2002-05-14 Daniel Jacobowitz <drow@mvista.com>
[deliverable/binutils-gdb.git] / gdb / alpha-tdep.c
1 /* Target-dependent code for the ALPHA architecture, for GDB, the GNU Debugger.
2 Copyright 1993, 1994, 1995, 1996, 1997, 1998, 1999, 2000, 2001, 2002
3 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 2 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program; if not, write to the Free Software
19 Foundation, Inc., 59 Temple Place - Suite 330,
20 Boston, MA 02111-1307, USA. */
21
22 #include "defs.h"
23 #include "frame.h"
24 #include "inferior.h"
25 #include "symtab.h"
26 #include "value.h"
27 #include "gdbcmd.h"
28 #include "gdbcore.h"
29 #include "dis-asm.h"
30 #include "symfile.h"
31 #include "objfiles.h"
32 #include "gdb_string.h"
33 #include "linespec.h"
34 #include "regcache.h"
35 #include "doublest.h"
36 #include "arch-utils.h"
37
38 #include "elf-bfd.h"
39
40 #include "alpha-tdep.h"
41
42 static gdbarch_init_ftype alpha_gdbarch_init;
43
44 static gdbarch_register_name_ftype alpha_register_name;
45 static gdbarch_register_raw_size_ftype alpha_register_raw_size;
46 static gdbarch_register_virtual_size_ftype alpha_register_virtual_size;
47 static gdbarch_register_virtual_type_ftype alpha_register_virtual_type;
48 static gdbarch_register_byte_ftype alpha_register_byte;
49 static gdbarch_cannot_fetch_register_ftype alpha_cannot_fetch_register;
50 static gdbarch_cannot_store_register_ftype alpha_cannot_store_register;
51 static gdbarch_register_convertible_ftype alpha_register_convertible;
52 static gdbarch_register_convert_to_virtual_ftype
53 alpha_register_convert_to_virtual;
54 static gdbarch_register_convert_to_raw_ftype alpha_register_convert_to_raw;
55 static gdbarch_store_struct_return_ftype alpha_store_struct_return;
56 static gdbarch_extract_return_value_ftype alpha_extract_return_value;
57 static gdbarch_store_return_value_ftype alpha_store_return_value;
58 static gdbarch_extract_struct_value_address_ftype
59 alpha_extract_struct_value_address;
60 static gdbarch_use_struct_convention_ftype alpha_use_struct_convention;
61
62 static gdbarch_breakpoint_from_pc_ftype alpha_breakpoint_from_pc;
63
64 static gdbarch_frame_args_address_ftype alpha_frame_args_address;
65 static gdbarch_frame_locals_address_ftype alpha_frame_locals_address;
66
67 static gdbarch_skip_prologue_ftype alpha_skip_prologue;
68 static gdbarch_get_saved_register_ftype alpha_get_saved_register;
69 static gdbarch_saved_pc_after_call_ftype alpha_saved_pc_after_call;
70 static gdbarch_frame_chain_ftype alpha_frame_chain;
71 static gdbarch_frame_saved_pc_ftype alpha_frame_saved_pc;
72 static gdbarch_frame_init_saved_regs_ftype alpha_frame_init_saved_regs;
73
74 static gdbarch_push_arguments_ftype alpha_push_arguments;
75 static gdbarch_push_dummy_frame_ftype alpha_push_dummy_frame;
76 static gdbarch_pop_frame_ftype alpha_pop_frame;
77 static gdbarch_fix_call_dummy_ftype alpha_fix_call_dummy;
78 static gdbarch_init_frame_pc_first_ftype alpha_init_frame_pc_first;
79 static gdbarch_init_extra_frame_info_ftype alpha_init_extra_frame_info;
80
81 static gdbarch_get_longjmp_target_ftype alpha_get_longjmp_target;
82
83 struct frame_extra_info
84 {
85 alpha_extra_func_info_t proc_desc;
86 int localoff;
87 int pc_reg;
88 };
89
90 /* FIXME: Some of this code should perhaps be merged with mips-tdep.c. */
91
92 /* Prototypes for local functions. */
93
94 static void alpha_find_saved_regs (struct frame_info *);
95
96 static alpha_extra_func_info_t push_sigtramp_desc (CORE_ADDR low_addr);
97
98 static CORE_ADDR read_next_frame_reg (struct frame_info *, int);
99
100 static CORE_ADDR heuristic_proc_start (CORE_ADDR);
101
102 static alpha_extra_func_info_t heuristic_proc_desc (CORE_ADDR,
103 CORE_ADDR,
104 struct frame_info *);
105
106 static alpha_extra_func_info_t find_proc_desc (CORE_ADDR,
107 struct frame_info *);
108
109 #if 0
110 static int alpha_in_lenient_prologue (CORE_ADDR, CORE_ADDR);
111 #endif
112
113 static void reinit_frame_cache_sfunc (char *, int, struct cmd_list_element *);
114
115 static CORE_ADDR after_prologue (CORE_ADDR pc,
116 alpha_extra_func_info_t proc_desc);
117
118 static int alpha_in_prologue (CORE_ADDR pc,
119 alpha_extra_func_info_t proc_desc);
120
121 static int alpha_about_to_return (CORE_ADDR pc);
122
123 void _initialize_alpha_tdep (void);
124
125 /* Heuristic_proc_start may hunt through the text section for a long
126 time across a 2400 baud serial line. Allows the user to limit this
127 search. */
128 static unsigned int heuristic_fence_post = 0;
129 /* *INDENT-OFF* */
130 /* Layout of a stack frame on the alpha:
131
132 | |
133 pdr members: | 7th ... nth arg, |
134 | `pushed' by caller. |
135 | |
136 ----------------|-------------------------------|<-- old_sp == vfp
137 ^ ^ ^ ^ | |
138 | | | | | |
139 | |localoff | Copies of 1st .. 6th |
140 | | | | | argument if necessary. |
141 | | | v | |
142 | | | --- |-------------------------------|<-- FRAME_LOCALS_ADDRESS
143 | | | | |
144 | | | | Locals and temporaries. |
145 | | | | |
146 | | | |-------------------------------|
147 | | | | |
148 |-fregoffset | Saved float registers. |
149 | | | | F9 |
150 | | | | . |
151 | | | | . |
152 | | | | F2 |
153 | | v | |
154 | | -------|-------------------------------|
155 | | | |
156 | | | Saved registers. |
157 | | | S6 |
158 |-regoffset | . |
159 | | | . |
160 | | | S0 |
161 | | | pdr.pcreg |
162 | v | |
163 | ----------|-------------------------------|
164 | | |
165 frameoffset | Argument build area, gets |
166 | | 7th ... nth arg for any |
167 | | called procedure. |
168 v | |
169 -------------|-------------------------------|<-- sp
170 | |
171 */
172 /* *INDENT-ON* */
173
174 #define PROC_LOW_ADDR(proc) ((proc)->pdr.adr) /* least address */
175 /* These next two fields are kind of being hijacked. I wonder if
176 iline is too small for the values it needs to hold, if GDB is
177 running on a 32-bit host. */
178 #define PROC_HIGH_ADDR(proc) ((proc)->pdr.iline) /* upper address bound */
179 #define PROC_DUMMY_FRAME(proc) ((proc)->pdr.cbLineOffset) /*CALL_DUMMY frame */
180 #define PROC_FRAME_OFFSET(proc) ((proc)->pdr.frameoffset)
181 #define PROC_FRAME_REG(proc) ((proc)->pdr.framereg)
182 #define PROC_REG_MASK(proc) ((proc)->pdr.regmask)
183 #define PROC_FREG_MASK(proc) ((proc)->pdr.fregmask)
184 #define PROC_REG_OFFSET(proc) ((proc)->pdr.regoffset)
185 #define PROC_FREG_OFFSET(proc) ((proc)->pdr.fregoffset)
186 #define PROC_PC_REG(proc) ((proc)->pdr.pcreg)
187 #define PROC_LOCALOFF(proc) ((proc)->pdr.localoff)
188 #define PROC_SYMBOL(proc) (*(struct symbol**)&(proc)->pdr.isym)
189 #define _PROC_MAGIC_ 0x0F0F0F0F
190 #define PROC_DESC_IS_DUMMY(proc) ((proc)->pdr.isym == _PROC_MAGIC_)
191 #define SET_PROC_DESC_IS_DUMMY(proc) ((proc)->pdr.isym = _PROC_MAGIC_)
192
193 struct linked_proc_info
194 {
195 struct alpha_extra_func_info info;
196 struct linked_proc_info *next;
197 }
198 *linked_proc_desc_table = NULL;
199 \f
200 static CORE_ADDR
201 alpha_frame_past_sigtramp_frame (struct frame_info *frame, CORE_ADDR pc)
202 {
203 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
204
205 if (tdep->skip_sigtramp_frame != NULL)
206 return (tdep->skip_sigtramp_frame (frame, pc));
207
208 return (0);
209 }
210
211 static LONGEST
212 alpha_dynamic_sigtramp_offset (CORE_ADDR pc)
213 {
214 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
215
216 /* Must be provided by OS/ABI variant code if supported. */
217 if (tdep->dynamic_sigtramp_offset != NULL)
218 return (tdep->dynamic_sigtramp_offset (pc));
219
220 return (-1);
221 }
222
223 #define ALPHA_PROC_SIGTRAMP_MAGIC 0x0e0f0f0f
224
225 /* Return TRUE if the procedure descriptor PROC is a procedure
226 descriptor that refers to a dynamically generated signal
227 trampoline routine. */
228 static int
229 alpha_proc_desc_is_dyn_sigtramp (struct alpha_extra_func_info *proc)
230 {
231 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
232
233 if (tdep->dynamic_sigtramp_offset != NULL)
234 return (proc->pdr.isym == ALPHA_PROC_SIGTRAMP_MAGIC);
235
236 return (0);
237 }
238
239 static void
240 alpha_set_proc_desc_is_dyn_sigtramp (struct alpha_extra_func_info *proc)
241 {
242 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
243
244 if (tdep->dynamic_sigtramp_offset != NULL)
245 proc->pdr.isym = ALPHA_PROC_SIGTRAMP_MAGIC;
246 }
247
248 /* Dynamically create a signal-handler caller procedure descriptor for
249 the signal-handler return code starting at address LOW_ADDR. The
250 descriptor is added to the linked_proc_desc_table. */
251
252 static alpha_extra_func_info_t
253 push_sigtramp_desc (CORE_ADDR low_addr)
254 {
255 struct linked_proc_info *link;
256 alpha_extra_func_info_t proc_desc;
257
258 link = (struct linked_proc_info *)
259 xmalloc (sizeof (struct linked_proc_info));
260 link->next = linked_proc_desc_table;
261 linked_proc_desc_table = link;
262
263 proc_desc = &link->info;
264
265 proc_desc->numargs = 0;
266 PROC_LOW_ADDR (proc_desc) = low_addr;
267 PROC_HIGH_ADDR (proc_desc) = low_addr + 3 * 4;
268 PROC_DUMMY_FRAME (proc_desc) = 0;
269 PROC_FRAME_OFFSET (proc_desc) = 0x298; /* sizeof(struct sigcontext_struct) */
270 PROC_FRAME_REG (proc_desc) = SP_REGNUM;
271 PROC_REG_MASK (proc_desc) = 0xffff;
272 PROC_FREG_MASK (proc_desc) = 0xffff;
273 PROC_PC_REG (proc_desc) = 26;
274 PROC_LOCALOFF (proc_desc) = 0;
275 alpha_set_proc_desc_is_dyn_sigtramp (proc_desc);
276 return (proc_desc);
277 }
278 \f
279
280 static char *
281 alpha_register_name (int regno)
282 {
283 static char *register_names[] =
284 {
285 "v0", "t0", "t1", "t2", "t3", "t4", "t5", "t6",
286 "t7", "s0", "s1", "s2", "s3", "s4", "s5", "fp",
287 "a0", "a1", "a2", "a3", "a4", "a5", "t8", "t9",
288 "t10", "t11", "ra", "t12", "at", "gp", "sp", "zero",
289 "f0", "f1", "f2", "f3", "f4", "f5", "f6", "f7",
290 "f8", "f9", "f10", "f11", "f12", "f13", "f14", "f15",
291 "f16", "f17", "f18", "f19", "f20", "f21", "f22", "f23",
292 "f24", "f25", "f26", "f27", "f28", "f29", "f30", "fpcr",
293 "pc", "vfp",
294 };
295
296 if (regno < 0)
297 return (NULL);
298 if (regno >= (sizeof(register_names) / sizeof(*register_names)))
299 return (NULL);
300 return (register_names[regno]);
301 }
302
303 static int
304 alpha_cannot_fetch_register (int regno)
305 {
306 return (regno == FP_REGNUM || regno == ALPHA_ZERO_REGNUM);
307 }
308
309 static int
310 alpha_cannot_store_register (int regno)
311 {
312 return (regno == FP_REGNUM || regno == ALPHA_ZERO_REGNUM);
313 }
314
315 static int
316 alpha_register_convertible (int regno)
317 {
318 return (regno >= FP0_REGNUM && regno <= FP0_REGNUM + 31);
319 }
320
321 static struct type *
322 alpha_register_virtual_type (int regno)
323 {
324 return ((regno >= FP0_REGNUM && regno < (FP0_REGNUM+31))
325 ? builtin_type_double : builtin_type_long);
326 }
327
328 static int
329 alpha_register_byte (int regno)
330 {
331 return (regno * 8);
332 }
333
334 static int
335 alpha_register_raw_size (int regno)
336 {
337 return 8;
338 }
339
340 static int
341 alpha_register_virtual_size (int regno)
342 {
343 return 8;
344 }
345 \f
346
347 static CORE_ADDR
348 alpha_sigcontext_addr (struct frame_info *fi)
349 {
350 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
351
352 if (tdep->sigcontext_addr)
353 return (tdep->sigcontext_addr (fi));
354
355 return (0);
356 }
357
358 /* Guaranteed to set frame->saved_regs to some values (it never leaves it
359 NULL). */
360
361 static void
362 alpha_find_saved_regs (struct frame_info *frame)
363 {
364 int ireg;
365 CORE_ADDR reg_position;
366 unsigned long mask;
367 alpha_extra_func_info_t proc_desc;
368 int returnreg;
369
370 frame_saved_regs_zalloc (frame);
371
372 /* If it is the frame for __sigtramp, the saved registers are located
373 in a sigcontext structure somewhere on the stack. __sigtramp
374 passes a pointer to the sigcontext structure on the stack.
375 If the stack layout for __sigtramp changes, or if sigcontext offsets
376 change, we might have to update this code. */
377 #ifndef SIGFRAME_PC_OFF
378 #define SIGFRAME_PC_OFF (2 * 8)
379 #define SIGFRAME_REGSAVE_OFF (4 * 8)
380 #define SIGFRAME_FPREGSAVE_OFF (SIGFRAME_REGSAVE_OFF + 32 * 8 + 8)
381 #endif
382 if (frame->signal_handler_caller)
383 {
384 CORE_ADDR sigcontext_addr;
385
386 sigcontext_addr = alpha_sigcontext_addr (frame);
387 if (sigcontext_addr == 0)
388 {
389 /* Don't know where the sigcontext is; just bail. */
390 return;
391 }
392 for (ireg = 0; ireg < 32; ireg++)
393 {
394 reg_position = sigcontext_addr + SIGFRAME_REGSAVE_OFF + ireg * 8;
395 frame->saved_regs[ireg] = reg_position;
396 }
397 for (ireg = 0; ireg < 32; ireg++)
398 {
399 reg_position = sigcontext_addr + SIGFRAME_FPREGSAVE_OFF + ireg * 8;
400 frame->saved_regs[FP0_REGNUM + ireg] = reg_position;
401 }
402 frame->saved_regs[PC_REGNUM] = sigcontext_addr + SIGFRAME_PC_OFF;
403 return;
404 }
405
406 proc_desc = frame->extra_info->proc_desc;
407 if (proc_desc == NULL)
408 /* I'm not sure how/whether this can happen. Normally when we can't
409 find a proc_desc, we "synthesize" one using heuristic_proc_desc
410 and set the saved_regs right away. */
411 return;
412
413 /* Fill in the offsets for the registers which gen_mask says
414 were saved. */
415
416 reg_position = frame->frame + PROC_REG_OFFSET (proc_desc);
417 mask = PROC_REG_MASK (proc_desc);
418
419 returnreg = PROC_PC_REG (proc_desc);
420
421 /* Note that RA is always saved first, regardless of its actual
422 register number. */
423 if (mask & (1 << returnreg))
424 {
425 frame->saved_regs[returnreg] = reg_position;
426 reg_position += 8;
427 mask &= ~(1 << returnreg); /* Clear bit for RA so we
428 don't save again later. */
429 }
430
431 for (ireg = 0; ireg <= 31; ++ireg)
432 if (mask & (1 << ireg))
433 {
434 frame->saved_regs[ireg] = reg_position;
435 reg_position += 8;
436 }
437
438 /* Fill in the offsets for the registers which float_mask says
439 were saved. */
440
441 reg_position = frame->frame + PROC_FREG_OFFSET (proc_desc);
442 mask = PROC_FREG_MASK (proc_desc);
443
444 for (ireg = 0; ireg <= 31; ++ireg)
445 if (mask & (1 << ireg))
446 {
447 frame->saved_regs[FP0_REGNUM + ireg] = reg_position;
448 reg_position += 8;
449 }
450
451 frame->saved_regs[PC_REGNUM] = frame->saved_regs[returnreg];
452 }
453
454 static void
455 alpha_frame_init_saved_regs (struct frame_info *fi)
456 {
457 if (fi->saved_regs == NULL)
458 alpha_find_saved_regs (fi);
459 fi->saved_regs[SP_REGNUM] = fi->frame;
460 }
461
462 static void
463 alpha_init_frame_pc_first (int fromleaf, struct frame_info *prev)
464 {
465 prev->pc = (fromleaf ? SAVED_PC_AFTER_CALL (prev->next) :
466 prev->next ? FRAME_SAVED_PC (prev->next) : read_pc ());
467 }
468
469 static CORE_ADDR
470 read_next_frame_reg (struct frame_info *fi, int regno)
471 {
472 for (; fi; fi = fi->next)
473 {
474 /* We have to get the saved sp from the sigcontext
475 if it is a signal handler frame. */
476 if (regno == SP_REGNUM && !fi->signal_handler_caller)
477 return fi->frame;
478 else
479 {
480 if (fi->saved_regs == NULL)
481 alpha_find_saved_regs (fi);
482 if (fi->saved_regs[regno])
483 return read_memory_integer (fi->saved_regs[regno], 8);
484 }
485 }
486 return read_register (regno);
487 }
488
489 static CORE_ADDR
490 alpha_frame_saved_pc (struct frame_info *frame)
491 {
492 alpha_extra_func_info_t proc_desc = frame->extra_info->proc_desc;
493 /* We have to get the saved pc from the sigcontext
494 if it is a signal handler frame. */
495 int pcreg = frame->signal_handler_caller ? PC_REGNUM
496 : frame->extra_info->pc_reg;
497
498 if (proc_desc && PROC_DESC_IS_DUMMY (proc_desc))
499 return read_memory_integer (frame->frame - 8, 8);
500
501 return read_next_frame_reg (frame, pcreg);
502 }
503
504 static void
505 alpha_get_saved_register (char *raw_buffer,
506 int *optimized,
507 CORE_ADDR *addrp,
508 struct frame_info *frame,
509 int regnum,
510 enum lval_type *lval)
511 {
512 CORE_ADDR addr;
513
514 if (!target_has_registers)
515 error ("No registers.");
516
517 /* Normal systems don't optimize out things with register numbers. */
518 if (optimized != NULL)
519 *optimized = 0;
520 addr = find_saved_register (frame, regnum);
521 if (addr != 0)
522 {
523 if (lval != NULL)
524 *lval = lval_memory;
525 if (regnum == SP_REGNUM)
526 {
527 if (raw_buffer != NULL)
528 {
529 /* Put it back in target format. */
530 store_address (raw_buffer, REGISTER_RAW_SIZE (regnum),
531 (LONGEST) addr);
532 }
533 if (addrp != NULL)
534 *addrp = 0;
535 return;
536 }
537 if (raw_buffer != NULL)
538 target_read_memory (addr, raw_buffer, REGISTER_RAW_SIZE (regnum));
539 }
540 else
541 {
542 if (lval != NULL)
543 *lval = lval_register;
544 addr = REGISTER_BYTE (regnum);
545 if (raw_buffer != NULL)
546 read_register_gen (regnum, raw_buffer);
547 }
548 if (addrp != NULL)
549 *addrp = addr;
550 }
551
552 static CORE_ADDR
553 alpha_saved_pc_after_call (struct frame_info *frame)
554 {
555 CORE_ADDR pc = frame->pc;
556 CORE_ADDR tmp;
557 alpha_extra_func_info_t proc_desc;
558 int pcreg;
559
560 /* Skip over shared library trampoline if necessary. */
561 tmp = SKIP_TRAMPOLINE_CODE (pc);
562 if (tmp != 0)
563 pc = tmp;
564
565 proc_desc = find_proc_desc (pc, frame->next);
566 pcreg = proc_desc ? PROC_PC_REG (proc_desc) : ALPHA_RA_REGNUM;
567
568 if (frame->signal_handler_caller)
569 return alpha_frame_saved_pc (frame);
570 else
571 return read_register (pcreg);
572 }
573
574
575 static struct alpha_extra_func_info temp_proc_desc;
576 static CORE_ADDR temp_saved_regs[ALPHA_NUM_REGS];
577
578 /* Nonzero if instruction at PC is a return instruction. "ret
579 $zero,($ra),1" on alpha. */
580
581 static int
582 alpha_about_to_return (CORE_ADDR pc)
583 {
584 return read_memory_integer (pc, 4) == 0x6bfa8001;
585 }
586
587
588
589 /* This fencepost looks highly suspicious to me. Removing it also
590 seems suspicious as it could affect remote debugging across serial
591 lines. */
592
593 static CORE_ADDR
594 heuristic_proc_start (CORE_ADDR pc)
595 {
596 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
597 CORE_ADDR start_pc = pc;
598 CORE_ADDR fence = start_pc - heuristic_fence_post;
599
600 if (start_pc == 0)
601 return 0;
602
603 if (heuristic_fence_post == UINT_MAX
604 || fence < tdep->vm_min_address)
605 fence = tdep->vm_min_address;
606
607 /* search back for previous return */
608 for (start_pc -= 4;; start_pc -= 4)
609 if (start_pc < fence)
610 {
611 /* It's not clear to me why we reach this point when
612 stop_soon_quietly, but with this test, at least we
613 don't print out warnings for every child forked (eg, on
614 decstation). 22apr93 rich@cygnus.com. */
615 if (!stop_soon_quietly)
616 {
617 static int blurb_printed = 0;
618
619 if (fence == tdep->vm_min_address)
620 warning ("Hit beginning of text section without finding");
621 else
622 warning ("Hit heuristic-fence-post without finding");
623
624 warning ("enclosing function for address 0x%s", paddr_nz (pc));
625 if (!blurb_printed)
626 {
627 printf_filtered ("\
628 This warning occurs if you are debugging a function without any symbols\n\
629 (for example, in a stripped executable). In that case, you may wish to\n\
630 increase the size of the search with the `set heuristic-fence-post' command.\n\
631 \n\
632 Otherwise, you told GDB there was a function where there isn't one, or\n\
633 (more likely) you have encountered a bug in GDB.\n");
634 blurb_printed = 1;
635 }
636 }
637
638 return 0;
639 }
640 else if (alpha_about_to_return (start_pc))
641 break;
642
643 start_pc += 4; /* skip return */
644 return start_pc;
645 }
646
647 static alpha_extra_func_info_t
648 heuristic_proc_desc (CORE_ADDR start_pc, CORE_ADDR limit_pc,
649 struct frame_info *next_frame)
650 {
651 CORE_ADDR sp = read_next_frame_reg (next_frame, SP_REGNUM);
652 CORE_ADDR cur_pc;
653 int frame_size;
654 int has_frame_reg = 0;
655 unsigned long reg_mask = 0;
656 int pcreg = -1;
657
658 if (start_pc == 0)
659 return NULL;
660 memset (&temp_proc_desc, '\0', sizeof (temp_proc_desc));
661 memset (&temp_saved_regs, '\0', SIZEOF_FRAME_SAVED_REGS);
662 PROC_LOW_ADDR (&temp_proc_desc) = start_pc;
663
664 if (start_pc + 200 < limit_pc)
665 limit_pc = start_pc + 200;
666 frame_size = 0;
667 for (cur_pc = start_pc; cur_pc < limit_pc; cur_pc += 4)
668 {
669 char buf[4];
670 unsigned long word;
671 int status;
672
673 status = read_memory_nobpt (cur_pc, buf, 4);
674 if (status)
675 memory_error (status, cur_pc);
676 word = extract_unsigned_integer (buf, 4);
677
678 if ((word & 0xffff0000) == 0x23de0000) /* lda $sp,n($sp) */
679 {
680 if (word & 0x8000)
681 frame_size += (-word) & 0xffff;
682 else
683 /* Exit loop if a positive stack adjustment is found, which
684 usually means that the stack cleanup code in the function
685 epilogue is reached. */
686 break;
687 }
688 else if ((word & 0xfc1f0000) == 0xb41e0000 /* stq reg,n($sp) */
689 && (word & 0xffff0000) != 0xb7fe0000) /* reg != $zero */
690 {
691 int reg = (word & 0x03e00000) >> 21;
692 reg_mask |= 1 << reg;
693 temp_saved_regs[reg] = sp + (short) word;
694
695 /* Starting with OSF/1-3.2C, the system libraries are shipped
696 without local symbols, but they still contain procedure
697 descriptors without a symbol reference. GDB is currently
698 unable to find these procedure descriptors and uses
699 heuristic_proc_desc instead.
700 As some low level compiler support routines (__div*, __add*)
701 use a non-standard return address register, we have to
702 add some heuristics to determine the return address register,
703 or stepping over these routines will fail.
704 Usually the return address register is the first register
705 saved on the stack, but assembler optimization might
706 rearrange the register saves.
707 So we recognize only a few registers (t7, t9, ra) within
708 the procedure prologue as valid return address registers.
709 If we encounter a return instruction, we extract the
710 the return address register from it.
711
712 FIXME: Rewriting GDB to access the procedure descriptors,
713 e.g. via the minimal symbol table, might obviate this hack. */
714 if (pcreg == -1
715 && cur_pc < (start_pc + 80)
716 && (reg == ALPHA_T7_REGNUM || reg == ALPHA_T9_REGNUM
717 || reg == ALPHA_RA_REGNUM))
718 pcreg = reg;
719 }
720 else if ((word & 0xffe0ffff) == 0x6be08001) /* ret zero,reg,1 */
721 pcreg = (word >> 16) & 0x1f;
722 else if (word == 0x47de040f) /* bis sp,sp fp */
723 has_frame_reg = 1;
724 }
725 if (pcreg == -1)
726 {
727 /* If we haven't found a valid return address register yet,
728 keep searching in the procedure prologue. */
729 while (cur_pc < (limit_pc + 80) && cur_pc < (start_pc + 80))
730 {
731 char buf[4];
732 unsigned long word;
733
734 if (read_memory_nobpt (cur_pc, buf, 4))
735 break;
736 cur_pc += 4;
737 word = extract_unsigned_integer (buf, 4);
738
739 if ((word & 0xfc1f0000) == 0xb41e0000 /* stq reg,n($sp) */
740 && (word & 0xffff0000) != 0xb7fe0000) /* reg != $zero */
741 {
742 int reg = (word & 0x03e00000) >> 21;
743 if (reg == ALPHA_T7_REGNUM || reg == ALPHA_T9_REGNUM
744 || reg == ALPHA_RA_REGNUM)
745 {
746 pcreg = reg;
747 break;
748 }
749 }
750 else if ((word & 0xffe0ffff) == 0x6be08001) /* ret zero,reg,1 */
751 {
752 pcreg = (word >> 16) & 0x1f;
753 break;
754 }
755 }
756 }
757
758 if (has_frame_reg)
759 PROC_FRAME_REG (&temp_proc_desc) = ALPHA_GCC_FP_REGNUM;
760 else
761 PROC_FRAME_REG (&temp_proc_desc) = SP_REGNUM;
762 PROC_FRAME_OFFSET (&temp_proc_desc) = frame_size;
763 PROC_REG_MASK (&temp_proc_desc) = reg_mask;
764 PROC_PC_REG (&temp_proc_desc) = (pcreg == -1) ? ALPHA_RA_REGNUM : pcreg;
765 PROC_LOCALOFF (&temp_proc_desc) = 0; /* XXX - bogus */
766 return &temp_proc_desc;
767 }
768
769 /* This returns the PC of the first inst after the prologue. If we can't
770 find the prologue, then return 0. */
771
772 static CORE_ADDR
773 after_prologue (CORE_ADDR pc, alpha_extra_func_info_t proc_desc)
774 {
775 struct symtab_and_line sal;
776 CORE_ADDR func_addr, func_end;
777
778 if (!proc_desc)
779 proc_desc = find_proc_desc (pc, NULL);
780
781 if (proc_desc)
782 {
783 if (alpha_proc_desc_is_dyn_sigtramp (proc_desc))
784 return PROC_LOW_ADDR (proc_desc); /* "prologue" is in kernel */
785
786 /* If function is frameless, then we need to do it the hard way. I
787 strongly suspect that frameless always means prologueless... */
788 if (PROC_FRAME_REG (proc_desc) == SP_REGNUM
789 && PROC_FRAME_OFFSET (proc_desc) == 0)
790 return 0;
791 }
792
793 if (!find_pc_partial_function (pc, NULL, &func_addr, &func_end))
794 return 0; /* Unknown */
795
796 sal = find_pc_line (func_addr, 0);
797
798 if (sal.end < func_end)
799 return sal.end;
800
801 /* The line after the prologue is after the end of the function. In this
802 case, tell the caller to find the prologue the hard way. */
803
804 return 0;
805 }
806
807 /* Return non-zero if we *might* be in a function prologue. Return zero if we
808 are definitively *not* in a function prologue. */
809
810 static int
811 alpha_in_prologue (CORE_ADDR pc, alpha_extra_func_info_t proc_desc)
812 {
813 CORE_ADDR after_prologue_pc;
814
815 after_prologue_pc = after_prologue (pc, proc_desc);
816
817 if (after_prologue_pc == 0
818 || pc < after_prologue_pc)
819 return 1;
820 else
821 return 0;
822 }
823
824 static alpha_extra_func_info_t
825 find_proc_desc (CORE_ADDR pc, struct frame_info *next_frame)
826 {
827 alpha_extra_func_info_t proc_desc;
828 struct block *b;
829 struct symbol *sym;
830 CORE_ADDR startaddr;
831
832 /* Try to get the proc_desc from the linked call dummy proc_descs
833 if the pc is in the call dummy.
834 This is hairy. In the case of nested dummy calls we have to find the
835 right proc_desc, but we might not yet know the frame for the dummy
836 as it will be contained in the proc_desc we are searching for.
837 So we have to find the proc_desc whose frame is closest to the current
838 stack pointer. */
839
840 if (PC_IN_CALL_DUMMY (pc, 0, 0))
841 {
842 struct linked_proc_info *link;
843 CORE_ADDR sp = read_next_frame_reg (next_frame, SP_REGNUM);
844 alpha_extra_func_info_t found_proc_desc = NULL;
845 long min_distance = LONG_MAX;
846
847 for (link = linked_proc_desc_table; link; link = link->next)
848 {
849 long distance = (CORE_ADDR) PROC_DUMMY_FRAME (&link->info) - sp;
850 if (distance > 0 && distance < min_distance)
851 {
852 min_distance = distance;
853 found_proc_desc = &link->info;
854 }
855 }
856 if (found_proc_desc != NULL)
857 return found_proc_desc;
858 }
859
860 b = block_for_pc (pc);
861
862 find_pc_partial_function (pc, NULL, &startaddr, NULL);
863 if (b == NULL)
864 sym = NULL;
865 else
866 {
867 if (startaddr > BLOCK_START (b))
868 /* This is the "pathological" case referred to in a comment in
869 print_frame_info. It might be better to move this check into
870 symbol reading. */
871 sym = NULL;
872 else
873 sym = lookup_symbol (MIPS_EFI_SYMBOL_NAME, b, LABEL_NAMESPACE,
874 0, NULL);
875 }
876
877 /* If we never found a PDR for this function in symbol reading, then
878 examine prologues to find the information. */
879 if (sym && ((mips_extra_func_info_t) SYMBOL_VALUE (sym))->pdr.framereg == -1)
880 sym = NULL;
881
882 if (sym)
883 {
884 /* IF this is the topmost frame AND
885 * (this proc does not have debugging information OR
886 * the PC is in the procedure prologue)
887 * THEN create a "heuristic" proc_desc (by analyzing
888 * the actual code) to replace the "official" proc_desc.
889 */
890 proc_desc = (alpha_extra_func_info_t) SYMBOL_VALUE (sym);
891 if (next_frame == NULL)
892 {
893 if (PROC_DESC_IS_DUMMY (proc_desc) || alpha_in_prologue (pc, proc_desc))
894 {
895 alpha_extra_func_info_t found_heuristic =
896 heuristic_proc_desc (PROC_LOW_ADDR (proc_desc),
897 pc, next_frame);
898 if (found_heuristic)
899 {
900 PROC_LOCALOFF (found_heuristic) =
901 PROC_LOCALOFF (proc_desc);
902 PROC_PC_REG (found_heuristic) = PROC_PC_REG (proc_desc);
903 proc_desc = found_heuristic;
904 }
905 }
906 }
907 }
908 else
909 {
910 long offset;
911
912 /* Is linked_proc_desc_table really necessary? It only seems to be used
913 by procedure call dummys. However, the procedures being called ought
914 to have their own proc_descs, and even if they don't,
915 heuristic_proc_desc knows how to create them! */
916
917 register struct linked_proc_info *link;
918 for (link = linked_proc_desc_table; link; link = link->next)
919 if (PROC_LOW_ADDR (&link->info) <= pc
920 && PROC_HIGH_ADDR (&link->info) > pc)
921 return &link->info;
922
923 /* If PC is inside a dynamically generated sigtramp handler,
924 create and push a procedure descriptor for that code: */
925 offset = alpha_dynamic_sigtramp_offset (pc);
926 if (offset >= 0)
927 return push_sigtramp_desc (pc - offset);
928
929 /* If heuristic_fence_post is non-zero, determine the procedure
930 start address by examining the instructions.
931 This allows us to find the start address of static functions which
932 have no symbolic information, as startaddr would have been set to
933 the preceding global function start address by the
934 find_pc_partial_function call above. */
935 if (startaddr == 0 || heuristic_fence_post != 0)
936 startaddr = heuristic_proc_start (pc);
937
938 proc_desc =
939 heuristic_proc_desc (startaddr, pc, next_frame);
940 }
941 return proc_desc;
942 }
943
944 alpha_extra_func_info_t cached_proc_desc;
945
946 static CORE_ADDR
947 alpha_frame_chain (struct frame_info *frame)
948 {
949 alpha_extra_func_info_t proc_desc;
950 CORE_ADDR saved_pc = FRAME_SAVED_PC (frame);
951
952 if (saved_pc == 0 || inside_entry_file (saved_pc))
953 return 0;
954
955 proc_desc = find_proc_desc (saved_pc, frame);
956 if (!proc_desc)
957 return 0;
958
959 cached_proc_desc = proc_desc;
960
961 /* Fetch the frame pointer for a dummy frame from the procedure
962 descriptor. */
963 if (PROC_DESC_IS_DUMMY (proc_desc))
964 return (CORE_ADDR) PROC_DUMMY_FRAME (proc_desc);
965
966 /* If no frame pointer and frame size is zero, we must be at end
967 of stack (or otherwise hosed). If we don't check frame size,
968 we loop forever if we see a zero size frame. */
969 if (PROC_FRAME_REG (proc_desc) == SP_REGNUM
970 && PROC_FRAME_OFFSET (proc_desc) == 0
971 /* The previous frame from a sigtramp frame might be frameless
972 and have frame size zero. */
973 && !frame->signal_handler_caller)
974 return alpha_frame_past_sigtramp_frame (frame, saved_pc);
975 else
976 return read_next_frame_reg (frame, PROC_FRAME_REG (proc_desc))
977 + PROC_FRAME_OFFSET (proc_desc);
978 }
979
980 void
981 alpha_print_extra_frame_info (struct frame_info *fi)
982 {
983 if (fi
984 && fi->extra_info
985 && fi->extra_info->proc_desc
986 && fi->extra_info->proc_desc->pdr.framereg < NUM_REGS)
987 printf_filtered (" frame pointer is at %s+%s\n",
988 REGISTER_NAME (fi->extra_info->proc_desc->pdr.framereg),
989 paddr_d (fi->extra_info->proc_desc->pdr.frameoffset));
990 }
991
992 static void
993 alpha_init_extra_frame_info (int fromleaf, struct frame_info *frame)
994 {
995 /* Use proc_desc calculated in frame_chain */
996 alpha_extra_func_info_t proc_desc =
997 frame->next ? cached_proc_desc : find_proc_desc (frame->pc, frame->next);
998
999 frame->extra_info = (struct frame_extra_info *)
1000 frame_obstack_alloc (sizeof (struct frame_extra_info));
1001
1002 frame->saved_regs = NULL;
1003 frame->extra_info->localoff = 0;
1004 frame->extra_info->pc_reg = ALPHA_RA_REGNUM;
1005 frame->extra_info->proc_desc = proc_desc == &temp_proc_desc ? 0 : proc_desc;
1006 if (proc_desc)
1007 {
1008 /* Get the locals offset and the saved pc register from the
1009 procedure descriptor, they are valid even if we are in the
1010 middle of the prologue. */
1011 frame->extra_info->localoff = PROC_LOCALOFF (proc_desc);
1012 frame->extra_info->pc_reg = PROC_PC_REG (proc_desc);
1013
1014 /* Fixup frame-pointer - only needed for top frame */
1015
1016 /* Fetch the frame pointer for a dummy frame from the procedure
1017 descriptor. */
1018 if (PROC_DESC_IS_DUMMY (proc_desc))
1019 frame->frame = (CORE_ADDR) PROC_DUMMY_FRAME (proc_desc);
1020
1021 /* This may not be quite right, if proc has a real frame register.
1022 Get the value of the frame relative sp, procedure might have been
1023 interrupted by a signal at it's very start. */
1024 else if (frame->pc == PROC_LOW_ADDR (proc_desc)
1025 && !alpha_proc_desc_is_dyn_sigtramp (proc_desc))
1026 frame->frame = read_next_frame_reg (frame->next, SP_REGNUM);
1027 else
1028 frame->frame = read_next_frame_reg (frame->next, PROC_FRAME_REG (proc_desc))
1029 + PROC_FRAME_OFFSET (proc_desc);
1030
1031 if (proc_desc == &temp_proc_desc)
1032 {
1033 char *name;
1034
1035 /* Do not set the saved registers for a sigtramp frame,
1036 alpha_find_saved_registers will do that for us.
1037 We can't use frame->signal_handler_caller, it is not yet set. */
1038 find_pc_partial_function (frame->pc, &name,
1039 (CORE_ADDR *) NULL, (CORE_ADDR *) NULL);
1040 if (!PC_IN_SIGTRAMP (frame->pc, name))
1041 {
1042 frame->saved_regs = (CORE_ADDR *)
1043 frame_obstack_alloc (SIZEOF_FRAME_SAVED_REGS);
1044 memcpy (frame->saved_regs, temp_saved_regs,
1045 SIZEOF_FRAME_SAVED_REGS);
1046 frame->saved_regs[PC_REGNUM]
1047 = frame->saved_regs[ALPHA_RA_REGNUM];
1048 }
1049 }
1050 }
1051 }
1052
1053 static CORE_ADDR
1054 alpha_frame_locals_address (struct frame_info *fi)
1055 {
1056 return (fi->frame - fi->extra_info->localoff);
1057 }
1058
1059 static CORE_ADDR
1060 alpha_frame_args_address (struct frame_info *fi)
1061 {
1062 return (fi->frame - (ALPHA_NUM_ARG_REGS * 8));
1063 }
1064
1065 /* ALPHA stack frames are almost impenetrable. When execution stops,
1066 we basically have to look at symbol information for the function
1067 that we stopped in, which tells us *which* register (if any) is
1068 the base of the frame pointer, and what offset from that register
1069 the frame itself is at.
1070
1071 This presents a problem when trying to examine a stack in memory
1072 (that isn't executing at the moment), using the "frame" command. We
1073 don't have a PC, nor do we have any registers except SP.
1074
1075 This routine takes two arguments, SP and PC, and tries to make the
1076 cached frames look as if these two arguments defined a frame on the
1077 cache. This allows the rest of info frame to extract the important
1078 arguments without difficulty. */
1079
1080 struct frame_info *
1081 alpha_setup_arbitrary_frame (int argc, CORE_ADDR *argv)
1082 {
1083 if (argc != 2)
1084 error ("ALPHA frame specifications require two arguments: sp and pc");
1085
1086 return create_new_frame (argv[0], argv[1]);
1087 }
1088
1089 /* The alpha passes the first six arguments in the registers, the rest on
1090 the stack. The register arguments are eventually transferred to the
1091 argument transfer area immediately below the stack by the called function
1092 anyway. So we `push' at least six arguments on the stack, `reload' the
1093 argument registers and then adjust the stack pointer to point past the
1094 sixth argument. This algorithm simplifies the passing of a large struct
1095 which extends from the registers to the stack.
1096 If the called function is returning a structure, the address of the
1097 structure to be returned is passed as a hidden first argument. */
1098
1099 static CORE_ADDR
1100 alpha_push_arguments (int nargs, struct value **args, CORE_ADDR sp,
1101 int struct_return, CORE_ADDR struct_addr)
1102 {
1103 int i;
1104 int accumulate_size = struct_return ? 8 : 0;
1105 int arg_regs_size = ALPHA_NUM_ARG_REGS * 8;
1106 struct alpha_arg
1107 {
1108 char *contents;
1109 int len;
1110 int offset;
1111 };
1112 struct alpha_arg *alpha_args =
1113 (struct alpha_arg *) alloca (nargs * sizeof (struct alpha_arg));
1114 register struct alpha_arg *m_arg;
1115 char raw_buffer[sizeof (CORE_ADDR)];
1116 int required_arg_regs;
1117
1118 for (i = 0, m_arg = alpha_args; i < nargs; i++, m_arg++)
1119 {
1120 struct value *arg = args[i];
1121 struct type *arg_type = check_typedef (VALUE_TYPE (arg));
1122 /* Cast argument to long if necessary as the compiler does it too. */
1123 switch (TYPE_CODE (arg_type))
1124 {
1125 case TYPE_CODE_INT:
1126 case TYPE_CODE_BOOL:
1127 case TYPE_CODE_CHAR:
1128 case TYPE_CODE_RANGE:
1129 case TYPE_CODE_ENUM:
1130 if (TYPE_LENGTH (arg_type) < TYPE_LENGTH (builtin_type_long))
1131 {
1132 arg_type = builtin_type_long;
1133 arg = value_cast (arg_type, arg);
1134 }
1135 break;
1136 default:
1137 break;
1138 }
1139 m_arg->len = TYPE_LENGTH (arg_type);
1140 m_arg->offset = accumulate_size;
1141 accumulate_size = (accumulate_size + m_arg->len + 7) & ~7;
1142 m_arg->contents = VALUE_CONTENTS (arg);
1143 }
1144
1145 /* Determine required argument register loads, loading an argument register
1146 is expensive as it uses three ptrace calls. */
1147 required_arg_regs = accumulate_size / 8;
1148 if (required_arg_regs > ALPHA_NUM_ARG_REGS)
1149 required_arg_regs = ALPHA_NUM_ARG_REGS;
1150
1151 /* Make room for the arguments on the stack. */
1152 if (accumulate_size < arg_regs_size)
1153 accumulate_size = arg_regs_size;
1154 sp -= accumulate_size;
1155
1156 /* Keep sp aligned to a multiple of 16 as the compiler does it too. */
1157 sp &= ~15;
1158
1159 /* `Push' arguments on the stack. */
1160 for (i = nargs; m_arg--, --i >= 0;)
1161 write_memory (sp + m_arg->offset, m_arg->contents, m_arg->len);
1162 if (struct_return)
1163 {
1164 store_address (raw_buffer, sizeof (CORE_ADDR), struct_addr);
1165 write_memory (sp, raw_buffer, sizeof (CORE_ADDR));
1166 }
1167
1168 /* Load the argument registers. */
1169 for (i = 0; i < required_arg_regs; i++)
1170 {
1171 LONGEST val;
1172
1173 val = read_memory_integer (sp + i * 8, 8);
1174 write_register (ALPHA_A0_REGNUM + i, val);
1175 write_register (ALPHA_FPA0_REGNUM + i, val);
1176 }
1177
1178 return sp + arg_regs_size;
1179 }
1180
1181 static void
1182 alpha_push_dummy_frame (void)
1183 {
1184 int ireg;
1185 struct linked_proc_info *link;
1186 alpha_extra_func_info_t proc_desc;
1187 CORE_ADDR sp = read_register (SP_REGNUM);
1188 CORE_ADDR save_address;
1189 char raw_buffer[ALPHA_MAX_REGISTER_RAW_SIZE];
1190 unsigned long mask;
1191
1192 link = (struct linked_proc_info *) xmalloc (sizeof (struct linked_proc_info));
1193 link->next = linked_proc_desc_table;
1194 linked_proc_desc_table = link;
1195
1196 proc_desc = &link->info;
1197
1198 /*
1199 * The registers we must save are all those not preserved across
1200 * procedure calls.
1201 * In addition, we must save the PC and RA.
1202 *
1203 * Dummy frame layout:
1204 * (high memory)
1205 * Saved PC
1206 * Saved F30
1207 * ...
1208 * Saved F0
1209 * Saved R29
1210 * ...
1211 * Saved R0
1212 * Saved R26 (RA)
1213 * Parameter build area
1214 * (low memory)
1215 */
1216
1217 /* MASK(i,j) == (1<<i) + (1<<(i+1)) + ... + (1<<j)). Assume i<=j<31. */
1218 #define MASK(i,j) ((((LONGEST)1 << ((j)+1)) - 1) ^ (((LONGEST)1 << (i)) - 1))
1219 #define GEN_REG_SAVE_MASK (MASK(0,8) | MASK(16,29))
1220 #define GEN_REG_SAVE_COUNT 24
1221 #define FLOAT_REG_SAVE_MASK (MASK(0,1) | MASK(10,30))
1222 #define FLOAT_REG_SAVE_COUNT 23
1223 /* The special register is the PC as we have no bit for it in the save masks.
1224 alpha_frame_saved_pc knows where the pc is saved in a dummy frame. */
1225 #define SPECIAL_REG_SAVE_COUNT 1
1226
1227 PROC_REG_MASK (proc_desc) = GEN_REG_SAVE_MASK;
1228 PROC_FREG_MASK (proc_desc) = FLOAT_REG_SAVE_MASK;
1229 /* PROC_REG_OFFSET is the offset from the dummy frame to the saved RA,
1230 but keep SP aligned to a multiple of 16. */
1231 PROC_REG_OFFSET (proc_desc) =
1232 -((8 * (SPECIAL_REG_SAVE_COUNT
1233 + GEN_REG_SAVE_COUNT
1234 + FLOAT_REG_SAVE_COUNT)
1235 + 15) & ~15);
1236 PROC_FREG_OFFSET (proc_desc) =
1237 PROC_REG_OFFSET (proc_desc) + 8 * GEN_REG_SAVE_COUNT;
1238
1239 /* Save general registers.
1240 The return address register is the first saved register, all other
1241 registers follow in ascending order.
1242 The PC is saved immediately below the SP. */
1243 save_address = sp + PROC_REG_OFFSET (proc_desc);
1244 store_address (raw_buffer, 8, read_register (ALPHA_RA_REGNUM));
1245 write_memory (save_address, raw_buffer, 8);
1246 save_address += 8;
1247 mask = PROC_REG_MASK (proc_desc) & 0xffffffffL;
1248 for (ireg = 0; mask; ireg++, mask >>= 1)
1249 if (mask & 1)
1250 {
1251 if (ireg == ALPHA_RA_REGNUM)
1252 continue;
1253 store_address (raw_buffer, 8, read_register (ireg));
1254 write_memory (save_address, raw_buffer, 8);
1255 save_address += 8;
1256 }
1257
1258 store_address (raw_buffer, 8, read_register (PC_REGNUM));
1259 write_memory (sp - 8, raw_buffer, 8);
1260
1261 /* Save floating point registers. */
1262 save_address = sp + PROC_FREG_OFFSET (proc_desc);
1263 mask = PROC_FREG_MASK (proc_desc) & 0xffffffffL;
1264 for (ireg = 0; mask; ireg++, mask >>= 1)
1265 if (mask & 1)
1266 {
1267 store_address (raw_buffer, 8, read_register (ireg + FP0_REGNUM));
1268 write_memory (save_address, raw_buffer, 8);
1269 save_address += 8;
1270 }
1271
1272 /* Set and save the frame address for the dummy.
1273 This is tricky. The only registers that are suitable for a frame save
1274 are those that are preserved across procedure calls (s0-s6). But if
1275 a read system call is interrupted and then a dummy call is made
1276 (see testsuite/gdb.t17/interrupt.exp) the dummy call hangs till the read
1277 is satisfied. Then it returns with the s0-s6 registers set to the values
1278 on entry to the read system call and our dummy frame pointer would be
1279 destroyed. So we save the dummy frame in the proc_desc and handle the
1280 retrieval of the frame pointer of a dummy specifically. The frame register
1281 is set to the virtual frame (pseudo) register, it's value will always
1282 be read as zero and will help us to catch any errors in the dummy frame
1283 retrieval code. */
1284 PROC_DUMMY_FRAME (proc_desc) = sp;
1285 PROC_FRAME_REG (proc_desc) = FP_REGNUM;
1286 PROC_FRAME_OFFSET (proc_desc) = 0;
1287 sp += PROC_REG_OFFSET (proc_desc);
1288 write_register (SP_REGNUM, sp);
1289
1290 PROC_LOW_ADDR (proc_desc) = CALL_DUMMY_ADDRESS ();
1291 PROC_HIGH_ADDR (proc_desc) = PROC_LOW_ADDR (proc_desc) + 4;
1292
1293 SET_PROC_DESC_IS_DUMMY (proc_desc);
1294 PROC_PC_REG (proc_desc) = ALPHA_RA_REGNUM;
1295 }
1296
1297 static void
1298 alpha_pop_frame (void)
1299 {
1300 register int regnum;
1301 struct frame_info *frame = get_current_frame ();
1302 CORE_ADDR new_sp = frame->frame;
1303
1304 alpha_extra_func_info_t proc_desc = frame->extra_info->proc_desc;
1305
1306 /* we need proc_desc to know how to restore the registers;
1307 if it is NULL, construct (a temporary) one */
1308 if (proc_desc == NULL)
1309 proc_desc = find_proc_desc (frame->pc, frame->next);
1310
1311 /* Question: should we copy this proc_desc and save it in
1312 frame->proc_desc? If we do, who will free it?
1313 For now, we don't save a copy... */
1314
1315 write_register (PC_REGNUM, FRAME_SAVED_PC (frame));
1316 if (frame->saved_regs == NULL)
1317 alpha_find_saved_regs (frame);
1318 if (proc_desc)
1319 {
1320 for (regnum = 32; --regnum >= 0;)
1321 if (PROC_REG_MASK (proc_desc) & (1 << regnum))
1322 write_register (regnum,
1323 read_memory_integer (frame->saved_regs[regnum],
1324 8));
1325 for (regnum = 32; --regnum >= 0;)
1326 if (PROC_FREG_MASK (proc_desc) & (1 << regnum))
1327 write_register (regnum + FP0_REGNUM,
1328 read_memory_integer (frame->saved_regs[regnum + FP0_REGNUM], 8));
1329 }
1330 write_register (SP_REGNUM, new_sp);
1331 flush_cached_frames ();
1332
1333 if (proc_desc && (PROC_DESC_IS_DUMMY (proc_desc)
1334 || alpha_proc_desc_is_dyn_sigtramp (proc_desc)))
1335 {
1336 struct linked_proc_info *pi_ptr, *prev_ptr;
1337
1338 for (pi_ptr = linked_proc_desc_table, prev_ptr = NULL;
1339 pi_ptr != NULL;
1340 prev_ptr = pi_ptr, pi_ptr = pi_ptr->next)
1341 {
1342 if (&pi_ptr->info == proc_desc)
1343 break;
1344 }
1345
1346 if (pi_ptr == NULL)
1347 error ("Can't locate dummy extra frame info\n");
1348
1349 if (prev_ptr != NULL)
1350 prev_ptr->next = pi_ptr->next;
1351 else
1352 linked_proc_desc_table = pi_ptr->next;
1353
1354 xfree (pi_ptr);
1355 }
1356 }
1357 \f
1358 /* To skip prologues, I use this predicate. Returns either PC itself
1359 if the code at PC does not look like a function prologue; otherwise
1360 returns an address that (if we're lucky) follows the prologue. If
1361 LENIENT, then we must skip everything which is involved in setting
1362 up the frame (it's OK to skip more, just so long as we don't skip
1363 anything which might clobber the registers which are being saved.
1364 Currently we must not skip more on the alpha, but we might need the
1365 lenient stuff some day. */
1366
1367 static CORE_ADDR
1368 alpha_skip_prologue_internal (CORE_ADDR pc, int lenient)
1369 {
1370 unsigned long inst;
1371 int offset;
1372 CORE_ADDR post_prologue_pc;
1373 char buf[4];
1374
1375 /* Silently return the unaltered pc upon memory errors.
1376 This could happen on OSF/1 if decode_line_1 tries to skip the
1377 prologue for quickstarted shared library functions when the
1378 shared library is not yet mapped in.
1379 Reading target memory is slow over serial lines, so we perform
1380 this check only if the target has shared libraries (which all
1381 Alpha targets do). */
1382 if (target_read_memory (pc, buf, 4))
1383 return pc;
1384
1385 /* See if we can determine the end of the prologue via the symbol table.
1386 If so, then return either PC, or the PC after the prologue, whichever
1387 is greater. */
1388
1389 post_prologue_pc = after_prologue (pc, NULL);
1390
1391 if (post_prologue_pc != 0)
1392 return max (pc, post_prologue_pc);
1393
1394 /* Can't determine prologue from the symbol table, need to examine
1395 instructions. */
1396
1397 /* Skip the typical prologue instructions. These are the stack adjustment
1398 instruction and the instructions that save registers on the stack
1399 or in the gcc frame. */
1400 for (offset = 0; offset < 100; offset += 4)
1401 {
1402 int status;
1403
1404 status = read_memory_nobpt (pc + offset, buf, 4);
1405 if (status)
1406 memory_error (status, pc + offset);
1407 inst = extract_unsigned_integer (buf, 4);
1408
1409 /* The alpha has no delay slots. But let's keep the lenient stuff,
1410 we might need it for something else in the future. */
1411 if (lenient && 0)
1412 continue;
1413
1414 if ((inst & 0xffff0000) == 0x27bb0000) /* ldah $gp,n($t12) */
1415 continue;
1416 if ((inst & 0xffff0000) == 0x23bd0000) /* lda $gp,n($gp) */
1417 continue;
1418 if ((inst & 0xffff0000) == 0x23de0000) /* lda $sp,n($sp) */
1419 continue;
1420 if ((inst & 0xffe01fff) == 0x43c0153e) /* subq $sp,n,$sp */
1421 continue;
1422
1423 if ((inst & 0xfc1f0000) == 0xb41e0000
1424 && (inst & 0xffff0000) != 0xb7fe0000)
1425 continue; /* stq reg,n($sp) */
1426 /* reg != $zero */
1427 if ((inst & 0xfc1f0000) == 0x9c1e0000
1428 && (inst & 0xffff0000) != 0x9ffe0000)
1429 continue; /* stt reg,n($sp) */
1430 /* reg != $zero */
1431 if (inst == 0x47de040f) /* bis sp,sp,fp */
1432 continue;
1433
1434 break;
1435 }
1436 return pc + offset;
1437 }
1438
1439 static CORE_ADDR
1440 alpha_skip_prologue (CORE_ADDR addr)
1441 {
1442 return (alpha_skip_prologue_internal (addr, 0));
1443 }
1444
1445 #if 0
1446 /* Is address PC in the prologue (loosely defined) for function at
1447 STARTADDR? */
1448
1449 static int
1450 alpha_in_lenient_prologue (CORE_ADDR startaddr, CORE_ADDR pc)
1451 {
1452 CORE_ADDR end_prologue = alpha_skip_prologue_internal (startaddr, 1);
1453 return pc >= startaddr && pc < end_prologue;
1454 }
1455 #endif
1456
1457 /* The alpha needs a conversion between register and memory format if
1458 the register is a floating point register and
1459 memory format is float, as the register format must be double
1460 or
1461 memory format is an integer with 4 bytes or less, as the representation
1462 of integers in floating point registers is different. */
1463 static void
1464 alpha_register_convert_to_virtual (int regnum, struct type *valtype,
1465 char *raw_buffer, char *virtual_buffer)
1466 {
1467 if (TYPE_LENGTH (valtype) >= REGISTER_RAW_SIZE (regnum))
1468 {
1469 memcpy (virtual_buffer, raw_buffer, REGISTER_VIRTUAL_SIZE (regnum));
1470 return;
1471 }
1472
1473 if (TYPE_CODE (valtype) == TYPE_CODE_FLT)
1474 {
1475 double d = extract_floating (raw_buffer, REGISTER_RAW_SIZE (regnum));
1476 store_floating (virtual_buffer, TYPE_LENGTH (valtype), d);
1477 }
1478 else if (TYPE_CODE (valtype) == TYPE_CODE_INT && TYPE_LENGTH (valtype) <= 4)
1479 {
1480 ULONGEST l;
1481 l = extract_unsigned_integer (raw_buffer, REGISTER_RAW_SIZE (regnum));
1482 l = ((l >> 32) & 0xc0000000) | ((l >> 29) & 0x3fffffff);
1483 store_unsigned_integer (virtual_buffer, TYPE_LENGTH (valtype), l);
1484 }
1485 else
1486 error ("Cannot retrieve value from floating point register");
1487 }
1488
1489 static void
1490 alpha_register_convert_to_raw (struct type *valtype, int regnum,
1491 char *virtual_buffer, char *raw_buffer)
1492 {
1493 if (TYPE_LENGTH (valtype) >= REGISTER_RAW_SIZE (regnum))
1494 {
1495 memcpy (raw_buffer, virtual_buffer, REGISTER_RAW_SIZE (regnum));
1496 return;
1497 }
1498
1499 if (TYPE_CODE (valtype) == TYPE_CODE_FLT)
1500 {
1501 double d = extract_floating (virtual_buffer, TYPE_LENGTH (valtype));
1502 store_floating (raw_buffer, REGISTER_RAW_SIZE (regnum), d);
1503 }
1504 else if (TYPE_CODE (valtype) == TYPE_CODE_INT && TYPE_LENGTH (valtype) <= 4)
1505 {
1506 ULONGEST l;
1507 if (TYPE_UNSIGNED (valtype))
1508 l = extract_unsigned_integer (virtual_buffer, TYPE_LENGTH (valtype));
1509 else
1510 l = extract_signed_integer (virtual_buffer, TYPE_LENGTH (valtype));
1511 l = ((l & 0xc0000000) << 32) | ((l & 0x3fffffff) << 29);
1512 store_unsigned_integer (raw_buffer, REGISTER_RAW_SIZE (regnum), l);
1513 }
1514 else
1515 error ("Cannot store value in floating point register");
1516 }
1517
1518 static const unsigned char *
1519 alpha_breakpoint_from_pc (CORE_ADDR *pcptr, int *lenptr)
1520 {
1521 static const unsigned char alpha_breakpoint[] =
1522 { 0x80, 0, 0, 0 }; /* call_pal bpt */
1523
1524 *lenptr = sizeof(alpha_breakpoint);
1525 return (alpha_breakpoint);
1526 }
1527
1528 /* Given a return value in `regbuf' with a type `valtype',
1529 extract and copy its value into `valbuf'. */
1530
1531 static void
1532 alpha_extract_return_value (struct type *valtype,
1533 char regbuf[ALPHA_REGISTER_BYTES], char *valbuf)
1534 {
1535 if (TYPE_CODE (valtype) == TYPE_CODE_FLT)
1536 alpha_register_convert_to_virtual (FP0_REGNUM, valtype,
1537 regbuf + REGISTER_BYTE (FP0_REGNUM),
1538 valbuf);
1539 else
1540 memcpy (valbuf, regbuf + REGISTER_BYTE (ALPHA_V0_REGNUM),
1541 TYPE_LENGTH (valtype));
1542 }
1543
1544 /* Given a return value in `regbuf' with a type `valtype',
1545 write its value into the appropriate register. */
1546
1547 static void
1548 alpha_store_return_value (struct type *valtype, char *valbuf)
1549 {
1550 char raw_buffer[ALPHA_MAX_REGISTER_RAW_SIZE];
1551 int regnum = ALPHA_V0_REGNUM;
1552 int length = TYPE_LENGTH (valtype);
1553
1554 if (TYPE_CODE (valtype) == TYPE_CODE_FLT)
1555 {
1556 regnum = FP0_REGNUM;
1557 length = REGISTER_RAW_SIZE (regnum);
1558 alpha_register_convert_to_raw (valtype, regnum, valbuf, raw_buffer);
1559 }
1560 else
1561 memcpy (raw_buffer, valbuf, length);
1562
1563 write_register_bytes (REGISTER_BYTE (regnum), raw_buffer, length);
1564 }
1565
1566 /* Just like reinit_frame_cache, but with the right arguments to be
1567 callable as an sfunc. */
1568
1569 static void
1570 reinit_frame_cache_sfunc (char *args, int from_tty, struct cmd_list_element *c)
1571 {
1572 reinit_frame_cache ();
1573 }
1574
1575 /* This is the definition of CALL_DUMMY_ADDRESS. It's a heuristic that is used
1576 to find a convenient place in the text segment to stick a breakpoint to
1577 detect the completion of a target function call (ala call_function_by_hand).
1578 */
1579
1580 CORE_ADDR
1581 alpha_call_dummy_address (void)
1582 {
1583 CORE_ADDR entry;
1584 struct minimal_symbol *sym;
1585
1586 entry = entry_point_address ();
1587
1588 if (entry != 0)
1589 return entry;
1590
1591 sym = lookup_minimal_symbol ("_Prelude", NULL, symfile_objfile);
1592
1593 if (!sym || MSYMBOL_TYPE (sym) != mst_text)
1594 return 0;
1595 else
1596 return SYMBOL_VALUE_ADDRESS (sym) + 4;
1597 }
1598
1599 static void
1600 alpha_fix_call_dummy (char *dummy, CORE_ADDR pc, CORE_ADDR fun, int nargs,
1601 struct value **args, struct type *type, int gcc_p)
1602 {
1603 CORE_ADDR bp_address = CALL_DUMMY_ADDRESS ();
1604
1605 if (bp_address == 0)
1606 error ("no place to put call");
1607 write_register (ALPHA_RA_REGNUM, bp_address);
1608 write_register (ALPHA_T12_REGNUM, fun);
1609 }
1610
1611 /* On the Alpha, the call dummy code is nevery copied to user space
1612 (see alpha_fix_call_dummy() above). The contents of this do not
1613 matter. */
1614 LONGEST alpha_call_dummy_words[] = { 0 };
1615
1616 static int
1617 alpha_use_struct_convention (int gcc_p, struct type *type)
1618 {
1619 /* Structures are returned by ref in extra arg0. */
1620 return 1;
1621 }
1622
1623 static void
1624 alpha_store_struct_return (CORE_ADDR addr, CORE_ADDR sp)
1625 {
1626 /* Store the address of the place in which to copy the structure the
1627 subroutine will return. Handled by alpha_push_arguments. */
1628 }
1629
1630 static CORE_ADDR
1631 alpha_extract_struct_value_address (char *regbuf)
1632 {
1633 return (extract_address (regbuf + REGISTER_BYTE (ALPHA_V0_REGNUM),
1634 REGISTER_RAW_SIZE (ALPHA_V0_REGNUM)));
1635 }
1636
1637 /* Figure out where the longjmp will land.
1638 We expect the first arg to be a pointer to the jmp_buf structure from
1639 which we extract the PC (JB_PC) that we will land at. The PC is copied
1640 into the "pc". This routine returns true on success. */
1641
1642 static int
1643 alpha_get_longjmp_target (CORE_ADDR *pc)
1644 {
1645 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
1646 CORE_ADDR jb_addr;
1647 char raw_buffer[ALPHA_MAX_REGISTER_RAW_SIZE];
1648
1649 jb_addr = read_register (ALPHA_A0_REGNUM);
1650
1651 if (target_read_memory (jb_addr + (tdep->jb_pc * tdep->jb_elt_size),
1652 raw_buffer, tdep->jb_elt_size))
1653 return 0;
1654
1655 *pc = extract_address (raw_buffer, tdep->jb_elt_size);
1656 return 1;
1657 }
1658
1659 /* alpha_software_single_step() is called just before we want to resume
1660 the inferior, if we want to single-step it but there is no hardware
1661 or kernel single-step support (NetBSD on Alpha, for example). We find
1662 the target of the coming instruction and breakpoint it.
1663
1664 single_step is also called just after the inferior stops. If we had
1665 set up a simulated single-step, we undo our damage. */
1666
1667 static CORE_ADDR
1668 alpha_next_pc (CORE_ADDR pc)
1669 {
1670 unsigned int insn;
1671 unsigned int op;
1672 int offset;
1673 LONGEST rav;
1674
1675 insn = read_memory_unsigned_integer (pc, sizeof (insn));
1676
1677 /* Opcode is top 6 bits. */
1678 op = (insn >> 26) & 0x3f;
1679
1680 if (op == 0x1a)
1681 {
1682 /* Jump format: target PC is:
1683 RB & ~3 */
1684 return (read_register ((insn >> 16) & 0x1f) & ~3);
1685 }
1686
1687 if ((op & 0x30) == 0x30)
1688 {
1689 /* Branch format: target PC is:
1690 (new PC) + (4 * sext(displacement)) */
1691 if (op == 0x30 || /* BR */
1692 op == 0x34) /* BSR */
1693 {
1694 branch_taken:
1695 offset = (insn & 0x001fffff);
1696 if (offset & 0x00100000)
1697 offset |= 0xffe00000;
1698 offset *= 4;
1699 return (pc + 4 + offset);
1700 }
1701
1702 /* Need to determine if branch is taken; read RA. */
1703 rav = (LONGEST) read_register ((insn >> 21) & 0x1f);
1704 switch (op)
1705 {
1706 case 0x38: /* BLBC */
1707 if ((rav & 1) == 0)
1708 goto branch_taken;
1709 break;
1710 case 0x3c: /* BLBS */
1711 if (rav & 1)
1712 goto branch_taken;
1713 break;
1714 case 0x39: /* BEQ */
1715 if (rav == 0)
1716 goto branch_taken;
1717 break;
1718 case 0x3d: /* BNE */
1719 if (rav != 0)
1720 goto branch_taken;
1721 break;
1722 case 0x3a: /* BLT */
1723 if (rav < 0)
1724 goto branch_taken;
1725 break;
1726 case 0x3b: /* BLE */
1727 if (rav <= 0)
1728 goto branch_taken;
1729 break;
1730 case 0x3f: /* BGT */
1731 if (rav > 0)
1732 goto branch_taken;
1733 break;
1734 case 0x3e: /* BGE */
1735 if (rav >= 0)
1736 goto branch_taken;
1737 break;
1738 }
1739 }
1740
1741 /* Not a branch or branch not taken; target PC is:
1742 pc + 4 */
1743 return (pc + 4);
1744 }
1745
1746 void
1747 alpha_software_single_step (enum target_signal sig, int insert_breakpoints_p)
1748 {
1749 static CORE_ADDR next_pc;
1750 typedef char binsn_quantum[BREAKPOINT_MAX];
1751 static binsn_quantum break_mem;
1752 CORE_ADDR pc;
1753
1754 if (insert_breakpoints_p)
1755 {
1756 pc = read_pc ();
1757 next_pc = alpha_next_pc (pc);
1758
1759 target_insert_breakpoint (next_pc, break_mem);
1760 }
1761 else
1762 {
1763 target_remove_breakpoint (next_pc, break_mem);
1764 write_pc (next_pc);
1765 }
1766 }
1767
1768 \f
1769 /* This table matches the indices assigned to enum alpha_abi. Keep
1770 them in sync. */
1771 static const char * const alpha_abi_names[] =
1772 {
1773 "<unknown>",
1774 "OSF/1",
1775 "GNU/Linux",
1776 "FreeBSD",
1777 "NetBSD",
1778 NULL
1779 };
1780
1781 static void
1782 process_note_abi_tag_sections (bfd *abfd, asection *sect, void *obj)
1783 {
1784 enum alpha_abi *os_ident_ptr = obj;
1785 const char *name;
1786 unsigned int sectsize;
1787
1788 name = bfd_get_section_name (abfd, sect);
1789 sectsize = bfd_section_size (abfd, sect);
1790
1791 if (strcmp (name, ".note.ABI-tag") == 0 && sectsize > 0)
1792 {
1793 unsigned int name_length, data_length, note_type;
1794 char *note;
1795
1796 /* If the section is larger than this, it's probably not what we are
1797 looking for. */
1798 if (sectsize > 128)
1799 sectsize = 128;
1800
1801 note = alloca (sectsize);
1802
1803 bfd_get_section_contents (abfd, sect, note,
1804 (file_ptr) 0, (bfd_size_type) sectsize);
1805
1806 name_length = bfd_h_get_32 (abfd, note);
1807 data_length = bfd_h_get_32 (abfd, note + 4);
1808 note_type = bfd_h_get_32 (abfd, note + 8);
1809
1810 if (name_length == 4 && data_length == 16 && note_type == 1
1811 && strcmp (note + 12, "GNU") == 0)
1812 {
1813 int os_number = bfd_h_get_32 (abfd, note + 16);
1814
1815 /* The case numbers are from abi-tags in glibc. */
1816 switch (os_number)
1817 {
1818 case 0 :
1819 *os_ident_ptr = ALPHA_ABI_LINUX;
1820 break;
1821
1822 case 1 :
1823 internal_error
1824 (__FILE__, __LINE__,
1825 "process_note_abi_sections: Hurd objects not supported");
1826 break;
1827
1828 case 2 :
1829 internal_error
1830 (__FILE__, __LINE__,
1831 "process_note_abi_sections: Solaris objects not supported");
1832 break;
1833
1834 default :
1835 internal_error
1836 (__FILE__, __LINE__,
1837 "process_note_abi_sections: unknown OS number %d",
1838 os_number);
1839 break;
1840 }
1841 }
1842 }
1843 /* NetBSD uses a similar trick. */
1844 else if (strcmp (name, ".note.netbsd.ident") == 0 && sectsize > 0)
1845 {
1846 unsigned int name_length, desc_length, note_type;
1847 char *note;
1848
1849 /* If the section is larger than this, it's probably not what we are
1850 looking for. */
1851 if (sectsize > 128)
1852 sectsize = 128;
1853
1854 note = alloca (sectsize);
1855
1856 bfd_get_section_contents (abfd, sect, note,
1857 (file_ptr) 0, (bfd_size_type) sectsize);
1858
1859 name_length = bfd_h_get_32 (abfd, note);
1860 desc_length = bfd_h_get_32 (abfd, note + 4);
1861 note_type = bfd_h_get_32 (abfd, note + 8);
1862
1863 if (name_length == 7 && desc_length == 4 && note_type == 1
1864 && strcmp (note + 12, "NetBSD") == 0)
1865 /* XXX Should we check the version here?
1866 Probably not necessary yet. */
1867 *os_ident_ptr = ALPHA_ABI_NETBSD;
1868 }
1869 }
1870
1871 static int
1872 get_elfosabi (bfd *abfd)
1873 {
1874 int elfosabi;
1875 enum alpha_abi alpha_abi = ALPHA_ABI_UNKNOWN;
1876
1877 elfosabi = elf_elfheader (abfd)->e_ident[EI_OSABI];
1878
1879 /* When elfosabi is 0 (ELFOSABI_NONE), this is supposed to indicate
1880 what we're on a SYSV system. However, GNU/Linux uses a note section
1881 to record OS/ABI info, but leaves e_ident[EI_OSABI] zero. So we
1882 have to check the note sections too. */
1883 if (elfosabi == 0)
1884 {
1885 bfd_map_over_sections (abfd,
1886 process_note_abi_tag_sections,
1887 &alpha_abi);
1888 }
1889
1890 if (alpha_abi != ALPHA_ABI_UNKNOWN)
1891 return alpha_abi;
1892
1893 switch (elfosabi)
1894 {
1895 case ELFOSABI_NONE:
1896 /* Leave it as unknown. */
1897 break;
1898
1899 case ELFOSABI_NETBSD:
1900 return ALPHA_ABI_NETBSD;
1901
1902 case ELFOSABI_FREEBSD:
1903 return ALPHA_ABI_FREEBSD;
1904
1905 case ELFOSABI_LINUX:
1906 return ALPHA_ABI_LINUX;
1907 }
1908
1909 return ALPHA_ABI_UNKNOWN;
1910 }
1911
1912 struct alpha_abi_handler
1913 {
1914 struct alpha_abi_handler *next;
1915 enum alpha_abi abi;
1916 void (*init_abi)(struct gdbarch_info, struct gdbarch *);
1917 };
1918
1919 struct alpha_abi_handler *alpha_abi_handler_list = NULL;
1920
1921 void
1922 alpha_gdbarch_register_os_abi (enum alpha_abi abi,
1923 void (*init_abi)(struct gdbarch_info,
1924 struct gdbarch *))
1925 {
1926 struct alpha_abi_handler **handler_p;
1927
1928 for (handler_p = &alpha_abi_handler_list; *handler_p != NULL;
1929 handler_p = &(*handler_p)->next)
1930 {
1931 if ((*handler_p)->abi == abi)
1932 {
1933 internal_error
1934 (__FILE__, __LINE__,
1935 "alpha_gdbarch_register_os_abi: A handler for this ABI variant "
1936 "(%d) has already been registered", (int) abi);
1937 /* If user wants to continue, override previous definition. */
1938 (*handler_p)->init_abi = init_abi;
1939 return;
1940 }
1941 }
1942
1943 (*handler_p)
1944 = (struct alpha_abi_handler *) xmalloc (sizeof (struct alpha_abi_handler));
1945 (*handler_p)->next = NULL;
1946 (*handler_p)->abi = abi;
1947 (*handler_p)->init_abi = init_abi;
1948 }
1949
1950 /* Initialize the current architecture based on INFO. If possible, re-use an
1951 architecture from ARCHES, which is a list of architectures already created
1952 during this debugging session.
1953
1954 Called e.g. at program startup, when reading a core file, and when reading
1955 a binary file. */
1956
1957 static struct gdbarch *
1958 alpha_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
1959 {
1960 struct gdbarch_tdep *tdep;
1961 struct gdbarch *gdbarch;
1962 enum alpha_abi alpha_abi = ALPHA_ABI_UNKNOWN;
1963 struct alpha_abi_handler *abi_handler;
1964
1965 /* Try to determine the ABI of the object we are loading. */
1966
1967 if (info.abfd != NULL)
1968 {
1969 switch (bfd_get_flavour (info.abfd))
1970 {
1971 case bfd_target_elf_flavour:
1972 alpha_abi = get_elfosabi (info.abfd);
1973 break;
1974
1975 case bfd_target_ecoff_flavour:
1976 /* Assume it's OSF/1. */
1977 alpha_abi = ALPHA_ABI_OSF1;
1978 break;
1979
1980 default:
1981 /* Not sure what to do here, leave the ABI as unknown. */
1982 break;
1983 }
1984 }
1985
1986 /* Find a candidate among extant architectures. */
1987 for (arches = gdbarch_list_lookup_by_info (arches, &info);
1988 arches != NULL;
1989 arches = gdbarch_list_lookup_by_info (arches->next, &info))
1990 {
1991 /* Make sure the ABI selection matches. */
1992 tdep = gdbarch_tdep (arches->gdbarch);
1993 if (tdep && tdep->alpha_abi == alpha_abi)
1994 return arches->gdbarch;
1995 }
1996
1997 tdep = xmalloc (sizeof (struct gdbarch_tdep));
1998 gdbarch = gdbarch_alloc (&info, tdep);
1999
2000 tdep->alpha_abi = alpha_abi;
2001 if (alpha_abi < ALPHA_ABI_INVALID)
2002 tdep->abi_name = alpha_abi_names[alpha_abi];
2003 else
2004 {
2005 internal_error (__FILE__, __LINE__, "Invalid setting of alpha_abi %d",
2006 (int) alpha_abi);
2007 tdep->abi_name = "<invalid>";
2008 }
2009
2010 /* Lowest text address. This is used by heuristic_proc_start() to
2011 decide when to stop looking. */
2012 tdep->vm_min_address = (CORE_ADDR) 0x120000000;
2013
2014 tdep->dynamic_sigtramp_offset = NULL;
2015 tdep->skip_sigtramp_frame = NULL;
2016 tdep->sigcontext_addr = NULL;
2017
2018 tdep->jb_pc = -1; /* longjmp support not enabled by default */
2019
2020 /* Type sizes */
2021 set_gdbarch_short_bit (gdbarch, 16);
2022 set_gdbarch_int_bit (gdbarch, 32);
2023 set_gdbarch_long_bit (gdbarch, 64);
2024 set_gdbarch_long_long_bit (gdbarch, 64);
2025 set_gdbarch_float_bit (gdbarch, 32);
2026 set_gdbarch_double_bit (gdbarch, 64);
2027 set_gdbarch_long_double_bit (gdbarch, 64);
2028 set_gdbarch_ptr_bit (gdbarch, 64);
2029
2030 /* Register info */
2031 set_gdbarch_num_regs (gdbarch, ALPHA_NUM_REGS);
2032 set_gdbarch_sp_regnum (gdbarch, ALPHA_SP_REGNUM);
2033 set_gdbarch_fp_regnum (gdbarch, ALPHA_FP_REGNUM);
2034 set_gdbarch_pc_regnum (gdbarch, ALPHA_PC_REGNUM);
2035 set_gdbarch_fp0_regnum (gdbarch, ALPHA_FP0_REGNUM);
2036
2037 set_gdbarch_register_name (gdbarch, alpha_register_name);
2038 set_gdbarch_register_size (gdbarch, ALPHA_REGISTER_SIZE);
2039 set_gdbarch_register_bytes (gdbarch, ALPHA_REGISTER_BYTES);
2040 set_gdbarch_register_byte (gdbarch, alpha_register_byte);
2041 set_gdbarch_register_raw_size (gdbarch, alpha_register_raw_size);
2042 set_gdbarch_max_register_raw_size (gdbarch, ALPHA_MAX_REGISTER_RAW_SIZE);
2043 set_gdbarch_register_virtual_size (gdbarch, alpha_register_virtual_size);
2044 set_gdbarch_max_register_virtual_size (gdbarch,
2045 ALPHA_MAX_REGISTER_VIRTUAL_SIZE);
2046 set_gdbarch_register_virtual_type (gdbarch, alpha_register_virtual_type);
2047
2048 set_gdbarch_cannot_fetch_register (gdbarch, alpha_cannot_fetch_register);
2049 set_gdbarch_cannot_store_register (gdbarch, alpha_cannot_store_register);
2050
2051 set_gdbarch_register_convertible (gdbarch, alpha_register_convertible);
2052 set_gdbarch_register_convert_to_virtual (gdbarch,
2053 alpha_register_convert_to_virtual);
2054 set_gdbarch_register_convert_to_raw (gdbarch, alpha_register_convert_to_raw);
2055
2056 set_gdbarch_skip_prologue (gdbarch, alpha_skip_prologue);
2057
2058 set_gdbarch_frame_num_args (gdbarch, frame_num_args_unknown);
2059 set_gdbarch_frameless_function_invocation (gdbarch,
2060 generic_frameless_function_invocation_not);
2061
2062 set_gdbarch_saved_pc_after_call (gdbarch, alpha_saved_pc_after_call);
2063
2064 set_gdbarch_frame_chain (gdbarch, alpha_frame_chain);
2065 set_gdbarch_frame_chain_valid (gdbarch, func_frame_chain_valid);
2066 set_gdbarch_frame_saved_pc (gdbarch, alpha_frame_saved_pc);
2067
2068 set_gdbarch_frame_init_saved_regs (gdbarch, alpha_frame_init_saved_regs);
2069 set_gdbarch_get_saved_register (gdbarch, alpha_get_saved_register);
2070
2071 set_gdbarch_use_struct_convention (gdbarch, alpha_use_struct_convention);
2072 set_gdbarch_extract_return_value (gdbarch, alpha_extract_return_value);
2073
2074 set_gdbarch_store_struct_return (gdbarch, alpha_store_struct_return);
2075 set_gdbarch_store_return_value (gdbarch, alpha_store_return_value);
2076 set_gdbarch_extract_struct_value_address (gdbarch,
2077 alpha_extract_struct_value_address);
2078
2079 /* Settings for calling functions in the inferior. */
2080 set_gdbarch_use_generic_dummy_frames (gdbarch, 0);
2081 set_gdbarch_call_dummy_length (gdbarch, 0);
2082 set_gdbarch_push_arguments (gdbarch, alpha_push_arguments);
2083 set_gdbarch_pop_frame (gdbarch, alpha_pop_frame);
2084
2085 /* On the Alpha, the call dummy code is never copied to user space,
2086 stopping the user call is achieved via a bp_call_dummy breakpoint.
2087 But we need a fake CALL_DUMMY definition to enable the proper
2088 call_function_by_hand and to avoid zero length array warnings. */
2089 set_gdbarch_call_dummy_p (gdbarch, 1);
2090 set_gdbarch_call_dummy_words (gdbarch, alpha_call_dummy_words);
2091 set_gdbarch_sizeof_call_dummy_words (gdbarch, 0);
2092 set_gdbarch_frame_args_address (gdbarch, alpha_frame_args_address);
2093 set_gdbarch_frame_locals_address (gdbarch, alpha_frame_locals_address);
2094 set_gdbarch_init_extra_frame_info (gdbarch, alpha_init_extra_frame_info);
2095
2096 /* Alpha OSF/1 inhibits execution of code on the stack. But there is
2097 no need for a dummy on the Alpha. PUSH_ARGUMENTS takes care of all
2098 argument handling and bp_call_dummy takes care of stopping the dummy. */
2099 set_gdbarch_call_dummy_location (gdbarch, AT_ENTRY_POINT);
2100 set_gdbarch_call_dummy_address (gdbarch, alpha_call_dummy_address);
2101 set_gdbarch_call_dummy_breakpoint_offset_p (gdbarch, 1);
2102 set_gdbarch_call_dummy_breakpoint_offset (gdbarch, 0);
2103 set_gdbarch_call_dummy_start_offset (gdbarch, 0);
2104 set_gdbarch_pc_in_call_dummy (gdbarch, pc_in_call_dummy_at_entry_point);
2105 set_gdbarch_call_dummy_stack_adjust_p (gdbarch, 0);
2106 set_gdbarch_push_dummy_frame (gdbarch, alpha_push_dummy_frame);
2107 set_gdbarch_fix_call_dummy (gdbarch, alpha_fix_call_dummy);
2108 set_gdbarch_init_frame_pc (gdbarch, init_frame_pc_noop);
2109 set_gdbarch_init_frame_pc_first (gdbarch, alpha_init_frame_pc_first);
2110
2111 set_gdbarch_inner_than (gdbarch, core_addr_lessthan);
2112 set_gdbarch_skip_trampoline_code (gdbarch, find_solib_trampoline_target);
2113
2114 /* Floats are always passed as doubles. */
2115 set_gdbarch_coerce_float_to_double (gdbarch,
2116 standard_coerce_float_to_double);
2117
2118 set_gdbarch_breakpoint_from_pc (gdbarch, alpha_breakpoint_from_pc);
2119 set_gdbarch_decr_pc_after_break (gdbarch, 4);
2120
2121 set_gdbarch_function_start_offset (gdbarch, 0);
2122 set_gdbarch_frame_args_skip (gdbarch, 0);
2123
2124 /* Hook in ABI-specific overrides, if they have been registered. */
2125 if (alpha_abi == ALPHA_ABI_UNKNOWN)
2126 {
2127 /* Don't complain about not knowing the ABI variant if we don't
2128 have an inferior. */
2129 if (info.abfd)
2130 fprintf_filtered
2131 (gdb_stderr, "GDB doesn't recognize the ABI of the inferior. "
2132 "Attempting to continue with the default Alpha settings");
2133 }
2134 else
2135 {
2136 for (abi_handler = alpha_abi_handler_list; abi_handler != NULL;
2137 abi_handler = abi_handler->next)
2138 if (abi_handler->abi == alpha_abi)
2139 break;
2140
2141 if (abi_handler)
2142 abi_handler->init_abi (info, gdbarch);
2143 else
2144 {
2145 /* We assume that if GDB_MULTI_ARCH is less than
2146 GDB_MULTI_ARCH_TM that an ABI variant can be supported by
2147 overriding definitions in this file. */
2148 if (GDB_MULTI_ARCH > GDB_MULTI_ARCH_PARTIAL)
2149 fprintf_filtered
2150 (gdb_stderr,
2151 "A handler for the ABI variant \"%s\" is not built into this "
2152 "configuration of GDB. "
2153 "Attempting to continue with the default Alpha settings",
2154 alpha_abi_names[alpha_abi]);
2155 }
2156 }
2157
2158 /* Now that we have tuned the configuration, set a few final things
2159 based on what the OS ABI has told us. */
2160
2161 if (tdep->jb_pc >= 0)
2162 set_gdbarch_get_longjmp_target (gdbarch, alpha_get_longjmp_target);
2163
2164 return gdbarch;
2165 }
2166
2167 static void
2168 alpha_dump_tdep (struct gdbarch *current_gdbarch, struct ui_file *file)
2169 {
2170 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
2171
2172 if (tdep == NULL)
2173 return;
2174
2175 if (tdep->abi_name != NULL)
2176 fprintf_unfiltered (file, "alpha_dump_tdep: ABI = %s\n", tdep->abi_name);
2177 else
2178 internal_error (__FILE__, __LINE__,
2179 "alpha_dump_tdep: illegal setting of tdep->alpha_abi (%d)",
2180 (int) tdep->alpha_abi);
2181
2182 fprintf_unfiltered (file,
2183 "alpha_dump_tdep: vm_min_address = 0x%lx\n",
2184 (long) tdep->vm_min_address);
2185
2186 fprintf_unfiltered (file,
2187 "alpha_dump_tdep: jb_pc = %d\n",
2188 tdep->jb_pc);
2189 fprintf_unfiltered (file,
2190 "alpha_dump_tdep: jb_elt_size = %ld\n",
2191 (long) tdep->jb_elt_size);
2192 }
2193
2194 void
2195 _initialize_alpha_tdep (void)
2196 {
2197 struct cmd_list_element *c;
2198
2199 gdbarch_register (bfd_arch_alpha, alpha_gdbarch_init, alpha_dump_tdep);
2200
2201 tm_print_insn = print_insn_alpha;
2202
2203 /* Let the user set the fence post for heuristic_proc_start. */
2204
2205 /* We really would like to have both "0" and "unlimited" work, but
2206 command.c doesn't deal with that. So make it a var_zinteger
2207 because the user can always use "999999" or some such for unlimited. */
2208 c = add_set_cmd ("heuristic-fence-post", class_support, var_zinteger,
2209 (char *) &heuristic_fence_post,
2210 "\
2211 Set the distance searched for the start of a function.\n\
2212 If you are debugging a stripped executable, GDB needs to search through the\n\
2213 program for the start of a function. This command sets the distance of the\n\
2214 search. The only need to set it is when debugging a stripped executable.",
2215 &setlist);
2216 /* We need to throw away the frame cache when we set this, since it
2217 might change our ability to get backtraces. */
2218 set_cmd_sfunc (c, reinit_frame_cache_sfunc);
2219 add_show_from_set (c, &showlist);
2220 }
This page took 0.165298 seconds and 4 git commands to generate.