2002-11-26 Andrew Cagney <ac131313@redhat.com>
[deliverable/binutils-gdb.git] / gdb / alpha-tdep.c
1 /* Target-dependent code for the ALPHA architecture, for GDB, the GNU Debugger.
2 Copyright 1993, 1994, 1995, 1996, 1997, 1998, 1999, 2000, 2001, 2002
3 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 2 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program; if not, write to the Free Software
19 Foundation, Inc., 59 Temple Place - Suite 330,
20 Boston, MA 02111-1307, USA. */
21
22 #include "defs.h"
23 #include "frame.h"
24 #include "inferior.h"
25 #include "symtab.h"
26 #include "value.h"
27 #include "gdbcmd.h"
28 #include "gdbcore.h"
29 #include "dis-asm.h"
30 #include "symfile.h"
31 #include "objfiles.h"
32 #include "gdb_string.h"
33 #include "linespec.h"
34 #include "regcache.h"
35 #include "doublest.h"
36 #include "arch-utils.h"
37
38 #include "elf-bfd.h"
39
40 #include "alpha-tdep.h"
41
42 static gdbarch_init_ftype alpha_gdbarch_init;
43
44 static gdbarch_register_name_ftype alpha_register_name;
45 static gdbarch_register_raw_size_ftype alpha_register_raw_size;
46 static gdbarch_register_virtual_size_ftype alpha_register_virtual_size;
47 static gdbarch_register_virtual_type_ftype alpha_register_virtual_type;
48 static gdbarch_register_byte_ftype alpha_register_byte;
49 static gdbarch_cannot_fetch_register_ftype alpha_cannot_fetch_register;
50 static gdbarch_cannot_store_register_ftype alpha_cannot_store_register;
51 static gdbarch_register_convertible_ftype alpha_register_convertible;
52 static gdbarch_register_convert_to_virtual_ftype
53 alpha_register_convert_to_virtual;
54 static gdbarch_register_convert_to_raw_ftype alpha_register_convert_to_raw;
55 static gdbarch_store_struct_return_ftype alpha_store_struct_return;
56 static gdbarch_deprecated_extract_return_value_ftype alpha_extract_return_value;
57 static gdbarch_deprecated_extract_struct_value_address_ftype
58 alpha_extract_struct_value_address;
59 static gdbarch_use_struct_convention_ftype alpha_use_struct_convention;
60
61 static gdbarch_breakpoint_from_pc_ftype alpha_breakpoint_from_pc;
62
63 static gdbarch_frame_args_address_ftype alpha_frame_args_address;
64 static gdbarch_frame_locals_address_ftype alpha_frame_locals_address;
65
66 static gdbarch_skip_prologue_ftype alpha_skip_prologue;
67 static gdbarch_saved_pc_after_call_ftype alpha_saved_pc_after_call;
68 static gdbarch_frame_chain_ftype alpha_frame_chain;
69 static gdbarch_frame_saved_pc_ftype alpha_frame_saved_pc;
70 static gdbarch_frame_init_saved_regs_ftype alpha_frame_init_saved_regs;
71
72 static gdbarch_push_arguments_ftype alpha_push_arguments;
73 static gdbarch_push_dummy_frame_ftype alpha_push_dummy_frame;
74 static gdbarch_pop_frame_ftype alpha_pop_frame;
75 static gdbarch_fix_call_dummy_ftype alpha_fix_call_dummy;
76 static gdbarch_init_frame_pc_first_ftype alpha_init_frame_pc_first;
77 static gdbarch_init_extra_frame_info_ftype alpha_init_extra_frame_info;
78
79 static gdbarch_get_longjmp_target_ftype alpha_get_longjmp_target;
80
81 struct frame_extra_info
82 {
83 alpha_extra_func_info_t proc_desc;
84 int localoff;
85 int pc_reg;
86 };
87
88 /* FIXME: Some of this code should perhaps be merged with mips-tdep.c. */
89
90 /* Prototypes for local functions. */
91
92 static void alpha_find_saved_regs (struct frame_info *);
93
94 static alpha_extra_func_info_t push_sigtramp_desc (CORE_ADDR low_addr);
95
96 static CORE_ADDR read_next_frame_reg (struct frame_info *, int);
97
98 static CORE_ADDR heuristic_proc_start (CORE_ADDR);
99
100 static alpha_extra_func_info_t heuristic_proc_desc (CORE_ADDR,
101 CORE_ADDR,
102 struct frame_info *);
103
104 static alpha_extra_func_info_t find_proc_desc (CORE_ADDR,
105 struct frame_info *);
106
107 #if 0
108 static int alpha_in_lenient_prologue (CORE_ADDR, CORE_ADDR);
109 #endif
110
111 static void reinit_frame_cache_sfunc (char *, int, struct cmd_list_element *);
112
113 static CORE_ADDR after_prologue (CORE_ADDR pc,
114 alpha_extra_func_info_t proc_desc);
115
116 static int alpha_in_prologue (CORE_ADDR pc,
117 alpha_extra_func_info_t proc_desc);
118
119 static int alpha_about_to_return (CORE_ADDR pc);
120
121 void _initialize_alpha_tdep (void);
122
123 /* Heuristic_proc_start may hunt through the text section for a long
124 time across a 2400 baud serial line. Allows the user to limit this
125 search. */
126 static unsigned int heuristic_fence_post = 0;
127 /* *INDENT-OFF* */
128 /* Layout of a stack frame on the alpha:
129
130 | |
131 pdr members: | 7th ... nth arg, |
132 | `pushed' by caller. |
133 | |
134 ----------------|-------------------------------|<-- old_sp == vfp
135 ^ ^ ^ ^ | |
136 | | | | | |
137 | |localoff | Copies of 1st .. 6th |
138 | | | | | argument if necessary. |
139 | | | v | |
140 | | | --- |-------------------------------|<-- FRAME_LOCALS_ADDRESS
141 | | | | |
142 | | | | Locals and temporaries. |
143 | | | | |
144 | | | |-------------------------------|
145 | | | | |
146 |-fregoffset | Saved float registers. |
147 | | | | F9 |
148 | | | | . |
149 | | | | . |
150 | | | | F2 |
151 | | v | |
152 | | -------|-------------------------------|
153 | | | |
154 | | | Saved registers. |
155 | | | S6 |
156 |-regoffset | . |
157 | | | . |
158 | | | S0 |
159 | | | pdr.pcreg |
160 | v | |
161 | ----------|-------------------------------|
162 | | |
163 frameoffset | Argument build area, gets |
164 | | 7th ... nth arg for any |
165 | | called procedure. |
166 v | |
167 -------------|-------------------------------|<-- sp
168 | |
169 */
170 /* *INDENT-ON* */
171
172 #define PROC_LOW_ADDR(proc) ((proc)->pdr.adr) /* least address */
173 /* These next two fields are kind of being hijacked. I wonder if
174 iline is too small for the values it needs to hold, if GDB is
175 running on a 32-bit host. */
176 #define PROC_HIGH_ADDR(proc) ((proc)->pdr.iline) /* upper address bound */
177 #define PROC_DUMMY_FRAME(proc) ((proc)->pdr.cbLineOffset) /*CALL_DUMMY frame */
178 #define PROC_FRAME_OFFSET(proc) ((proc)->pdr.frameoffset)
179 #define PROC_FRAME_REG(proc) ((proc)->pdr.framereg)
180 #define PROC_REG_MASK(proc) ((proc)->pdr.regmask)
181 #define PROC_FREG_MASK(proc) ((proc)->pdr.fregmask)
182 #define PROC_REG_OFFSET(proc) ((proc)->pdr.regoffset)
183 #define PROC_FREG_OFFSET(proc) ((proc)->pdr.fregoffset)
184 #define PROC_PC_REG(proc) ((proc)->pdr.pcreg)
185 #define PROC_LOCALOFF(proc) ((proc)->pdr.localoff)
186 #define PROC_SYMBOL(proc) (*(struct symbol**)&(proc)->pdr.isym)
187 #define _PROC_MAGIC_ 0x0F0F0F0F
188 #define PROC_DESC_IS_DUMMY(proc) ((proc)->pdr.isym == _PROC_MAGIC_)
189 #define SET_PROC_DESC_IS_DUMMY(proc) ((proc)->pdr.isym = _PROC_MAGIC_)
190
191 struct linked_proc_info
192 {
193 struct alpha_extra_func_info info;
194 struct linked_proc_info *next;
195 }
196 *linked_proc_desc_table = NULL;
197 \f
198 static CORE_ADDR
199 alpha_frame_past_sigtramp_frame (struct frame_info *frame, CORE_ADDR pc)
200 {
201 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
202
203 if (tdep->skip_sigtramp_frame != NULL)
204 return (tdep->skip_sigtramp_frame (frame, pc));
205
206 return (0);
207 }
208
209 static LONGEST
210 alpha_dynamic_sigtramp_offset (CORE_ADDR pc)
211 {
212 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
213
214 /* Must be provided by OS/ABI variant code if supported. */
215 if (tdep->dynamic_sigtramp_offset != NULL)
216 return (tdep->dynamic_sigtramp_offset (pc));
217
218 return (-1);
219 }
220
221 #define ALPHA_PROC_SIGTRAMP_MAGIC 0x0e0f0f0f
222
223 /* Return TRUE if the procedure descriptor PROC is a procedure
224 descriptor that refers to a dynamically generated signal
225 trampoline routine. */
226 static int
227 alpha_proc_desc_is_dyn_sigtramp (struct alpha_extra_func_info *proc)
228 {
229 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
230
231 if (tdep->dynamic_sigtramp_offset != NULL)
232 return (proc->pdr.isym == ALPHA_PROC_SIGTRAMP_MAGIC);
233
234 return (0);
235 }
236
237 static void
238 alpha_set_proc_desc_is_dyn_sigtramp (struct alpha_extra_func_info *proc)
239 {
240 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
241
242 if (tdep->dynamic_sigtramp_offset != NULL)
243 proc->pdr.isym = ALPHA_PROC_SIGTRAMP_MAGIC;
244 }
245
246 /* Dynamically create a signal-handler caller procedure descriptor for
247 the signal-handler return code starting at address LOW_ADDR. The
248 descriptor is added to the linked_proc_desc_table. */
249
250 static alpha_extra_func_info_t
251 push_sigtramp_desc (CORE_ADDR low_addr)
252 {
253 struct linked_proc_info *link;
254 alpha_extra_func_info_t proc_desc;
255
256 link = (struct linked_proc_info *)
257 xmalloc (sizeof (struct linked_proc_info));
258 link->next = linked_proc_desc_table;
259 linked_proc_desc_table = link;
260
261 proc_desc = &link->info;
262
263 proc_desc->numargs = 0;
264 PROC_LOW_ADDR (proc_desc) = low_addr;
265 PROC_HIGH_ADDR (proc_desc) = low_addr + 3 * 4;
266 PROC_DUMMY_FRAME (proc_desc) = 0;
267 PROC_FRAME_OFFSET (proc_desc) = 0x298; /* sizeof(struct sigcontext_struct) */
268 PROC_FRAME_REG (proc_desc) = SP_REGNUM;
269 PROC_REG_MASK (proc_desc) = 0xffff;
270 PROC_FREG_MASK (proc_desc) = 0xffff;
271 PROC_PC_REG (proc_desc) = 26;
272 PROC_LOCALOFF (proc_desc) = 0;
273 alpha_set_proc_desc_is_dyn_sigtramp (proc_desc);
274 return (proc_desc);
275 }
276 \f
277
278 static const char *
279 alpha_register_name (int regno)
280 {
281 static char *register_names[] =
282 {
283 "v0", "t0", "t1", "t2", "t3", "t4", "t5", "t6",
284 "t7", "s0", "s1", "s2", "s3", "s4", "s5", "fp",
285 "a0", "a1", "a2", "a3", "a4", "a5", "t8", "t9",
286 "t10", "t11", "ra", "t12", "at", "gp", "sp", "zero",
287 "f0", "f1", "f2", "f3", "f4", "f5", "f6", "f7",
288 "f8", "f9", "f10", "f11", "f12", "f13", "f14", "f15",
289 "f16", "f17", "f18", "f19", "f20", "f21", "f22", "f23",
290 "f24", "f25", "f26", "f27", "f28", "f29", "f30", "fpcr",
291 "pc", "vfp",
292 };
293
294 if (regno < 0)
295 return (NULL);
296 if (regno >= (sizeof(register_names) / sizeof(*register_names)))
297 return (NULL);
298 return (register_names[regno]);
299 }
300
301 static int
302 alpha_cannot_fetch_register (int regno)
303 {
304 return (regno == FP_REGNUM || regno == ALPHA_ZERO_REGNUM);
305 }
306
307 static int
308 alpha_cannot_store_register (int regno)
309 {
310 return (regno == FP_REGNUM || regno == ALPHA_ZERO_REGNUM);
311 }
312
313 static int
314 alpha_register_convertible (int regno)
315 {
316 return (regno >= FP0_REGNUM && regno <= FP0_REGNUM + 31);
317 }
318
319 static struct type *
320 alpha_register_virtual_type (int regno)
321 {
322 return ((regno >= FP0_REGNUM && regno < (FP0_REGNUM+31))
323 ? builtin_type_double : builtin_type_long);
324 }
325
326 static int
327 alpha_register_byte (int regno)
328 {
329 return (regno * 8);
330 }
331
332 static int
333 alpha_register_raw_size (int regno)
334 {
335 return 8;
336 }
337
338 static int
339 alpha_register_virtual_size (int regno)
340 {
341 return 8;
342 }
343 \f
344
345 static CORE_ADDR
346 alpha_sigcontext_addr (struct frame_info *fi)
347 {
348 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
349
350 if (tdep->sigcontext_addr)
351 return (tdep->sigcontext_addr (fi));
352
353 return (0);
354 }
355
356 /* Guaranteed to set frame->saved_regs to some values (it never leaves it
357 NULL). */
358
359 static void
360 alpha_find_saved_regs (struct frame_info *frame)
361 {
362 int ireg;
363 CORE_ADDR reg_position;
364 unsigned long mask;
365 alpha_extra_func_info_t proc_desc;
366 int returnreg;
367
368 frame_saved_regs_zalloc (frame);
369
370 /* If it is the frame for __sigtramp, the saved registers are located
371 in a sigcontext structure somewhere on the stack. __sigtramp
372 passes a pointer to the sigcontext structure on the stack.
373 If the stack layout for __sigtramp changes, or if sigcontext offsets
374 change, we might have to update this code. */
375 #ifndef SIGFRAME_PC_OFF
376 #define SIGFRAME_PC_OFF (2 * 8)
377 #define SIGFRAME_REGSAVE_OFF (4 * 8)
378 #define SIGFRAME_FPREGSAVE_OFF (SIGFRAME_REGSAVE_OFF + 32 * 8 + 8)
379 #endif
380 if ((get_frame_type (frame) == SIGTRAMP_FRAME))
381 {
382 CORE_ADDR sigcontext_addr;
383
384 sigcontext_addr = alpha_sigcontext_addr (frame);
385 if (sigcontext_addr == 0)
386 {
387 /* Don't know where the sigcontext is; just bail. */
388 return;
389 }
390 for (ireg = 0; ireg < 32; ireg++)
391 {
392 reg_position = sigcontext_addr + SIGFRAME_REGSAVE_OFF + ireg * 8;
393 frame->saved_regs[ireg] = reg_position;
394 }
395 for (ireg = 0; ireg < 32; ireg++)
396 {
397 reg_position = sigcontext_addr + SIGFRAME_FPREGSAVE_OFF + ireg * 8;
398 frame->saved_regs[FP0_REGNUM + ireg] = reg_position;
399 }
400 frame->saved_regs[PC_REGNUM] = sigcontext_addr + SIGFRAME_PC_OFF;
401 return;
402 }
403
404 proc_desc = frame->extra_info->proc_desc;
405 if (proc_desc == NULL)
406 /* I'm not sure how/whether this can happen. Normally when we can't
407 find a proc_desc, we "synthesize" one using heuristic_proc_desc
408 and set the saved_regs right away. */
409 return;
410
411 /* Fill in the offsets for the registers which gen_mask says
412 were saved. */
413
414 reg_position = frame->frame + PROC_REG_OFFSET (proc_desc);
415 mask = PROC_REG_MASK (proc_desc);
416
417 returnreg = PROC_PC_REG (proc_desc);
418
419 /* Note that RA is always saved first, regardless of its actual
420 register number. */
421 if (mask & (1 << returnreg))
422 {
423 frame->saved_regs[returnreg] = reg_position;
424 reg_position += 8;
425 mask &= ~(1 << returnreg); /* Clear bit for RA so we
426 don't save again later. */
427 }
428
429 for (ireg = 0; ireg <= 31; ++ireg)
430 if (mask & (1 << ireg))
431 {
432 frame->saved_regs[ireg] = reg_position;
433 reg_position += 8;
434 }
435
436 /* Fill in the offsets for the registers which float_mask says
437 were saved. */
438
439 reg_position = frame->frame + PROC_FREG_OFFSET (proc_desc);
440 mask = PROC_FREG_MASK (proc_desc);
441
442 for (ireg = 0; ireg <= 31; ++ireg)
443 if (mask & (1 << ireg))
444 {
445 frame->saved_regs[FP0_REGNUM + ireg] = reg_position;
446 reg_position += 8;
447 }
448
449 frame->saved_regs[PC_REGNUM] = frame->saved_regs[returnreg];
450 }
451
452 static void
453 alpha_frame_init_saved_regs (struct frame_info *fi)
454 {
455 if (fi->saved_regs == NULL)
456 alpha_find_saved_regs (fi);
457 fi->saved_regs[SP_REGNUM] = fi->frame;
458 }
459
460 static void
461 alpha_init_frame_pc_first (int fromleaf, struct frame_info *prev)
462 {
463 prev->pc = (fromleaf ? SAVED_PC_AFTER_CALL (prev->next) :
464 prev->next ? FRAME_SAVED_PC (prev->next) : read_pc ());
465 }
466
467 static CORE_ADDR
468 read_next_frame_reg (struct frame_info *fi, int regno)
469 {
470 for (; fi; fi = fi->next)
471 {
472 /* We have to get the saved sp from the sigcontext
473 if it is a signal handler frame. */
474 if (regno == SP_REGNUM && !(get_frame_type (fi) == SIGTRAMP_FRAME))
475 return fi->frame;
476 else
477 {
478 if (fi->saved_regs == NULL)
479 alpha_find_saved_regs (fi);
480 if (fi->saved_regs[regno])
481 return read_memory_integer (fi->saved_regs[regno], 8);
482 }
483 }
484 return read_register (regno);
485 }
486
487 static CORE_ADDR
488 alpha_frame_saved_pc (struct frame_info *frame)
489 {
490 alpha_extra_func_info_t proc_desc = frame->extra_info->proc_desc;
491 /* We have to get the saved pc from the sigcontext
492 if it is a signal handler frame. */
493 int pcreg = (get_frame_type (frame) == SIGTRAMP_FRAME) ? PC_REGNUM
494 : frame->extra_info->pc_reg;
495
496 if (proc_desc && PROC_DESC_IS_DUMMY (proc_desc))
497 return read_memory_integer (frame->frame - 8, 8);
498
499 return read_next_frame_reg (frame, pcreg);
500 }
501
502 static CORE_ADDR
503 alpha_saved_pc_after_call (struct frame_info *frame)
504 {
505 CORE_ADDR pc = frame->pc;
506 CORE_ADDR tmp;
507 alpha_extra_func_info_t proc_desc;
508 int pcreg;
509
510 /* Skip over shared library trampoline if necessary. */
511 tmp = SKIP_TRAMPOLINE_CODE (pc);
512 if (tmp != 0)
513 pc = tmp;
514
515 proc_desc = find_proc_desc (pc, frame->next);
516 pcreg = proc_desc ? PROC_PC_REG (proc_desc) : ALPHA_RA_REGNUM;
517
518 if ((get_frame_type (frame) == SIGTRAMP_FRAME))
519 return alpha_frame_saved_pc (frame);
520 else
521 return read_register (pcreg);
522 }
523
524
525 static struct alpha_extra_func_info temp_proc_desc;
526 static CORE_ADDR temp_saved_regs[ALPHA_NUM_REGS];
527
528 /* Nonzero if instruction at PC is a return instruction. "ret
529 $zero,($ra),1" on alpha. */
530
531 static int
532 alpha_about_to_return (CORE_ADDR pc)
533 {
534 return read_memory_integer (pc, 4) == 0x6bfa8001;
535 }
536
537
538
539 /* This fencepost looks highly suspicious to me. Removing it also
540 seems suspicious as it could affect remote debugging across serial
541 lines. */
542
543 static CORE_ADDR
544 heuristic_proc_start (CORE_ADDR pc)
545 {
546 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
547 CORE_ADDR start_pc = pc;
548 CORE_ADDR fence = start_pc - heuristic_fence_post;
549
550 if (start_pc == 0)
551 return 0;
552
553 if (heuristic_fence_post == UINT_MAX
554 || fence < tdep->vm_min_address)
555 fence = tdep->vm_min_address;
556
557 /* search back for previous return */
558 for (start_pc -= 4;; start_pc -= 4)
559 if (start_pc < fence)
560 {
561 /* It's not clear to me why we reach this point when
562 stop_soon_quietly, but with this test, at least we
563 don't print out warnings for every child forked (eg, on
564 decstation). 22apr93 rich@cygnus.com. */
565 if (!stop_soon_quietly)
566 {
567 static int blurb_printed = 0;
568
569 if (fence == tdep->vm_min_address)
570 warning ("Hit beginning of text section without finding");
571 else
572 warning ("Hit heuristic-fence-post without finding");
573
574 warning ("enclosing function for address 0x%s", paddr_nz (pc));
575 if (!blurb_printed)
576 {
577 printf_filtered ("\
578 This warning occurs if you are debugging a function without any symbols\n\
579 (for example, in a stripped executable). In that case, you may wish to\n\
580 increase the size of the search with the `set heuristic-fence-post' command.\n\
581 \n\
582 Otherwise, you told GDB there was a function where there isn't one, or\n\
583 (more likely) you have encountered a bug in GDB.\n");
584 blurb_printed = 1;
585 }
586 }
587
588 return 0;
589 }
590 else if (alpha_about_to_return (start_pc))
591 break;
592
593 start_pc += 4; /* skip return */
594 return start_pc;
595 }
596
597 static alpha_extra_func_info_t
598 heuristic_proc_desc (CORE_ADDR start_pc, CORE_ADDR limit_pc,
599 struct frame_info *next_frame)
600 {
601 CORE_ADDR sp = read_next_frame_reg (next_frame, SP_REGNUM);
602 CORE_ADDR vfp = sp;
603 CORE_ADDR cur_pc;
604 int frame_size;
605 int has_frame_reg = 0;
606 unsigned long reg_mask = 0;
607 int pcreg = -1;
608 int regno;
609
610 if (start_pc == 0)
611 return NULL;
612 memset (&temp_proc_desc, '\0', sizeof (temp_proc_desc));
613 memset (&temp_saved_regs, '\0', SIZEOF_FRAME_SAVED_REGS);
614 PROC_LOW_ADDR (&temp_proc_desc) = start_pc;
615
616 if (start_pc + 200 < limit_pc)
617 limit_pc = start_pc + 200;
618 frame_size = 0;
619 for (cur_pc = start_pc; cur_pc < limit_pc; cur_pc += 4)
620 {
621 char buf[4];
622 unsigned long word;
623 int status;
624
625 status = read_memory_nobpt (cur_pc, buf, 4);
626 if (status)
627 memory_error (status, cur_pc);
628 word = extract_unsigned_integer (buf, 4);
629
630 if ((word & 0xffff0000) == 0x23de0000) /* lda $sp,n($sp) */
631 {
632 if (word & 0x8000)
633 {
634 /* Consider only the first stack allocation instruction
635 to contain the static size of the frame. */
636 if (frame_size == 0)
637 frame_size += (-word) & 0xffff;
638 }
639 else
640 /* Exit loop if a positive stack adjustment is found, which
641 usually means that the stack cleanup code in the function
642 epilogue is reached. */
643 break;
644 }
645 else if ((word & 0xfc1f0000) == 0xb41e0000 /* stq reg,n($sp) */
646 && (word & 0xffff0000) != 0xb7fe0000) /* reg != $zero */
647 {
648 int reg = (word & 0x03e00000) >> 21;
649 reg_mask |= 1 << reg;
650
651 /* Do not compute the address where the register was saved yet,
652 because we don't know yet if the offset will need to be
653 relative to $sp or $fp (we can not compute the address relative
654 to $sp if $sp is updated during the execution of the current
655 subroutine, for instance when doing some alloca). So just store
656 the offset for the moment, and compute the address later
657 when we know whether this frame has a frame pointer or not.
658 */
659 temp_saved_regs[reg] = (short) word;
660
661 /* Starting with OSF/1-3.2C, the system libraries are shipped
662 without local symbols, but they still contain procedure
663 descriptors without a symbol reference. GDB is currently
664 unable to find these procedure descriptors and uses
665 heuristic_proc_desc instead.
666 As some low level compiler support routines (__div*, __add*)
667 use a non-standard return address register, we have to
668 add some heuristics to determine the return address register,
669 or stepping over these routines will fail.
670 Usually the return address register is the first register
671 saved on the stack, but assembler optimization might
672 rearrange the register saves.
673 So we recognize only a few registers (t7, t9, ra) within
674 the procedure prologue as valid return address registers.
675 If we encounter a return instruction, we extract the
676 the return address register from it.
677
678 FIXME: Rewriting GDB to access the procedure descriptors,
679 e.g. via the minimal symbol table, might obviate this hack. */
680 if (pcreg == -1
681 && cur_pc < (start_pc + 80)
682 && (reg == ALPHA_T7_REGNUM || reg == ALPHA_T9_REGNUM
683 || reg == ALPHA_RA_REGNUM))
684 pcreg = reg;
685 }
686 else if ((word & 0xffe0ffff) == 0x6be08001) /* ret zero,reg,1 */
687 pcreg = (word >> 16) & 0x1f;
688 else if (word == 0x47de040f || word == 0x47fe040f) /* bis sp,sp fp */
689 {
690 /* ??? I am not sure what instruction is 0x47fe040f, and I
691 am suspecting that there was a typo and should have been
692 0x47fe040f. I'm keeping it in the test above until further
693 investigation */
694 has_frame_reg = 1;
695 vfp = read_next_frame_reg (next_frame, ALPHA_GCC_FP_REGNUM);
696 }
697 }
698 if (pcreg == -1)
699 {
700 /* If we haven't found a valid return address register yet,
701 keep searching in the procedure prologue. */
702 while (cur_pc < (limit_pc + 80) && cur_pc < (start_pc + 80))
703 {
704 char buf[4];
705 unsigned long word;
706
707 if (read_memory_nobpt (cur_pc, buf, 4))
708 break;
709 cur_pc += 4;
710 word = extract_unsigned_integer (buf, 4);
711
712 if ((word & 0xfc1f0000) == 0xb41e0000 /* stq reg,n($sp) */
713 && (word & 0xffff0000) != 0xb7fe0000) /* reg != $zero */
714 {
715 int reg = (word & 0x03e00000) >> 21;
716 if (reg == ALPHA_T7_REGNUM || reg == ALPHA_T9_REGNUM
717 || reg == ALPHA_RA_REGNUM)
718 {
719 pcreg = reg;
720 break;
721 }
722 }
723 else if ((word & 0xffe0ffff) == 0x6be08001) /* ret zero,reg,1 */
724 {
725 pcreg = (word >> 16) & 0x1f;
726 break;
727 }
728 }
729 }
730
731 if (has_frame_reg)
732 PROC_FRAME_REG (&temp_proc_desc) = ALPHA_GCC_FP_REGNUM;
733 else
734 PROC_FRAME_REG (&temp_proc_desc) = SP_REGNUM;
735
736 /* At this point, we know which of the Stack Pointer or the Frame Pointer
737 to use as the reference address to compute the saved registers address.
738 But in both cases, the processing above has set vfp to this reference
739 address, so just need to increment the offset of each saved register
740 by this address. */
741 for (regno = 0; regno < NUM_REGS; regno++)
742 {
743 if (reg_mask & 1 << regno)
744 temp_saved_regs[regno] += vfp;
745 }
746
747 PROC_FRAME_OFFSET (&temp_proc_desc) = frame_size;
748 PROC_REG_MASK (&temp_proc_desc) = reg_mask;
749 PROC_PC_REG (&temp_proc_desc) = (pcreg == -1) ? ALPHA_RA_REGNUM : pcreg;
750 PROC_LOCALOFF (&temp_proc_desc) = 0; /* XXX - bogus */
751 return &temp_proc_desc;
752 }
753
754 /* This returns the PC of the first inst after the prologue. If we can't
755 find the prologue, then return 0. */
756
757 static CORE_ADDR
758 after_prologue (CORE_ADDR pc, alpha_extra_func_info_t proc_desc)
759 {
760 struct symtab_and_line sal;
761 CORE_ADDR func_addr, func_end;
762
763 if (!proc_desc)
764 proc_desc = find_proc_desc (pc, NULL);
765
766 if (proc_desc)
767 {
768 if (alpha_proc_desc_is_dyn_sigtramp (proc_desc))
769 return PROC_LOW_ADDR (proc_desc); /* "prologue" is in kernel */
770
771 /* If function is frameless, then we need to do it the hard way. I
772 strongly suspect that frameless always means prologueless... */
773 if (PROC_FRAME_REG (proc_desc) == SP_REGNUM
774 && PROC_FRAME_OFFSET (proc_desc) == 0)
775 return 0;
776 }
777
778 if (!find_pc_partial_function (pc, NULL, &func_addr, &func_end))
779 return 0; /* Unknown */
780
781 sal = find_pc_line (func_addr, 0);
782
783 if (sal.end < func_end)
784 return sal.end;
785
786 /* The line after the prologue is after the end of the function. In this
787 case, tell the caller to find the prologue the hard way. */
788
789 return 0;
790 }
791
792 /* Return non-zero if we *might* be in a function prologue. Return zero if we
793 are definitively *not* in a function prologue. */
794
795 static int
796 alpha_in_prologue (CORE_ADDR pc, alpha_extra_func_info_t proc_desc)
797 {
798 CORE_ADDR after_prologue_pc;
799
800 after_prologue_pc = after_prologue (pc, proc_desc);
801
802 if (after_prologue_pc == 0
803 || pc < after_prologue_pc)
804 return 1;
805 else
806 return 0;
807 }
808
809 static alpha_extra_func_info_t
810 find_proc_desc (CORE_ADDR pc, struct frame_info *next_frame)
811 {
812 alpha_extra_func_info_t proc_desc;
813 struct block *b;
814 struct symbol *sym;
815 CORE_ADDR startaddr;
816
817 /* Try to get the proc_desc from the linked call dummy proc_descs
818 if the pc is in the call dummy.
819 This is hairy. In the case of nested dummy calls we have to find the
820 right proc_desc, but we might not yet know the frame for the dummy
821 as it will be contained in the proc_desc we are searching for.
822 So we have to find the proc_desc whose frame is closest to the current
823 stack pointer. */
824
825 if (PC_IN_CALL_DUMMY (pc, 0, 0))
826 {
827 struct linked_proc_info *link;
828 CORE_ADDR sp = read_next_frame_reg (next_frame, SP_REGNUM);
829 alpha_extra_func_info_t found_proc_desc = NULL;
830 long min_distance = LONG_MAX;
831
832 for (link = linked_proc_desc_table; link; link = link->next)
833 {
834 long distance = (CORE_ADDR) PROC_DUMMY_FRAME (&link->info) - sp;
835 if (distance > 0 && distance < min_distance)
836 {
837 min_distance = distance;
838 found_proc_desc = &link->info;
839 }
840 }
841 if (found_proc_desc != NULL)
842 return found_proc_desc;
843 }
844
845 b = block_for_pc (pc);
846
847 find_pc_partial_function (pc, NULL, &startaddr, NULL);
848 if (b == NULL)
849 sym = NULL;
850 else
851 {
852 if (startaddr > BLOCK_START (b))
853 /* This is the "pathological" case referred to in a comment in
854 print_frame_info. It might be better to move this check into
855 symbol reading. */
856 sym = NULL;
857 else
858 sym = lookup_symbol (MIPS_EFI_SYMBOL_NAME, b, LABEL_NAMESPACE,
859 0, NULL);
860 }
861
862 /* If we never found a PDR for this function in symbol reading, then
863 examine prologues to find the information. */
864 if (sym && ((mips_extra_func_info_t) SYMBOL_VALUE (sym))->pdr.framereg == -1)
865 sym = NULL;
866
867 if (sym)
868 {
869 /* IF this is the topmost frame AND
870 * (this proc does not have debugging information OR
871 * the PC is in the procedure prologue)
872 * THEN create a "heuristic" proc_desc (by analyzing
873 * the actual code) to replace the "official" proc_desc.
874 */
875 proc_desc = (alpha_extra_func_info_t) SYMBOL_VALUE (sym);
876 if (next_frame == NULL)
877 {
878 if (PROC_DESC_IS_DUMMY (proc_desc) || alpha_in_prologue (pc, proc_desc))
879 {
880 alpha_extra_func_info_t found_heuristic =
881 heuristic_proc_desc (PROC_LOW_ADDR (proc_desc),
882 pc, next_frame);
883 if (found_heuristic)
884 {
885 PROC_LOCALOFF (found_heuristic) =
886 PROC_LOCALOFF (proc_desc);
887 PROC_PC_REG (found_heuristic) = PROC_PC_REG (proc_desc);
888 proc_desc = found_heuristic;
889 }
890 }
891 }
892 }
893 else
894 {
895 long offset;
896
897 /* Is linked_proc_desc_table really necessary? It only seems to be used
898 by procedure call dummys. However, the procedures being called ought
899 to have their own proc_descs, and even if they don't,
900 heuristic_proc_desc knows how to create them! */
901
902 register struct linked_proc_info *link;
903 for (link = linked_proc_desc_table; link; link = link->next)
904 if (PROC_LOW_ADDR (&link->info) <= pc
905 && PROC_HIGH_ADDR (&link->info) > pc)
906 return &link->info;
907
908 /* If PC is inside a dynamically generated sigtramp handler,
909 create and push a procedure descriptor for that code: */
910 offset = alpha_dynamic_sigtramp_offset (pc);
911 if (offset >= 0)
912 return push_sigtramp_desc (pc - offset);
913
914 /* If heuristic_fence_post is non-zero, determine the procedure
915 start address by examining the instructions.
916 This allows us to find the start address of static functions which
917 have no symbolic information, as startaddr would have been set to
918 the preceding global function start address by the
919 find_pc_partial_function call above. */
920 if (startaddr == 0 || heuristic_fence_post != 0)
921 startaddr = heuristic_proc_start (pc);
922
923 proc_desc =
924 heuristic_proc_desc (startaddr, pc, next_frame);
925 }
926 return proc_desc;
927 }
928
929 alpha_extra_func_info_t cached_proc_desc;
930
931 static CORE_ADDR
932 alpha_frame_chain (struct frame_info *frame)
933 {
934 alpha_extra_func_info_t proc_desc;
935 CORE_ADDR saved_pc = FRAME_SAVED_PC (frame);
936
937 if (saved_pc == 0 || inside_entry_file (saved_pc))
938 return 0;
939
940 proc_desc = find_proc_desc (saved_pc, frame);
941 if (!proc_desc)
942 return 0;
943
944 cached_proc_desc = proc_desc;
945
946 /* Fetch the frame pointer for a dummy frame from the procedure
947 descriptor. */
948 if (PROC_DESC_IS_DUMMY (proc_desc))
949 return (CORE_ADDR) PROC_DUMMY_FRAME (proc_desc);
950
951 /* If no frame pointer and frame size is zero, we must be at end
952 of stack (or otherwise hosed). If we don't check frame size,
953 we loop forever if we see a zero size frame. */
954 if (PROC_FRAME_REG (proc_desc) == SP_REGNUM
955 && PROC_FRAME_OFFSET (proc_desc) == 0
956 /* The previous frame from a sigtramp frame might be frameless
957 and have frame size zero. */
958 && !(get_frame_type (frame) == SIGTRAMP_FRAME))
959 return alpha_frame_past_sigtramp_frame (frame, saved_pc);
960 else
961 return read_next_frame_reg (frame, PROC_FRAME_REG (proc_desc))
962 + PROC_FRAME_OFFSET (proc_desc);
963 }
964
965 void
966 alpha_print_extra_frame_info (struct frame_info *fi)
967 {
968 if (fi
969 && fi->extra_info
970 && fi->extra_info->proc_desc
971 && fi->extra_info->proc_desc->pdr.framereg < NUM_REGS)
972 printf_filtered (" frame pointer is at %s+%s\n",
973 REGISTER_NAME (fi->extra_info->proc_desc->pdr.framereg),
974 paddr_d (fi->extra_info->proc_desc->pdr.frameoffset));
975 }
976
977 static void
978 alpha_init_extra_frame_info (int fromleaf, struct frame_info *frame)
979 {
980 /* Use proc_desc calculated in frame_chain */
981 alpha_extra_func_info_t proc_desc =
982 frame->next ? cached_proc_desc : find_proc_desc (frame->pc, frame->next);
983
984 frame->extra_info = (struct frame_extra_info *)
985 frame_obstack_alloc (sizeof (struct frame_extra_info));
986
987 frame->saved_regs = NULL;
988 frame->extra_info->localoff = 0;
989 frame->extra_info->pc_reg = ALPHA_RA_REGNUM;
990 frame->extra_info->proc_desc = proc_desc == &temp_proc_desc ? 0 : proc_desc;
991 if (proc_desc)
992 {
993 /* Get the locals offset and the saved pc register from the
994 procedure descriptor, they are valid even if we are in the
995 middle of the prologue. */
996 frame->extra_info->localoff = PROC_LOCALOFF (proc_desc);
997 frame->extra_info->pc_reg = PROC_PC_REG (proc_desc);
998
999 /* Fixup frame-pointer - only needed for top frame */
1000
1001 /* Fetch the frame pointer for a dummy frame from the procedure
1002 descriptor. */
1003 if (PROC_DESC_IS_DUMMY (proc_desc))
1004 frame->frame = (CORE_ADDR) PROC_DUMMY_FRAME (proc_desc);
1005
1006 /* This may not be quite right, if proc has a real frame register.
1007 Get the value of the frame relative sp, procedure might have been
1008 interrupted by a signal at it's very start. */
1009 else if (frame->pc == PROC_LOW_ADDR (proc_desc)
1010 && !alpha_proc_desc_is_dyn_sigtramp (proc_desc))
1011 frame->frame = read_next_frame_reg (frame->next, SP_REGNUM);
1012 else
1013 frame->frame = read_next_frame_reg (frame->next, PROC_FRAME_REG (proc_desc))
1014 + PROC_FRAME_OFFSET (proc_desc);
1015
1016 if (proc_desc == &temp_proc_desc)
1017 {
1018 char *name;
1019
1020 /* Do not set the saved registers for a sigtramp frame,
1021 alpha_find_saved_registers will do that for us. We can't
1022 use (get_frame_type (frame) == SIGTRAMP_FRAME), it is not
1023 yet set. */
1024 /* FIXME: cagney/2002-11-18: This problem will go away once
1025 frame.c:get_prev_frame() is modified to set the frame's
1026 type before calling functions like this. */
1027 find_pc_partial_function (frame->pc, &name,
1028 (CORE_ADDR *) NULL, (CORE_ADDR *) NULL);
1029 if (!PC_IN_SIGTRAMP (frame->pc, name))
1030 {
1031 frame->saved_regs = (CORE_ADDR *)
1032 frame_obstack_alloc (SIZEOF_FRAME_SAVED_REGS);
1033 memcpy (frame->saved_regs, temp_saved_regs,
1034 SIZEOF_FRAME_SAVED_REGS);
1035 frame->saved_regs[PC_REGNUM]
1036 = frame->saved_regs[ALPHA_RA_REGNUM];
1037 }
1038 }
1039 }
1040 }
1041
1042 static CORE_ADDR
1043 alpha_frame_locals_address (struct frame_info *fi)
1044 {
1045 return (fi->frame - fi->extra_info->localoff);
1046 }
1047
1048 static CORE_ADDR
1049 alpha_frame_args_address (struct frame_info *fi)
1050 {
1051 return (fi->frame - (ALPHA_NUM_ARG_REGS * 8));
1052 }
1053
1054 /* ALPHA stack frames are almost impenetrable. When execution stops,
1055 we basically have to look at symbol information for the function
1056 that we stopped in, which tells us *which* register (if any) is
1057 the base of the frame pointer, and what offset from that register
1058 the frame itself is at.
1059
1060 This presents a problem when trying to examine a stack in memory
1061 (that isn't executing at the moment), using the "frame" command. We
1062 don't have a PC, nor do we have any registers except SP.
1063
1064 This routine takes two arguments, SP and PC, and tries to make the
1065 cached frames look as if these two arguments defined a frame on the
1066 cache. This allows the rest of info frame to extract the important
1067 arguments without difficulty. */
1068
1069 struct frame_info *
1070 alpha_setup_arbitrary_frame (int argc, CORE_ADDR *argv)
1071 {
1072 if (argc != 2)
1073 error ("ALPHA frame specifications require two arguments: sp and pc");
1074
1075 return create_new_frame (argv[0], argv[1]);
1076 }
1077
1078 /* The alpha passes the first six arguments in the registers, the rest on
1079 the stack. The register arguments are eventually transferred to the
1080 argument transfer area immediately below the stack by the called function
1081 anyway. So we `push' at least six arguments on the stack, `reload' the
1082 argument registers and then adjust the stack pointer to point past the
1083 sixth argument. This algorithm simplifies the passing of a large struct
1084 which extends from the registers to the stack.
1085 If the called function is returning a structure, the address of the
1086 structure to be returned is passed as a hidden first argument. */
1087
1088 static CORE_ADDR
1089 alpha_push_arguments (int nargs, struct value **args, CORE_ADDR sp,
1090 int struct_return, CORE_ADDR struct_addr)
1091 {
1092 int i;
1093 int accumulate_size = struct_return ? 8 : 0;
1094 int arg_regs_size = ALPHA_NUM_ARG_REGS * 8;
1095 struct alpha_arg
1096 {
1097 char *contents;
1098 int len;
1099 int offset;
1100 };
1101 struct alpha_arg *alpha_args =
1102 (struct alpha_arg *) alloca (nargs * sizeof (struct alpha_arg));
1103 register struct alpha_arg *m_arg;
1104 char raw_buffer[sizeof (CORE_ADDR)];
1105 int required_arg_regs;
1106
1107 for (i = 0, m_arg = alpha_args; i < nargs; i++, m_arg++)
1108 {
1109 struct value *arg = args[i];
1110 struct type *arg_type = check_typedef (VALUE_TYPE (arg));
1111 /* Cast argument to long if necessary as the compiler does it too. */
1112 switch (TYPE_CODE (arg_type))
1113 {
1114 case TYPE_CODE_INT:
1115 case TYPE_CODE_BOOL:
1116 case TYPE_CODE_CHAR:
1117 case TYPE_CODE_RANGE:
1118 case TYPE_CODE_ENUM:
1119 if (TYPE_LENGTH (arg_type) < TYPE_LENGTH (builtin_type_long))
1120 {
1121 arg_type = builtin_type_long;
1122 arg = value_cast (arg_type, arg);
1123 }
1124 break;
1125 default:
1126 break;
1127 }
1128 m_arg->len = TYPE_LENGTH (arg_type);
1129 m_arg->offset = accumulate_size;
1130 accumulate_size = (accumulate_size + m_arg->len + 7) & ~7;
1131 m_arg->contents = VALUE_CONTENTS (arg);
1132 }
1133
1134 /* Determine required argument register loads, loading an argument register
1135 is expensive as it uses three ptrace calls. */
1136 required_arg_regs = accumulate_size / 8;
1137 if (required_arg_regs > ALPHA_NUM_ARG_REGS)
1138 required_arg_regs = ALPHA_NUM_ARG_REGS;
1139
1140 /* Make room for the arguments on the stack. */
1141 if (accumulate_size < arg_regs_size)
1142 accumulate_size = arg_regs_size;
1143 sp -= accumulate_size;
1144
1145 /* Keep sp aligned to a multiple of 16 as the compiler does it too. */
1146 sp &= ~15;
1147
1148 /* `Push' arguments on the stack. */
1149 for (i = nargs; m_arg--, --i >= 0;)
1150 write_memory (sp + m_arg->offset, m_arg->contents, m_arg->len);
1151 if (struct_return)
1152 {
1153 store_address (raw_buffer, sizeof (CORE_ADDR), struct_addr);
1154 write_memory (sp, raw_buffer, sizeof (CORE_ADDR));
1155 }
1156
1157 /* Load the argument registers. */
1158 for (i = 0; i < required_arg_regs; i++)
1159 {
1160 LONGEST val;
1161
1162 val = read_memory_integer (sp + i * 8, 8);
1163 write_register (ALPHA_A0_REGNUM + i, val);
1164 write_register (ALPHA_FPA0_REGNUM + i, val);
1165 }
1166
1167 return sp + arg_regs_size;
1168 }
1169
1170 static void
1171 alpha_push_dummy_frame (void)
1172 {
1173 int ireg;
1174 struct linked_proc_info *link;
1175 alpha_extra_func_info_t proc_desc;
1176 CORE_ADDR sp = read_register (SP_REGNUM);
1177 CORE_ADDR save_address;
1178 char raw_buffer[ALPHA_MAX_REGISTER_RAW_SIZE];
1179 unsigned long mask;
1180
1181 link = (struct linked_proc_info *) xmalloc (sizeof (struct linked_proc_info));
1182 link->next = linked_proc_desc_table;
1183 linked_proc_desc_table = link;
1184
1185 proc_desc = &link->info;
1186
1187 /*
1188 * The registers we must save are all those not preserved across
1189 * procedure calls.
1190 * In addition, we must save the PC and RA.
1191 *
1192 * Dummy frame layout:
1193 * (high memory)
1194 * Saved PC
1195 * Saved F30
1196 * ...
1197 * Saved F0
1198 * Saved R29
1199 * ...
1200 * Saved R0
1201 * Saved R26 (RA)
1202 * Parameter build area
1203 * (low memory)
1204 */
1205
1206 /* MASK(i,j) == (1<<i) + (1<<(i+1)) + ... + (1<<j)). Assume i<=j<31. */
1207 #define MASK(i,j) ((((LONGEST)1 << ((j)+1)) - 1) ^ (((LONGEST)1 << (i)) - 1))
1208 #define GEN_REG_SAVE_MASK (MASK(0,8) | MASK(16,29))
1209 #define GEN_REG_SAVE_COUNT 24
1210 #define FLOAT_REG_SAVE_MASK (MASK(0,1) | MASK(10,30))
1211 #define FLOAT_REG_SAVE_COUNT 23
1212 /* The special register is the PC as we have no bit for it in the save masks.
1213 alpha_frame_saved_pc knows where the pc is saved in a dummy frame. */
1214 #define SPECIAL_REG_SAVE_COUNT 1
1215
1216 PROC_REG_MASK (proc_desc) = GEN_REG_SAVE_MASK;
1217 PROC_FREG_MASK (proc_desc) = FLOAT_REG_SAVE_MASK;
1218 /* PROC_REG_OFFSET is the offset from the dummy frame to the saved RA,
1219 but keep SP aligned to a multiple of 16. */
1220 PROC_REG_OFFSET (proc_desc) =
1221 -((8 * (SPECIAL_REG_SAVE_COUNT
1222 + GEN_REG_SAVE_COUNT
1223 + FLOAT_REG_SAVE_COUNT)
1224 + 15) & ~15);
1225 PROC_FREG_OFFSET (proc_desc) =
1226 PROC_REG_OFFSET (proc_desc) + 8 * GEN_REG_SAVE_COUNT;
1227
1228 /* Save general registers.
1229 The return address register is the first saved register, all other
1230 registers follow in ascending order.
1231 The PC is saved immediately below the SP. */
1232 save_address = sp + PROC_REG_OFFSET (proc_desc);
1233 store_address (raw_buffer, 8, read_register (ALPHA_RA_REGNUM));
1234 write_memory (save_address, raw_buffer, 8);
1235 save_address += 8;
1236 mask = PROC_REG_MASK (proc_desc) & 0xffffffffL;
1237 for (ireg = 0; mask; ireg++, mask >>= 1)
1238 if (mask & 1)
1239 {
1240 if (ireg == ALPHA_RA_REGNUM)
1241 continue;
1242 store_address (raw_buffer, 8, read_register (ireg));
1243 write_memory (save_address, raw_buffer, 8);
1244 save_address += 8;
1245 }
1246
1247 store_address (raw_buffer, 8, read_register (PC_REGNUM));
1248 write_memory (sp - 8, raw_buffer, 8);
1249
1250 /* Save floating point registers. */
1251 save_address = sp + PROC_FREG_OFFSET (proc_desc);
1252 mask = PROC_FREG_MASK (proc_desc) & 0xffffffffL;
1253 for (ireg = 0; mask; ireg++, mask >>= 1)
1254 if (mask & 1)
1255 {
1256 store_address (raw_buffer, 8, read_register (ireg + FP0_REGNUM));
1257 write_memory (save_address, raw_buffer, 8);
1258 save_address += 8;
1259 }
1260
1261 /* Set and save the frame address for the dummy.
1262 This is tricky. The only registers that are suitable for a frame save
1263 are those that are preserved across procedure calls (s0-s6). But if
1264 a read system call is interrupted and then a dummy call is made
1265 (see testsuite/gdb.t17/interrupt.exp) the dummy call hangs till the read
1266 is satisfied. Then it returns with the s0-s6 registers set to the values
1267 on entry to the read system call and our dummy frame pointer would be
1268 destroyed. So we save the dummy frame in the proc_desc and handle the
1269 retrieval of the frame pointer of a dummy specifically. The frame register
1270 is set to the virtual frame (pseudo) register, it's value will always
1271 be read as zero and will help us to catch any errors in the dummy frame
1272 retrieval code. */
1273 PROC_DUMMY_FRAME (proc_desc) = sp;
1274 PROC_FRAME_REG (proc_desc) = FP_REGNUM;
1275 PROC_FRAME_OFFSET (proc_desc) = 0;
1276 sp += PROC_REG_OFFSET (proc_desc);
1277 write_register (SP_REGNUM, sp);
1278
1279 PROC_LOW_ADDR (proc_desc) = CALL_DUMMY_ADDRESS ();
1280 PROC_HIGH_ADDR (proc_desc) = PROC_LOW_ADDR (proc_desc) + 4;
1281
1282 SET_PROC_DESC_IS_DUMMY (proc_desc);
1283 PROC_PC_REG (proc_desc) = ALPHA_RA_REGNUM;
1284 }
1285
1286 static void
1287 alpha_pop_frame (void)
1288 {
1289 register int regnum;
1290 struct frame_info *frame = get_current_frame ();
1291 CORE_ADDR new_sp = frame->frame;
1292
1293 alpha_extra_func_info_t proc_desc = frame->extra_info->proc_desc;
1294
1295 /* we need proc_desc to know how to restore the registers;
1296 if it is NULL, construct (a temporary) one */
1297 if (proc_desc == NULL)
1298 proc_desc = find_proc_desc (frame->pc, frame->next);
1299
1300 /* Question: should we copy this proc_desc and save it in
1301 frame->proc_desc? If we do, who will free it?
1302 For now, we don't save a copy... */
1303
1304 write_register (PC_REGNUM, FRAME_SAVED_PC (frame));
1305 if (frame->saved_regs == NULL)
1306 alpha_find_saved_regs (frame);
1307 if (proc_desc)
1308 {
1309 for (regnum = 32; --regnum >= 0;)
1310 if (PROC_REG_MASK (proc_desc) & (1 << regnum))
1311 write_register (regnum,
1312 read_memory_integer (frame->saved_regs[regnum],
1313 8));
1314 for (regnum = 32; --regnum >= 0;)
1315 if (PROC_FREG_MASK (proc_desc) & (1 << regnum))
1316 write_register (regnum + FP0_REGNUM,
1317 read_memory_integer (frame->saved_regs[regnum + FP0_REGNUM], 8));
1318 }
1319 write_register (SP_REGNUM, new_sp);
1320 flush_cached_frames ();
1321
1322 if (proc_desc && (PROC_DESC_IS_DUMMY (proc_desc)
1323 || alpha_proc_desc_is_dyn_sigtramp (proc_desc)))
1324 {
1325 struct linked_proc_info *pi_ptr, *prev_ptr;
1326
1327 for (pi_ptr = linked_proc_desc_table, prev_ptr = NULL;
1328 pi_ptr != NULL;
1329 prev_ptr = pi_ptr, pi_ptr = pi_ptr->next)
1330 {
1331 if (&pi_ptr->info == proc_desc)
1332 break;
1333 }
1334
1335 if (pi_ptr == NULL)
1336 error ("Can't locate dummy extra frame info\n");
1337
1338 if (prev_ptr != NULL)
1339 prev_ptr->next = pi_ptr->next;
1340 else
1341 linked_proc_desc_table = pi_ptr->next;
1342
1343 xfree (pi_ptr);
1344 }
1345 }
1346 \f
1347 /* To skip prologues, I use this predicate. Returns either PC itself
1348 if the code at PC does not look like a function prologue; otherwise
1349 returns an address that (if we're lucky) follows the prologue. If
1350 LENIENT, then we must skip everything which is involved in setting
1351 up the frame (it's OK to skip more, just so long as we don't skip
1352 anything which might clobber the registers which are being saved.
1353 Currently we must not skip more on the alpha, but we might need the
1354 lenient stuff some day. */
1355
1356 static CORE_ADDR
1357 alpha_skip_prologue_internal (CORE_ADDR pc, int lenient)
1358 {
1359 unsigned long inst;
1360 int offset;
1361 CORE_ADDR post_prologue_pc;
1362 char buf[4];
1363
1364 /* Silently return the unaltered pc upon memory errors.
1365 This could happen on OSF/1 if decode_line_1 tries to skip the
1366 prologue for quickstarted shared library functions when the
1367 shared library is not yet mapped in.
1368 Reading target memory is slow over serial lines, so we perform
1369 this check only if the target has shared libraries (which all
1370 Alpha targets do). */
1371 if (target_read_memory (pc, buf, 4))
1372 return pc;
1373
1374 /* See if we can determine the end of the prologue via the symbol table.
1375 If so, then return either PC, or the PC after the prologue, whichever
1376 is greater. */
1377
1378 post_prologue_pc = after_prologue (pc, NULL);
1379
1380 if (post_prologue_pc != 0)
1381 return max (pc, post_prologue_pc);
1382
1383 /* Can't determine prologue from the symbol table, need to examine
1384 instructions. */
1385
1386 /* Skip the typical prologue instructions. These are the stack adjustment
1387 instruction and the instructions that save registers on the stack
1388 or in the gcc frame. */
1389 for (offset = 0; offset < 100; offset += 4)
1390 {
1391 int status;
1392
1393 status = read_memory_nobpt (pc + offset, buf, 4);
1394 if (status)
1395 memory_error (status, pc + offset);
1396 inst = extract_unsigned_integer (buf, 4);
1397
1398 /* The alpha has no delay slots. But let's keep the lenient stuff,
1399 we might need it for something else in the future. */
1400 if (lenient && 0)
1401 continue;
1402
1403 if ((inst & 0xffff0000) == 0x27bb0000) /* ldah $gp,n($t12) */
1404 continue;
1405 if ((inst & 0xffff0000) == 0x23bd0000) /* lda $gp,n($gp) */
1406 continue;
1407 if ((inst & 0xffff0000) == 0x23de0000) /* lda $sp,n($sp) */
1408 continue;
1409 if ((inst & 0xffe01fff) == 0x43c0153e) /* subq $sp,n,$sp */
1410 continue;
1411
1412 if ((inst & 0xfc1f0000) == 0xb41e0000
1413 && (inst & 0xffff0000) != 0xb7fe0000)
1414 continue; /* stq reg,n($sp) */
1415 /* reg != $zero */
1416 if ((inst & 0xfc1f0000) == 0x9c1e0000
1417 && (inst & 0xffff0000) != 0x9ffe0000)
1418 continue; /* stt reg,n($sp) */
1419 /* reg != $zero */
1420 if (inst == 0x47de040f) /* bis sp,sp,fp */
1421 continue;
1422
1423 break;
1424 }
1425 return pc + offset;
1426 }
1427
1428 static CORE_ADDR
1429 alpha_skip_prologue (CORE_ADDR addr)
1430 {
1431 return (alpha_skip_prologue_internal (addr, 0));
1432 }
1433
1434 #if 0
1435 /* Is address PC in the prologue (loosely defined) for function at
1436 STARTADDR? */
1437
1438 static int
1439 alpha_in_lenient_prologue (CORE_ADDR startaddr, CORE_ADDR pc)
1440 {
1441 CORE_ADDR end_prologue = alpha_skip_prologue_internal (startaddr, 1);
1442 return pc >= startaddr && pc < end_prologue;
1443 }
1444 #endif
1445
1446 /* The alpha needs a conversion between register and memory format if
1447 the register is a floating point register and
1448 memory format is float, as the register format must be double
1449 or
1450 memory format is an integer with 4 bytes or less, as the representation
1451 of integers in floating point registers is different. */
1452 static void
1453 alpha_register_convert_to_virtual (int regnum, struct type *valtype,
1454 char *raw_buffer, char *virtual_buffer)
1455 {
1456 if (TYPE_LENGTH (valtype) >= REGISTER_RAW_SIZE (regnum))
1457 {
1458 memcpy (virtual_buffer, raw_buffer, REGISTER_VIRTUAL_SIZE (regnum));
1459 return;
1460 }
1461
1462 if (TYPE_CODE (valtype) == TYPE_CODE_FLT)
1463 {
1464 double d = extract_floating (raw_buffer, REGISTER_RAW_SIZE (regnum));
1465 store_floating (virtual_buffer, TYPE_LENGTH (valtype), d);
1466 }
1467 else if (TYPE_CODE (valtype) == TYPE_CODE_INT && TYPE_LENGTH (valtype) <= 4)
1468 {
1469 ULONGEST l;
1470 l = extract_unsigned_integer (raw_buffer, REGISTER_RAW_SIZE (regnum));
1471 l = ((l >> 32) & 0xc0000000) | ((l >> 29) & 0x3fffffff);
1472 store_unsigned_integer (virtual_buffer, TYPE_LENGTH (valtype), l);
1473 }
1474 else
1475 error ("Cannot retrieve value from floating point register");
1476 }
1477
1478 static void
1479 alpha_register_convert_to_raw (struct type *valtype, int regnum,
1480 char *virtual_buffer, char *raw_buffer)
1481 {
1482 if (TYPE_LENGTH (valtype) >= REGISTER_RAW_SIZE (regnum))
1483 {
1484 memcpy (raw_buffer, virtual_buffer, REGISTER_RAW_SIZE (regnum));
1485 return;
1486 }
1487
1488 if (TYPE_CODE (valtype) == TYPE_CODE_FLT)
1489 {
1490 double d = extract_floating (virtual_buffer, TYPE_LENGTH (valtype));
1491 store_floating (raw_buffer, REGISTER_RAW_SIZE (regnum), d);
1492 }
1493 else if (TYPE_CODE (valtype) == TYPE_CODE_INT && TYPE_LENGTH (valtype) <= 4)
1494 {
1495 ULONGEST l;
1496 if (TYPE_UNSIGNED (valtype))
1497 l = extract_unsigned_integer (virtual_buffer, TYPE_LENGTH (valtype));
1498 else
1499 l = extract_signed_integer (virtual_buffer, TYPE_LENGTH (valtype));
1500 l = ((l & 0xc0000000) << 32) | ((l & 0x3fffffff) << 29);
1501 store_unsigned_integer (raw_buffer, REGISTER_RAW_SIZE (regnum), l);
1502 }
1503 else
1504 error ("Cannot store value in floating point register");
1505 }
1506
1507 static const unsigned char *
1508 alpha_breakpoint_from_pc (CORE_ADDR *pcptr, int *lenptr)
1509 {
1510 static const unsigned char alpha_breakpoint[] =
1511 { 0x80, 0, 0, 0 }; /* call_pal bpt */
1512
1513 *lenptr = sizeof(alpha_breakpoint);
1514 return (alpha_breakpoint);
1515 }
1516
1517 /* Given a return value in `regbuf' with a type `valtype',
1518 extract and copy its value into `valbuf'. */
1519
1520 static void
1521 alpha_extract_return_value (struct type *valtype,
1522 char regbuf[ALPHA_REGISTER_BYTES], char *valbuf)
1523 {
1524 if (TYPE_CODE (valtype) == TYPE_CODE_FLT)
1525 alpha_register_convert_to_virtual (FP0_REGNUM, valtype,
1526 regbuf + REGISTER_BYTE (FP0_REGNUM),
1527 valbuf);
1528 else
1529 memcpy (valbuf, regbuf + REGISTER_BYTE (ALPHA_V0_REGNUM),
1530 TYPE_LENGTH (valtype));
1531 }
1532
1533 /* Given a return value in `regbuf' with a type `valtype',
1534 write its value into the appropriate register. */
1535
1536 static void
1537 alpha_store_return_value (struct type *valtype, char *valbuf)
1538 {
1539 char raw_buffer[ALPHA_MAX_REGISTER_RAW_SIZE];
1540 int regnum = ALPHA_V0_REGNUM;
1541 int length = TYPE_LENGTH (valtype);
1542
1543 if (TYPE_CODE (valtype) == TYPE_CODE_FLT)
1544 {
1545 regnum = FP0_REGNUM;
1546 length = REGISTER_RAW_SIZE (regnum);
1547 alpha_register_convert_to_raw (valtype, regnum, valbuf, raw_buffer);
1548 }
1549 else
1550 memcpy (raw_buffer, valbuf, length);
1551
1552 deprecated_write_register_bytes (REGISTER_BYTE (regnum), raw_buffer, length);
1553 }
1554
1555 /* Just like reinit_frame_cache, but with the right arguments to be
1556 callable as an sfunc. */
1557
1558 static void
1559 reinit_frame_cache_sfunc (char *args, int from_tty, struct cmd_list_element *c)
1560 {
1561 reinit_frame_cache ();
1562 }
1563
1564 /* This is the definition of CALL_DUMMY_ADDRESS. It's a heuristic that is used
1565 to find a convenient place in the text segment to stick a breakpoint to
1566 detect the completion of a target function call (ala call_function_by_hand).
1567 */
1568
1569 CORE_ADDR
1570 alpha_call_dummy_address (void)
1571 {
1572 CORE_ADDR entry;
1573 struct minimal_symbol *sym;
1574
1575 entry = entry_point_address ();
1576
1577 if (entry != 0)
1578 return entry;
1579
1580 sym = lookup_minimal_symbol ("_Prelude", NULL, symfile_objfile);
1581
1582 if (!sym || MSYMBOL_TYPE (sym) != mst_text)
1583 return 0;
1584 else
1585 return SYMBOL_VALUE_ADDRESS (sym) + 4;
1586 }
1587
1588 static void
1589 alpha_fix_call_dummy (char *dummy, CORE_ADDR pc, CORE_ADDR fun, int nargs,
1590 struct value **args, struct type *type, int gcc_p)
1591 {
1592 CORE_ADDR bp_address = CALL_DUMMY_ADDRESS ();
1593
1594 if (bp_address == 0)
1595 error ("no place to put call");
1596 write_register (ALPHA_RA_REGNUM, bp_address);
1597 write_register (ALPHA_T12_REGNUM, fun);
1598 }
1599
1600 /* On the Alpha, the call dummy code is nevery copied to user space
1601 (see alpha_fix_call_dummy() above). The contents of this do not
1602 matter. */
1603 LONGEST alpha_call_dummy_words[] = { 0 };
1604
1605 static int
1606 alpha_use_struct_convention (int gcc_p, struct type *type)
1607 {
1608 /* Structures are returned by ref in extra arg0. */
1609 return 1;
1610 }
1611
1612 static void
1613 alpha_store_struct_return (CORE_ADDR addr, CORE_ADDR sp)
1614 {
1615 /* Store the address of the place in which to copy the structure the
1616 subroutine will return. Handled by alpha_push_arguments. */
1617 }
1618
1619 static CORE_ADDR
1620 alpha_extract_struct_value_address (char *regbuf)
1621 {
1622 return (extract_address (regbuf + REGISTER_BYTE (ALPHA_V0_REGNUM),
1623 REGISTER_RAW_SIZE (ALPHA_V0_REGNUM)));
1624 }
1625
1626 /* Figure out where the longjmp will land.
1627 We expect the first arg to be a pointer to the jmp_buf structure from
1628 which we extract the PC (JB_PC) that we will land at. The PC is copied
1629 into the "pc". This routine returns true on success. */
1630
1631 static int
1632 alpha_get_longjmp_target (CORE_ADDR *pc)
1633 {
1634 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
1635 CORE_ADDR jb_addr;
1636 char raw_buffer[ALPHA_MAX_REGISTER_RAW_SIZE];
1637
1638 jb_addr = read_register (ALPHA_A0_REGNUM);
1639
1640 if (target_read_memory (jb_addr + (tdep->jb_pc * tdep->jb_elt_size),
1641 raw_buffer, tdep->jb_elt_size))
1642 return 0;
1643
1644 *pc = extract_address (raw_buffer, tdep->jb_elt_size);
1645 return 1;
1646 }
1647
1648 /* alpha_software_single_step() is called just before we want to resume
1649 the inferior, if we want to single-step it but there is no hardware
1650 or kernel single-step support (NetBSD on Alpha, for example). We find
1651 the target of the coming instruction and breakpoint it.
1652
1653 single_step is also called just after the inferior stops. If we had
1654 set up a simulated single-step, we undo our damage. */
1655
1656 static CORE_ADDR
1657 alpha_next_pc (CORE_ADDR pc)
1658 {
1659 unsigned int insn;
1660 unsigned int op;
1661 int offset;
1662 LONGEST rav;
1663
1664 insn = read_memory_unsigned_integer (pc, sizeof (insn));
1665
1666 /* Opcode is top 6 bits. */
1667 op = (insn >> 26) & 0x3f;
1668
1669 if (op == 0x1a)
1670 {
1671 /* Jump format: target PC is:
1672 RB & ~3 */
1673 return (read_register ((insn >> 16) & 0x1f) & ~3);
1674 }
1675
1676 if ((op & 0x30) == 0x30)
1677 {
1678 /* Branch format: target PC is:
1679 (new PC) + (4 * sext(displacement)) */
1680 if (op == 0x30 || /* BR */
1681 op == 0x34) /* BSR */
1682 {
1683 branch_taken:
1684 offset = (insn & 0x001fffff);
1685 if (offset & 0x00100000)
1686 offset |= 0xffe00000;
1687 offset *= 4;
1688 return (pc + 4 + offset);
1689 }
1690
1691 /* Need to determine if branch is taken; read RA. */
1692 rav = (LONGEST) read_register ((insn >> 21) & 0x1f);
1693 switch (op)
1694 {
1695 case 0x38: /* BLBC */
1696 if ((rav & 1) == 0)
1697 goto branch_taken;
1698 break;
1699 case 0x3c: /* BLBS */
1700 if (rav & 1)
1701 goto branch_taken;
1702 break;
1703 case 0x39: /* BEQ */
1704 if (rav == 0)
1705 goto branch_taken;
1706 break;
1707 case 0x3d: /* BNE */
1708 if (rav != 0)
1709 goto branch_taken;
1710 break;
1711 case 0x3a: /* BLT */
1712 if (rav < 0)
1713 goto branch_taken;
1714 break;
1715 case 0x3b: /* BLE */
1716 if (rav <= 0)
1717 goto branch_taken;
1718 break;
1719 case 0x3f: /* BGT */
1720 if (rav > 0)
1721 goto branch_taken;
1722 break;
1723 case 0x3e: /* BGE */
1724 if (rav >= 0)
1725 goto branch_taken;
1726 break;
1727 }
1728 }
1729
1730 /* Not a branch or branch not taken; target PC is:
1731 pc + 4 */
1732 return (pc + 4);
1733 }
1734
1735 void
1736 alpha_software_single_step (enum target_signal sig, int insert_breakpoints_p)
1737 {
1738 static CORE_ADDR next_pc;
1739 typedef char binsn_quantum[BREAKPOINT_MAX];
1740 static binsn_quantum break_mem;
1741 CORE_ADDR pc;
1742
1743 if (insert_breakpoints_p)
1744 {
1745 pc = read_pc ();
1746 next_pc = alpha_next_pc (pc);
1747
1748 target_insert_breakpoint (next_pc, break_mem);
1749 }
1750 else
1751 {
1752 target_remove_breakpoint (next_pc, break_mem);
1753 write_pc (next_pc);
1754 }
1755 }
1756
1757 \f
1758
1759 /* Initialize the current architecture based on INFO. If possible, re-use an
1760 architecture from ARCHES, which is a list of architectures already created
1761 during this debugging session.
1762
1763 Called e.g. at program startup, when reading a core file, and when reading
1764 a binary file. */
1765
1766 static struct gdbarch *
1767 alpha_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
1768 {
1769 struct gdbarch_tdep *tdep;
1770 struct gdbarch *gdbarch;
1771 enum gdb_osabi osabi = GDB_OSABI_UNKNOWN;
1772
1773 /* Try to determine the ABI of the object we are loading. */
1774
1775 if (info.abfd != NULL)
1776 {
1777 osabi = gdbarch_lookup_osabi (info.abfd);
1778 if (osabi == GDB_OSABI_UNKNOWN)
1779 {
1780 /* If it's an ECOFF file, assume it's OSF/1. */
1781 if (bfd_get_flavour (info.abfd) == bfd_target_ecoff_flavour)
1782 osabi = GDB_OSABI_OSF1;
1783 }
1784 }
1785
1786 /* Find a candidate among extant architectures. */
1787 for (arches = gdbarch_list_lookup_by_info (arches, &info);
1788 arches != NULL;
1789 arches = gdbarch_list_lookup_by_info (arches->next, &info))
1790 {
1791 /* Make sure the ABI selection matches. */
1792 tdep = gdbarch_tdep (arches->gdbarch);
1793 if (tdep && tdep->osabi == osabi)
1794 return arches->gdbarch;
1795 }
1796
1797 tdep = xmalloc (sizeof (struct gdbarch_tdep));
1798 gdbarch = gdbarch_alloc (&info, tdep);
1799
1800 tdep->osabi = osabi;
1801
1802 /* Lowest text address. This is used by heuristic_proc_start() to
1803 decide when to stop looking. */
1804 tdep->vm_min_address = (CORE_ADDR) 0x120000000;
1805
1806 tdep->dynamic_sigtramp_offset = NULL;
1807 tdep->skip_sigtramp_frame = NULL;
1808 tdep->sigcontext_addr = NULL;
1809
1810 tdep->jb_pc = -1; /* longjmp support not enabled by default */
1811
1812 /* Type sizes */
1813 set_gdbarch_short_bit (gdbarch, 16);
1814 set_gdbarch_int_bit (gdbarch, 32);
1815 set_gdbarch_long_bit (gdbarch, 64);
1816 set_gdbarch_long_long_bit (gdbarch, 64);
1817 set_gdbarch_float_bit (gdbarch, 32);
1818 set_gdbarch_double_bit (gdbarch, 64);
1819 set_gdbarch_long_double_bit (gdbarch, 64);
1820 set_gdbarch_ptr_bit (gdbarch, 64);
1821
1822 /* Register info */
1823 set_gdbarch_num_regs (gdbarch, ALPHA_NUM_REGS);
1824 set_gdbarch_sp_regnum (gdbarch, ALPHA_SP_REGNUM);
1825 set_gdbarch_fp_regnum (gdbarch, ALPHA_FP_REGNUM);
1826 set_gdbarch_pc_regnum (gdbarch, ALPHA_PC_REGNUM);
1827 set_gdbarch_fp0_regnum (gdbarch, ALPHA_FP0_REGNUM);
1828
1829 set_gdbarch_register_name (gdbarch, alpha_register_name);
1830 set_gdbarch_register_size (gdbarch, ALPHA_REGISTER_SIZE);
1831 set_gdbarch_register_bytes (gdbarch, ALPHA_REGISTER_BYTES);
1832 set_gdbarch_register_byte (gdbarch, alpha_register_byte);
1833 set_gdbarch_register_raw_size (gdbarch, alpha_register_raw_size);
1834 set_gdbarch_max_register_raw_size (gdbarch, ALPHA_MAX_REGISTER_RAW_SIZE);
1835 set_gdbarch_register_virtual_size (gdbarch, alpha_register_virtual_size);
1836 set_gdbarch_max_register_virtual_size (gdbarch,
1837 ALPHA_MAX_REGISTER_VIRTUAL_SIZE);
1838 set_gdbarch_register_virtual_type (gdbarch, alpha_register_virtual_type);
1839
1840 set_gdbarch_cannot_fetch_register (gdbarch, alpha_cannot_fetch_register);
1841 set_gdbarch_cannot_store_register (gdbarch, alpha_cannot_store_register);
1842
1843 set_gdbarch_register_convertible (gdbarch, alpha_register_convertible);
1844 set_gdbarch_register_convert_to_virtual (gdbarch,
1845 alpha_register_convert_to_virtual);
1846 set_gdbarch_register_convert_to_raw (gdbarch, alpha_register_convert_to_raw);
1847
1848 set_gdbarch_skip_prologue (gdbarch, alpha_skip_prologue);
1849
1850 set_gdbarch_frame_num_args (gdbarch, frame_num_args_unknown);
1851 set_gdbarch_frameless_function_invocation (gdbarch,
1852 generic_frameless_function_invocation_not);
1853
1854 set_gdbarch_saved_pc_after_call (gdbarch, alpha_saved_pc_after_call);
1855
1856 set_gdbarch_frame_chain (gdbarch, alpha_frame_chain);
1857 set_gdbarch_frame_chain_valid (gdbarch, func_frame_chain_valid);
1858 set_gdbarch_frame_saved_pc (gdbarch, alpha_frame_saved_pc);
1859
1860 set_gdbarch_frame_init_saved_regs (gdbarch, alpha_frame_init_saved_regs);
1861
1862 set_gdbarch_use_struct_convention (gdbarch, alpha_use_struct_convention);
1863 set_gdbarch_deprecated_extract_return_value (gdbarch, alpha_extract_return_value);
1864
1865 set_gdbarch_store_struct_return (gdbarch, alpha_store_struct_return);
1866 set_gdbarch_deprecated_store_return_value (gdbarch, alpha_store_return_value);
1867 set_gdbarch_deprecated_extract_struct_value_address (gdbarch,
1868 alpha_extract_struct_value_address);
1869
1870 /* Settings for calling functions in the inferior. */
1871 set_gdbarch_use_generic_dummy_frames (gdbarch, 0);
1872 set_gdbarch_call_dummy_length (gdbarch, 0);
1873 set_gdbarch_push_arguments (gdbarch, alpha_push_arguments);
1874 set_gdbarch_pop_frame (gdbarch, alpha_pop_frame);
1875
1876 /* On the Alpha, the call dummy code is never copied to user space,
1877 stopping the user call is achieved via a bp_call_dummy breakpoint.
1878 But we need a fake CALL_DUMMY definition to enable the proper
1879 call_function_by_hand and to avoid zero length array warnings. */
1880 set_gdbarch_call_dummy_p (gdbarch, 1);
1881 set_gdbarch_call_dummy_words (gdbarch, alpha_call_dummy_words);
1882 set_gdbarch_sizeof_call_dummy_words (gdbarch, 0);
1883 set_gdbarch_frame_args_address (gdbarch, alpha_frame_args_address);
1884 set_gdbarch_frame_locals_address (gdbarch, alpha_frame_locals_address);
1885 set_gdbarch_init_extra_frame_info (gdbarch, alpha_init_extra_frame_info);
1886
1887 /* Alpha OSF/1 inhibits execution of code on the stack. But there is
1888 no need for a dummy on the Alpha. PUSH_ARGUMENTS takes care of all
1889 argument handling and bp_call_dummy takes care of stopping the dummy. */
1890 set_gdbarch_call_dummy_location (gdbarch, AT_ENTRY_POINT);
1891 set_gdbarch_call_dummy_address (gdbarch, alpha_call_dummy_address);
1892 set_gdbarch_call_dummy_breakpoint_offset_p (gdbarch, 1);
1893 set_gdbarch_call_dummy_breakpoint_offset (gdbarch, 0);
1894 set_gdbarch_call_dummy_start_offset (gdbarch, 0);
1895 set_gdbarch_pc_in_call_dummy (gdbarch, deprecated_pc_in_call_dummy_at_entry_point);
1896 set_gdbarch_call_dummy_stack_adjust_p (gdbarch, 0);
1897 set_gdbarch_push_dummy_frame (gdbarch, alpha_push_dummy_frame);
1898 set_gdbarch_fix_call_dummy (gdbarch, alpha_fix_call_dummy);
1899 set_gdbarch_init_frame_pc (gdbarch, init_frame_pc_noop);
1900 set_gdbarch_init_frame_pc_first (gdbarch, alpha_init_frame_pc_first);
1901
1902 set_gdbarch_inner_than (gdbarch, core_addr_lessthan);
1903 set_gdbarch_skip_trampoline_code (gdbarch, find_solib_trampoline_target);
1904
1905 /* Floats are always passed as doubles. */
1906 set_gdbarch_coerce_float_to_double (gdbarch,
1907 standard_coerce_float_to_double);
1908
1909 set_gdbarch_breakpoint_from_pc (gdbarch, alpha_breakpoint_from_pc);
1910 set_gdbarch_decr_pc_after_break (gdbarch, 4);
1911
1912 set_gdbarch_function_start_offset (gdbarch, 0);
1913 set_gdbarch_frame_args_skip (gdbarch, 0);
1914
1915 /* Hook in ABI-specific overrides, if they have been registered. */
1916 gdbarch_init_osabi (info, gdbarch, osabi);
1917
1918 /* Now that we have tuned the configuration, set a few final things
1919 based on what the OS ABI has told us. */
1920
1921 if (tdep->jb_pc >= 0)
1922 set_gdbarch_get_longjmp_target (gdbarch, alpha_get_longjmp_target);
1923
1924 return gdbarch;
1925 }
1926
1927 static void
1928 alpha_dump_tdep (struct gdbarch *current_gdbarch, struct ui_file *file)
1929 {
1930 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
1931
1932 if (tdep == NULL)
1933 return;
1934
1935 fprintf_unfiltered (file, "alpha_dump_tdep: OS ABI = %s\n",
1936 gdbarch_osabi_name (tdep->osabi));
1937
1938 fprintf_unfiltered (file,
1939 "alpha_dump_tdep: vm_min_address = 0x%lx\n",
1940 (long) tdep->vm_min_address);
1941
1942 fprintf_unfiltered (file,
1943 "alpha_dump_tdep: jb_pc = %d\n",
1944 tdep->jb_pc);
1945 fprintf_unfiltered (file,
1946 "alpha_dump_tdep: jb_elt_size = %ld\n",
1947 (long) tdep->jb_elt_size);
1948 }
1949
1950 void
1951 _initialize_alpha_tdep (void)
1952 {
1953 struct cmd_list_element *c;
1954
1955 gdbarch_register (bfd_arch_alpha, alpha_gdbarch_init, alpha_dump_tdep);
1956
1957 tm_print_insn = print_insn_alpha;
1958
1959 /* Let the user set the fence post for heuristic_proc_start. */
1960
1961 /* We really would like to have both "0" and "unlimited" work, but
1962 command.c doesn't deal with that. So make it a var_zinteger
1963 because the user can always use "999999" or some such for unlimited. */
1964 c = add_set_cmd ("heuristic-fence-post", class_support, var_zinteger,
1965 (char *) &heuristic_fence_post,
1966 "\
1967 Set the distance searched for the start of a function.\n\
1968 If you are debugging a stripped executable, GDB needs to search through the\n\
1969 program for the start of a function. This command sets the distance of the\n\
1970 search. The only need to set it is when debugging a stripped executable.",
1971 &setlist);
1972 /* We need to throw away the frame cache when we set this, since it
1973 might change our ability to get backtraces. */
1974 set_cmd_sfunc (c, reinit_frame_cache_sfunc);
1975 add_show_from_set (c, &showlist);
1976 }
This page took 0.067397 seconds and 5 git commands to generate.