gdb/
[deliverable/binutils-gdb.git] / gdb / alpha-tdep.c
1 /* Target-dependent code for the ALPHA architecture, for GDB, the GNU Debugger.
2
3 Copyright (C) 1993, 1994, 1995, 1996, 1997, 1998, 1999, 2000, 2001, 2002,
4 2003, 2005, 2006, 2007, 2008, 2009, 2010, 2011
5 Free Software Foundation, Inc.
6
7 This file is part of GDB.
8
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 3 of the License, or
12 (at your option) any later version.
13
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
18
19 You should have received a copy of the GNU General Public License
20 along with this program. If not, see <http://www.gnu.org/licenses/>. */
21
22 #include "defs.h"
23 #include "doublest.h"
24 #include "frame.h"
25 #include "frame-unwind.h"
26 #include "frame-base.h"
27 #include "dwarf2-frame.h"
28 #include "inferior.h"
29 #include "symtab.h"
30 #include "value.h"
31 #include "gdbcmd.h"
32 #include "gdbcore.h"
33 #include "dis-asm.h"
34 #include "symfile.h"
35 #include "objfiles.h"
36 #include "gdb_string.h"
37 #include "linespec.h"
38 #include "regcache.h"
39 #include "reggroups.h"
40 #include "arch-utils.h"
41 #include "osabi.h"
42 #include "block.h"
43 #include "infcall.h"
44 #include "trad-frame.h"
45
46 #include "elf-bfd.h"
47
48 #include "alpha-tdep.h"
49
50 /* Instruction decoding. The notations for registers, immediates and
51 opcodes are the same as the one used in Compaq's Alpha architecture
52 handbook. */
53
54 #define INSN_OPCODE(insn) ((insn & 0xfc000000) >> 26)
55
56 /* Memory instruction format */
57 #define MEM_RA(insn) ((insn & 0x03e00000) >> 21)
58 #define MEM_RB(insn) ((insn & 0x001f0000) >> 16)
59 #define MEM_DISP(insn) \
60 (((insn & 0x8000) == 0) ? (insn & 0xffff) : -((-insn) & 0xffff))
61
62 static const int lda_opcode = 0x08;
63 static const int stq_opcode = 0x2d;
64
65 /* Branch instruction format */
66 #define BR_RA(insn) MEM_RA(insn)
67
68 static const int bne_opcode = 0x3d;
69
70 /* Operate instruction format */
71 #define OPR_FUNCTION(insn) ((insn & 0xfe0) >> 5)
72 #define OPR_HAS_IMMEDIATE(insn) ((insn & 0x1000) == 0x1000)
73 #define OPR_RA(insn) MEM_RA(insn)
74 #define OPR_RC(insn) ((insn & 0x1f))
75 #define OPR_LIT(insn) ((insn & 0x1fe000) >> 13)
76
77 static const int subq_opcode = 0x10;
78 static const int subq_function = 0x29;
79
80 \f
81 /* Return the name of the REGNO register.
82
83 An empty name corresponds to a register number that used to
84 be used for a virtual register. That virtual register has
85 been removed, but the index is still reserved to maintain
86 compatibility with existing remote alpha targets. */
87
88 static const char *
89 alpha_register_name (struct gdbarch *gdbarch, int regno)
90 {
91 static const char * const register_names[] =
92 {
93 "v0", "t0", "t1", "t2", "t3", "t4", "t5", "t6",
94 "t7", "s0", "s1", "s2", "s3", "s4", "s5", "fp",
95 "a0", "a1", "a2", "a3", "a4", "a5", "t8", "t9",
96 "t10", "t11", "ra", "t12", "at", "gp", "sp", "zero",
97 "f0", "f1", "f2", "f3", "f4", "f5", "f6", "f7",
98 "f8", "f9", "f10", "f11", "f12", "f13", "f14", "f15",
99 "f16", "f17", "f18", "f19", "f20", "f21", "f22", "f23",
100 "f24", "f25", "f26", "f27", "f28", "f29", "f30", "fpcr",
101 "pc", "", "unique"
102 };
103
104 if (regno < 0)
105 return NULL;
106 if (regno >= ARRAY_SIZE(register_names))
107 return NULL;
108 return register_names[regno];
109 }
110
111 static int
112 alpha_cannot_fetch_register (struct gdbarch *gdbarch, int regno)
113 {
114 return (regno == ALPHA_ZERO_REGNUM
115 || strlen (alpha_register_name (gdbarch, regno)) == 0);
116 }
117
118 static int
119 alpha_cannot_store_register (struct gdbarch *gdbarch, int regno)
120 {
121 return (regno == ALPHA_ZERO_REGNUM
122 || strlen (alpha_register_name (gdbarch, regno)) == 0);
123 }
124
125 static struct type *
126 alpha_register_type (struct gdbarch *gdbarch, int regno)
127 {
128 if (regno == ALPHA_SP_REGNUM || regno == ALPHA_GP_REGNUM)
129 return builtin_type (gdbarch)->builtin_data_ptr;
130 if (regno == ALPHA_PC_REGNUM)
131 return builtin_type (gdbarch)->builtin_func_ptr;
132
133 /* Don't need to worry about little vs big endian until
134 some jerk tries to port to alpha-unicosmk. */
135 if (regno >= ALPHA_FP0_REGNUM && regno < ALPHA_FP0_REGNUM + 31)
136 return builtin_type (gdbarch)->builtin_double;
137
138 return builtin_type (gdbarch)->builtin_int64;
139 }
140
141 /* Is REGNUM a member of REGGROUP? */
142
143 static int
144 alpha_register_reggroup_p (struct gdbarch *gdbarch, int regnum,
145 struct reggroup *group)
146 {
147 /* Filter out any registers eliminated, but whose regnum is
148 reserved for backward compatibility, e.g. the vfp. */
149 if (gdbarch_register_name (gdbarch, regnum) == NULL
150 || *gdbarch_register_name (gdbarch, regnum) == '\0')
151 return 0;
152
153 if (group == all_reggroup)
154 return 1;
155
156 /* Zero should not be saved or restored. Technically it is a general
157 register (just as $f31 would be a float if we represented it), but
158 there's no point displaying it during "info regs", so leave it out
159 of all groups except for "all". */
160 if (regnum == ALPHA_ZERO_REGNUM)
161 return 0;
162
163 /* All other registers are saved and restored. */
164 if (group == save_reggroup || group == restore_reggroup)
165 return 1;
166
167 /* All other groups are non-overlapping. */
168
169 /* Since this is really a PALcode memory slot... */
170 if (regnum == ALPHA_UNIQUE_REGNUM)
171 return group == system_reggroup;
172
173 /* Force the FPCR to be considered part of the floating point state. */
174 if (regnum == ALPHA_FPCR_REGNUM)
175 return group == float_reggroup;
176
177 if (regnum >= ALPHA_FP0_REGNUM && regnum < ALPHA_FP0_REGNUM + 31)
178 return group == float_reggroup;
179 else
180 return group == general_reggroup;
181 }
182
183 /* The following represents exactly the conversion performed by
184 the LDS instruction. This applies to both single-precision
185 floating point and 32-bit integers. */
186
187 static void
188 alpha_lds (struct gdbarch *gdbarch, void *out, const void *in)
189 {
190 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
191 ULONGEST mem = extract_unsigned_integer (in, 4, byte_order);
192 ULONGEST frac = (mem >> 0) & 0x7fffff;
193 ULONGEST sign = (mem >> 31) & 1;
194 ULONGEST exp_msb = (mem >> 30) & 1;
195 ULONGEST exp_low = (mem >> 23) & 0x7f;
196 ULONGEST exp, reg;
197
198 exp = (exp_msb << 10) | exp_low;
199 if (exp_msb)
200 {
201 if (exp_low == 0x7f)
202 exp = 0x7ff;
203 }
204 else
205 {
206 if (exp_low != 0x00)
207 exp |= 0x380;
208 }
209
210 reg = (sign << 63) | (exp << 52) | (frac << 29);
211 store_unsigned_integer (out, 8, byte_order, reg);
212 }
213
214 /* Similarly, this represents exactly the conversion performed by
215 the STS instruction. */
216
217 static void
218 alpha_sts (struct gdbarch *gdbarch, void *out, const void *in)
219 {
220 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
221 ULONGEST reg, mem;
222
223 reg = extract_unsigned_integer (in, 8, byte_order);
224 mem = ((reg >> 32) & 0xc0000000) | ((reg >> 29) & 0x3fffffff);
225 store_unsigned_integer (out, 4, byte_order, mem);
226 }
227
228 /* The alpha needs a conversion between register and memory format if the
229 register is a floating point register and memory format is float, as the
230 register format must be double or memory format is an integer with 4
231 bytes or less, as the representation of integers in floating point
232 registers is different. */
233
234 static int
235 alpha_convert_register_p (struct gdbarch *gdbarch, int regno,
236 struct type *type)
237 {
238 return (regno >= ALPHA_FP0_REGNUM && regno < ALPHA_FP0_REGNUM + 31
239 && TYPE_LENGTH (type) != 8);
240 }
241
242 static int
243 alpha_register_to_value (struct frame_info *frame, int regnum,
244 struct type *valtype, gdb_byte *out,
245 int *optimizedp, int *unavailablep)
246 {
247 struct gdbarch *gdbarch = get_frame_arch (frame);
248 gdb_byte in[MAX_REGISTER_SIZE];
249
250 /* Convert to TYPE. */
251 if (!get_frame_register_bytes (frame, regnum, 0,
252 register_size (gdbarch, regnum),
253 in, optimizedp, unavailablep))
254 return 0;
255
256 if (TYPE_LENGTH (valtype) == 4)
257 {
258 alpha_sts (gdbarch, out, in);
259 *optimizedp = *unavailablep = 0;
260 return 1;
261 }
262
263 error (_("Cannot retrieve value from floating point register"));
264 }
265
266 static void
267 alpha_value_to_register (struct frame_info *frame, int regnum,
268 struct type *valtype, const gdb_byte *in)
269 {
270 gdb_byte out[MAX_REGISTER_SIZE];
271
272 switch (TYPE_LENGTH (valtype))
273 {
274 case 4:
275 alpha_lds (get_frame_arch (frame), out, in);
276 break;
277 default:
278 error (_("Cannot store value in floating point register"));
279 }
280 put_frame_register (frame, regnum, out);
281 }
282
283 \f
284 /* The alpha passes the first six arguments in the registers, the rest on
285 the stack. The register arguments are stored in ARG_REG_BUFFER, and
286 then moved into the register file; this simplifies the passing of a
287 large struct which extends from the registers to the stack, plus avoids
288 three ptrace invocations per word.
289
290 We don't bother tracking which register values should go in integer
291 regs or fp regs; we load the same values into both.
292
293 If the called function is returning a structure, the address of the
294 structure to be returned is passed as a hidden first argument. */
295
296 static CORE_ADDR
297 alpha_push_dummy_call (struct gdbarch *gdbarch, struct value *function,
298 struct regcache *regcache, CORE_ADDR bp_addr,
299 int nargs, struct value **args, CORE_ADDR sp,
300 int struct_return, CORE_ADDR struct_addr)
301 {
302 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
303 int i;
304 int accumulate_size = struct_return ? 8 : 0;
305 struct alpha_arg
306 {
307 const gdb_byte *contents;
308 int len;
309 int offset;
310 };
311 struct alpha_arg *alpha_args
312 = (struct alpha_arg *) alloca (nargs * sizeof (struct alpha_arg));
313 struct alpha_arg *m_arg;
314 gdb_byte arg_reg_buffer[ALPHA_REGISTER_SIZE * ALPHA_NUM_ARG_REGS];
315 int required_arg_regs;
316 CORE_ADDR func_addr = find_function_addr (function, NULL);
317
318 /* The ABI places the address of the called function in T12. */
319 regcache_cooked_write_signed (regcache, ALPHA_T12_REGNUM, func_addr);
320
321 /* Set the return address register to point to the entry point
322 of the program, where a breakpoint lies in wait. */
323 regcache_cooked_write_signed (regcache, ALPHA_RA_REGNUM, bp_addr);
324
325 /* Lay out the arguments in memory. */
326 for (i = 0, m_arg = alpha_args; i < nargs; i++, m_arg++)
327 {
328 struct value *arg = args[i];
329 struct type *arg_type = check_typedef (value_type (arg));
330
331 /* Cast argument to long if necessary as the compiler does it too. */
332 switch (TYPE_CODE (arg_type))
333 {
334 case TYPE_CODE_INT:
335 case TYPE_CODE_BOOL:
336 case TYPE_CODE_CHAR:
337 case TYPE_CODE_RANGE:
338 case TYPE_CODE_ENUM:
339 if (TYPE_LENGTH (arg_type) == 4)
340 {
341 /* 32-bit values must be sign-extended to 64 bits
342 even if the base data type is unsigned. */
343 arg_type = builtin_type (gdbarch)->builtin_int32;
344 arg = value_cast (arg_type, arg);
345 }
346 if (TYPE_LENGTH (arg_type) < ALPHA_REGISTER_SIZE)
347 {
348 arg_type = builtin_type (gdbarch)->builtin_int64;
349 arg = value_cast (arg_type, arg);
350 }
351 break;
352
353 case TYPE_CODE_FLT:
354 /* "float" arguments loaded in registers must be passed in
355 register format, aka "double". */
356 if (accumulate_size < sizeof (arg_reg_buffer)
357 && TYPE_LENGTH (arg_type) == 4)
358 {
359 arg_type = builtin_type (gdbarch)->builtin_double;
360 arg = value_cast (arg_type, arg);
361 }
362 /* Tru64 5.1 has a 128-bit long double, and passes this by
363 invisible reference. No one else uses this data type. */
364 else if (TYPE_LENGTH (arg_type) == 16)
365 {
366 /* Allocate aligned storage. */
367 sp = (sp & -16) - 16;
368
369 /* Write the real data into the stack. */
370 write_memory (sp, value_contents (arg), 16);
371
372 /* Construct the indirection. */
373 arg_type = lookup_pointer_type (arg_type);
374 arg = value_from_pointer (arg_type, sp);
375 }
376 break;
377
378 case TYPE_CODE_COMPLEX:
379 /* ??? The ABI says that complex values are passed as two
380 separate scalar values. This distinction only matters
381 for complex float. However, GCC does not implement this. */
382
383 /* Tru64 5.1 has a 128-bit long double, and passes this by
384 invisible reference. */
385 if (TYPE_LENGTH (arg_type) == 32)
386 {
387 /* Allocate aligned storage. */
388 sp = (sp & -16) - 16;
389
390 /* Write the real data into the stack. */
391 write_memory (sp, value_contents (arg), 32);
392
393 /* Construct the indirection. */
394 arg_type = lookup_pointer_type (arg_type);
395 arg = value_from_pointer (arg_type, sp);
396 }
397 break;
398
399 default:
400 break;
401 }
402 m_arg->len = TYPE_LENGTH (arg_type);
403 m_arg->offset = accumulate_size;
404 accumulate_size = (accumulate_size + m_arg->len + 7) & ~7;
405 m_arg->contents = value_contents (arg);
406 }
407
408 /* Determine required argument register loads, loading an argument register
409 is expensive as it uses three ptrace calls. */
410 required_arg_regs = accumulate_size / 8;
411 if (required_arg_regs > ALPHA_NUM_ARG_REGS)
412 required_arg_regs = ALPHA_NUM_ARG_REGS;
413
414 /* Make room for the arguments on the stack. */
415 if (accumulate_size < sizeof(arg_reg_buffer))
416 accumulate_size = 0;
417 else
418 accumulate_size -= sizeof(arg_reg_buffer);
419 sp -= accumulate_size;
420
421 /* Keep sp aligned to a multiple of 16 as the ABI requires. */
422 sp &= ~15;
423
424 /* `Push' arguments on the stack. */
425 for (i = nargs; m_arg--, --i >= 0;)
426 {
427 const gdb_byte *contents = m_arg->contents;
428 int offset = m_arg->offset;
429 int len = m_arg->len;
430
431 /* Copy the bytes destined for registers into arg_reg_buffer. */
432 if (offset < sizeof(arg_reg_buffer))
433 {
434 if (offset + len <= sizeof(arg_reg_buffer))
435 {
436 memcpy (arg_reg_buffer + offset, contents, len);
437 continue;
438 }
439 else
440 {
441 int tlen = sizeof(arg_reg_buffer) - offset;
442 memcpy (arg_reg_buffer + offset, contents, tlen);
443 offset += tlen;
444 contents += tlen;
445 len -= tlen;
446 }
447 }
448
449 /* Everything else goes to the stack. */
450 write_memory (sp + offset - sizeof(arg_reg_buffer), contents, len);
451 }
452 if (struct_return)
453 store_unsigned_integer (arg_reg_buffer, ALPHA_REGISTER_SIZE,
454 byte_order, struct_addr);
455
456 /* Load the argument registers. */
457 for (i = 0; i < required_arg_regs; i++)
458 {
459 regcache_cooked_write (regcache, ALPHA_A0_REGNUM + i,
460 arg_reg_buffer + i*ALPHA_REGISTER_SIZE);
461 regcache_cooked_write (regcache, ALPHA_FPA0_REGNUM + i,
462 arg_reg_buffer + i*ALPHA_REGISTER_SIZE);
463 }
464
465 /* Finally, update the stack pointer. */
466 regcache_cooked_write_signed (regcache, ALPHA_SP_REGNUM, sp);
467
468 return sp;
469 }
470
471 /* Extract from REGCACHE the value about to be returned from a function
472 and copy it into VALBUF. */
473
474 static void
475 alpha_extract_return_value (struct type *valtype, struct regcache *regcache,
476 gdb_byte *valbuf)
477 {
478 struct gdbarch *gdbarch = get_regcache_arch (regcache);
479 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
480 int length = TYPE_LENGTH (valtype);
481 gdb_byte raw_buffer[ALPHA_REGISTER_SIZE];
482 ULONGEST l;
483
484 switch (TYPE_CODE (valtype))
485 {
486 case TYPE_CODE_FLT:
487 switch (length)
488 {
489 case 4:
490 regcache_cooked_read (regcache, ALPHA_FP0_REGNUM, raw_buffer);
491 alpha_sts (gdbarch, valbuf, raw_buffer);
492 break;
493
494 case 8:
495 regcache_cooked_read (regcache, ALPHA_FP0_REGNUM, valbuf);
496 break;
497
498 case 16:
499 regcache_cooked_read_unsigned (regcache, ALPHA_V0_REGNUM, &l);
500 read_memory (l, valbuf, 16);
501 break;
502
503 default:
504 internal_error (__FILE__, __LINE__,
505 _("unknown floating point width"));
506 }
507 break;
508
509 case TYPE_CODE_COMPLEX:
510 switch (length)
511 {
512 case 8:
513 /* ??? This isn't correct wrt the ABI, but it's what GCC does. */
514 regcache_cooked_read (regcache, ALPHA_FP0_REGNUM, valbuf);
515 break;
516
517 case 16:
518 regcache_cooked_read (regcache, ALPHA_FP0_REGNUM, valbuf);
519 regcache_cooked_read (regcache, ALPHA_FP0_REGNUM + 1, valbuf + 8);
520 break;
521
522 case 32:
523 regcache_cooked_read_signed (regcache, ALPHA_V0_REGNUM, &l);
524 read_memory (l, valbuf, 32);
525 break;
526
527 default:
528 internal_error (__FILE__, __LINE__,
529 _("unknown floating point width"));
530 }
531 break;
532
533 default:
534 /* Assume everything else degenerates to an integer. */
535 regcache_cooked_read_unsigned (regcache, ALPHA_V0_REGNUM, &l);
536 store_unsigned_integer (valbuf, length, byte_order, l);
537 break;
538 }
539 }
540
541 /* Insert the given value into REGCACHE as if it was being
542 returned by a function. */
543
544 static void
545 alpha_store_return_value (struct type *valtype, struct regcache *regcache,
546 const gdb_byte *valbuf)
547 {
548 struct gdbarch *gdbarch = get_regcache_arch (regcache);
549 int length = TYPE_LENGTH (valtype);
550 gdb_byte raw_buffer[ALPHA_REGISTER_SIZE];
551 ULONGEST l;
552
553 switch (TYPE_CODE (valtype))
554 {
555 case TYPE_CODE_FLT:
556 switch (length)
557 {
558 case 4:
559 alpha_lds (gdbarch, raw_buffer, valbuf);
560 regcache_cooked_write (regcache, ALPHA_FP0_REGNUM, raw_buffer);
561 break;
562
563 case 8:
564 regcache_cooked_write (regcache, ALPHA_FP0_REGNUM, valbuf);
565 break;
566
567 case 16:
568 /* FIXME: 128-bit long doubles are returned like structures:
569 by writing into indirect storage provided by the caller
570 as the first argument. */
571 error (_("Cannot set a 128-bit long double return value."));
572
573 default:
574 internal_error (__FILE__, __LINE__,
575 _("unknown floating point width"));
576 }
577 break;
578
579 case TYPE_CODE_COMPLEX:
580 switch (length)
581 {
582 case 8:
583 /* ??? This isn't correct wrt the ABI, but it's what GCC does. */
584 regcache_cooked_write (regcache, ALPHA_FP0_REGNUM, valbuf);
585 break;
586
587 case 16:
588 regcache_cooked_write (regcache, ALPHA_FP0_REGNUM, valbuf);
589 regcache_cooked_write (regcache, ALPHA_FP0_REGNUM + 1, valbuf + 8);
590 break;
591
592 case 32:
593 /* FIXME: 128-bit long doubles are returned like structures:
594 by writing into indirect storage provided by the caller
595 as the first argument. */
596 error (_("Cannot set a 128-bit long double return value."));
597
598 default:
599 internal_error (__FILE__, __LINE__,
600 _("unknown floating point width"));
601 }
602 break;
603
604 default:
605 /* Assume everything else degenerates to an integer. */
606 /* 32-bit values must be sign-extended to 64 bits
607 even if the base data type is unsigned. */
608 if (length == 4)
609 valtype = builtin_type (gdbarch)->builtin_int32;
610 l = unpack_long (valtype, valbuf);
611 regcache_cooked_write_unsigned (regcache, ALPHA_V0_REGNUM, l);
612 break;
613 }
614 }
615
616 static enum return_value_convention
617 alpha_return_value (struct gdbarch *gdbarch, struct type *func_type,
618 struct type *type, struct regcache *regcache,
619 gdb_byte *readbuf, const gdb_byte *writebuf)
620 {
621 enum type_code code = TYPE_CODE (type);
622
623 if ((code == TYPE_CODE_STRUCT
624 || code == TYPE_CODE_UNION
625 || code == TYPE_CODE_ARRAY)
626 && gdbarch_tdep (gdbarch)->return_in_memory (type))
627 {
628 if (readbuf)
629 {
630 ULONGEST addr;
631 regcache_raw_read_unsigned (regcache, ALPHA_V0_REGNUM, &addr);
632 read_memory (addr, readbuf, TYPE_LENGTH (type));
633 }
634
635 return RETURN_VALUE_ABI_RETURNS_ADDRESS;
636 }
637
638 if (readbuf)
639 alpha_extract_return_value (type, regcache, readbuf);
640 if (writebuf)
641 alpha_store_return_value (type, regcache, writebuf);
642
643 return RETURN_VALUE_REGISTER_CONVENTION;
644 }
645
646 static int
647 alpha_return_in_memory_always (struct type *type)
648 {
649 return 1;
650 }
651 \f
652 static const gdb_byte *
653 alpha_breakpoint_from_pc (struct gdbarch *gdbarch, CORE_ADDR *pc, int *len)
654 {
655 static const gdb_byte break_insn[] = { 0x80, 0, 0, 0 }; /* call_pal bpt */
656
657 *len = sizeof(break_insn);
658 return break_insn;
659 }
660
661 \f
662 /* This returns the PC of the first insn after the prologue.
663 If we can't find the prologue, then return 0. */
664
665 CORE_ADDR
666 alpha_after_prologue (CORE_ADDR pc)
667 {
668 struct symtab_and_line sal;
669 CORE_ADDR func_addr, func_end;
670
671 if (!find_pc_partial_function (pc, NULL, &func_addr, &func_end))
672 return 0;
673
674 sal = find_pc_line (func_addr, 0);
675 if (sal.end < func_end)
676 return sal.end;
677
678 /* The line after the prologue is after the end of the function. In this
679 case, tell the caller to find the prologue the hard way. */
680 return 0;
681 }
682
683 /* Read an instruction from memory at PC, looking through breakpoints. */
684
685 unsigned int
686 alpha_read_insn (struct gdbarch *gdbarch, CORE_ADDR pc)
687 {
688 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
689 gdb_byte buf[ALPHA_INSN_SIZE];
690 int status;
691
692 status = target_read_memory (pc, buf, sizeof (buf));
693 if (status)
694 memory_error (status, pc);
695 return extract_unsigned_integer (buf, sizeof (buf), byte_order);
696 }
697
698 /* To skip prologues, I use this predicate. Returns either PC itself
699 if the code at PC does not look like a function prologue; otherwise
700 returns an address that (if we're lucky) follows the prologue. If
701 LENIENT, then we must skip everything which is involved in setting
702 up the frame (it's OK to skip more, just so long as we don't skip
703 anything which might clobber the registers which are being saved. */
704
705 static CORE_ADDR
706 alpha_skip_prologue (struct gdbarch *gdbarch, CORE_ADDR pc)
707 {
708 unsigned long inst;
709 int offset;
710 CORE_ADDR post_prologue_pc;
711 gdb_byte buf[ALPHA_INSN_SIZE];
712
713 /* Silently return the unaltered pc upon memory errors.
714 This could happen on OSF/1 if decode_line_1 tries to skip the
715 prologue for quickstarted shared library functions when the
716 shared library is not yet mapped in.
717 Reading target memory is slow over serial lines, so we perform
718 this check only if the target has shared libraries (which all
719 Alpha targets do). */
720 if (target_read_memory (pc, buf, sizeof (buf)))
721 return pc;
722
723 /* See if we can determine the end of the prologue via the symbol table.
724 If so, then return either PC, or the PC after the prologue, whichever
725 is greater. */
726
727 post_prologue_pc = alpha_after_prologue (pc);
728 if (post_prologue_pc != 0)
729 return max (pc, post_prologue_pc);
730
731 /* Can't determine prologue from the symbol table, need to examine
732 instructions. */
733
734 /* Skip the typical prologue instructions. These are the stack adjustment
735 instruction and the instructions that save registers on the stack
736 or in the gcc frame. */
737 for (offset = 0; offset < 100; offset += ALPHA_INSN_SIZE)
738 {
739 inst = alpha_read_insn (gdbarch, pc + offset);
740
741 if ((inst & 0xffff0000) == 0x27bb0000) /* ldah $gp,n($t12) */
742 continue;
743 if ((inst & 0xffff0000) == 0x23bd0000) /* lda $gp,n($gp) */
744 continue;
745 if ((inst & 0xffff0000) == 0x23de0000) /* lda $sp,n($sp) */
746 continue;
747 if ((inst & 0xffe01fff) == 0x43c0153e) /* subq $sp,n,$sp */
748 continue;
749
750 if (((inst & 0xfc1f0000) == 0xb41e0000 /* stq reg,n($sp) */
751 || (inst & 0xfc1f0000) == 0x9c1e0000) /* stt reg,n($sp) */
752 && (inst & 0x03e00000) != 0x03e00000) /* reg != $zero */
753 continue;
754
755 if (inst == 0x47de040f) /* bis sp,sp,fp */
756 continue;
757 if (inst == 0x47fe040f) /* bis zero,sp,fp */
758 continue;
759
760 break;
761 }
762 return pc + offset;
763 }
764
765 \f
766 /* Figure out where the longjmp will land.
767 We expect the first arg to be a pointer to the jmp_buf structure from
768 which we extract the PC (JB_PC) that we will land at. The PC is copied
769 into the "pc". This routine returns true on success. */
770
771 static int
772 alpha_get_longjmp_target (struct frame_info *frame, CORE_ADDR *pc)
773 {
774 struct gdbarch *gdbarch = get_frame_arch (frame);
775 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
776 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
777 CORE_ADDR jb_addr;
778 gdb_byte raw_buffer[ALPHA_REGISTER_SIZE];
779
780 jb_addr = get_frame_register_unsigned (frame, ALPHA_A0_REGNUM);
781
782 if (target_read_memory (jb_addr + (tdep->jb_pc * tdep->jb_elt_size),
783 raw_buffer, tdep->jb_elt_size))
784 return 0;
785
786 *pc = extract_unsigned_integer (raw_buffer, tdep->jb_elt_size, byte_order);
787 return 1;
788 }
789
790 \f
791 /* Frame unwinder for signal trampolines. We use alpha tdep bits that
792 describe the location and shape of the sigcontext structure. After
793 that, all registers are in memory, so it's easy. */
794 /* ??? Shouldn't we be able to do this generically, rather than with
795 OSABI data specific to Alpha? */
796
797 struct alpha_sigtramp_unwind_cache
798 {
799 CORE_ADDR sigcontext_addr;
800 };
801
802 static struct alpha_sigtramp_unwind_cache *
803 alpha_sigtramp_frame_unwind_cache (struct frame_info *this_frame,
804 void **this_prologue_cache)
805 {
806 struct alpha_sigtramp_unwind_cache *info;
807 struct gdbarch_tdep *tdep;
808
809 if (*this_prologue_cache)
810 return *this_prologue_cache;
811
812 info = FRAME_OBSTACK_ZALLOC (struct alpha_sigtramp_unwind_cache);
813 *this_prologue_cache = info;
814
815 tdep = gdbarch_tdep (get_frame_arch (this_frame));
816 info->sigcontext_addr = tdep->sigcontext_addr (this_frame);
817
818 return info;
819 }
820
821 /* Return the address of REGNUM in a sigtramp frame. Since this is
822 all arithmetic, it doesn't seem worthwhile to cache it. */
823
824 static CORE_ADDR
825 alpha_sigtramp_register_address (struct gdbarch *gdbarch,
826 CORE_ADDR sigcontext_addr, int regnum)
827 {
828 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
829
830 if (regnum >= 0 && regnum < 32)
831 return sigcontext_addr + tdep->sc_regs_offset + regnum * 8;
832 else if (regnum >= ALPHA_FP0_REGNUM && regnum < ALPHA_FP0_REGNUM + 32)
833 return sigcontext_addr + tdep->sc_fpregs_offset + regnum * 8;
834 else if (regnum == ALPHA_PC_REGNUM)
835 return sigcontext_addr + tdep->sc_pc_offset;
836
837 return 0;
838 }
839
840 /* Given a GDB frame, determine the address of the calling function's
841 frame. This will be used to create a new GDB frame struct. */
842
843 static void
844 alpha_sigtramp_frame_this_id (struct frame_info *this_frame,
845 void **this_prologue_cache,
846 struct frame_id *this_id)
847 {
848 struct gdbarch *gdbarch = get_frame_arch (this_frame);
849 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
850 struct alpha_sigtramp_unwind_cache *info
851 = alpha_sigtramp_frame_unwind_cache (this_frame, this_prologue_cache);
852 CORE_ADDR stack_addr, code_addr;
853
854 /* If the OSABI couldn't locate the sigcontext, give up. */
855 if (info->sigcontext_addr == 0)
856 return;
857
858 /* If we have dynamic signal trampolines, find their start.
859 If we do not, then we must assume there is a symbol record
860 that can provide the start address. */
861 if (tdep->dynamic_sigtramp_offset)
862 {
863 int offset;
864 code_addr = get_frame_pc (this_frame);
865 offset = tdep->dynamic_sigtramp_offset (gdbarch, code_addr);
866 if (offset >= 0)
867 code_addr -= offset;
868 else
869 code_addr = 0;
870 }
871 else
872 code_addr = get_frame_func (this_frame);
873
874 /* The stack address is trivially read from the sigcontext. */
875 stack_addr = alpha_sigtramp_register_address (gdbarch, info->sigcontext_addr,
876 ALPHA_SP_REGNUM);
877 stack_addr = get_frame_memory_unsigned (this_frame, stack_addr,
878 ALPHA_REGISTER_SIZE);
879
880 *this_id = frame_id_build (stack_addr, code_addr);
881 }
882
883 /* Retrieve the value of REGNUM in FRAME. Don't give up! */
884
885 static struct value *
886 alpha_sigtramp_frame_prev_register (struct frame_info *this_frame,
887 void **this_prologue_cache, int regnum)
888 {
889 struct alpha_sigtramp_unwind_cache *info
890 = alpha_sigtramp_frame_unwind_cache (this_frame, this_prologue_cache);
891 CORE_ADDR addr;
892
893 if (info->sigcontext_addr != 0)
894 {
895 /* All integer and fp registers are stored in memory. */
896 addr = alpha_sigtramp_register_address (get_frame_arch (this_frame),
897 info->sigcontext_addr, regnum);
898 if (addr != 0)
899 return frame_unwind_got_memory (this_frame, regnum, addr);
900 }
901
902 /* This extra register may actually be in the sigcontext, but our
903 current description of it in alpha_sigtramp_frame_unwind_cache
904 doesn't include it. Too bad. Fall back on whatever's in the
905 outer frame. */
906 return frame_unwind_got_register (this_frame, regnum, regnum);
907 }
908
909 static int
910 alpha_sigtramp_frame_sniffer (const struct frame_unwind *self,
911 struct frame_info *this_frame,
912 void **this_prologue_cache)
913 {
914 struct gdbarch *gdbarch = get_frame_arch (this_frame);
915 CORE_ADDR pc = get_frame_pc (this_frame);
916 char *name;
917
918 /* NOTE: cagney/2004-04-30: Do not copy/clone this code. Instead
919 look at tramp-frame.h and other simplier per-architecture
920 sigtramp unwinders. */
921
922 /* We shouldn't even bother to try if the OSABI didn't register a
923 sigcontext_addr handler or pc_in_sigtramp hander. */
924 if (gdbarch_tdep (gdbarch)->sigcontext_addr == NULL)
925 return 0;
926 if (gdbarch_tdep (gdbarch)->pc_in_sigtramp == NULL)
927 return 0;
928
929 /* Otherwise we should be in a signal frame. */
930 find_pc_partial_function (pc, &name, NULL, NULL);
931 if (gdbarch_tdep (gdbarch)->pc_in_sigtramp (gdbarch, pc, name))
932 return 1;
933
934 return 0;
935 }
936
937 static const struct frame_unwind alpha_sigtramp_frame_unwind = {
938 SIGTRAMP_FRAME,
939 default_frame_unwind_stop_reason,
940 alpha_sigtramp_frame_this_id,
941 alpha_sigtramp_frame_prev_register,
942 NULL,
943 alpha_sigtramp_frame_sniffer
944 };
945
946 \f
947
948 /* Heuristic_proc_start may hunt through the text section for a long
949 time across a 2400 baud serial line. Allows the user to limit this
950 search. */
951 static unsigned int heuristic_fence_post = 0;
952
953 /* Attempt to locate the start of the function containing PC. We assume that
954 the previous function ends with an about_to_return insn. Not foolproof by
955 any means, since gcc is happy to put the epilogue in the middle of a
956 function. But we're guessing anyway... */
957
958 static CORE_ADDR
959 alpha_heuristic_proc_start (struct gdbarch *gdbarch, CORE_ADDR pc)
960 {
961 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
962 CORE_ADDR last_non_nop = pc;
963 CORE_ADDR fence = pc - heuristic_fence_post;
964 CORE_ADDR orig_pc = pc;
965 CORE_ADDR func;
966 struct inferior *inf;
967
968 if (pc == 0)
969 return 0;
970
971 /* First see if we can find the start of the function from minimal
972 symbol information. This can succeed with a binary that doesn't
973 have debug info, but hasn't been stripped. */
974 func = get_pc_function_start (pc);
975 if (func)
976 return func;
977
978 if (heuristic_fence_post == UINT_MAX
979 || fence < tdep->vm_min_address)
980 fence = tdep->vm_min_address;
981
982 /* Search back for previous return; also stop at a 0, which might be
983 seen for instance before the start of a code section. Don't include
984 nops, since this usually indicates padding between functions. */
985 for (pc -= ALPHA_INSN_SIZE; pc >= fence; pc -= ALPHA_INSN_SIZE)
986 {
987 unsigned int insn = alpha_read_insn (gdbarch, pc);
988 switch (insn)
989 {
990 case 0: /* invalid insn */
991 case 0x6bfa8001: /* ret $31,($26),1 */
992 return last_non_nop;
993
994 case 0x2ffe0000: /* unop: ldq_u $31,0($30) */
995 case 0x47ff041f: /* nop: bis $31,$31,$31 */
996 break;
997
998 default:
999 last_non_nop = pc;
1000 break;
1001 }
1002 }
1003
1004 inf = current_inferior ();
1005
1006 /* It's not clear to me why we reach this point when stopping quietly,
1007 but with this test, at least we don't print out warnings for every
1008 child forked (eg, on decstation). 22apr93 rich@cygnus.com. */
1009 if (inf->control.stop_soon == NO_STOP_QUIETLY)
1010 {
1011 static int blurb_printed = 0;
1012
1013 if (fence == tdep->vm_min_address)
1014 warning (_("Hit beginning of text section without finding \
1015 enclosing function for address %s"), paddress (gdbarch, orig_pc));
1016 else
1017 warning (_("Hit heuristic-fence-post without finding \
1018 enclosing function for address %s"), paddress (gdbarch, orig_pc));
1019
1020 if (!blurb_printed)
1021 {
1022 printf_filtered (_("\
1023 This warning occurs if you are debugging a function without any symbols\n\
1024 (for example, in a stripped executable). In that case, you may wish to\n\
1025 increase the size of the search with the `set heuristic-fence-post' command.\n\
1026 \n\
1027 Otherwise, you told GDB there was a function where there isn't one, or\n\
1028 (more likely) you have encountered a bug in GDB.\n"));
1029 blurb_printed = 1;
1030 }
1031 }
1032
1033 return 0;
1034 }
1035
1036 /* Fallback alpha frame unwinder. Uses instruction scanning and knows
1037 something about the traditional layout of alpha stack frames. */
1038
1039 struct alpha_heuristic_unwind_cache
1040 {
1041 CORE_ADDR vfp;
1042 CORE_ADDR start_pc;
1043 struct trad_frame_saved_reg *saved_regs;
1044 int return_reg;
1045 };
1046
1047 /* If a probing loop sequence starts at PC, simulate it and compute
1048 FRAME_SIZE and PC after its execution. Otherwise, return with PC and
1049 FRAME_SIZE unchanged. */
1050
1051 static void
1052 alpha_heuristic_analyze_probing_loop (struct gdbarch *gdbarch, CORE_ADDR *pc,
1053 int *frame_size)
1054 {
1055 CORE_ADDR cur_pc = *pc;
1056 int cur_frame_size = *frame_size;
1057 int nb_of_iterations, reg_index, reg_probe;
1058 unsigned int insn;
1059
1060 /* The following pattern is recognized as a probing loop:
1061
1062 lda REG_INDEX,NB_OF_ITERATIONS
1063 lda REG_PROBE,<immediate>(sp)
1064
1065 LOOP_START:
1066 stq zero,<immediate>(REG_PROBE)
1067 subq REG_INDEX,0x1,REG_INDEX
1068 lda REG_PROBE,<immediate>(REG_PROBE)
1069 bne REG_INDEX, LOOP_START
1070
1071 lda sp,<immediate>(REG_PROBE)
1072
1073 If anything different is found, the function returns without
1074 changing PC and FRAME_SIZE. Otherwise, PC will point immediately
1075 after this sequence, and FRAME_SIZE will be updated. */
1076
1077 /* lda REG_INDEX,NB_OF_ITERATIONS */
1078
1079 insn = alpha_read_insn (gdbarch, cur_pc);
1080 if (INSN_OPCODE (insn) != lda_opcode)
1081 return;
1082 reg_index = MEM_RA (insn);
1083 nb_of_iterations = MEM_DISP (insn);
1084
1085 /* lda REG_PROBE,<immediate>(sp) */
1086
1087 cur_pc += ALPHA_INSN_SIZE;
1088 insn = alpha_read_insn (gdbarch, cur_pc);
1089 if (INSN_OPCODE (insn) != lda_opcode
1090 || MEM_RB (insn) != ALPHA_SP_REGNUM)
1091 return;
1092 reg_probe = MEM_RA (insn);
1093 cur_frame_size -= MEM_DISP (insn);
1094
1095 /* stq zero,<immediate>(REG_PROBE) */
1096
1097 cur_pc += ALPHA_INSN_SIZE;
1098 insn = alpha_read_insn (gdbarch, cur_pc);
1099 if (INSN_OPCODE (insn) != stq_opcode
1100 || MEM_RA (insn) != 0x1f
1101 || MEM_RB (insn) != reg_probe)
1102 return;
1103
1104 /* subq REG_INDEX,0x1,REG_INDEX */
1105
1106 cur_pc += ALPHA_INSN_SIZE;
1107 insn = alpha_read_insn (gdbarch, cur_pc);
1108 if (INSN_OPCODE (insn) != subq_opcode
1109 || !OPR_HAS_IMMEDIATE (insn)
1110 || OPR_FUNCTION (insn) != subq_function
1111 || OPR_LIT(insn) != 1
1112 || OPR_RA (insn) != reg_index
1113 || OPR_RC (insn) != reg_index)
1114 return;
1115
1116 /* lda REG_PROBE,<immediate>(REG_PROBE) */
1117
1118 cur_pc += ALPHA_INSN_SIZE;
1119 insn = alpha_read_insn (gdbarch, cur_pc);
1120 if (INSN_OPCODE (insn) != lda_opcode
1121 || MEM_RA (insn) != reg_probe
1122 || MEM_RB (insn) != reg_probe)
1123 return;
1124 cur_frame_size -= MEM_DISP (insn) * nb_of_iterations;
1125
1126 /* bne REG_INDEX, LOOP_START */
1127
1128 cur_pc += ALPHA_INSN_SIZE;
1129 insn = alpha_read_insn (gdbarch, cur_pc);
1130 if (INSN_OPCODE (insn) != bne_opcode
1131 || MEM_RA (insn) != reg_index)
1132 return;
1133
1134 /* lda sp,<immediate>(REG_PROBE) */
1135
1136 cur_pc += ALPHA_INSN_SIZE;
1137 insn = alpha_read_insn (gdbarch, cur_pc);
1138 if (INSN_OPCODE (insn) != lda_opcode
1139 || MEM_RA (insn) != ALPHA_SP_REGNUM
1140 || MEM_RB (insn) != reg_probe)
1141 return;
1142 cur_frame_size -= MEM_DISP (insn);
1143
1144 *pc = cur_pc;
1145 *frame_size = cur_frame_size;
1146 }
1147
1148 static struct alpha_heuristic_unwind_cache *
1149 alpha_heuristic_frame_unwind_cache (struct frame_info *this_frame,
1150 void **this_prologue_cache,
1151 CORE_ADDR start_pc)
1152 {
1153 struct gdbarch *gdbarch = get_frame_arch (this_frame);
1154 struct alpha_heuristic_unwind_cache *info;
1155 ULONGEST val;
1156 CORE_ADDR limit_pc, cur_pc;
1157 int frame_reg, frame_size, return_reg, reg;
1158
1159 if (*this_prologue_cache)
1160 return *this_prologue_cache;
1161
1162 info = FRAME_OBSTACK_ZALLOC (struct alpha_heuristic_unwind_cache);
1163 *this_prologue_cache = info;
1164 info->saved_regs = trad_frame_alloc_saved_regs (this_frame);
1165
1166 limit_pc = get_frame_pc (this_frame);
1167 if (start_pc == 0)
1168 start_pc = alpha_heuristic_proc_start (gdbarch, limit_pc);
1169 info->start_pc = start_pc;
1170
1171 frame_reg = ALPHA_SP_REGNUM;
1172 frame_size = 0;
1173 return_reg = -1;
1174
1175 /* If we've identified a likely place to start, do code scanning. */
1176 if (start_pc != 0)
1177 {
1178 /* Limit the forward search to 50 instructions. */
1179 if (start_pc + 200 < limit_pc)
1180 limit_pc = start_pc + 200;
1181
1182 for (cur_pc = start_pc; cur_pc < limit_pc; cur_pc += ALPHA_INSN_SIZE)
1183 {
1184 unsigned int word = alpha_read_insn (gdbarch, cur_pc);
1185
1186 if ((word & 0xffff0000) == 0x23de0000) /* lda $sp,n($sp) */
1187 {
1188 if (word & 0x8000)
1189 {
1190 /* Consider only the first stack allocation instruction
1191 to contain the static size of the frame. */
1192 if (frame_size == 0)
1193 frame_size = (-word) & 0xffff;
1194 }
1195 else
1196 {
1197 /* Exit loop if a positive stack adjustment is found, which
1198 usually means that the stack cleanup code in the function
1199 epilogue is reached. */
1200 break;
1201 }
1202 }
1203 else if ((word & 0xfc1f0000) == 0xb41e0000) /* stq reg,n($sp) */
1204 {
1205 reg = (word & 0x03e00000) >> 21;
1206
1207 /* Ignore this instruction if we have already encountered
1208 an instruction saving the same register earlier in the
1209 function code. The current instruction does not tell
1210 us where the original value upon function entry is saved.
1211 All it says is that the function we are scanning reused
1212 that register for some computation of its own, and is now
1213 saving its result. */
1214 if (trad_frame_addr_p(info->saved_regs, reg))
1215 continue;
1216
1217 if (reg == 31)
1218 continue;
1219
1220 /* Do not compute the address where the register was saved yet,
1221 because we don't know yet if the offset will need to be
1222 relative to $sp or $fp (we can not compute the address
1223 relative to $sp if $sp is updated during the execution of
1224 the current subroutine, for instance when doing some alloca).
1225 So just store the offset for the moment, and compute the
1226 address later when we know whether this frame has a frame
1227 pointer or not. */
1228 /* Hack: temporarily add one, so that the offset is non-zero
1229 and we can tell which registers have save offsets below. */
1230 info->saved_regs[reg].addr = (word & 0xffff) + 1;
1231
1232 /* Starting with OSF/1-3.2C, the system libraries are shipped
1233 without local symbols, but they still contain procedure
1234 descriptors without a symbol reference. GDB is currently
1235 unable to find these procedure descriptors and uses
1236 heuristic_proc_desc instead.
1237 As some low level compiler support routines (__div*, __add*)
1238 use a non-standard return address register, we have to
1239 add some heuristics to determine the return address register,
1240 or stepping over these routines will fail.
1241 Usually the return address register is the first register
1242 saved on the stack, but assembler optimization might
1243 rearrange the register saves.
1244 So we recognize only a few registers (t7, t9, ra) within
1245 the procedure prologue as valid return address registers.
1246 If we encounter a return instruction, we extract the
1247 the return address register from it.
1248
1249 FIXME: Rewriting GDB to access the procedure descriptors,
1250 e.g. via the minimal symbol table, might obviate this
1251 hack. */
1252 if (return_reg == -1
1253 && cur_pc < (start_pc + 80)
1254 && (reg == ALPHA_T7_REGNUM
1255 || reg == ALPHA_T9_REGNUM
1256 || reg == ALPHA_RA_REGNUM))
1257 return_reg = reg;
1258 }
1259 else if ((word & 0xffe0ffff) == 0x6be08001) /* ret zero,reg,1 */
1260 return_reg = (word >> 16) & 0x1f;
1261 else if (word == 0x47de040f) /* bis sp,sp,fp */
1262 frame_reg = ALPHA_GCC_FP_REGNUM;
1263 else if (word == 0x47fe040f) /* bis zero,sp,fp */
1264 frame_reg = ALPHA_GCC_FP_REGNUM;
1265
1266 alpha_heuristic_analyze_probing_loop (gdbarch, &cur_pc, &frame_size);
1267 }
1268
1269 /* If we haven't found a valid return address register yet, keep
1270 searching in the procedure prologue. */
1271 if (return_reg == -1)
1272 {
1273 while (cur_pc < (limit_pc + 80) && cur_pc < (start_pc + 80))
1274 {
1275 unsigned int word = alpha_read_insn (gdbarch, cur_pc);
1276
1277 if ((word & 0xfc1f0000) == 0xb41e0000) /* stq reg,n($sp) */
1278 {
1279 reg = (word & 0x03e00000) >> 21;
1280 if (reg == ALPHA_T7_REGNUM
1281 || reg == ALPHA_T9_REGNUM
1282 || reg == ALPHA_RA_REGNUM)
1283 {
1284 return_reg = reg;
1285 break;
1286 }
1287 }
1288 else if ((word & 0xffe0ffff) == 0x6be08001) /* ret zero,reg,1 */
1289 {
1290 return_reg = (word >> 16) & 0x1f;
1291 break;
1292 }
1293
1294 cur_pc += ALPHA_INSN_SIZE;
1295 }
1296 }
1297 }
1298
1299 /* Failing that, do default to the customary RA. */
1300 if (return_reg == -1)
1301 return_reg = ALPHA_RA_REGNUM;
1302 info->return_reg = return_reg;
1303
1304 val = get_frame_register_unsigned (this_frame, frame_reg);
1305 info->vfp = val + frame_size;
1306
1307 /* Convert offsets to absolute addresses. See above about adding
1308 one to the offsets to make all detected offsets non-zero. */
1309 for (reg = 0; reg < ALPHA_NUM_REGS; ++reg)
1310 if (trad_frame_addr_p(info->saved_regs, reg))
1311 info->saved_regs[reg].addr += val - 1;
1312
1313 /* The stack pointer of the previous frame is computed by popping
1314 the current stack frame. */
1315 if (!trad_frame_addr_p (info->saved_regs, ALPHA_SP_REGNUM))
1316 trad_frame_set_value (info->saved_regs, ALPHA_SP_REGNUM, info->vfp);
1317
1318 return info;
1319 }
1320
1321 /* Given a GDB frame, determine the address of the calling function's
1322 frame. This will be used to create a new GDB frame struct. */
1323
1324 static void
1325 alpha_heuristic_frame_this_id (struct frame_info *this_frame,
1326 void **this_prologue_cache,
1327 struct frame_id *this_id)
1328 {
1329 struct alpha_heuristic_unwind_cache *info
1330 = alpha_heuristic_frame_unwind_cache (this_frame, this_prologue_cache, 0);
1331
1332 *this_id = frame_id_build (info->vfp, info->start_pc);
1333 }
1334
1335 /* Retrieve the value of REGNUM in FRAME. Don't give up! */
1336
1337 static struct value *
1338 alpha_heuristic_frame_prev_register (struct frame_info *this_frame,
1339 void **this_prologue_cache, int regnum)
1340 {
1341 struct alpha_heuristic_unwind_cache *info
1342 = alpha_heuristic_frame_unwind_cache (this_frame, this_prologue_cache, 0);
1343
1344 /* The PC of the previous frame is stored in the link register of
1345 the current frame. Frob regnum so that we pull the value from
1346 the correct place. */
1347 if (regnum == ALPHA_PC_REGNUM)
1348 regnum = info->return_reg;
1349
1350 return trad_frame_get_prev_register (this_frame, info->saved_regs, regnum);
1351 }
1352
1353 static const struct frame_unwind alpha_heuristic_frame_unwind = {
1354 NORMAL_FRAME,
1355 default_frame_unwind_stop_reason,
1356 alpha_heuristic_frame_this_id,
1357 alpha_heuristic_frame_prev_register,
1358 NULL,
1359 default_frame_sniffer
1360 };
1361
1362 static CORE_ADDR
1363 alpha_heuristic_frame_base_address (struct frame_info *this_frame,
1364 void **this_prologue_cache)
1365 {
1366 struct alpha_heuristic_unwind_cache *info
1367 = alpha_heuristic_frame_unwind_cache (this_frame, this_prologue_cache, 0);
1368
1369 return info->vfp;
1370 }
1371
1372 static const struct frame_base alpha_heuristic_frame_base = {
1373 &alpha_heuristic_frame_unwind,
1374 alpha_heuristic_frame_base_address,
1375 alpha_heuristic_frame_base_address,
1376 alpha_heuristic_frame_base_address
1377 };
1378
1379 /* Just like reinit_frame_cache, but with the right arguments to be
1380 callable as an sfunc. Used by the "set heuristic-fence-post" command. */
1381
1382 static void
1383 reinit_frame_cache_sfunc (char *args, int from_tty, struct cmd_list_element *c)
1384 {
1385 reinit_frame_cache ();
1386 }
1387
1388 \f
1389 /* Assuming NEXT_FRAME->prev is a dummy, return the frame ID of that
1390 dummy frame. The frame ID's base needs to match the TOS value
1391 saved by save_dummy_frame_tos(), and the PC match the dummy frame's
1392 breakpoint. */
1393
1394 static struct frame_id
1395 alpha_dummy_id (struct gdbarch *gdbarch, struct frame_info *this_frame)
1396 {
1397 ULONGEST base;
1398 base = get_frame_register_unsigned (this_frame, ALPHA_SP_REGNUM);
1399 return frame_id_build (base, get_frame_pc (this_frame));
1400 }
1401
1402 static CORE_ADDR
1403 alpha_unwind_pc (struct gdbarch *gdbarch, struct frame_info *next_frame)
1404 {
1405 ULONGEST pc;
1406 pc = frame_unwind_register_unsigned (next_frame, ALPHA_PC_REGNUM);
1407 return pc;
1408 }
1409
1410 \f
1411 /* Helper routines for alpha*-nat.c files to move register sets to and
1412 from core files. The UNIQUE pointer is allowed to be NULL, as most
1413 targets don't supply this value in their core files. */
1414
1415 void
1416 alpha_supply_int_regs (struct regcache *regcache, int regno,
1417 const void *r0_r30, const void *pc, const void *unique)
1418 {
1419 const gdb_byte *regs = r0_r30;
1420 int i;
1421
1422 for (i = 0; i < 31; ++i)
1423 if (regno == i || regno == -1)
1424 regcache_raw_supply (regcache, i, regs + i * 8);
1425
1426 if (regno == ALPHA_ZERO_REGNUM || regno == -1)
1427 regcache_raw_supply (regcache, ALPHA_ZERO_REGNUM, NULL);
1428
1429 if (regno == ALPHA_PC_REGNUM || regno == -1)
1430 regcache_raw_supply (regcache, ALPHA_PC_REGNUM, pc);
1431
1432 if (regno == ALPHA_UNIQUE_REGNUM || regno == -1)
1433 regcache_raw_supply (regcache, ALPHA_UNIQUE_REGNUM, unique);
1434 }
1435
1436 void
1437 alpha_fill_int_regs (const struct regcache *regcache,
1438 int regno, void *r0_r30, void *pc, void *unique)
1439 {
1440 gdb_byte *regs = r0_r30;
1441 int i;
1442
1443 for (i = 0; i < 31; ++i)
1444 if (regno == i || regno == -1)
1445 regcache_raw_collect (regcache, i, regs + i * 8);
1446
1447 if (regno == ALPHA_PC_REGNUM || regno == -1)
1448 regcache_raw_collect (regcache, ALPHA_PC_REGNUM, pc);
1449
1450 if (unique && (regno == ALPHA_UNIQUE_REGNUM || regno == -1))
1451 regcache_raw_collect (regcache, ALPHA_UNIQUE_REGNUM, unique);
1452 }
1453
1454 void
1455 alpha_supply_fp_regs (struct regcache *regcache, int regno,
1456 const void *f0_f30, const void *fpcr)
1457 {
1458 const gdb_byte *regs = f0_f30;
1459 int i;
1460
1461 for (i = ALPHA_FP0_REGNUM; i < ALPHA_FP0_REGNUM + 31; ++i)
1462 if (regno == i || regno == -1)
1463 regcache_raw_supply (regcache, i,
1464 regs + (i - ALPHA_FP0_REGNUM) * 8);
1465
1466 if (regno == ALPHA_FPCR_REGNUM || regno == -1)
1467 regcache_raw_supply (regcache, ALPHA_FPCR_REGNUM, fpcr);
1468 }
1469
1470 void
1471 alpha_fill_fp_regs (const struct regcache *regcache,
1472 int regno, void *f0_f30, void *fpcr)
1473 {
1474 gdb_byte *regs = f0_f30;
1475 int i;
1476
1477 for (i = ALPHA_FP0_REGNUM; i < ALPHA_FP0_REGNUM + 31; ++i)
1478 if (regno == i || regno == -1)
1479 regcache_raw_collect (regcache, i,
1480 regs + (i - ALPHA_FP0_REGNUM) * 8);
1481
1482 if (regno == ALPHA_FPCR_REGNUM || regno == -1)
1483 regcache_raw_collect (regcache, ALPHA_FPCR_REGNUM, fpcr);
1484 }
1485
1486 \f
1487
1488 /* Return nonzero if the G_floating register value in REG is equal to
1489 zero for FP control instructions. */
1490
1491 static int
1492 fp_register_zero_p (LONGEST reg)
1493 {
1494 /* Check that all bits except the sign bit are zero. */
1495 const LONGEST zero_mask = ((LONGEST) 1 << 63) ^ -1;
1496
1497 return ((reg & zero_mask) == 0);
1498 }
1499
1500 /* Return the value of the sign bit for the G_floating register
1501 value held in REG. */
1502
1503 static int
1504 fp_register_sign_bit (LONGEST reg)
1505 {
1506 const LONGEST sign_mask = (LONGEST) 1 << 63;
1507
1508 return ((reg & sign_mask) != 0);
1509 }
1510
1511 /* alpha_software_single_step() is called just before we want to resume
1512 the inferior, if we want to single-step it but there is no hardware
1513 or kernel single-step support (NetBSD on Alpha, for example). We find
1514 the target of the coming instruction and breakpoint it. */
1515
1516 static CORE_ADDR
1517 alpha_next_pc (struct frame_info *frame, CORE_ADDR pc)
1518 {
1519 struct gdbarch *gdbarch = get_frame_arch (frame);
1520 unsigned int insn;
1521 unsigned int op;
1522 int regno;
1523 int offset;
1524 LONGEST rav;
1525
1526 insn = alpha_read_insn (gdbarch, pc);
1527
1528 /* Opcode is top 6 bits. */
1529 op = (insn >> 26) & 0x3f;
1530
1531 if (op == 0x1a)
1532 {
1533 /* Jump format: target PC is:
1534 RB & ~3 */
1535 return (get_frame_register_unsigned (frame, (insn >> 16) & 0x1f) & ~3);
1536 }
1537
1538 if ((op & 0x30) == 0x30)
1539 {
1540 /* Branch format: target PC is:
1541 (new PC) + (4 * sext(displacement)) */
1542 if (op == 0x30 /* BR */
1543 || op == 0x34) /* BSR */
1544 {
1545 branch_taken:
1546 offset = (insn & 0x001fffff);
1547 if (offset & 0x00100000)
1548 offset |= 0xffe00000;
1549 offset *= ALPHA_INSN_SIZE;
1550 return (pc + ALPHA_INSN_SIZE + offset);
1551 }
1552
1553 /* Need to determine if branch is taken; read RA. */
1554 regno = (insn >> 21) & 0x1f;
1555 switch (op)
1556 {
1557 case 0x31: /* FBEQ */
1558 case 0x36: /* FBGE */
1559 case 0x37: /* FBGT */
1560 case 0x33: /* FBLE */
1561 case 0x32: /* FBLT */
1562 case 0x35: /* FBNE */
1563 regno += gdbarch_fp0_regnum (gdbarch);
1564 }
1565
1566 rav = get_frame_register_signed (frame, regno);
1567
1568 switch (op)
1569 {
1570 case 0x38: /* BLBC */
1571 if ((rav & 1) == 0)
1572 goto branch_taken;
1573 break;
1574 case 0x3c: /* BLBS */
1575 if (rav & 1)
1576 goto branch_taken;
1577 break;
1578 case 0x39: /* BEQ */
1579 if (rav == 0)
1580 goto branch_taken;
1581 break;
1582 case 0x3d: /* BNE */
1583 if (rav != 0)
1584 goto branch_taken;
1585 break;
1586 case 0x3a: /* BLT */
1587 if (rav < 0)
1588 goto branch_taken;
1589 break;
1590 case 0x3b: /* BLE */
1591 if (rav <= 0)
1592 goto branch_taken;
1593 break;
1594 case 0x3f: /* BGT */
1595 if (rav > 0)
1596 goto branch_taken;
1597 break;
1598 case 0x3e: /* BGE */
1599 if (rav >= 0)
1600 goto branch_taken;
1601 break;
1602
1603 /* Floating point branches. */
1604
1605 case 0x31: /* FBEQ */
1606 if (fp_register_zero_p (rav))
1607 goto branch_taken;
1608 break;
1609 case 0x36: /* FBGE */
1610 if (fp_register_sign_bit (rav) == 0 || fp_register_zero_p (rav))
1611 goto branch_taken;
1612 break;
1613 case 0x37: /* FBGT */
1614 if (fp_register_sign_bit (rav) == 0 && ! fp_register_zero_p (rav))
1615 goto branch_taken;
1616 break;
1617 case 0x33: /* FBLE */
1618 if (fp_register_sign_bit (rav) == 1 || fp_register_zero_p (rav))
1619 goto branch_taken;
1620 break;
1621 case 0x32: /* FBLT */
1622 if (fp_register_sign_bit (rav) == 1 && ! fp_register_zero_p (rav))
1623 goto branch_taken;
1624 break;
1625 case 0x35: /* FBNE */
1626 if (! fp_register_zero_p (rav))
1627 goto branch_taken;
1628 break;
1629 }
1630 }
1631
1632 /* Not a branch or branch not taken; target PC is:
1633 pc + 4 */
1634 return (pc + ALPHA_INSN_SIZE);
1635 }
1636
1637 int
1638 alpha_software_single_step (struct frame_info *frame)
1639 {
1640 struct gdbarch *gdbarch = get_frame_arch (frame);
1641 struct address_space *aspace = get_frame_address_space (frame);
1642 CORE_ADDR pc, next_pc;
1643
1644 pc = get_frame_pc (frame);
1645 next_pc = alpha_next_pc (frame, pc);
1646
1647 insert_single_step_breakpoint (gdbarch, aspace, next_pc);
1648 return 1;
1649 }
1650
1651 \f
1652 /* Initialize the current architecture based on INFO. If possible, re-use an
1653 architecture from ARCHES, which is a list of architectures already created
1654 during this debugging session.
1655
1656 Called e.g. at program startup, when reading a core file, and when reading
1657 a binary file. */
1658
1659 static struct gdbarch *
1660 alpha_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
1661 {
1662 struct gdbarch_tdep *tdep;
1663 struct gdbarch *gdbarch;
1664
1665 /* Try to determine the ABI of the object we are loading. */
1666 if (info.abfd != NULL && info.osabi == GDB_OSABI_UNKNOWN)
1667 {
1668 /* If it's an ECOFF file, assume it's OSF/1. */
1669 if (bfd_get_flavour (info.abfd) == bfd_target_ecoff_flavour)
1670 info.osabi = GDB_OSABI_OSF1;
1671 }
1672
1673 /* Find a candidate among extant architectures. */
1674 arches = gdbarch_list_lookup_by_info (arches, &info);
1675 if (arches != NULL)
1676 return arches->gdbarch;
1677
1678 tdep = xmalloc (sizeof (struct gdbarch_tdep));
1679 gdbarch = gdbarch_alloc (&info, tdep);
1680
1681 /* Lowest text address. This is used by heuristic_proc_start()
1682 to decide when to stop looking. */
1683 tdep->vm_min_address = (CORE_ADDR) 0x120000000LL;
1684
1685 tdep->dynamic_sigtramp_offset = NULL;
1686 tdep->sigcontext_addr = NULL;
1687 tdep->sc_pc_offset = 2 * 8;
1688 tdep->sc_regs_offset = 4 * 8;
1689 tdep->sc_fpregs_offset = tdep->sc_regs_offset + 32 * 8 + 8;
1690
1691 tdep->jb_pc = -1; /* longjmp support not enabled by default. */
1692
1693 tdep->return_in_memory = alpha_return_in_memory_always;
1694
1695 /* Type sizes */
1696 set_gdbarch_short_bit (gdbarch, 16);
1697 set_gdbarch_int_bit (gdbarch, 32);
1698 set_gdbarch_long_bit (gdbarch, 64);
1699 set_gdbarch_long_long_bit (gdbarch, 64);
1700 set_gdbarch_float_bit (gdbarch, 32);
1701 set_gdbarch_double_bit (gdbarch, 64);
1702 set_gdbarch_long_double_bit (gdbarch, 64);
1703 set_gdbarch_ptr_bit (gdbarch, 64);
1704
1705 /* Register info */
1706 set_gdbarch_num_regs (gdbarch, ALPHA_NUM_REGS);
1707 set_gdbarch_sp_regnum (gdbarch, ALPHA_SP_REGNUM);
1708 set_gdbarch_pc_regnum (gdbarch, ALPHA_PC_REGNUM);
1709 set_gdbarch_fp0_regnum (gdbarch, ALPHA_FP0_REGNUM);
1710
1711 set_gdbarch_register_name (gdbarch, alpha_register_name);
1712 set_gdbarch_register_type (gdbarch, alpha_register_type);
1713
1714 set_gdbarch_cannot_fetch_register (gdbarch, alpha_cannot_fetch_register);
1715 set_gdbarch_cannot_store_register (gdbarch, alpha_cannot_store_register);
1716
1717 set_gdbarch_convert_register_p (gdbarch, alpha_convert_register_p);
1718 set_gdbarch_register_to_value (gdbarch, alpha_register_to_value);
1719 set_gdbarch_value_to_register (gdbarch, alpha_value_to_register);
1720
1721 set_gdbarch_register_reggroup_p (gdbarch, alpha_register_reggroup_p);
1722
1723 /* Prologue heuristics. */
1724 set_gdbarch_skip_prologue (gdbarch, alpha_skip_prologue);
1725
1726 /* Disassembler. */
1727 set_gdbarch_print_insn (gdbarch, print_insn_alpha);
1728
1729 /* Call info. */
1730
1731 set_gdbarch_return_value (gdbarch, alpha_return_value);
1732
1733 /* Settings for calling functions in the inferior. */
1734 set_gdbarch_push_dummy_call (gdbarch, alpha_push_dummy_call);
1735
1736 /* Methods for saving / extracting a dummy frame's ID. */
1737 set_gdbarch_dummy_id (gdbarch, alpha_dummy_id);
1738
1739 /* Return the unwound PC value. */
1740 set_gdbarch_unwind_pc (gdbarch, alpha_unwind_pc);
1741
1742 set_gdbarch_inner_than (gdbarch, core_addr_lessthan);
1743 set_gdbarch_skip_trampoline_code (gdbarch, find_solib_trampoline_target);
1744
1745 set_gdbarch_breakpoint_from_pc (gdbarch, alpha_breakpoint_from_pc);
1746 set_gdbarch_decr_pc_after_break (gdbarch, ALPHA_INSN_SIZE);
1747 set_gdbarch_cannot_step_breakpoint (gdbarch, 1);
1748
1749 /* Hook in ABI-specific overrides, if they have been registered. */
1750 gdbarch_init_osabi (info, gdbarch);
1751
1752 /* Now that we have tuned the configuration, set a few final things
1753 based on what the OS ABI has told us. */
1754
1755 if (tdep->jb_pc >= 0)
1756 set_gdbarch_get_longjmp_target (gdbarch, alpha_get_longjmp_target);
1757
1758 frame_unwind_append_unwinder (gdbarch, &alpha_sigtramp_frame_unwind);
1759 frame_unwind_append_unwinder (gdbarch, &alpha_heuristic_frame_unwind);
1760
1761 frame_base_set_default (gdbarch, &alpha_heuristic_frame_base);
1762
1763 return gdbarch;
1764 }
1765
1766 void
1767 alpha_dwarf2_init_abi (struct gdbarch_info info, struct gdbarch *gdbarch)
1768 {
1769 dwarf2_append_unwinders (gdbarch);
1770 frame_base_append_sniffer (gdbarch, dwarf2_frame_base_sniffer);
1771 }
1772
1773 extern initialize_file_ftype _initialize_alpha_tdep; /* -Wmissing-prototypes */
1774
1775 void
1776 _initialize_alpha_tdep (void)
1777 {
1778 struct cmd_list_element *c;
1779
1780 gdbarch_register (bfd_arch_alpha, alpha_gdbarch_init, NULL);
1781
1782 /* Let the user set the fence post for heuristic_proc_start. */
1783
1784 /* We really would like to have both "0" and "unlimited" work, but
1785 command.c doesn't deal with that. So make it a var_zinteger
1786 because the user can always use "999999" or some such for unlimited. */
1787 /* We need to throw away the frame cache when we set this, since it
1788 might change our ability to get backtraces. */
1789 add_setshow_zinteger_cmd ("heuristic-fence-post", class_support,
1790 &heuristic_fence_post, _("\
1791 Set the distance searched for the start of a function."), _("\
1792 Show the distance searched for the start of a function."), _("\
1793 If you are debugging a stripped executable, GDB needs to search through the\n\
1794 program for the start of a function. This command sets the distance of the\n\
1795 search. The only need to set it is when debugging a stripped executable."),
1796 reinit_frame_cache_sfunc,
1797 NULL, /* FIXME: i18n: The distance searched for
1798 the start of a function is \"%d\". */
1799 &setlist, &showlist);
1800 }
This page took 0.087114 seconds and 5 git commands to generate.