;
1681 case 0x3b: /* BLE */
1682 if (rav <= 0)
1683 goto branch_taken;
1684 break;
1685 case 0x3f: /* BGT */
1686 if (rav > 0)
1687 goto branch_taken;
1688 break;
1689 case 0x3e: /* BGE */
1690 if (rav >= 0)
1691 goto branch_taken;
1692 break;
1693 }
1694 }
1695
1696 /* Not a branch or branch not taken; target PC is:
1697 pc + 4 */
1698 return (pc + 4);
1699 }
1700
1701 void
1702 alpha_software_single_step (enum target_signal sig, int insert_breakpoints_p)
1703 {
1704 static CORE_ADDR next_pc;
1705 typedef char binsn_quantum[BREAKPOINT_MAX];
1706 static binsn_quantum break_mem;
1707 CORE_ADDR pc;
1708
1709 if (insert_breakpoints_p)
1710 {
1711 pc = read_pc ();
1712 next_pc = alpha_next_pc (pc);
1713
1714 target_insert_breakpoint (next_pc, break_mem);
1715 }
1716 else
1717 {
1718 target_remove_breakpoint (next_pc, break_mem);
1719 write_pc (next_pc);
1720 }
1721 }
1722
1723 \f
1724 /* This table matches the indices assigned to enum alpha_abi. Keep
1725 them in sync. */
1726 static const char * const alpha_abi_names[] =
1727 {
1728 "<unknown>",
1729 "OSF/1",
1730 "GNU/Linux",
1731 "FreeBSD",
1732 "NetBSD",
1733 NULL
1734 };
1735
1736 static void
1737 process_note_abi_tag_sections (bfd *abfd, asection *sect, void *obj)
1738 {
1739 enum alpha_abi *os_ident_ptr = obj;
1740 const char *name;
1741 unsigned int sectsize;
1742
1743 name = bfd_get_section_name (abfd, sect);
1744 sectsize = bfd_section_size (abfd, sect);
1745
1746 if (strcmp (name, ".note.ABI-tag") == 0 && sectsize > 0)
1747 {
1748 unsigned int name_length, data_length, note_type;
1749 char *note;
1750
1751 /* If the section is larger than this, it's probably not what we are
1752 looking for. */
1753 if (sectsize > 128)
1754 sectsize = 128;
1755
1756 note = alloca (sectsize);
1757
1758 bfd_get_section_contents (abfd, sect, note,
1759 (file_ptr) 0, (bfd_size_type) sectsize);
1760
1761 name_length = bfd_h_get_32 (abfd, note);
1762 data_length = bfd_h_get_32 (abfd, note + 4);
1763 note_type = bfd_h_get_32 (abfd, note + 8);
1764
1765 if (name_length == 4 && data_length == 16 && note_type == 1
1766 && strcmp (note + 12, "GNU") == 0)
1767 {
1768 int os_number = bfd_h_get_32 (abfd, note + 16);
1769
1770 /* The case numbers are from abi-tags in glibc. */
1771 switch (os_number)
1772 {
1773 case 0 :
1774 *os_ident_ptr = ALPHA_ABI_LINUX;
1775 break;
1776
1777 case 1 :
1778 internal_error
1779 (__FILE__, __LINE__,
1780 "process_note_abi_sections: Hurd objects not supported");
1781 break;
1782
1783 case 2 :
1784 internal_error
1785 (__FILE__, __LINE__,
1786 "process_note_abi_sections: Solaris objects not supported");
1787 break;
1788
1789 default :
1790 internal_error
1791 (__FILE__, __LINE__,
1792 "process_note_abi_sections: unknown OS number %d",
1793 os_number);
1794 break;
1795 }
1796 }
1797 }
1798 /* NetBSD uses a similar trick. */
1799 else if (strcmp (name, ".note.netbsd.ident") == 0 && sectsize > 0)
1800 {
1801 unsigned int name_length, desc_length, note_type;
1802 char *note;
1803
1804 /* If the section is larger than this, it's probably not what we are
1805 looking for. */
1806 if (sectsize > 128)
1807 sectsize = 128;
1808
1809 note = alloca (sectsize);
1810
1811 bfd_get_section_contents (abfd, sect, note,
1812 (file_ptr) 0, (bfd_size_type) sectsize);
1813
1814 name_length = bfd_h_get_32 (abfd, note);
1815 desc_length = bfd_h_get_32 (abfd, note + 4);
1816 note_type = bfd_h_get_32 (abfd, note + 8);
1817
1818 if (name_length == 7 && desc_length == 4 && note_type == 1
1819 && strcmp (note + 12, "NetBSD") == 0)
1820 /* XXX Should we check the version here?
1821 Probably not necessary yet. */
1822 *os_ident_ptr = ALPHA_ABI_NETBSD;
1823 }
1824 }
1825
1826 static int
1827 get_elfosabi (bfd *abfd)
1828 {
1829 int elfosabi;
1830 enum alpha_abi alpha_abi = ALPHA_ABI_UNKNOWN;
1831
1832 elfosabi = elf_elfheader (abfd)->e_ident[EI_OSABI];
1833
1834 /* When elfosabi is 0 (ELFOSABI_NONE), this is supposed to indicate
1835 what we're on a SYSV system. However, GNU/Linux uses a note section
1836 to record OS/ABI info, but leaves e_ident[EI_OSABI] zero. So we
1837 have to check the note sections too. */
1838 if (elfosabi == 0)
1839 {
1840 bfd_map_over_sections (abfd,
1841 process_note_abi_tag_sections,
1842 &alpha_abi);
1843 }
1844
1845 if (alpha_abi != ALPHA_ABI_UNKNOWN)
1846 return alpha_abi;
1847
1848 switch (elfosabi)
1849 {
1850 case ELFOSABI_NONE:
1851 /* Leave it as unknown. */
1852 break;
1853
1854 case ELFOSABI_NETBSD:
1855 return ALPHA_ABI_NETBSD;
1856
1857 case ELFOSABI_FREEBSD:
1858 return ALPHA_ABI_FREEBSD;
1859
1860 case ELFOSABI_LINUX:
1861 return ALPHA_ABI_LINUX;
1862 }
1863
1864 return ALPHA_ABI_UNKNOWN;
1865 }
1866
1867 struct alpha_abi_handler
1868 {
1869 struct alpha_abi_handler *next;
1870 enum alpha_abi abi;
1871 void (*init_abi)(struct gdbarch_info, struct gdbarch *);
1872 };
1873
1874 struct alpha_abi_handler *alpha_abi_handler_list = NULL;
1875
1876 void
1877 alpha_gdbarch_register_os_abi (enum alpha_abi abi,
1878 void (*init_abi)(struct gdbarch_info,
1879 struct gdbarch *))
1880 {
1881 struct alpha_abi_handler **handler_p;
1882
1883 for (handler_p = &alpha_abi_handler_list; *handler_p != NULL;
1884 handler_p = &(*handler_p)->next)
1885 {
1886 if ((*handler_p)->abi == abi)
1887 {
1888 internal_error
1889 (__FILE__, __LINE__,
1890 "alpha_gdbarch_register_os_abi: A handler for this ABI variant "
1891 "(%d) has already been registered", (int) abi);
1892 /* If user wants to continue, override previous definition. */
1893 (*handler_p)->init_abi = init_abi;
1894 return;
1895 }
1896 }
1897
1898 (*handler_p)
1899 = (struct alpha_abi_handler *) xmalloc (sizeof (struct alpha_abi_handler));
1900 (*handler_p)->next = NULL;
1901 (*handler_p)->abi = abi;
1902 (*handler_p)->init_abi = init_abi;
1903 }
1904
1905 /* Initialize the current architecture based on INFO. If possible, re-use an
1906 architecture from ARCHES, which is a list of architectures already created
1907 during this debugging session.
1908
1909 Called e.g. at program startup, when reading a core file, and when reading
1910 a binary file. */
1911
1912 static struct gdbarch *
1913 alpha_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
1914 {
1915 struct gdbarch_tdep *tdep;
1916 struct gdbarch *gdbarch;
1917 enum alpha_abi alpha_abi = ALPHA_ABI_UNKNOWN;
1918 struct alpha_abi_handler *abi_handler;
1919
1920 /* Try to determine the ABI of the object we are loading. */
1921
1922 if (info.abfd != NULL)
1923 {
1924 switch (bfd_get_flavour (info.abfd))
1925 {
1926 case bfd_target_elf_flavour:
1927 alpha_abi = get_elfosabi (info.abfd);
1928 break;
1929
1930 case bfd_target_ecoff_flavour:
1931 /* Assume it's OSF/1. */
1932 alpha_abi = ALPHA_ABI_OSF1;
1933 break;
1934
1935 default:
1936 /* Not sure what to do here, leave the ABI as unknown. */
1937 break;
1938 }
1939 }
1940
1941 /* Find a candidate among extant architectures. */
1942 for (arches = gdbarch_list_lookup_by_info (arches, &info);
1943 arches != NULL;
1944 arches = gdbarch_list_lookup_by_info (arches->next, &info))
1945 {
1946 /* Make sure the ABI selection matches. */
1947 tdep = gdbarch_tdep (arches->gdbarch);
1948 if (tdep && tdep->alpha_abi == alpha_abi)
1949 return arches->gdbarch;
1950 }
1951
1952 tdep = xmalloc (sizeof (struct gdbarch_tdep));
1953 gdbarch = gdbarch_alloc (&info, tdep);
1954
1955 tdep->alpha_abi = alpha_abi;
1956 if (alpha_abi < ALPHA_ABI_INVALID)
1957 tdep->abi_name = alpha_abi_names[alpha_abi];
1958 else
1959 {
1960 internal_error (__FILE__, __LINE__, "Invalid setting of alpha_abi %d",
1961 (int) alpha_abi);
1962 tdep->abi_name = "<invalid>";
1963 }
1964
1965 /* Lowest text address. This is used by heuristic_proc_start() to
1966 decide when to stop looking. */
1967 tdep->vm_min_address = (CORE_ADDR) 0x120000000;
1968
1969 tdep->dynamic_sigtramp_offset = NULL;
1970 tdep->skip_sigtramp_frame = NULL;
1971
1972 /* Type sizes */
1973 set_gdbarch_short_bit (gdbarch, 16);
1974 set_gdbarch_int_bit (gdbarch, 32);
1975 set_gdbarch_long_bit (gdbarch, 64);
1976 set_gdbarch_long_long_bit (gdbarch, 64);
1977 set_gdbarch_float_bit (gdbarch, 32);
1978 set_gdbarch_double_bit (gdbarch, 64);
1979 set_gdbarch_long_double_bit (gdbarch, 64);
1980 set_gdbarch_ptr_bit (gdbarch, 64);
1981
1982 /* Register info */
1983 set_gdbarch_num_regs (gdbarch, ALPHA_NUM_REGS);
1984 set_gdbarch_sp_regnum (gdbarch, ALPHA_SP_REGNUM);
1985 set_gdbarch_fp_regnum (gdbarch, ALPHA_FP_REGNUM);
1986 set_gdbarch_pc_regnum (gdbarch, ALPHA_PC_REGNUM);
1987 set_gdbarch_fp0_regnum (gdbarch, ALPHA_FP0_REGNUM);
1988
1989 set_gdbarch_register_name (gdbarch, alpha_register_name);
1990 set_gdbarch_register_size (gdbarch, ALPHA_REGISTER_SIZE);
1991 set_gdbarch_register_bytes (gdbarch, ALPHA_REGISTER_BYTES);
1992 set_gdbarch_register_byte (gdbarch, alpha_register_byte);
1993 set_gdbarch_register_raw_size (gdbarch, alpha_register_raw_size);
1994 set_gdbarch_max_register_raw_size (gdbarch, ALPHA_MAX_REGISTER_RAW_SIZE);
1995 set_gdbarch_register_virtual_size (gdbarch, alpha_register_virtual_size);
1996 set_gdbarch_max_register_virtual_size (gdbarch,
1997 ALPHA_MAX_REGISTER_VIRTUAL_SIZE);
1998 set_gdbarch_register_virtual_type (gdbarch, alpha_register_virtual_type);
1999
2000 set_gdbarch_cannot_fetch_register (gdbarch, alpha_cannot_fetch_register);
2001 set_gdbarch_cannot_store_register (gdbarch, alpha_cannot_store_register);
2002
2003 set_gdbarch_register_convertible (gdbarch, alpha_register_convertible);
2004 set_gdbarch_register_convert_to_virtual (gdbarch,
2005 alpha_register_convert_to_virtual);
2006 set_gdbarch_register_convert_to_raw (gdbarch, alpha_register_convert_to_raw);
2007
2008 set_gdbarch_skip_prologue (gdbarch, alpha_skip_prologue);
2009
2010 set_gdbarch_frame_num_args (gdbarch, frame_num_args_unknown);
2011 set_gdbarch_frameless_function_invocation (gdbarch,
2012 generic_frameless_function_invocation_not);
2013
2014 set_gdbarch_saved_pc_after_call (gdbarch, alpha_saved_pc_after_call);
2015
2016 set_gdbarch_frame_chain (gdbarch, alpha_frame_chain);
2017 set_gdbarch_frame_chain_valid (gdbarch, func_frame_chain_valid);
2018 set_gdbarch_frame_saved_pc (gdbarch, alpha_frame_saved_pc);
2019
2020 set_gdbarch_frame_init_saved_regs (gdbarch, alpha_frame_init_saved_regs);
2021 set_gdbarch_get_saved_register (gdbarch, alpha_get_saved_register);
2022
2023 set_gdbarch_use_struct_convention (gdbarch, alpha_use_struct_convention);
2024 set_gdbarch_extract_return_value (gdbarch, alpha_extract_return_value);
2025
2026 set_gdbarch_store_struct_return (gdbarch, alpha_store_struct_return);
2027 set_gdbarch_store_return_value (gdbarch, alpha_store_return_value);
2028 set_gdbarch_extract_struct_value_address (gdbarch,
2029 alpha_extract_struct_value_address);
2030
2031 /* Settings for calling functions in the inferior. */
2032 set_gdbarch_use_generic_dummy_frames (gdbarch, 0);
2033 set_gdbarch_call_dummy_length (gdbarch, 0);
2034 set_gdbarch_push_arguments (gdbarch, alpha_push_arguments);
2035 set_gdbarch_pop_frame (gdbarch, alpha_pop_frame);
2036
2037 /* On the Alpha, the call dummy code is never copied to user space,
2038 stopping the user call is achieved via a bp_call_dummy breakpoint.
2039 But we need a fake CALL_DUMMY definition to enable the proper
2040 call_function_by_hand and to avoid zero length array warnings. */
2041 set_gdbarch_call_dummy_p (gdbarch, 1);
2042 set_gdbarch_call_dummy_words (gdbarch, alpha_call_dummy_words);
2043 set_gdbarch_sizeof_call_dummy_words (gdbarch, 0);
2044 set_gdbarch_frame_args_address (gdbarch, alpha_frame_args_address);
2045 set_gdbarch_frame_locals_address (gdbarch, alpha_frame_locals_address);
2046 set_gdbarch_init_extra_frame_info (gdbarch, alpha_init_extra_frame_info);
2047
2048 /* Alpha OSF/1 inhibits execution of code on the stack. But there is
2049 no need for a dummy on the Alpha. PUSH_ARGUMENTS takes care of all
2050 argument handling and bp_call_dummy takes care of stopping the dummy. */
2051 set_gdbarch_call_dummy_location (gdbarch, AT_ENTRY_POINT);
2052 set_gdbarch_call_dummy_address (gdbarch, alpha_call_dummy_address);
2053 set_gdbarch_call_dummy_breakpoint_offset_p (gdbarch, 1);
2054 set_gdbarch_call_dummy_breakpoint_offset (gdbarch, 0);
2055 set_gdbarch_call_dummy_start_offset (gdbarch, 0);
2056 set_gdbarch_pc_in_call_dummy (gdbarch, pc_in_call_dummy_at_entry_point);
2057 set_gdbarch_call_dummy_stack_adjust_p (gdbarch, 0);
2058 set_gdbarch_push_dummy_frame (gdbarch, alpha_push_dummy_frame);
2059 set_gdbarch_fix_call_dummy (gdbarch, alpha_fix_call_dummy);
2060 set_gdbarch_init_frame_pc (gdbarch, init_frame_pc_noop);
2061 set_gdbarch_init_frame_pc_first (gdbarch, alpha_init_frame_pc_first);
2062
2063 set_gdbarch_inner_than (gdbarch, core_addr_lessthan);
2064 set_gdbarch_skip_trampoline_code (gdbarch, find_solib_trampoline_target);
2065
2066 /* Floats are always passed as doubles. */
2067 set_gdbarch_coerce_float_to_double (gdbarch,
2068 standard_coerce_float_to_double);
2069
2070 set_gdbarch_decr_pc_after_break (gdbarch, 4);
2071 set_gdbarch_frame_args_skip (gdbarch, 0);
2072
2073 /* Hook in ABI-specific overrides, if they have been registered. */
2074 if (alpha_abi == ALPHA_ABI_UNKNOWN)
2075 {
2076 /* Don't complain about not knowing the ABI variant if we don't
2077 have an inferior. */
2078 if (info.abfd)
2079 fprintf_filtered
2080 (gdb_stderr, "GDB doesn't recognize the ABI of the inferior. "
2081 "Attempting to continue with the default Alpha settings");
2082 }
2083 else
2084 {
2085 for (abi_handler = alpha_abi_handler_list; abi_handler != NULL;
2086 abi_handler = abi_handler->next)
2087 if (abi_handler->abi == alpha_abi)
2088 break;
2089
2090 if (abi_handler)
2091 abi_handler->init_abi (info, gdbarch);
2092 else
2093 {
2094 /* We assume that if GDB_MULTI_ARCH is less than
2095 GDB_MULTI_ARCH_TM that an ABI variant can be supported by
2096 overriding definitions in this file. */
2097 if (GDB_MULTI_ARCH > GDB_MULTI_ARCH_PARTIAL)
2098 fprintf_filtered
2099 (gdb_stderr,
2100 "A handler for the ABI variant \"%s\" is not built into this "
2101 "configuration of GDB. "
2102 "Attempting to continue with the default Alpha settings",
2103 alpha_abi_names[alpha_abi]);
2104 }
2105 }
2106
2107 return gdbarch;
2108 }
2109
2110 static void
2111 alpha_dump_tdep (struct gdbarch *current_gdbarch, struct ui_file *file)
2112 {
2113 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
2114
2115 if (tdep == NULL)
2116 return;
2117
2118 if (tdep->abi_name != NULL)
2119 fprintf_unfiltered (file, "alpha_dump_tdep: ABI = %s\n", tdep->abi_name);
2120 else
2121 internal_error (__FILE__, __LINE__,
2122 "alpha_dump_tdep: illegal setting of tdep->alpha_abi (%d)",
2123 (int) tdep->alpha_abi);
2124
2125 fprintf_unfiltered (file,
2126 "alpha_dump_tdep: vm_min_address = 0x%lx\n",
2127 (long) tdep->vm_min_address);
2128 }
2129
2130 void
2131 _initialize_alpha_tdep (void)
2132 {
2133 struct cmd_list_element *c;
2134
2135 gdbarch_register (bfd_arch_alpha, alpha_gdbarch_init, alpha_dump_tdep);
2136
2137 tm_print_insn = print_insn_alpha;
2138
2139 /* Let the user set the fence post for heuristic_proc_start. */
2140
2141 /* We really would like to have both "0" and "unlimited" work, but
2142 command.c doesn't deal with that. So make it a var_zinteger
2143 because the user can always use "999999" or some such for unlimited. */
2144 c = add_set_cmd ("heuristic-fence-post", class_support, var_zinteger,
2145 (char *) &heuristic_fence_post,
2146 "\
2147 Set the distance searched for the start of a function.\n\
2148 If you are debugging a stripped executable, GDB needs to search through the\n\
2149 program for the start of a function. This command sets the distance of the\n\
2150 search. The only need to set it is when debugging a stripped executable.",
2151 &setlist);
2152 /* We need to throw away the frame cache when we set this, since it
2153 might change our ability to get backtraces. */
2154 set_cmd_sfunc (c, reinit_frame_cache_sfunc);
2155 add_show_from_set (c, &showlist);
2156 }
This page took 0.076668 seconds and 4 git commands to generate.