fb4eecf7c88b0ccdacb89e5e1165d04d67880309
[deliverable/binutils-gdb.git] / gdb / alpha-tdep.c
1 /* Target-dependent code for the ALPHA architecture, for GDB, the GNU Debugger.
2 Copyright 1993 Free Software Foundation, Inc.
3
4 This file is part of GDB.
5
6 This program is free software; you can redistribute it and/or modify
7 it under the terms of the GNU General Public License as published by
8 the Free Software Foundation; either version 2 of the License, or
9 (at your option) any later version.
10
11 This program is distributed in the hope that it will be useful,
12 but WITHOUT ANY WARRANTY; without even the implied warranty of
13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 GNU General Public License for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with this program; if not, write to the Free Software
18 Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. */
19
20 #include "defs.h"
21 #include "frame.h"
22 #include "inferior.h"
23 #include "symtab.h"
24 #include "value.h"
25 #include "gdbcmd.h"
26 #include "gdbcore.h"
27 #include "dis-asm.h"
28
29 /* FIXME: Some of this code should perhaps be merged with mips-tdep.c. */
30
31 #define VM_MIN_ADDRESS (CORE_ADDR)0x120000000
32 \f
33
34 /* Forward declarations. */
35
36 static CORE_ADDR
37 read_next_frame_reg PARAMS ((FRAME, int));
38
39 static CORE_ADDR
40 heuristic_proc_start PARAMS ((CORE_ADDR));
41
42 static alpha_extra_func_info_t
43 heuristic_proc_desc PARAMS ((CORE_ADDR, CORE_ADDR, FRAME));
44
45 static alpha_extra_func_info_t
46 find_proc_desc PARAMS ((CORE_ADDR, FRAME));
47
48 static int
49 alpha_in_lenient_prologue PARAMS ((CORE_ADDR, CORE_ADDR));
50
51 static void
52 reinit_frame_cache_sfunc PARAMS ((char *, int, struct cmd_list_element *));
53
54 void
55 _initialize_alpha_tdep PARAMS ((void));
56
57 /* Heuristic_proc_start may hunt through the text section for a long
58 time across a 2400 baud serial line. Allows the user to limit this
59 search. */
60 static unsigned int heuristic_fence_post = 0;
61
62 /* Layout of a stack frame on the alpha:
63
64 | |
65 pdr members: | 7th ... nth arg, |
66 | `pushed' by caller. |
67 | |
68 ----------------|-------------------------------|<-- old_sp == vfp
69 ^ ^ ^ ^ | |
70 | | | | | |
71 | |localoff | Copies of 1st .. 6th |
72 | | | | | argument if necessary. |
73 | | | v | |
74 | | | --- |-------------------------------|<-- FRAME_LOCALS_ADDRESS
75 | | | | |
76 | | | | Locals and temporaries. |
77 | | | | |
78 | | | |-------------------------------|
79 | | | | |
80 |-fregoffset | Saved float registers. |
81 | | | | F9 |
82 | | | | . |
83 | | | | . |
84 | | | | F2 |
85 | | v | |
86 | | -------|-------------------------------|
87 | | | |
88 | | | Saved registers. |
89 | | | S6 |
90 |-regoffset | . |
91 | | | . |
92 | | | S0 |
93 | | | pdr.pcreg |
94 | v | |
95 | ----------|-------------------------------|
96 | | |
97 frameoffset | Argument build area, gets |
98 | | 7th ... nth arg for any |
99 | | called procedure. |
100 v | |
101 -------------|-------------------------------|<-- sp
102 | |
103 */
104
105 #define PROC_LOW_ADDR(proc) ((proc)->pdr.adr) /* least address */
106 #define PROC_HIGH_ADDR(proc) ((proc)->pdr.iline) /* upper address bound */
107 #define PROC_DUMMY_FRAME(proc) ((proc)->pdr.iopt) /* frame for CALL_DUMMY */
108 #define PROC_FRAME_OFFSET(proc) ((proc)->pdr.frameoffset)
109 #define PROC_FRAME_REG(proc) ((proc)->pdr.framereg)
110 #define PROC_REG_MASK(proc) ((proc)->pdr.regmask)
111 #define PROC_FREG_MASK(proc) ((proc)->pdr.fregmask)
112 #define PROC_REG_OFFSET(proc) ((proc)->pdr.regoffset)
113 #define PROC_FREG_OFFSET(proc) ((proc)->pdr.fregoffset)
114 #define PROC_PC_REG(proc) ((proc)->pdr.pcreg)
115 #define PROC_LOCALOFF(proc) ((proc)->pdr.localoff)
116 #define PROC_SYMBOL(proc) (*(struct symbol**)&(proc)->pdr.isym)
117 #define _PROC_MAGIC_ 0x0F0F0F0F
118 #define PROC_DESC_IS_DUMMY(proc) ((proc)->pdr.isym == _PROC_MAGIC_)
119 #define SET_PROC_DESC_IS_DUMMY(proc) ((proc)->pdr.isym = _PROC_MAGIC_)
120
121 struct linked_proc_info
122 {
123 struct alpha_extra_func_info info;
124 struct linked_proc_info *next;
125 } *linked_proc_desc_table = NULL;
126
127 \f
128 #define READ_FRAME_REG(fi, regno) read_next_frame_reg((fi)->next, regno)
129
130 static CORE_ADDR
131 read_next_frame_reg(fi, regno)
132 FRAME fi;
133 int regno;
134 {
135 /* If it is the frame for sigtramp we have a pointer to the sigcontext
136 on the stack.
137 If the stack layout for __sigtramp changes or if sigcontext offsets
138 change we might have to update this code. */
139 #ifndef SIGFRAME_PC_OFF
140 #define SIGFRAME_PC_OFF (2 * 8)
141 #define SIGFRAME_REGSAVE_OFF (4 * 8)
142 #endif
143 for (; fi; fi = fi->next)
144 {
145 if (fi->signal_handler_caller)
146 {
147 int offset;
148 CORE_ADDR sigcontext_addr = read_memory_integer(fi->frame, 8);
149
150 if (regno == PC_REGNUM)
151 offset = SIGFRAME_PC_OFF;
152 else if (regno < 32)
153 offset = SIGFRAME_REGSAVE_OFF + regno * 8;
154 else
155 return 0;
156 return read_memory_integer(sigcontext_addr + offset, 8);
157 }
158 else if (regno == SP_REGNUM)
159 return fi->frame;
160 else if (fi->saved_regs->regs[regno])
161 return read_memory_integer(fi->saved_regs->regs[regno], 8);
162 }
163 return read_register(regno);
164 }
165
166 CORE_ADDR
167 alpha_frame_saved_pc(frame)
168 FRAME frame;
169 {
170 alpha_extra_func_info_t proc_desc = frame->proc_desc;
171 int pcreg = proc_desc ? PROC_PC_REG(proc_desc) : RA_REGNUM;
172
173 if (proc_desc && PROC_DESC_IS_DUMMY(proc_desc))
174 return read_memory_integer(frame->frame - 8, 8);
175
176 return read_next_frame_reg(frame, pcreg);
177 }
178
179 CORE_ADDR
180 alpha_saved_pc_after_call (frame)
181 FRAME frame;
182 {
183 alpha_extra_func_info_t proc_desc = find_proc_desc (frame->pc, frame->next);
184 int pcreg = proc_desc ? PROC_PC_REG (proc_desc) : RA_REGNUM;
185
186 return read_register (pcreg);
187 }
188
189
190 static struct alpha_extra_func_info temp_proc_desc;
191 static struct frame_saved_regs temp_saved_regs;
192
193 /* This fencepost looks highly suspicious to me. Removing it also
194 seems suspicious as it could affect remote debugging across serial
195 lines. */
196
197 static CORE_ADDR
198 heuristic_proc_start(pc)
199 CORE_ADDR pc;
200 {
201 CORE_ADDR start_pc = pc;
202 CORE_ADDR fence = start_pc - heuristic_fence_post;
203
204 if (start_pc == 0) return 0;
205
206 if (heuristic_fence_post == UINT_MAX
207 || fence < VM_MIN_ADDRESS)
208 fence = VM_MIN_ADDRESS;
209
210 /* search back for previous return */
211 for (start_pc -= 4; ; start_pc -= 4)
212 if (start_pc < fence)
213 {
214 /* It's not clear to me why we reach this point when
215 stop_soon_quietly, but with this test, at least we
216 don't print out warnings for every child forked (eg, on
217 decstation). 22apr93 rich@cygnus.com. */
218 if (!stop_soon_quietly)
219 {
220 static int blurb_printed = 0;
221
222 if (fence == VM_MIN_ADDRESS)
223 warning("Hit beginning of text section without finding");
224 else
225 warning("Hit heuristic-fence-post without finding");
226
227 warning("enclosing function for address 0x%lx", pc);
228 if (!blurb_printed)
229 {
230 printf_filtered ("\
231 This warning occurs if you are debugging a function without any symbols\n\
232 (for example, in a stripped executable). In that case, you may wish to\n\
233 increase the size of the search with the `set heuristic-fence-post' command.\n\
234 \n\
235 Otherwise, you told GDB there was a function where there isn't one, or\n\
236 (more likely) you have encountered a bug in GDB.\n");
237 blurb_printed = 1;
238 }
239 }
240
241 return 0;
242 }
243 else if (ABOUT_TO_RETURN(start_pc))
244 break;
245
246 start_pc += 4; /* skip return */
247 return start_pc;
248 }
249
250 static alpha_extra_func_info_t
251 heuristic_proc_desc(start_pc, limit_pc, next_frame)
252 CORE_ADDR start_pc, limit_pc;
253 FRAME next_frame;
254 {
255 CORE_ADDR sp = next_frame ? next_frame->frame : read_register (SP_REGNUM);
256 CORE_ADDR cur_pc;
257 int frame_size;
258 int has_frame_reg = 0;
259 unsigned long reg_mask = 0;
260
261 if (start_pc == 0)
262 return NULL;
263 memset(&temp_proc_desc, '\0', sizeof(temp_proc_desc));
264 memset(&temp_saved_regs, '\0', sizeof(struct frame_saved_regs));
265 PROC_LOW_ADDR(&temp_proc_desc) = start_pc;
266
267 if (start_pc + 200 < limit_pc)
268 limit_pc = start_pc + 200;
269 frame_size = 0;
270 for (cur_pc = start_pc; cur_pc < limit_pc; cur_pc += 4)
271 {
272 char buf[4];
273 unsigned long word;
274 int status;
275
276 status = read_memory_nobpt (cur_pc, buf, 4);
277 if (status)
278 memory_error (status, cur_pc);
279 word = extract_unsigned_integer (buf, 4);
280
281 if ((word & 0xffff0000) == 0x23de0000) /* lda $sp,n($sp) */
282 frame_size += (-word) & 0xffff;
283 else if ((word & 0xfc1f0000) == 0xb41e0000 /* stq reg,n($sp) */
284 && (word & 0xffff0000) != 0xb7fe0000) /* reg != $zero */
285 {
286 int reg = (word & 0x03e00000) >> 21;
287 reg_mask |= 1 << reg;
288 temp_saved_regs.regs[reg] = sp + (short)word;
289 }
290 else if (word == 0x47de040f) /* bis sp,sp fp */
291 has_frame_reg = 1;
292 }
293 if (has_frame_reg)
294 PROC_FRAME_REG(&temp_proc_desc) = GCC_FP_REGNUM;
295 else
296 PROC_FRAME_REG(&temp_proc_desc) = SP_REGNUM;
297 PROC_FRAME_OFFSET(&temp_proc_desc) = frame_size;
298 PROC_REG_MASK(&temp_proc_desc) = reg_mask;
299 PROC_PC_REG(&temp_proc_desc) = RA_REGNUM;
300 return &temp_proc_desc;
301 }
302
303 static alpha_extra_func_info_t
304 find_proc_desc(pc, next_frame)
305 CORE_ADDR pc;
306 FRAME next_frame;
307 {
308 alpha_extra_func_info_t proc_desc;
309 struct block *b;
310 struct symbol *sym;
311 CORE_ADDR startaddr;
312
313 /* Try to get the proc_desc from the linked call dummy proc_descs
314 if the pc is in the call dummy.
315 This is hairy. In the case of nested dummy calls we have to find the
316 right proc_desc, but we might not yet know the frame for the dummy
317 as it will be contained in the proc_desc we are searching for.
318 So we have to find the proc_desc whose frame is closest to the current
319 stack pointer. */
320 if (PC_IN_CALL_DUMMY (pc, 0, 0))
321 {
322 struct linked_proc_info *link;
323 CORE_ADDR sp = next_frame ? next_frame->frame : read_register (SP_REGNUM);
324 alpha_extra_func_info_t found_proc_desc = NULL;
325 long min_distance = LONG_MAX;
326
327 for (link = linked_proc_desc_table; link; link = link->next)
328 {
329 long distance = (CORE_ADDR) PROC_DUMMY_FRAME (&link->info) - sp;
330 if (distance > 0 && distance < min_distance)
331 {
332 min_distance = distance;
333 found_proc_desc = &link->info;
334 }
335 }
336 if (found_proc_desc != NULL)
337 return found_proc_desc;
338 }
339
340 b = block_for_pc(pc);
341 find_pc_partial_function (pc, NULL, &startaddr, NULL);
342 if (b == NULL)
343 sym = NULL;
344 else
345 {
346 if (startaddr > BLOCK_START (b))
347 /* This is the "pathological" case referred to in a comment in
348 print_frame_info. It might be better to move this check into
349 symbol reading. */
350 sym = NULL;
351 else
352 sym = lookup_symbol (MIPS_EFI_SYMBOL_NAME, b, LABEL_NAMESPACE,
353 0, NULL);
354 }
355
356 if (sym)
357 {
358 /* IF (this is the topmost frame OR a frame interrupted by a signal)
359 * AND (this proc does not have debugging information OR
360 * the PC is in the procedure prologue)
361 * THEN create a "heuristic" proc_desc (by analyzing
362 * the actual code) to replace the "official" proc_desc.
363 */
364 proc_desc = (alpha_extra_func_info_t)SYMBOL_VALUE(sym);
365 if (next_frame == NULL || next_frame->signal_handler_caller) {
366 struct symtab_and_line val;
367 struct symbol *proc_symbol =
368 PROC_DESC_IS_DUMMY(proc_desc) ? 0 : PROC_SYMBOL(proc_desc);
369
370 if (proc_symbol) {
371 val = find_pc_line (BLOCK_START
372 (SYMBOL_BLOCK_VALUE(proc_symbol)),
373 0);
374 val.pc = val.end ? val.end : pc;
375 }
376 if (!proc_symbol || pc < val.pc) {
377 alpha_extra_func_info_t found_heuristic =
378 heuristic_proc_desc(PROC_LOW_ADDR(proc_desc),
379 pc, next_frame);
380 if (found_heuristic)
381 {
382 /* The call to heuristic_proc_desc determines
383 which registers have been saved so far and if the
384 frame is already set up.
385 The heuristic algorithm doesn't work well for other
386 information in the procedure descriptor, so copy
387 it from the found procedure descriptor. */
388 PROC_LOCALOFF(found_heuristic) = PROC_LOCALOFF(proc_desc);
389 PROC_PC_REG(found_heuristic) = PROC_PC_REG(proc_desc);
390 proc_desc = found_heuristic;
391 }
392 }
393 }
394 }
395 else
396 {
397 if (startaddr == 0)
398 startaddr = heuristic_proc_start (pc);
399
400 proc_desc =
401 heuristic_proc_desc (startaddr, pc, next_frame);
402 }
403 return proc_desc;
404 }
405
406 alpha_extra_func_info_t cached_proc_desc;
407
408 FRAME_ADDR
409 alpha_frame_chain(frame)
410 FRAME frame;
411 {
412 alpha_extra_func_info_t proc_desc;
413 CORE_ADDR saved_pc = FRAME_SAVED_PC(frame);
414
415 if (saved_pc == 0 || inside_entry_file (saved_pc))
416 return 0;
417
418 proc_desc = find_proc_desc(saved_pc, frame);
419 if (!proc_desc)
420 return 0;
421
422 cached_proc_desc = proc_desc;
423
424 /* Fetch the frame pointer for a dummy frame from the procedure
425 descriptor. */
426 if (PROC_DESC_IS_DUMMY(proc_desc))
427 return (FRAME_ADDR) PROC_DUMMY_FRAME(proc_desc);
428
429 /* If no frame pointer and frame size is zero, we must be at end
430 of stack (or otherwise hosed). If we don't check frame size,
431 we loop forever if we see a zero size frame. */
432 if (PROC_FRAME_REG (proc_desc) == SP_REGNUM
433 && PROC_FRAME_OFFSET (proc_desc) == 0
434 /* The alpha __sigtramp routine is frameless and has a frame size
435 of zero. Luckily it is the only procedure which has PC_REGNUM
436 as PROC_PC_REG. */
437 && PROC_PC_REG (proc_desc) != PC_REGNUM
438 /* The previous frame from a sigtramp frame might be frameless
439 and have frame size zero. */
440 && !frame->signal_handler_caller)
441 return 0;
442 else
443 return read_next_frame_reg(frame, PROC_FRAME_REG(proc_desc))
444 + PROC_FRAME_OFFSET(proc_desc);
445 }
446
447 void
448 init_extra_frame_info(fci)
449 struct frame_info *fci;
450 {
451 extern struct obstack frame_cache_obstack;
452 /* Use proc_desc calculated in frame_chain */
453 alpha_extra_func_info_t proc_desc =
454 fci->next ? cached_proc_desc : find_proc_desc(fci->pc, fci->next);
455
456 fci->saved_regs = (struct frame_saved_regs*)
457 obstack_alloc (&frame_cache_obstack, sizeof(struct frame_saved_regs));
458 memset (fci->saved_regs, 0, sizeof (struct frame_saved_regs));
459 fci->proc_desc =
460 proc_desc == &temp_proc_desc ? 0 : proc_desc;
461 if (proc_desc)
462 {
463 int ireg;
464 CORE_ADDR reg_position;
465 unsigned long mask;
466 int returnreg;
467
468 /* Get the locals offset from the procedure descriptor, it is valid
469 even if we are in the middle of the prologue. */
470 fci->localoff = PROC_LOCALOFF(proc_desc);
471
472 /* Fixup frame-pointer - only needed for top frame */
473 /* Fetch the frame pointer for a dummy frame from the procedure
474 descriptor. */
475 if (PROC_DESC_IS_DUMMY(proc_desc))
476 fci->frame = (FRAME_ADDR) PROC_DUMMY_FRAME(proc_desc);
477 /* This may not be quite right, if proc has a real frame register.
478 Get the value of the frame relative sp, procedure might have been
479 interrupted by a signal at it's very start. */
480 else if (fci->pc == PROC_LOW_ADDR(proc_desc))
481 fci->frame = READ_FRAME_REG(fci, SP_REGNUM);
482 else
483 fci->frame = READ_FRAME_REG(fci, PROC_FRAME_REG(proc_desc))
484 + PROC_FRAME_OFFSET(proc_desc);
485
486 /* If this is the innermost frame, and we are still in the
487 prologue (loosely defined), then the registers may not have
488 been saved yet. */
489 if (fci->next == NULL
490 && !PROC_DESC_IS_DUMMY(proc_desc)
491 && alpha_in_lenient_prologue (PROC_LOW_ADDR (proc_desc), fci->pc))
492 {
493 /* Can't just say that the registers are not saved, because they
494 might get clobbered halfway through the prologue.
495 heuristic_proc_desc already has the right code to figure out
496 exactly what has been saved, so use it. As far as I know we
497 could be doing this (as we do on the 68k, for example)
498 regardless of whether we are in the prologue; I'm leaving in
499 the check for being in the prologue only out of conservatism
500 (I'm not sure whether heuristic_proc_desc handles all cases,
501 for example).
502
503 This stuff is ugly (and getting uglier by the minute). Probably
504 the best way to clean it up is to ignore the proc_desc's from
505 the symbols altogher, and get all the information we need by
506 examining the prologue (provided we can make the prologue
507 examining code good enough to get all the cases...). */
508 proc_desc =
509 heuristic_proc_desc (PROC_LOW_ADDR (proc_desc),
510 fci->pc,
511 fci->next);
512 }
513
514 if (proc_desc == &temp_proc_desc)
515 *fci->saved_regs = temp_saved_regs;
516 else
517 {
518 /* Find which general-purpose registers were saved.
519 The return address register is the first saved register,
520 the other registers follow in ascending order. */
521 reg_position = fci->frame + PROC_REG_OFFSET(proc_desc);
522 mask = PROC_REG_MASK(proc_desc) & 0xffffffffL;
523 returnreg = PROC_PC_REG(proc_desc);
524 if (mask & (1 << returnreg))
525 {
526 fci->saved_regs->regs[returnreg] = reg_position;
527 reg_position += 8;
528 }
529 for (ireg = 0; mask; ireg++, mask >>= 1)
530 if (mask & 1)
531 {
532 if (ireg == returnreg)
533 continue;
534 fci->saved_regs->regs[ireg] = reg_position;
535 reg_position += 8;
536 }
537 /* find which floating-point registers were saved */
538 reg_position = fci->frame + PROC_FREG_OFFSET(proc_desc);
539 mask = PROC_FREG_MASK(proc_desc) & 0xffffffffL;
540 for (ireg = 0; mask; ireg++, mask >>= 1)
541 if (mask & 1)
542 {
543 fci->saved_regs->regs[FP0_REGNUM+ireg] = reg_position;
544 reg_position += 8;
545 }
546 }
547
548 fci->saved_regs->regs[PC_REGNUM] = fci->saved_regs->regs[PROC_PC_REG(proc_desc)];
549 }
550 }
551
552 /* ALPHA stack frames are almost impenetrable. When execution stops,
553 we basically have to look at symbol information for the function
554 that we stopped in, which tells us *which* register (if any) is
555 the base of the frame pointer, and what offset from that register
556 the frame itself is at.
557
558 This presents a problem when trying to examine a stack in memory
559 (that isn't executing at the moment), using the "frame" command. We
560 don't have a PC, nor do we have any registers except SP.
561
562 This routine takes two arguments, SP and PC, and tries to make the
563 cached frames look as if these two arguments defined a frame on the
564 cache. This allows the rest of info frame to extract the important
565 arguments without difficulty. */
566
567 FRAME
568 setup_arbitrary_frame (argc, argv)
569 int argc;
570 FRAME_ADDR *argv;
571 {
572 if (argc != 2)
573 error ("ALPHA frame specifications require two arguments: sp and pc");
574
575 return create_new_frame (argv[0], argv[1]);
576 }
577
578 /* The alpha passes the first six arguments in the registers, the rest on
579 the stack. The register arguments are eventually transferred to the
580 argument transfer area immediately below the stack by the called function
581 anyway. So we `push' at least six arguments on the stack, `reload' the
582 argument registers and then adjust the stack pointer to point past the
583 sixth argument. This algorithm simplifies the passing of a large struct
584 which extends from the registers to the stack.
585 If the called function is returning a structure, the address of the
586 structure to be returned is passed as a hidden first argument. */
587
588 CORE_ADDR
589 alpha_push_arguments (nargs, args, sp, struct_return, struct_addr)
590 int nargs;
591 value *args;
592 CORE_ADDR sp;
593 int struct_return;
594 CORE_ADDR struct_addr;
595 {
596 register i;
597 int accumulate_size = struct_return ? 8 : 0;
598 int arg_regs_size = ALPHA_NUM_ARG_REGS * 8;
599 struct alpha_arg { char *contents; int len; int offset; };
600 struct alpha_arg *alpha_args =
601 (struct alpha_arg*)alloca (nargs * sizeof (struct alpha_arg));
602 register struct alpha_arg *m_arg;
603 char raw_buffer[sizeof (CORE_ADDR)];
604 int required_arg_regs;
605
606 for (i = 0, m_arg = alpha_args; i < nargs; i++, m_arg++)
607 {
608 value arg = value_arg_coerce (args[i]);
609 /* Cast argument to long if necessary as the compiler does it too. */
610 if (TYPE_LENGTH (VALUE_TYPE (arg)) < TYPE_LENGTH (builtin_type_long))
611 arg = value_cast (builtin_type_long, arg);
612 m_arg->len = TYPE_LENGTH (VALUE_TYPE (arg));
613 m_arg->offset = accumulate_size;
614 accumulate_size = (accumulate_size + m_arg->len + 7) & ~7;
615 m_arg->contents = VALUE_CONTENTS(arg);
616 }
617
618 /* Determine required argument register loads, loading an argument register
619 is expensive as it uses three ptrace calls. */
620 required_arg_regs = accumulate_size / 8;
621 if (required_arg_regs > ALPHA_NUM_ARG_REGS)
622 required_arg_regs = ALPHA_NUM_ARG_REGS;
623
624 /* Make room for the arguments on the stack. */
625 if (accumulate_size < arg_regs_size)
626 accumulate_size = arg_regs_size;
627 sp -= accumulate_size;
628
629 /* Keep sp aligned to a multiple of 16 as the compiler does it too. */
630 sp &= ~15;
631
632 /* `Push' arguments on the stack. */
633 for (i = nargs; m_arg--, --i >= 0; )
634 write_memory(sp + m_arg->offset, m_arg->contents, m_arg->len);
635 if (struct_return)
636 {
637 store_address (raw_buffer, sizeof (CORE_ADDR), struct_addr);
638 write_memory (sp, raw_buffer, sizeof (CORE_ADDR));
639 }
640
641 /* Load the argument registers. */
642 for (i = 0; i < required_arg_regs; i++)
643 {
644 LONGEST val;
645
646 val = read_memory_integer (sp + i * 8, 8);
647 write_register (A0_REGNUM + i, val);
648 write_register (FPA0_REGNUM + i, val);
649 }
650
651 return sp + arg_regs_size;
652 }
653
654 void
655 alpha_push_dummy_frame()
656 {
657 int ireg;
658 struct linked_proc_info *link = (struct linked_proc_info*)
659 xmalloc(sizeof (struct linked_proc_info));
660 alpha_extra_func_info_t proc_desc = &link->info;
661 CORE_ADDR sp = read_register (SP_REGNUM);
662 CORE_ADDR save_address;
663 char raw_buffer[MAX_REGISTER_RAW_SIZE];
664 unsigned long mask;
665
666 link->next = linked_proc_desc_table;
667 linked_proc_desc_table = link;
668
669 /*
670 * The registers we must save are all those not preserved across
671 * procedure calls.
672 * In addition, we must save the PC and RA.
673 *
674 * Dummy frame layout:
675 * (high memory)
676 * Saved PC
677 * Saved F30
678 * ...
679 * Saved F0
680 * Saved R29
681 * ...
682 * Saved R0
683 * Saved R26 (RA)
684 * Parameter build area
685 * (low memory)
686 */
687
688 /* MASK(i,j) == (1<<i) + (1<<(i+1)) + ... + (1<<j)). Assume i<=j<31. */
689 #define MASK(i,j) (((1L << ((j)+1)) - 1) ^ ((1L << (i)) - 1))
690 #define GEN_REG_SAVE_MASK (MASK(0,8) | MASK(16,29))
691 #define GEN_REG_SAVE_COUNT 24
692 #define FLOAT_REG_SAVE_MASK (MASK(0,1) | MASK(10,30))
693 #define FLOAT_REG_SAVE_COUNT 23
694 /* The special register is the PC as we have no bit for it in the save masks.
695 alpha_frame_saved_pc knows where the pc is saved in a dummy frame. */
696 #define SPECIAL_REG_SAVE_COUNT 1
697
698 PROC_REG_MASK(proc_desc) = GEN_REG_SAVE_MASK;
699 PROC_FREG_MASK(proc_desc) = FLOAT_REG_SAVE_MASK;
700 /* PROC_REG_OFFSET is the offset from the dummy frame to the saved RA,
701 but keep SP aligned to a multiple of 16. */
702 PROC_REG_OFFSET(proc_desc) =
703 - ((8 * (SPECIAL_REG_SAVE_COUNT
704 + GEN_REG_SAVE_COUNT
705 + FLOAT_REG_SAVE_COUNT)
706 + 15) & ~15);
707 PROC_FREG_OFFSET(proc_desc) =
708 PROC_REG_OFFSET(proc_desc) + 8 * GEN_REG_SAVE_COUNT;
709
710 /* Save general registers.
711 The return address register is the first saved register, all other
712 registers follow in ascending order.
713 The PC is saved immediately below the SP. */
714 save_address = sp + PROC_REG_OFFSET(proc_desc);
715 store_address (raw_buffer, 8, read_register (RA_REGNUM));
716 write_memory (save_address, raw_buffer, 8);
717 save_address += 8;
718 mask = PROC_REG_MASK(proc_desc) & 0xffffffffL;
719 for (ireg = 0; mask; ireg++, mask >>= 1)
720 if (mask & 1)
721 {
722 if (ireg == RA_REGNUM)
723 continue;
724 store_address (raw_buffer, 8, read_register (ireg));
725 write_memory (save_address, raw_buffer, 8);
726 save_address += 8;
727 }
728
729 store_address (raw_buffer, 8, read_register (PC_REGNUM));
730 write_memory (sp - 8, raw_buffer, 8);
731
732 /* Save floating point registers. */
733 save_address = sp + PROC_FREG_OFFSET(proc_desc);
734 mask = PROC_FREG_MASK(proc_desc) & 0xffffffffL;
735 for (ireg = 0; mask; ireg++, mask >>= 1)
736 if (mask & 1)
737 {
738 store_address (raw_buffer, 8, read_register (ireg + FP0_REGNUM));
739 write_memory (save_address, raw_buffer, 8);
740 save_address += 8;
741 }
742
743 /* Set and save the frame address for the dummy.
744 This is tricky. The only registers that are suitable for a frame save
745 are those that are preserved across procedure calls (s0-s6). But if
746 a read system call is interrupted and then a dummy call is made
747 (see testsuite/gdb.t17/interrupt.exp) the dummy call hangs till the read
748 is satisfied. Then it returns with the s0-s6 registers set to the values
749 on entry to the read system call and our dummy frame pointer would be
750 destroyed. So we save the dummy frame in the proc_desc and handle the
751 retrieval of the frame pointer of a dummy specifically. The frame register
752 is set to the virtual frame (pseudo) register, it's value will always
753 be read as zero and will help us to catch any errors in the dummy frame
754 retrieval code. */
755 PROC_DUMMY_FRAME(proc_desc) = sp;
756 PROC_FRAME_REG(proc_desc) = FP_REGNUM;
757 PROC_FRAME_OFFSET(proc_desc) = 0;
758 sp += PROC_REG_OFFSET(proc_desc);
759 write_register (SP_REGNUM, sp);
760
761 PROC_LOW_ADDR(proc_desc) = entry_point_address ();
762 PROC_HIGH_ADDR(proc_desc) = PROC_LOW_ADDR(proc_desc) + 4;
763
764 SET_PROC_DESC_IS_DUMMY(proc_desc);
765 PROC_PC_REG(proc_desc) = RA_REGNUM;
766 }
767
768 void
769 alpha_pop_frame()
770 {
771 register int regnum;
772 FRAME frame = get_current_frame ();
773 CORE_ADDR new_sp = frame->frame;
774
775 alpha_extra_func_info_t proc_desc = frame->proc_desc;
776
777 write_register (PC_REGNUM, FRAME_SAVED_PC(frame));
778 if (proc_desc)
779 {
780 for (regnum = 32; --regnum >= 0; )
781 if (PROC_REG_MASK(proc_desc) & (1 << regnum))
782 write_register (regnum,
783 read_memory_integer (frame->saved_regs->regs[regnum],
784 8));
785 for (regnum = 32; --regnum >= 0; )
786 if (PROC_FREG_MASK(proc_desc) & (1 << regnum))
787 write_register (regnum + FP0_REGNUM,
788 read_memory_integer (frame->saved_regs->regs[regnum + FP0_REGNUM], 8));
789 }
790 write_register (SP_REGNUM, new_sp);
791 flush_cached_frames ();
792 /* We let init_extra_frame_info figure out the frame pointer */
793 set_current_frame (create_new_frame (0, read_pc ()));
794
795 if (proc_desc && PROC_DESC_IS_DUMMY(proc_desc))
796 {
797 struct linked_proc_info *pi_ptr, *prev_ptr;
798
799 for (pi_ptr = linked_proc_desc_table, prev_ptr = NULL;
800 pi_ptr != NULL;
801 prev_ptr = pi_ptr, pi_ptr = pi_ptr->next)
802 {
803 if (&pi_ptr->info == proc_desc)
804 break;
805 }
806
807 if (pi_ptr == NULL)
808 error ("Can't locate dummy extra frame info\n");
809
810 if (prev_ptr != NULL)
811 prev_ptr->next = pi_ptr->next;
812 else
813 linked_proc_desc_table = pi_ptr->next;
814
815 free (pi_ptr);
816 }
817 }
818 \f
819 /* To skip prologues, I use this predicate. Returns either PC itself
820 if the code at PC does not look like a function prologue; otherwise
821 returns an address that (if we're lucky) follows the prologue. If
822 LENIENT, then we must skip everything which is involved in setting
823 up the frame (it's OK to skip more, just so long as we don't skip
824 anything which might clobber the registers which are being saved.
825 Currently we must not skip more on the alpha, but we might the lenient
826 stuff some day. */
827
828 CORE_ADDR
829 alpha_skip_prologue (pc, lenient)
830 CORE_ADDR pc;
831 int lenient;
832 {
833 unsigned long inst;
834 int offset;
835
836 /* Skip the typical prologue instructions. These are the stack adjustment
837 instruction and the instructions that save registers on the stack
838 or in the gcc frame. */
839 for (offset = 0; offset < 100; offset += 4)
840 {
841 char buf[4];
842 int status;
843
844 status = read_memory_nobpt (pc + offset, buf, 4);
845 if (status)
846 memory_error (status, pc + offset);
847 inst = extract_unsigned_integer (buf, 4);
848
849 /* The alpha has no delay slots. But let's keep the lenient stuff,
850 we might need it for something else in the future. */
851 if (lenient && 0)
852 continue;
853
854 if ((inst & 0xffff0000) == 0x27bb0000) /* ldah $gp,n($t12) */
855 continue;
856 if ((inst & 0xffff0000) == 0x23bd0000) /* lda $gp,n($gp) */
857 continue;
858 if ((inst & 0xffff0000) == 0x23de0000) /* lda $sp,n($sp) */
859 continue;
860 else if ((inst & 0xfc1f0000) == 0xb41e0000
861 && (inst & 0xffff0000) != 0xb7fe0000)
862 continue; /* stq reg,n($sp) */
863 /* reg != $zero */
864 else if ((inst & 0xfc1f0000) == 0x9c1e0000
865 && (inst & 0xffff0000) != 0x9ffe0000)
866 continue; /* stt reg,n($sp) */
867 /* reg != $zero */
868 else if (inst == 0x47de040f) /* bis sp,sp,fp */
869 continue;
870 else
871 break;
872 }
873 return pc + offset;
874 }
875
876 /* Is address PC in the prologue (loosely defined) for function at
877 STARTADDR? */
878
879 static int
880 alpha_in_lenient_prologue (startaddr, pc)
881 CORE_ADDR startaddr;
882 CORE_ADDR pc;
883 {
884 CORE_ADDR end_prologue = alpha_skip_prologue (startaddr, 1);
885 return pc >= startaddr && pc < end_prologue;
886 }
887
888 /* Given a return value in `regbuf' with a type `valtype',
889 extract and copy its value into `valbuf'. */
890 void
891 alpha_extract_return_value (valtype, regbuf, valbuf)
892 struct type *valtype;
893 char regbuf[REGISTER_BYTES];
894 char *valbuf;
895 {
896 int regnum;
897
898 regnum = TYPE_CODE (valtype) == TYPE_CODE_FLT ? FP0_REGNUM : V0_REGNUM;
899
900 memcpy (valbuf, regbuf + REGISTER_BYTE (regnum), TYPE_LENGTH (valtype));
901 }
902
903 /* Given a return value in `regbuf' with a type `valtype',
904 write it's value into the appropriate register. */
905 void
906 alpha_store_return_value (valtype, valbuf)
907 struct type *valtype;
908 char *valbuf;
909 {
910 int regnum;
911 char raw_buffer[MAX_REGISTER_RAW_SIZE];
912
913 regnum = TYPE_CODE (valtype) == TYPE_CODE_FLT ? FP0_REGNUM : V0_REGNUM;
914 memcpy(raw_buffer, valbuf, TYPE_LENGTH (valtype));
915
916 write_register_bytes(REGISTER_BYTE (regnum), raw_buffer, TYPE_LENGTH (valtype));
917 }
918
919 /* Print the instruction at address MEMADDR in debugged memory,
920 on STREAM. Returns length of the instruction, in bytes. */
921
922 int
923 print_insn (memaddr, stream)
924 CORE_ADDR memaddr;
925 FILE *stream;
926 {
927 disassemble_info info;
928
929 GDB_INIT_DISASSEMBLE_INFO(info, stream);
930
931 return print_insn_alpha (memaddr, &info);
932 }
933
934 /* Just like reinit_frame_cache, but with the right arguments to be
935 callable as an sfunc. */
936 static void
937 reinit_frame_cache_sfunc (args, from_tty, c)
938 char *args;
939 int from_tty;
940 struct cmd_list_element *c;
941 {
942 reinit_frame_cache ();
943 }
944
945 void
946 _initialize_alpha_tdep ()
947 {
948 struct cmd_list_element *c;
949
950 /* Let the user set the fence post for heuristic_proc_start. */
951
952 /* We really would like to have both "0" and "unlimited" work, but
953 command.c doesn't deal with that. So make it a var_zinteger
954 because the user can always use "999999" or some such for unlimited. */
955 c = add_set_cmd ("heuristic-fence-post", class_support, var_zinteger,
956 (char *) &heuristic_fence_post,
957 "\
958 Set the distance searched for the start of a function.\n\
959 If you are debugging a stripped executable, GDB needs to search through the\n\
960 program for the start of a function. This command sets the distance of the\n\
961 search. The only need to set it is when debugging a stripped executable.",
962 &setlist);
963 /* We need to throw away the frame cache when we set this, since it
964 might change our ability to get backtraces. */
965 c->function.sfunc = reinit_frame_cache_sfunc;
966 add_show_from_set (c, &showlist);
967 }
This page took 0.049244 seconds and 3 git commands to generate.