* gdbtypes.h (builtin_type_ieee_single, builtin_type_ieee_double,
[deliverable/binutils-gdb.git] / gdb / alpha-tdep.c
1 /* Target-dependent code for the ALPHA architecture, for GDB, the GNU Debugger.
2
3 Copyright (C) 1993, 1994, 1995, 1996, 1997, 1998, 1999, 2000, 2001, 2002,
4 2003, 2005, 2006, 2007, 2008, 2009 Free Software Foundation, Inc.
5
6 This file is part of GDB.
7
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 3 of the License, or
11 (at your option) any later version.
12
13 This program is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with this program. If not, see <http://www.gnu.org/licenses/>. */
20
21 #include "defs.h"
22 #include "doublest.h"
23 #include "frame.h"
24 #include "frame-unwind.h"
25 #include "frame-base.h"
26 #include "dwarf2-frame.h"
27 #include "inferior.h"
28 #include "symtab.h"
29 #include "value.h"
30 #include "gdbcmd.h"
31 #include "gdbcore.h"
32 #include "dis-asm.h"
33 #include "symfile.h"
34 #include "objfiles.h"
35 #include "gdb_string.h"
36 #include "linespec.h"
37 #include "regcache.h"
38 #include "reggroups.h"
39 #include "arch-utils.h"
40 #include "osabi.h"
41 #include "block.h"
42 #include "infcall.h"
43 #include "trad-frame.h"
44
45 #include "elf-bfd.h"
46
47 #include "alpha-tdep.h"
48
49 \f
50 /* Return the name of the REGNO register.
51
52 An empty name corresponds to a register number that used to
53 be used for a virtual register. That virtual register has
54 been removed, but the index is still reserved to maintain
55 compatibility with existing remote alpha targets. */
56
57 static const char *
58 alpha_register_name (struct gdbarch *gdbarch, int regno)
59 {
60 static const char * const register_names[] =
61 {
62 "v0", "t0", "t1", "t2", "t3", "t4", "t5", "t6",
63 "t7", "s0", "s1", "s2", "s3", "s4", "s5", "fp",
64 "a0", "a1", "a2", "a3", "a4", "a5", "t8", "t9",
65 "t10", "t11", "ra", "t12", "at", "gp", "sp", "zero",
66 "f0", "f1", "f2", "f3", "f4", "f5", "f6", "f7",
67 "f8", "f9", "f10", "f11", "f12", "f13", "f14", "f15",
68 "f16", "f17", "f18", "f19", "f20", "f21", "f22", "f23",
69 "f24", "f25", "f26", "f27", "f28", "f29", "f30", "fpcr",
70 "pc", "", "unique"
71 };
72
73 if (regno < 0)
74 return NULL;
75 if (regno >= ARRAY_SIZE(register_names))
76 return NULL;
77 return register_names[regno];
78 }
79
80 static int
81 alpha_cannot_fetch_register (struct gdbarch *gdbarch, int regno)
82 {
83 return (regno == ALPHA_ZERO_REGNUM
84 || strlen (alpha_register_name (gdbarch, regno)) == 0);
85 }
86
87 static int
88 alpha_cannot_store_register (struct gdbarch *gdbarch, int regno)
89 {
90 return (regno == ALPHA_ZERO_REGNUM
91 || strlen (alpha_register_name (gdbarch, regno)) == 0);
92 }
93
94 static struct type *
95 alpha_register_type (struct gdbarch *gdbarch, int regno)
96 {
97 if (regno == ALPHA_SP_REGNUM || regno == ALPHA_GP_REGNUM)
98 return builtin_type (gdbarch)->builtin_data_ptr;
99 if (regno == ALPHA_PC_REGNUM)
100 return builtin_type (gdbarch)->builtin_func_ptr;
101
102 /* Don't need to worry about little vs big endian until
103 some jerk tries to port to alpha-unicosmk. */
104 if (regno >= ALPHA_FP0_REGNUM && regno < ALPHA_FP0_REGNUM + 31)
105 return builtin_type (gdbarch)->builtin_double;
106
107 return builtin_type (gdbarch)->builtin_int64;
108 }
109
110 /* Is REGNUM a member of REGGROUP? */
111
112 static int
113 alpha_register_reggroup_p (struct gdbarch *gdbarch, int regnum,
114 struct reggroup *group)
115 {
116 /* Filter out any registers eliminated, but whose regnum is
117 reserved for backward compatibility, e.g. the vfp. */
118 if (gdbarch_register_name (gdbarch, regnum) == NULL
119 || *gdbarch_register_name (gdbarch, regnum) == '\0')
120 return 0;
121
122 if (group == all_reggroup)
123 return 1;
124
125 /* Zero should not be saved or restored. Technically it is a general
126 register (just as $f31 would be a float if we represented it), but
127 there's no point displaying it during "info regs", so leave it out
128 of all groups except for "all". */
129 if (regnum == ALPHA_ZERO_REGNUM)
130 return 0;
131
132 /* All other registers are saved and restored. */
133 if (group == save_reggroup || group == restore_reggroup)
134 return 1;
135
136 /* All other groups are non-overlapping. */
137
138 /* Since this is really a PALcode memory slot... */
139 if (regnum == ALPHA_UNIQUE_REGNUM)
140 return group == system_reggroup;
141
142 /* Force the FPCR to be considered part of the floating point state. */
143 if (regnum == ALPHA_FPCR_REGNUM)
144 return group == float_reggroup;
145
146 if (regnum >= ALPHA_FP0_REGNUM && regnum < ALPHA_FP0_REGNUM + 31)
147 return group == float_reggroup;
148 else
149 return group == general_reggroup;
150 }
151
152 /* The following represents exactly the conversion performed by
153 the LDS instruction. This applies to both single-precision
154 floating point and 32-bit integers. */
155
156 static void
157 alpha_lds (void *out, const void *in)
158 {
159 ULONGEST mem = extract_unsigned_integer (in, 4);
160 ULONGEST frac = (mem >> 0) & 0x7fffff;
161 ULONGEST sign = (mem >> 31) & 1;
162 ULONGEST exp_msb = (mem >> 30) & 1;
163 ULONGEST exp_low = (mem >> 23) & 0x7f;
164 ULONGEST exp, reg;
165
166 exp = (exp_msb << 10) | exp_low;
167 if (exp_msb)
168 {
169 if (exp_low == 0x7f)
170 exp = 0x7ff;
171 }
172 else
173 {
174 if (exp_low != 0x00)
175 exp |= 0x380;
176 }
177
178 reg = (sign << 63) | (exp << 52) | (frac << 29);
179 store_unsigned_integer (out, 8, reg);
180 }
181
182 /* Similarly, this represents exactly the conversion performed by
183 the STS instruction. */
184
185 static void
186 alpha_sts (void *out, const void *in)
187 {
188 ULONGEST reg, mem;
189
190 reg = extract_unsigned_integer (in, 8);
191 mem = ((reg >> 32) & 0xc0000000) | ((reg >> 29) & 0x3fffffff);
192 store_unsigned_integer (out, 4, mem);
193 }
194
195 /* The alpha needs a conversion between register and memory format if the
196 register is a floating point register and memory format is float, as the
197 register format must be double or memory format is an integer with 4
198 bytes or less, as the representation of integers in floating point
199 registers is different. */
200
201 static int
202 alpha_convert_register_p (struct gdbarch *gdbarch, int regno, struct type *type)
203 {
204 return (regno >= ALPHA_FP0_REGNUM && regno < ALPHA_FP0_REGNUM + 31
205 && TYPE_LENGTH (type) != 8);
206 }
207
208 static void
209 alpha_register_to_value (struct frame_info *frame, int regnum,
210 struct type *valtype, gdb_byte *out)
211 {
212 gdb_byte in[MAX_REGISTER_SIZE];
213
214 frame_register_read (frame, regnum, in);
215 switch (TYPE_LENGTH (valtype))
216 {
217 case 4:
218 alpha_sts (out, in);
219 break;
220 default:
221 error (_("Cannot retrieve value from floating point register"));
222 }
223 }
224
225 static void
226 alpha_value_to_register (struct frame_info *frame, int regnum,
227 struct type *valtype, const gdb_byte *in)
228 {
229 gdb_byte out[MAX_REGISTER_SIZE];
230
231 switch (TYPE_LENGTH (valtype))
232 {
233 case 4:
234 alpha_lds (out, in);
235 break;
236 default:
237 error (_("Cannot store value in floating point register"));
238 }
239 put_frame_register (frame, regnum, out);
240 }
241
242 \f
243 /* The alpha passes the first six arguments in the registers, the rest on
244 the stack. The register arguments are stored in ARG_REG_BUFFER, and
245 then moved into the register file; this simplifies the passing of a
246 large struct which extends from the registers to the stack, plus avoids
247 three ptrace invocations per word.
248
249 We don't bother tracking which register values should go in integer
250 regs or fp regs; we load the same values into both.
251
252 If the called function is returning a structure, the address of the
253 structure to be returned is passed as a hidden first argument. */
254
255 static CORE_ADDR
256 alpha_push_dummy_call (struct gdbarch *gdbarch, struct value *function,
257 struct regcache *regcache, CORE_ADDR bp_addr,
258 int nargs, struct value **args, CORE_ADDR sp,
259 int struct_return, CORE_ADDR struct_addr)
260 {
261 int i;
262 int accumulate_size = struct_return ? 8 : 0;
263 struct alpha_arg
264 {
265 gdb_byte *contents;
266 int len;
267 int offset;
268 };
269 struct alpha_arg *alpha_args
270 = (struct alpha_arg *) alloca (nargs * sizeof (struct alpha_arg));
271 struct alpha_arg *m_arg;
272 gdb_byte arg_reg_buffer[ALPHA_REGISTER_SIZE * ALPHA_NUM_ARG_REGS];
273 int required_arg_regs;
274 CORE_ADDR func_addr = find_function_addr (function, NULL);
275
276 /* The ABI places the address of the called function in T12. */
277 regcache_cooked_write_signed (regcache, ALPHA_T12_REGNUM, func_addr);
278
279 /* Set the return address register to point to the entry point
280 of the program, where a breakpoint lies in wait. */
281 regcache_cooked_write_signed (regcache, ALPHA_RA_REGNUM, bp_addr);
282
283 /* Lay out the arguments in memory. */
284 for (i = 0, m_arg = alpha_args; i < nargs; i++, m_arg++)
285 {
286 struct value *arg = args[i];
287 struct type *arg_type = check_typedef (value_type (arg));
288
289 /* Cast argument to long if necessary as the compiler does it too. */
290 switch (TYPE_CODE (arg_type))
291 {
292 case TYPE_CODE_INT:
293 case TYPE_CODE_BOOL:
294 case TYPE_CODE_CHAR:
295 case TYPE_CODE_RANGE:
296 case TYPE_CODE_ENUM:
297 if (TYPE_LENGTH (arg_type) == 4)
298 {
299 /* 32-bit values must be sign-extended to 64 bits
300 even if the base data type is unsigned. */
301 arg_type = builtin_type (gdbarch)->builtin_int32;
302 arg = value_cast (arg_type, arg);
303 }
304 if (TYPE_LENGTH (arg_type) < ALPHA_REGISTER_SIZE)
305 {
306 arg_type = builtin_type (gdbarch)->builtin_int64;
307 arg = value_cast (arg_type, arg);
308 }
309 break;
310
311 case TYPE_CODE_FLT:
312 /* "float" arguments loaded in registers must be passed in
313 register format, aka "double". */
314 if (accumulate_size < sizeof (arg_reg_buffer)
315 && TYPE_LENGTH (arg_type) == 4)
316 {
317 arg_type = builtin_type (gdbarch)->builtin_double;
318 arg = value_cast (arg_type, arg);
319 }
320 /* Tru64 5.1 has a 128-bit long double, and passes this by
321 invisible reference. No one else uses this data type. */
322 else if (TYPE_LENGTH (arg_type) == 16)
323 {
324 /* Allocate aligned storage. */
325 sp = (sp & -16) - 16;
326
327 /* Write the real data into the stack. */
328 write_memory (sp, value_contents (arg), 16);
329
330 /* Construct the indirection. */
331 arg_type = lookup_pointer_type (arg_type);
332 arg = value_from_pointer (arg_type, sp);
333 }
334 break;
335
336 case TYPE_CODE_COMPLEX:
337 /* ??? The ABI says that complex values are passed as two
338 separate scalar values. This distinction only matters
339 for complex float. However, GCC does not implement this. */
340
341 /* Tru64 5.1 has a 128-bit long double, and passes this by
342 invisible reference. */
343 if (TYPE_LENGTH (arg_type) == 32)
344 {
345 /* Allocate aligned storage. */
346 sp = (sp & -16) - 16;
347
348 /* Write the real data into the stack. */
349 write_memory (sp, value_contents (arg), 32);
350
351 /* Construct the indirection. */
352 arg_type = lookup_pointer_type (arg_type);
353 arg = value_from_pointer (arg_type, sp);
354 }
355 break;
356
357 default:
358 break;
359 }
360 m_arg->len = TYPE_LENGTH (arg_type);
361 m_arg->offset = accumulate_size;
362 accumulate_size = (accumulate_size + m_arg->len + 7) & ~7;
363 m_arg->contents = value_contents_writeable (arg);
364 }
365
366 /* Determine required argument register loads, loading an argument register
367 is expensive as it uses three ptrace calls. */
368 required_arg_regs = accumulate_size / 8;
369 if (required_arg_regs > ALPHA_NUM_ARG_REGS)
370 required_arg_regs = ALPHA_NUM_ARG_REGS;
371
372 /* Make room for the arguments on the stack. */
373 if (accumulate_size < sizeof(arg_reg_buffer))
374 accumulate_size = 0;
375 else
376 accumulate_size -= sizeof(arg_reg_buffer);
377 sp -= accumulate_size;
378
379 /* Keep sp aligned to a multiple of 16 as the ABI requires. */
380 sp &= ~15;
381
382 /* `Push' arguments on the stack. */
383 for (i = nargs; m_arg--, --i >= 0;)
384 {
385 gdb_byte *contents = m_arg->contents;
386 int offset = m_arg->offset;
387 int len = m_arg->len;
388
389 /* Copy the bytes destined for registers into arg_reg_buffer. */
390 if (offset < sizeof(arg_reg_buffer))
391 {
392 if (offset + len <= sizeof(arg_reg_buffer))
393 {
394 memcpy (arg_reg_buffer + offset, contents, len);
395 continue;
396 }
397 else
398 {
399 int tlen = sizeof(arg_reg_buffer) - offset;
400 memcpy (arg_reg_buffer + offset, contents, tlen);
401 offset += tlen;
402 contents += tlen;
403 len -= tlen;
404 }
405 }
406
407 /* Everything else goes to the stack. */
408 write_memory (sp + offset - sizeof(arg_reg_buffer), contents, len);
409 }
410 if (struct_return)
411 store_unsigned_integer (arg_reg_buffer, ALPHA_REGISTER_SIZE, struct_addr);
412
413 /* Load the argument registers. */
414 for (i = 0; i < required_arg_regs; i++)
415 {
416 regcache_cooked_write (regcache, ALPHA_A0_REGNUM + i,
417 arg_reg_buffer + i*ALPHA_REGISTER_SIZE);
418 regcache_cooked_write (regcache, ALPHA_FPA0_REGNUM + i,
419 arg_reg_buffer + i*ALPHA_REGISTER_SIZE);
420 }
421
422 /* Finally, update the stack pointer. */
423 regcache_cooked_write_signed (regcache, ALPHA_SP_REGNUM, sp);
424
425 return sp;
426 }
427
428 /* Extract from REGCACHE the value about to be returned from a function
429 and copy it into VALBUF. */
430
431 static void
432 alpha_extract_return_value (struct type *valtype, struct regcache *regcache,
433 gdb_byte *valbuf)
434 {
435 int length = TYPE_LENGTH (valtype);
436 gdb_byte raw_buffer[ALPHA_REGISTER_SIZE];
437 ULONGEST l;
438
439 switch (TYPE_CODE (valtype))
440 {
441 case TYPE_CODE_FLT:
442 switch (length)
443 {
444 case 4:
445 regcache_cooked_read (regcache, ALPHA_FP0_REGNUM, raw_buffer);
446 alpha_sts (valbuf, raw_buffer);
447 break;
448
449 case 8:
450 regcache_cooked_read (regcache, ALPHA_FP0_REGNUM, valbuf);
451 break;
452
453 case 16:
454 regcache_cooked_read_unsigned (regcache, ALPHA_V0_REGNUM, &l);
455 read_memory (l, valbuf, 16);
456 break;
457
458 default:
459 internal_error (__FILE__, __LINE__, _("unknown floating point width"));
460 }
461 break;
462
463 case TYPE_CODE_COMPLEX:
464 switch (length)
465 {
466 case 8:
467 /* ??? This isn't correct wrt the ABI, but it's what GCC does. */
468 regcache_cooked_read (regcache, ALPHA_FP0_REGNUM, valbuf);
469 break;
470
471 case 16:
472 regcache_cooked_read (regcache, ALPHA_FP0_REGNUM, valbuf);
473 regcache_cooked_read (regcache, ALPHA_FP0_REGNUM + 1, valbuf + 8);
474 break;
475
476 case 32:
477 regcache_cooked_read_signed (regcache, ALPHA_V0_REGNUM, &l);
478 read_memory (l, valbuf, 32);
479 break;
480
481 default:
482 internal_error (__FILE__, __LINE__, _("unknown floating point width"));
483 }
484 break;
485
486 default:
487 /* Assume everything else degenerates to an integer. */
488 regcache_cooked_read_unsigned (regcache, ALPHA_V0_REGNUM, &l);
489 store_unsigned_integer (valbuf, length, l);
490 break;
491 }
492 }
493
494 /* Insert the given value into REGCACHE as if it was being
495 returned by a function. */
496
497 static void
498 alpha_store_return_value (struct type *valtype, struct regcache *regcache,
499 const gdb_byte *valbuf)
500 {
501 struct gdbarch *gdbarch = get_regcache_arch (regcache);
502 int length = TYPE_LENGTH (valtype);
503 gdb_byte raw_buffer[ALPHA_REGISTER_SIZE];
504 ULONGEST l;
505
506 switch (TYPE_CODE (valtype))
507 {
508 case TYPE_CODE_FLT:
509 switch (length)
510 {
511 case 4:
512 alpha_lds (raw_buffer, valbuf);
513 regcache_cooked_write (regcache, ALPHA_FP0_REGNUM, raw_buffer);
514 break;
515
516 case 8:
517 regcache_cooked_write (regcache, ALPHA_FP0_REGNUM, valbuf);
518 break;
519
520 case 16:
521 /* FIXME: 128-bit long doubles are returned like structures:
522 by writing into indirect storage provided by the caller
523 as the first argument. */
524 error (_("Cannot set a 128-bit long double return value."));
525
526 default:
527 internal_error (__FILE__, __LINE__, _("unknown floating point width"));
528 }
529 break;
530
531 case TYPE_CODE_COMPLEX:
532 switch (length)
533 {
534 case 8:
535 /* ??? This isn't correct wrt the ABI, but it's what GCC does. */
536 regcache_cooked_write (regcache, ALPHA_FP0_REGNUM, valbuf);
537 break;
538
539 case 16:
540 regcache_cooked_write (regcache, ALPHA_FP0_REGNUM, valbuf);
541 regcache_cooked_write (regcache, ALPHA_FP0_REGNUM + 1, valbuf + 8);
542 break;
543
544 case 32:
545 /* FIXME: 128-bit long doubles are returned like structures:
546 by writing into indirect storage provided by the caller
547 as the first argument. */
548 error (_("Cannot set a 128-bit long double return value."));
549
550 default:
551 internal_error (__FILE__, __LINE__, _("unknown floating point width"));
552 }
553 break;
554
555 default:
556 /* Assume everything else degenerates to an integer. */
557 /* 32-bit values must be sign-extended to 64 bits
558 even if the base data type is unsigned. */
559 if (length == 4)
560 valtype = builtin_type (gdbarch)->builtin_int32;
561 l = unpack_long (valtype, valbuf);
562 regcache_cooked_write_unsigned (regcache, ALPHA_V0_REGNUM, l);
563 break;
564 }
565 }
566
567 static enum return_value_convention
568 alpha_return_value (struct gdbarch *gdbarch, struct type *func_type,
569 struct type *type, struct regcache *regcache,
570 gdb_byte *readbuf, const gdb_byte *writebuf)
571 {
572 enum type_code code = TYPE_CODE (type);
573
574 if ((code == TYPE_CODE_STRUCT
575 || code == TYPE_CODE_UNION
576 || code == TYPE_CODE_ARRAY)
577 && gdbarch_tdep (gdbarch)->return_in_memory (type))
578 {
579 if (readbuf)
580 {
581 ULONGEST addr;
582 regcache_raw_read_unsigned (regcache, ALPHA_V0_REGNUM, &addr);
583 read_memory (addr, readbuf, TYPE_LENGTH (type));
584 }
585
586 return RETURN_VALUE_ABI_RETURNS_ADDRESS;
587 }
588
589 if (readbuf)
590 alpha_extract_return_value (type, regcache, readbuf);
591 if (writebuf)
592 alpha_store_return_value (type, regcache, writebuf);
593
594 return RETURN_VALUE_REGISTER_CONVENTION;
595 }
596
597 static int
598 alpha_return_in_memory_always (struct type *type)
599 {
600 return 1;
601 }
602 \f
603 static const gdb_byte *
604 alpha_breakpoint_from_pc (struct gdbarch *gdbarch, CORE_ADDR *pc, int *len)
605 {
606 static const gdb_byte break_insn[] = { 0x80, 0, 0, 0 }; /* call_pal bpt */
607
608 *len = sizeof(break_insn);
609 return break_insn;
610 }
611
612 \f
613 /* This returns the PC of the first insn after the prologue.
614 If we can't find the prologue, then return 0. */
615
616 CORE_ADDR
617 alpha_after_prologue (CORE_ADDR pc)
618 {
619 struct symtab_and_line sal;
620 CORE_ADDR func_addr, func_end;
621
622 if (!find_pc_partial_function (pc, NULL, &func_addr, &func_end))
623 return 0;
624
625 sal = find_pc_line (func_addr, 0);
626 if (sal.end < func_end)
627 return sal.end;
628
629 /* The line after the prologue is after the end of the function. In this
630 case, tell the caller to find the prologue the hard way. */
631 return 0;
632 }
633
634 /* Read an instruction from memory at PC, looking through breakpoints. */
635
636 unsigned int
637 alpha_read_insn (CORE_ADDR pc)
638 {
639 gdb_byte buf[ALPHA_INSN_SIZE];
640 int status;
641
642 status = target_read_memory (pc, buf, sizeof (buf));
643 if (status)
644 memory_error (status, pc);
645 return extract_unsigned_integer (buf, sizeof (buf));
646 }
647
648 /* To skip prologues, I use this predicate. Returns either PC itself
649 if the code at PC does not look like a function prologue; otherwise
650 returns an address that (if we're lucky) follows the prologue. If
651 LENIENT, then we must skip everything which is involved in setting
652 up the frame (it's OK to skip more, just so long as we don't skip
653 anything which might clobber the registers which are being saved. */
654
655 static CORE_ADDR
656 alpha_skip_prologue (struct gdbarch *gdbarch, CORE_ADDR pc)
657 {
658 unsigned long inst;
659 int offset;
660 CORE_ADDR post_prologue_pc;
661 gdb_byte buf[ALPHA_INSN_SIZE];
662
663 /* Silently return the unaltered pc upon memory errors.
664 This could happen on OSF/1 if decode_line_1 tries to skip the
665 prologue for quickstarted shared library functions when the
666 shared library is not yet mapped in.
667 Reading target memory is slow over serial lines, so we perform
668 this check only if the target has shared libraries (which all
669 Alpha targets do). */
670 if (target_read_memory (pc, buf, sizeof (buf)))
671 return pc;
672
673 /* See if we can determine the end of the prologue via the symbol table.
674 If so, then return either PC, or the PC after the prologue, whichever
675 is greater. */
676
677 post_prologue_pc = alpha_after_prologue (pc);
678 if (post_prologue_pc != 0)
679 return max (pc, post_prologue_pc);
680
681 /* Can't determine prologue from the symbol table, need to examine
682 instructions. */
683
684 /* Skip the typical prologue instructions. These are the stack adjustment
685 instruction and the instructions that save registers on the stack
686 or in the gcc frame. */
687 for (offset = 0; offset < 100; offset += ALPHA_INSN_SIZE)
688 {
689 inst = alpha_read_insn (pc + offset);
690
691 if ((inst & 0xffff0000) == 0x27bb0000) /* ldah $gp,n($t12) */
692 continue;
693 if ((inst & 0xffff0000) == 0x23bd0000) /* lda $gp,n($gp) */
694 continue;
695 if ((inst & 0xffff0000) == 0x23de0000) /* lda $sp,n($sp) */
696 continue;
697 if ((inst & 0xffe01fff) == 0x43c0153e) /* subq $sp,n,$sp */
698 continue;
699
700 if (((inst & 0xfc1f0000) == 0xb41e0000 /* stq reg,n($sp) */
701 || (inst & 0xfc1f0000) == 0x9c1e0000) /* stt reg,n($sp) */
702 && (inst & 0x03e00000) != 0x03e00000) /* reg != $zero */
703 continue;
704
705 if (inst == 0x47de040f) /* bis sp,sp,fp */
706 continue;
707 if (inst == 0x47fe040f) /* bis zero,sp,fp */
708 continue;
709
710 break;
711 }
712 return pc + offset;
713 }
714
715 \f
716 /* Figure out where the longjmp will land.
717 We expect the first arg to be a pointer to the jmp_buf structure from
718 which we extract the PC (JB_PC) that we will land at. The PC is copied
719 into the "pc". This routine returns true on success. */
720
721 static int
722 alpha_get_longjmp_target (struct frame_info *frame, CORE_ADDR *pc)
723 {
724 struct gdbarch_tdep *tdep = gdbarch_tdep (get_frame_arch (frame));
725 CORE_ADDR jb_addr;
726 gdb_byte raw_buffer[ALPHA_REGISTER_SIZE];
727
728 jb_addr = get_frame_register_unsigned (frame, ALPHA_A0_REGNUM);
729
730 if (target_read_memory (jb_addr + (tdep->jb_pc * tdep->jb_elt_size),
731 raw_buffer, tdep->jb_elt_size))
732 return 0;
733
734 *pc = extract_unsigned_integer (raw_buffer, tdep->jb_elt_size);
735 return 1;
736 }
737
738 \f
739 /* Frame unwinder for signal trampolines. We use alpha tdep bits that
740 describe the location and shape of the sigcontext structure. After
741 that, all registers are in memory, so it's easy. */
742 /* ??? Shouldn't we be able to do this generically, rather than with
743 OSABI data specific to Alpha? */
744
745 struct alpha_sigtramp_unwind_cache
746 {
747 CORE_ADDR sigcontext_addr;
748 };
749
750 static struct alpha_sigtramp_unwind_cache *
751 alpha_sigtramp_frame_unwind_cache (struct frame_info *this_frame,
752 void **this_prologue_cache)
753 {
754 struct alpha_sigtramp_unwind_cache *info;
755 struct gdbarch_tdep *tdep;
756
757 if (*this_prologue_cache)
758 return *this_prologue_cache;
759
760 info = FRAME_OBSTACK_ZALLOC (struct alpha_sigtramp_unwind_cache);
761 *this_prologue_cache = info;
762
763 tdep = gdbarch_tdep (get_frame_arch (this_frame));
764 info->sigcontext_addr = tdep->sigcontext_addr (this_frame);
765
766 return info;
767 }
768
769 /* Return the address of REGNUM in a sigtramp frame. Since this is
770 all arithmetic, it doesn't seem worthwhile to cache it. */
771
772 static CORE_ADDR
773 alpha_sigtramp_register_address (struct gdbarch *gdbarch,
774 CORE_ADDR sigcontext_addr, int regnum)
775 {
776 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
777
778 if (regnum >= 0 && regnum < 32)
779 return sigcontext_addr + tdep->sc_regs_offset + regnum * 8;
780 else if (regnum >= ALPHA_FP0_REGNUM && regnum < ALPHA_FP0_REGNUM + 32)
781 return sigcontext_addr + tdep->sc_fpregs_offset + regnum * 8;
782 else if (regnum == ALPHA_PC_REGNUM)
783 return sigcontext_addr + tdep->sc_pc_offset;
784
785 return 0;
786 }
787
788 /* Given a GDB frame, determine the address of the calling function's
789 frame. This will be used to create a new GDB frame struct. */
790
791 static void
792 alpha_sigtramp_frame_this_id (struct frame_info *this_frame,
793 void **this_prologue_cache,
794 struct frame_id *this_id)
795 {
796 struct gdbarch *gdbarch = get_frame_arch (this_frame);
797 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
798 struct alpha_sigtramp_unwind_cache *info
799 = alpha_sigtramp_frame_unwind_cache (this_frame, this_prologue_cache);
800 CORE_ADDR stack_addr, code_addr;
801
802 /* If the OSABI couldn't locate the sigcontext, give up. */
803 if (info->sigcontext_addr == 0)
804 return;
805
806 /* If we have dynamic signal trampolines, find their start.
807 If we do not, then we must assume there is a symbol record
808 that can provide the start address. */
809 if (tdep->dynamic_sigtramp_offset)
810 {
811 int offset;
812 code_addr = get_frame_pc (this_frame);
813 offset = tdep->dynamic_sigtramp_offset (code_addr);
814 if (offset >= 0)
815 code_addr -= offset;
816 else
817 code_addr = 0;
818 }
819 else
820 code_addr = get_frame_func (this_frame);
821
822 /* The stack address is trivially read from the sigcontext. */
823 stack_addr = alpha_sigtramp_register_address (gdbarch, info->sigcontext_addr,
824 ALPHA_SP_REGNUM);
825 stack_addr = get_frame_memory_unsigned (this_frame, stack_addr,
826 ALPHA_REGISTER_SIZE);
827
828 *this_id = frame_id_build (stack_addr, code_addr);
829 }
830
831 /* Retrieve the value of REGNUM in FRAME. Don't give up! */
832
833 static struct value *
834 alpha_sigtramp_frame_prev_register (struct frame_info *this_frame,
835 void **this_prologue_cache, int regnum)
836 {
837 struct alpha_sigtramp_unwind_cache *info
838 = alpha_sigtramp_frame_unwind_cache (this_frame, this_prologue_cache);
839 CORE_ADDR addr;
840
841 if (info->sigcontext_addr != 0)
842 {
843 /* All integer and fp registers are stored in memory. */
844 addr = alpha_sigtramp_register_address (get_frame_arch (this_frame),
845 info->sigcontext_addr, regnum);
846 if (addr != 0)
847 return frame_unwind_got_memory (this_frame, regnum, addr);
848 }
849
850 /* This extra register may actually be in the sigcontext, but our
851 current description of it in alpha_sigtramp_frame_unwind_cache
852 doesn't include it. Too bad. Fall back on whatever's in the
853 outer frame. */
854 return frame_unwind_got_register (this_frame, regnum, regnum);
855 }
856
857 static int
858 alpha_sigtramp_frame_sniffer (const struct frame_unwind *self,
859 struct frame_info *this_frame,
860 void **this_prologue_cache)
861 {
862 struct gdbarch *gdbarch = get_frame_arch (this_frame);
863 CORE_ADDR pc = get_frame_pc (this_frame);
864 char *name;
865
866 /* NOTE: cagney/2004-04-30: Do not copy/clone this code. Instead
867 look at tramp-frame.h and other simplier per-architecture
868 sigtramp unwinders. */
869
870 /* We shouldn't even bother to try if the OSABI didn't register a
871 sigcontext_addr handler or pc_in_sigtramp hander. */
872 if (gdbarch_tdep (gdbarch)->sigcontext_addr == NULL)
873 return 0;
874 if (gdbarch_tdep (gdbarch)->pc_in_sigtramp == NULL)
875 return 0;
876
877 /* Otherwise we should be in a signal frame. */
878 find_pc_partial_function (pc, &name, NULL, NULL);
879 if (gdbarch_tdep (gdbarch)->pc_in_sigtramp (pc, name))
880 return 1;
881
882 return 0;
883 }
884
885 static const struct frame_unwind alpha_sigtramp_frame_unwind = {
886 SIGTRAMP_FRAME,
887 alpha_sigtramp_frame_this_id,
888 alpha_sigtramp_frame_prev_register,
889 NULL,
890 alpha_sigtramp_frame_sniffer
891 };
892
893 \f
894
895 /* Heuristic_proc_start may hunt through the text section for a long
896 time across a 2400 baud serial line. Allows the user to limit this
897 search. */
898 static unsigned int heuristic_fence_post = 0;
899
900 /* Attempt to locate the start of the function containing PC. We assume that
901 the previous function ends with an about_to_return insn. Not foolproof by
902 any means, since gcc is happy to put the epilogue in the middle of a
903 function. But we're guessing anyway... */
904
905 static CORE_ADDR
906 alpha_heuristic_proc_start (struct gdbarch *gdbarch, CORE_ADDR pc)
907 {
908 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
909 CORE_ADDR last_non_nop = pc;
910 CORE_ADDR fence = pc - heuristic_fence_post;
911 CORE_ADDR orig_pc = pc;
912 CORE_ADDR func;
913 struct inferior *inf;
914
915 if (pc == 0)
916 return 0;
917
918 /* First see if we can find the start of the function from minimal
919 symbol information. This can succeed with a binary that doesn't
920 have debug info, but hasn't been stripped. */
921 func = get_pc_function_start (pc);
922 if (func)
923 return func;
924
925 if (heuristic_fence_post == UINT_MAX
926 || fence < tdep->vm_min_address)
927 fence = tdep->vm_min_address;
928
929 /* Search back for previous return; also stop at a 0, which might be
930 seen for instance before the start of a code section. Don't include
931 nops, since this usually indicates padding between functions. */
932 for (pc -= ALPHA_INSN_SIZE; pc >= fence; pc -= ALPHA_INSN_SIZE)
933 {
934 unsigned int insn = alpha_read_insn (pc);
935 switch (insn)
936 {
937 case 0: /* invalid insn */
938 case 0x6bfa8001: /* ret $31,($26),1 */
939 return last_non_nop;
940
941 case 0x2ffe0000: /* unop: ldq_u $31,0($30) */
942 case 0x47ff041f: /* nop: bis $31,$31,$31 */
943 break;
944
945 default:
946 last_non_nop = pc;
947 break;
948 }
949 }
950
951 inf = current_inferior ();
952
953 /* It's not clear to me why we reach this point when stopping quietly,
954 but with this test, at least we don't print out warnings for every
955 child forked (eg, on decstation). 22apr93 rich@cygnus.com. */
956 if (inf->stop_soon == NO_STOP_QUIETLY)
957 {
958 static int blurb_printed = 0;
959
960 if (fence == tdep->vm_min_address)
961 warning (_("Hit beginning of text section without finding \
962 enclosing function for address 0x%s"), paddr_nz (orig_pc));
963 else
964 warning (_("Hit heuristic-fence-post without finding \
965 enclosing function for address 0x%s"), paddr_nz (orig_pc));
966
967 if (!blurb_printed)
968 {
969 printf_filtered (_("\
970 This warning occurs if you are debugging a function without any symbols\n\
971 (for example, in a stripped executable). In that case, you may wish to\n\
972 increase the size of the search with the `set heuristic-fence-post' command.\n\
973 \n\
974 Otherwise, you told GDB there was a function where there isn't one, or\n\
975 (more likely) you have encountered a bug in GDB.\n"));
976 blurb_printed = 1;
977 }
978 }
979
980 return 0;
981 }
982
983 /* Fallback alpha frame unwinder. Uses instruction scanning and knows
984 something about the traditional layout of alpha stack frames. */
985
986 struct alpha_heuristic_unwind_cache
987 {
988 CORE_ADDR vfp;
989 CORE_ADDR start_pc;
990 struct trad_frame_saved_reg *saved_regs;
991 int return_reg;
992 };
993
994 static struct alpha_heuristic_unwind_cache *
995 alpha_heuristic_frame_unwind_cache (struct frame_info *this_frame,
996 void **this_prologue_cache,
997 CORE_ADDR start_pc)
998 {
999 struct gdbarch *gdbarch = get_frame_arch (this_frame);
1000 struct alpha_heuristic_unwind_cache *info;
1001 ULONGEST val;
1002 CORE_ADDR limit_pc, cur_pc;
1003 int frame_reg, frame_size, return_reg, reg;
1004
1005 if (*this_prologue_cache)
1006 return *this_prologue_cache;
1007
1008 info = FRAME_OBSTACK_ZALLOC (struct alpha_heuristic_unwind_cache);
1009 *this_prologue_cache = info;
1010 info->saved_regs = trad_frame_alloc_saved_regs (this_frame);
1011
1012 limit_pc = get_frame_pc (this_frame);
1013 if (start_pc == 0)
1014 start_pc = alpha_heuristic_proc_start (gdbarch, limit_pc);
1015 info->start_pc = start_pc;
1016
1017 frame_reg = ALPHA_SP_REGNUM;
1018 frame_size = 0;
1019 return_reg = -1;
1020
1021 /* If we've identified a likely place to start, do code scanning. */
1022 if (start_pc != 0)
1023 {
1024 /* Limit the forward search to 50 instructions. */
1025 if (start_pc + 200 < limit_pc)
1026 limit_pc = start_pc + 200;
1027
1028 for (cur_pc = start_pc; cur_pc < limit_pc; cur_pc += ALPHA_INSN_SIZE)
1029 {
1030 unsigned int word = alpha_read_insn (cur_pc);
1031
1032 if ((word & 0xffff0000) == 0x23de0000) /* lda $sp,n($sp) */
1033 {
1034 if (word & 0x8000)
1035 {
1036 /* Consider only the first stack allocation instruction
1037 to contain the static size of the frame. */
1038 if (frame_size == 0)
1039 frame_size = (-word) & 0xffff;
1040 }
1041 else
1042 {
1043 /* Exit loop if a positive stack adjustment is found, which
1044 usually means that the stack cleanup code in the function
1045 epilogue is reached. */
1046 break;
1047 }
1048 }
1049 else if ((word & 0xfc1f0000) == 0xb41e0000) /* stq reg,n($sp) */
1050 {
1051 reg = (word & 0x03e00000) >> 21;
1052
1053 /* Ignore this instruction if we have already encountered
1054 an instruction saving the same register earlier in the
1055 function code. The current instruction does not tell
1056 us where the original value upon function entry is saved.
1057 All it says is that the function we are scanning reused
1058 that register for some computation of its own, and is now
1059 saving its result. */
1060 if (trad_frame_addr_p(info->saved_regs, reg))
1061 continue;
1062
1063 if (reg == 31)
1064 continue;
1065
1066 /* Do not compute the address where the register was saved yet,
1067 because we don't know yet if the offset will need to be
1068 relative to $sp or $fp (we can not compute the address
1069 relative to $sp if $sp is updated during the execution of
1070 the current subroutine, for instance when doing some alloca).
1071 So just store the offset for the moment, and compute the
1072 address later when we know whether this frame has a frame
1073 pointer or not. */
1074 /* Hack: temporarily add one, so that the offset is non-zero
1075 and we can tell which registers have save offsets below. */
1076 info->saved_regs[reg].addr = (word & 0xffff) + 1;
1077
1078 /* Starting with OSF/1-3.2C, the system libraries are shipped
1079 without local symbols, but they still contain procedure
1080 descriptors without a symbol reference. GDB is currently
1081 unable to find these procedure descriptors and uses
1082 heuristic_proc_desc instead.
1083 As some low level compiler support routines (__div*, __add*)
1084 use a non-standard return address register, we have to
1085 add some heuristics to determine the return address register,
1086 or stepping over these routines will fail.
1087 Usually the return address register is the first register
1088 saved on the stack, but assembler optimization might
1089 rearrange the register saves.
1090 So we recognize only a few registers (t7, t9, ra) within
1091 the procedure prologue as valid return address registers.
1092 If we encounter a return instruction, we extract the
1093 the return address register from it.
1094
1095 FIXME: Rewriting GDB to access the procedure descriptors,
1096 e.g. via the minimal symbol table, might obviate this hack. */
1097 if (return_reg == -1
1098 && cur_pc < (start_pc + 80)
1099 && (reg == ALPHA_T7_REGNUM
1100 || reg == ALPHA_T9_REGNUM
1101 || reg == ALPHA_RA_REGNUM))
1102 return_reg = reg;
1103 }
1104 else if ((word & 0xffe0ffff) == 0x6be08001) /* ret zero,reg,1 */
1105 return_reg = (word >> 16) & 0x1f;
1106 else if (word == 0x47de040f) /* bis sp,sp,fp */
1107 frame_reg = ALPHA_GCC_FP_REGNUM;
1108 else if (word == 0x47fe040f) /* bis zero,sp,fp */
1109 frame_reg = ALPHA_GCC_FP_REGNUM;
1110 }
1111
1112 /* If we haven't found a valid return address register yet, keep
1113 searching in the procedure prologue. */
1114 if (return_reg == -1)
1115 {
1116 while (cur_pc < (limit_pc + 80) && cur_pc < (start_pc + 80))
1117 {
1118 unsigned int word = alpha_read_insn (cur_pc);
1119
1120 if ((word & 0xfc1f0000) == 0xb41e0000) /* stq reg,n($sp) */
1121 {
1122 reg = (word & 0x03e00000) >> 21;
1123 if (reg == ALPHA_T7_REGNUM
1124 || reg == ALPHA_T9_REGNUM
1125 || reg == ALPHA_RA_REGNUM)
1126 {
1127 return_reg = reg;
1128 break;
1129 }
1130 }
1131 else if ((word & 0xffe0ffff) == 0x6be08001) /* ret zero,reg,1 */
1132 {
1133 return_reg = (word >> 16) & 0x1f;
1134 break;
1135 }
1136
1137 cur_pc += ALPHA_INSN_SIZE;
1138 }
1139 }
1140 }
1141
1142 /* Failing that, do default to the customary RA. */
1143 if (return_reg == -1)
1144 return_reg = ALPHA_RA_REGNUM;
1145 info->return_reg = return_reg;
1146
1147 val = get_frame_register_unsigned (this_frame, frame_reg);
1148 info->vfp = val + frame_size;
1149
1150 /* Convert offsets to absolute addresses. See above about adding
1151 one to the offsets to make all detected offsets non-zero. */
1152 for (reg = 0; reg < ALPHA_NUM_REGS; ++reg)
1153 if (trad_frame_addr_p(info->saved_regs, reg))
1154 info->saved_regs[reg].addr += val - 1;
1155
1156 /* The stack pointer of the previous frame is computed by popping
1157 the current stack frame. */
1158 if (!trad_frame_addr_p (info->saved_regs, ALPHA_SP_REGNUM))
1159 trad_frame_set_value (info->saved_regs, ALPHA_SP_REGNUM, info->vfp);
1160
1161 return info;
1162 }
1163
1164 /* Given a GDB frame, determine the address of the calling function's
1165 frame. This will be used to create a new GDB frame struct. */
1166
1167 static void
1168 alpha_heuristic_frame_this_id (struct frame_info *this_frame,
1169 void **this_prologue_cache,
1170 struct frame_id *this_id)
1171 {
1172 struct alpha_heuristic_unwind_cache *info
1173 = alpha_heuristic_frame_unwind_cache (this_frame, this_prologue_cache, 0);
1174
1175 *this_id = frame_id_build (info->vfp, info->start_pc);
1176 }
1177
1178 /* Retrieve the value of REGNUM in FRAME. Don't give up! */
1179
1180 static struct value *
1181 alpha_heuristic_frame_prev_register (struct frame_info *this_frame,
1182 void **this_prologue_cache, int regnum)
1183 {
1184 struct alpha_heuristic_unwind_cache *info
1185 = alpha_heuristic_frame_unwind_cache (this_frame, this_prologue_cache, 0);
1186
1187 /* The PC of the previous frame is stored in the link register of
1188 the current frame. Frob regnum so that we pull the value from
1189 the correct place. */
1190 if (regnum == ALPHA_PC_REGNUM)
1191 regnum = info->return_reg;
1192
1193 return trad_frame_get_prev_register (this_frame, info->saved_regs, regnum);
1194 }
1195
1196 static const struct frame_unwind alpha_heuristic_frame_unwind = {
1197 NORMAL_FRAME,
1198 alpha_heuristic_frame_this_id,
1199 alpha_heuristic_frame_prev_register,
1200 NULL,
1201 default_frame_sniffer
1202 };
1203
1204 static CORE_ADDR
1205 alpha_heuristic_frame_base_address (struct frame_info *this_frame,
1206 void **this_prologue_cache)
1207 {
1208 struct alpha_heuristic_unwind_cache *info
1209 = alpha_heuristic_frame_unwind_cache (this_frame, this_prologue_cache, 0);
1210
1211 return info->vfp;
1212 }
1213
1214 static const struct frame_base alpha_heuristic_frame_base = {
1215 &alpha_heuristic_frame_unwind,
1216 alpha_heuristic_frame_base_address,
1217 alpha_heuristic_frame_base_address,
1218 alpha_heuristic_frame_base_address
1219 };
1220
1221 /* Just like reinit_frame_cache, but with the right arguments to be
1222 callable as an sfunc. Used by the "set heuristic-fence-post" command. */
1223
1224 static void
1225 reinit_frame_cache_sfunc (char *args, int from_tty, struct cmd_list_element *c)
1226 {
1227 reinit_frame_cache ();
1228 }
1229
1230 \f
1231 /* Assuming NEXT_FRAME->prev is a dummy, return the frame ID of that
1232 dummy frame. The frame ID's base needs to match the TOS value
1233 saved by save_dummy_frame_tos(), and the PC match the dummy frame's
1234 breakpoint. */
1235
1236 static struct frame_id
1237 alpha_dummy_id (struct gdbarch *gdbarch, struct frame_info *this_frame)
1238 {
1239 ULONGEST base;
1240 base = get_frame_register_unsigned (this_frame, ALPHA_SP_REGNUM);
1241 return frame_id_build (base, get_frame_pc (this_frame));
1242 }
1243
1244 static CORE_ADDR
1245 alpha_unwind_pc (struct gdbarch *gdbarch, struct frame_info *next_frame)
1246 {
1247 ULONGEST pc;
1248 pc = frame_unwind_register_unsigned (next_frame, ALPHA_PC_REGNUM);
1249 return pc;
1250 }
1251
1252 \f
1253 /* Helper routines for alpha*-nat.c files to move register sets to and
1254 from core files. The UNIQUE pointer is allowed to be NULL, as most
1255 targets don't supply this value in their core files. */
1256
1257 void
1258 alpha_supply_int_regs (struct regcache *regcache, int regno,
1259 const void *r0_r30, const void *pc, const void *unique)
1260 {
1261 const gdb_byte *regs = r0_r30;
1262 int i;
1263
1264 for (i = 0; i < 31; ++i)
1265 if (regno == i || regno == -1)
1266 regcache_raw_supply (regcache, i, regs + i * 8);
1267
1268 if (regno == ALPHA_ZERO_REGNUM || regno == -1)
1269 regcache_raw_supply (regcache, ALPHA_ZERO_REGNUM, NULL);
1270
1271 if (regno == ALPHA_PC_REGNUM || regno == -1)
1272 regcache_raw_supply (regcache, ALPHA_PC_REGNUM, pc);
1273
1274 if (regno == ALPHA_UNIQUE_REGNUM || regno == -1)
1275 regcache_raw_supply (regcache, ALPHA_UNIQUE_REGNUM, unique);
1276 }
1277
1278 void
1279 alpha_fill_int_regs (const struct regcache *regcache,
1280 int regno, void *r0_r30, void *pc, void *unique)
1281 {
1282 gdb_byte *regs = r0_r30;
1283 int i;
1284
1285 for (i = 0; i < 31; ++i)
1286 if (regno == i || regno == -1)
1287 regcache_raw_collect (regcache, i, regs + i * 8);
1288
1289 if (regno == ALPHA_PC_REGNUM || regno == -1)
1290 regcache_raw_collect (regcache, ALPHA_PC_REGNUM, pc);
1291
1292 if (unique && (regno == ALPHA_UNIQUE_REGNUM || regno == -1))
1293 regcache_raw_collect (regcache, ALPHA_UNIQUE_REGNUM, unique);
1294 }
1295
1296 void
1297 alpha_supply_fp_regs (struct regcache *regcache, int regno,
1298 const void *f0_f30, const void *fpcr)
1299 {
1300 const gdb_byte *regs = f0_f30;
1301 int i;
1302
1303 for (i = ALPHA_FP0_REGNUM; i < ALPHA_FP0_REGNUM + 31; ++i)
1304 if (regno == i || regno == -1)
1305 regcache_raw_supply (regcache, i,
1306 regs + (i - ALPHA_FP0_REGNUM) * 8);
1307
1308 if (regno == ALPHA_FPCR_REGNUM || regno == -1)
1309 regcache_raw_supply (regcache, ALPHA_FPCR_REGNUM, fpcr);
1310 }
1311
1312 void
1313 alpha_fill_fp_regs (const struct regcache *regcache,
1314 int regno, void *f0_f30, void *fpcr)
1315 {
1316 gdb_byte *regs = f0_f30;
1317 int i;
1318
1319 for (i = ALPHA_FP0_REGNUM; i < ALPHA_FP0_REGNUM + 31; ++i)
1320 if (regno == i || regno == -1)
1321 regcache_raw_collect (regcache, i,
1322 regs + (i - ALPHA_FP0_REGNUM) * 8);
1323
1324 if (regno == ALPHA_FPCR_REGNUM || regno == -1)
1325 regcache_raw_collect (regcache, ALPHA_FPCR_REGNUM, fpcr);
1326 }
1327
1328 \f
1329
1330 /* Return nonzero if the G_floating register value in REG is equal to
1331 zero for FP control instructions. */
1332
1333 static int
1334 fp_register_zero_p (LONGEST reg)
1335 {
1336 /* Check that all bits except the sign bit are zero. */
1337 const LONGEST zero_mask = ((LONGEST) 1 << 63) ^ -1;
1338
1339 return ((reg & zero_mask) == 0);
1340 }
1341
1342 /* Return the value of the sign bit for the G_floating register
1343 value held in REG. */
1344
1345 static int
1346 fp_register_sign_bit (LONGEST reg)
1347 {
1348 const LONGEST sign_mask = (LONGEST) 1 << 63;
1349
1350 return ((reg & sign_mask) != 0);
1351 }
1352
1353 /* alpha_software_single_step() is called just before we want to resume
1354 the inferior, if we want to single-step it but there is no hardware
1355 or kernel single-step support (NetBSD on Alpha, for example). We find
1356 the target of the coming instruction and breakpoint it. */
1357
1358 static CORE_ADDR
1359 alpha_next_pc (struct frame_info *frame, CORE_ADDR pc)
1360 {
1361 unsigned int insn;
1362 unsigned int op;
1363 int regno;
1364 int offset;
1365 LONGEST rav;
1366
1367 insn = alpha_read_insn (pc);
1368
1369 /* Opcode is top 6 bits. */
1370 op = (insn >> 26) & 0x3f;
1371
1372 if (op == 0x1a)
1373 {
1374 /* Jump format: target PC is:
1375 RB & ~3 */
1376 return (get_frame_register_unsigned (frame, (insn >> 16) & 0x1f) & ~3);
1377 }
1378
1379 if ((op & 0x30) == 0x30)
1380 {
1381 /* Branch format: target PC is:
1382 (new PC) + (4 * sext(displacement)) */
1383 if (op == 0x30 || /* BR */
1384 op == 0x34) /* BSR */
1385 {
1386 branch_taken:
1387 offset = (insn & 0x001fffff);
1388 if (offset & 0x00100000)
1389 offset |= 0xffe00000;
1390 offset *= ALPHA_INSN_SIZE;
1391 return (pc + ALPHA_INSN_SIZE + offset);
1392 }
1393
1394 /* Need to determine if branch is taken; read RA. */
1395 regno = (insn >> 21) & 0x1f;
1396 switch (op)
1397 {
1398 case 0x31: /* FBEQ */
1399 case 0x36: /* FBGE */
1400 case 0x37: /* FBGT */
1401 case 0x33: /* FBLE */
1402 case 0x32: /* FBLT */
1403 case 0x35: /* FBNE */
1404 regno += gdbarch_fp0_regnum (get_frame_arch (frame));
1405 }
1406
1407 rav = get_frame_register_signed (frame, regno);
1408
1409 switch (op)
1410 {
1411 case 0x38: /* BLBC */
1412 if ((rav & 1) == 0)
1413 goto branch_taken;
1414 break;
1415 case 0x3c: /* BLBS */
1416 if (rav & 1)
1417 goto branch_taken;
1418 break;
1419 case 0x39: /* BEQ */
1420 if (rav == 0)
1421 goto branch_taken;
1422 break;
1423 case 0x3d: /* BNE */
1424 if (rav != 0)
1425 goto branch_taken;
1426 break;
1427 case 0x3a: /* BLT */
1428 if (rav < 0)
1429 goto branch_taken;
1430 break;
1431 case 0x3b: /* BLE */
1432 if (rav <= 0)
1433 goto branch_taken;
1434 break;
1435 case 0x3f: /* BGT */
1436 if (rav > 0)
1437 goto branch_taken;
1438 break;
1439 case 0x3e: /* BGE */
1440 if (rav >= 0)
1441 goto branch_taken;
1442 break;
1443
1444 /* Floating point branches. */
1445
1446 case 0x31: /* FBEQ */
1447 if (fp_register_zero_p (rav))
1448 goto branch_taken;
1449 break;
1450 case 0x36: /* FBGE */
1451 if (fp_register_sign_bit (rav) == 0 || fp_register_zero_p (rav))
1452 goto branch_taken;
1453 break;
1454 case 0x37: /* FBGT */
1455 if (fp_register_sign_bit (rav) == 0 && ! fp_register_zero_p (rav))
1456 goto branch_taken;
1457 break;
1458 case 0x33: /* FBLE */
1459 if (fp_register_sign_bit (rav) == 1 || fp_register_zero_p (rav))
1460 goto branch_taken;
1461 break;
1462 case 0x32: /* FBLT */
1463 if (fp_register_sign_bit (rav) == 1 && ! fp_register_zero_p (rav))
1464 goto branch_taken;
1465 break;
1466 case 0x35: /* FBNE */
1467 if (! fp_register_zero_p (rav))
1468 goto branch_taken;
1469 break;
1470 }
1471 }
1472
1473 /* Not a branch or branch not taken; target PC is:
1474 pc + 4 */
1475 return (pc + ALPHA_INSN_SIZE);
1476 }
1477
1478 int
1479 alpha_software_single_step (struct frame_info *frame)
1480 {
1481 CORE_ADDR pc, next_pc;
1482
1483 pc = get_frame_pc (frame);
1484 next_pc = alpha_next_pc (frame, pc);
1485
1486 insert_single_step_breakpoint (next_pc);
1487 return 1;
1488 }
1489
1490 \f
1491 /* Initialize the current architecture based on INFO. If possible, re-use an
1492 architecture from ARCHES, which is a list of architectures already created
1493 during this debugging session.
1494
1495 Called e.g. at program startup, when reading a core file, and when reading
1496 a binary file. */
1497
1498 static struct gdbarch *
1499 alpha_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
1500 {
1501 struct gdbarch_tdep *tdep;
1502 struct gdbarch *gdbarch;
1503
1504 /* Try to determine the ABI of the object we are loading. */
1505 if (info.abfd != NULL && info.osabi == GDB_OSABI_UNKNOWN)
1506 {
1507 /* If it's an ECOFF file, assume it's OSF/1. */
1508 if (bfd_get_flavour (info.abfd) == bfd_target_ecoff_flavour)
1509 info.osabi = GDB_OSABI_OSF1;
1510 }
1511
1512 /* Find a candidate among extant architectures. */
1513 arches = gdbarch_list_lookup_by_info (arches, &info);
1514 if (arches != NULL)
1515 return arches->gdbarch;
1516
1517 tdep = xmalloc (sizeof (struct gdbarch_tdep));
1518 gdbarch = gdbarch_alloc (&info, tdep);
1519
1520 /* Lowest text address. This is used by heuristic_proc_start()
1521 to decide when to stop looking. */
1522 tdep->vm_min_address = (CORE_ADDR) 0x120000000LL;
1523
1524 tdep->dynamic_sigtramp_offset = NULL;
1525 tdep->sigcontext_addr = NULL;
1526 tdep->sc_pc_offset = 2 * 8;
1527 tdep->sc_regs_offset = 4 * 8;
1528 tdep->sc_fpregs_offset = tdep->sc_regs_offset + 32 * 8 + 8;
1529
1530 tdep->jb_pc = -1; /* longjmp support not enabled by default */
1531
1532 tdep->return_in_memory = alpha_return_in_memory_always;
1533
1534 /* Type sizes */
1535 set_gdbarch_short_bit (gdbarch, 16);
1536 set_gdbarch_int_bit (gdbarch, 32);
1537 set_gdbarch_long_bit (gdbarch, 64);
1538 set_gdbarch_long_long_bit (gdbarch, 64);
1539 set_gdbarch_float_bit (gdbarch, 32);
1540 set_gdbarch_double_bit (gdbarch, 64);
1541 set_gdbarch_long_double_bit (gdbarch, 64);
1542 set_gdbarch_ptr_bit (gdbarch, 64);
1543
1544 /* Register info */
1545 set_gdbarch_num_regs (gdbarch, ALPHA_NUM_REGS);
1546 set_gdbarch_sp_regnum (gdbarch, ALPHA_SP_REGNUM);
1547 set_gdbarch_pc_regnum (gdbarch, ALPHA_PC_REGNUM);
1548 set_gdbarch_fp0_regnum (gdbarch, ALPHA_FP0_REGNUM);
1549
1550 set_gdbarch_register_name (gdbarch, alpha_register_name);
1551 set_gdbarch_register_type (gdbarch, alpha_register_type);
1552
1553 set_gdbarch_cannot_fetch_register (gdbarch, alpha_cannot_fetch_register);
1554 set_gdbarch_cannot_store_register (gdbarch, alpha_cannot_store_register);
1555
1556 set_gdbarch_convert_register_p (gdbarch, alpha_convert_register_p);
1557 set_gdbarch_register_to_value (gdbarch, alpha_register_to_value);
1558 set_gdbarch_value_to_register (gdbarch, alpha_value_to_register);
1559
1560 set_gdbarch_register_reggroup_p (gdbarch, alpha_register_reggroup_p);
1561
1562 /* Prologue heuristics. */
1563 set_gdbarch_skip_prologue (gdbarch, alpha_skip_prologue);
1564
1565 /* Disassembler. */
1566 set_gdbarch_print_insn (gdbarch, print_insn_alpha);
1567
1568 /* Call info. */
1569
1570 set_gdbarch_return_value (gdbarch, alpha_return_value);
1571
1572 /* Settings for calling functions in the inferior. */
1573 set_gdbarch_push_dummy_call (gdbarch, alpha_push_dummy_call);
1574
1575 /* Methods for saving / extracting a dummy frame's ID. */
1576 set_gdbarch_dummy_id (gdbarch, alpha_dummy_id);
1577
1578 /* Return the unwound PC value. */
1579 set_gdbarch_unwind_pc (gdbarch, alpha_unwind_pc);
1580
1581 set_gdbarch_inner_than (gdbarch, core_addr_lessthan);
1582 set_gdbarch_skip_trampoline_code (gdbarch, find_solib_trampoline_target);
1583
1584 set_gdbarch_breakpoint_from_pc (gdbarch, alpha_breakpoint_from_pc);
1585 set_gdbarch_decr_pc_after_break (gdbarch, ALPHA_INSN_SIZE);
1586 set_gdbarch_cannot_step_breakpoint (gdbarch, 1);
1587
1588 /* Hook in ABI-specific overrides, if they have been registered. */
1589 gdbarch_init_osabi (info, gdbarch);
1590
1591 /* Now that we have tuned the configuration, set a few final things
1592 based on what the OS ABI has told us. */
1593
1594 if (tdep->jb_pc >= 0)
1595 set_gdbarch_get_longjmp_target (gdbarch, alpha_get_longjmp_target);
1596
1597 frame_unwind_append_unwinder (gdbarch, &alpha_sigtramp_frame_unwind);
1598 frame_unwind_append_unwinder (gdbarch, &alpha_heuristic_frame_unwind);
1599
1600 frame_base_set_default (gdbarch, &alpha_heuristic_frame_base);
1601
1602 return gdbarch;
1603 }
1604
1605 void
1606 alpha_dwarf2_init_abi (struct gdbarch_info info, struct gdbarch *gdbarch)
1607 {
1608 dwarf2_append_unwinders (gdbarch);
1609 frame_base_append_sniffer (gdbarch, dwarf2_frame_base_sniffer);
1610 }
1611
1612 extern initialize_file_ftype _initialize_alpha_tdep; /* -Wmissing-prototypes */
1613
1614 void
1615 _initialize_alpha_tdep (void)
1616 {
1617 struct cmd_list_element *c;
1618
1619 gdbarch_register (bfd_arch_alpha, alpha_gdbarch_init, NULL);
1620
1621 /* Let the user set the fence post for heuristic_proc_start. */
1622
1623 /* We really would like to have both "0" and "unlimited" work, but
1624 command.c doesn't deal with that. So make it a var_zinteger
1625 because the user can always use "999999" or some such for unlimited. */
1626 /* We need to throw away the frame cache when we set this, since it
1627 might change our ability to get backtraces. */
1628 add_setshow_zinteger_cmd ("heuristic-fence-post", class_support,
1629 &heuristic_fence_post, _("\
1630 Set the distance searched for the start of a function."), _("\
1631 Show the distance searched for the start of a function."), _("\
1632 If you are debugging a stripped executable, GDB needs to search through the\n\
1633 program for the start of a function. This command sets the distance of the\n\
1634 search. The only need to set it is when debugging a stripped executable."),
1635 reinit_frame_cache_sfunc,
1636 NULL, /* FIXME: i18n: The distance searched for the start of a function is \"%d\". */
1637 &setlist, &showlist);
1638 }
This page took 0.091664 seconds and 4 git commands to generate.