* arch-utils.c (gdbarch_info_init): Set osabi to
[deliverable/binutils-gdb.git] / gdb / alphanbsd-tdep.c
1 /* Target-dependent code for NetBSD/Alpha.
2 Copyright 2002, 2003 Free Software Foundation, Inc.
3 Contributed by Wasabi Systems, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 2 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program; if not, write to the Free Software
19 Foundation, Inc., 59 Temple Place - Suite 330,
20 Boston, MA 02111-1307, USA. */
21
22 #include "defs.h"
23 #include "gdbcore.h"
24 #include "frame.h"
25 #include "regcache.h"
26 #include "value.h"
27 #include "osabi.h"
28
29 #include "solib-svr4.h"
30
31 #include "alpha-tdep.h"
32 #include "alphabsd-tdep.h"
33 #include "nbsd-tdep.h"
34
35 static void
36 fetch_core_registers (char *core_reg_sect, unsigned core_reg_size, int which,
37 CORE_ADDR ignore)
38 {
39 char *regs, *fpregs;
40 int regno;
41
42 /* Table to map a gdb register number to a trapframe register index. */
43 static const int regmap[] =
44 {
45 0, 1, 2, 3,
46 4, 5, 6, 7,
47 8, 9, 10, 11,
48 12, 13, 14, 15,
49 30, 31, 32, 16,
50 17, 18, 19, 20,
51 21, 22, 23, 24,
52 25, 29, 26
53 };
54 #define SIZEOF_TRAPFRAME (33 * 8)
55
56 /* We get everything from one section. */
57 if (which != 0)
58 return;
59
60 regs = core_reg_sect;
61 fpregs = core_reg_sect + SIZEOF_TRAPFRAME;
62
63 if (core_reg_size < (SIZEOF_TRAPFRAME + SIZEOF_STRUCT_FPREG))
64 {
65 warning ("Wrong size register set in core file.");
66 return;
67 }
68
69 /* Integer registers. */
70 for (regno = 0; regno < ALPHA_ZERO_REGNUM; regno++)
71 supply_register (regno, regs + (regmap[regno] * 8));
72 supply_register (ALPHA_ZERO_REGNUM, NULL);
73 supply_register (FP_REGNUM, NULL);
74 supply_register (PC_REGNUM, regs + (28 * 8));
75
76 /* Floating point registers. */
77 alphabsd_supply_fpreg (fpregs, -1);
78 }
79
80 static void
81 fetch_elfcore_registers (char *core_reg_sect, unsigned core_reg_size, int which,
82 CORE_ADDR ignore)
83 {
84 switch (which)
85 {
86 case 0: /* Integer registers. */
87 if (core_reg_size != SIZEOF_STRUCT_REG)
88 warning ("Wrong size register set in core file.");
89 else
90 alphabsd_supply_reg (core_reg_sect, -1);
91 break;
92
93 case 2: /* Floating point registers. */
94 if (core_reg_size != SIZEOF_STRUCT_FPREG)
95 warning ("Wrong size FP register set in core file.");
96 else
97 alphabsd_supply_fpreg (core_reg_sect, -1);
98 break;
99
100 default:
101 /* Don't know what kind of register request this is; just ignore it. */
102 break;
103 }
104 }
105
106 static struct core_fns alphanbsd_core_fns =
107 {
108 bfd_target_unknown_flavour, /* core_flavour */
109 default_check_format, /* check_format */
110 default_core_sniffer, /* core_sniffer */
111 fetch_core_registers, /* core_read_registers */
112 NULL /* next */
113 };
114
115 static struct core_fns alphanbsd_elfcore_fns =
116 {
117 bfd_target_elf_flavour, /* core_flavour */
118 default_check_format, /* check_format */
119 default_core_sniffer, /* core_sniffer */
120 fetch_elfcore_registers, /* core_read_registers */
121 NULL /* next */
122 };
123
124 /* Under NetBSD/alpha, signal handler invocations can be identified by the
125 designated code sequence that is used to return from a signal handler.
126 In particular, the return address of a signal handler points to the
127 following code sequence:
128
129 ldq a0, 0(sp)
130 lda sp, 16(sp)
131 lda v0, 295(zero) # __sigreturn14
132 call_pal callsys
133
134 Each instruction has a unique encoding, so we simply attempt to match
135 the instruction the PC is pointing to with any of the above instructions.
136 If there is a hit, we know the offset to the start of the designated
137 sequence and can then check whether we really are executing in the
138 signal trampoline. If not, -1 is returned, otherwise the offset from the
139 start of the return sequence is returned. */
140 static const unsigned char sigtramp_retcode[] =
141 {
142 0x00, 0x00, 0x1e, 0xa6, /* ldq a0, 0(sp) */
143 0x10, 0x00, 0xde, 0x23, /* lda sp, 16(sp) */
144 0x27, 0x01, 0x1f, 0x20, /* lda v0, 295(zero) */
145 0x83, 0x00, 0x00, 0x00, /* call_pal callsys */
146 };
147 #define RETCODE_NWORDS 4
148 #define RETCODE_SIZE (RETCODE_NWORDS * 4)
149
150 LONGEST
151 alphanbsd_sigtramp_offset (CORE_ADDR pc)
152 {
153 unsigned char ret[RETCODE_SIZE], w[4];
154 LONGEST off;
155 int i;
156
157 if (read_memory_nobpt (pc, (char *) w, 4) != 0)
158 return -1;
159
160 for (i = 0; i < RETCODE_NWORDS; i++)
161 {
162 if (memcmp (w, sigtramp_retcode + (i * 4), 4) == 0)
163 break;
164 }
165 if (i == RETCODE_NWORDS)
166 return (-1);
167
168 off = i * 4;
169 pc -= off;
170
171 if (read_memory_nobpt (pc, (char *) ret, sizeof (ret)) != 0)
172 return -1;
173
174 if (memcmp (ret, sigtramp_retcode, RETCODE_SIZE) == 0)
175 return off;
176
177 return -1;
178 }
179
180 static int
181 alphanbsd_pc_in_sigtramp (CORE_ADDR pc, char *func_name)
182 {
183 return (nbsd_pc_in_sigtramp (pc, func_name)
184 || alphanbsd_sigtramp_offset (pc) >= 0);
185 }
186
187 static CORE_ADDR
188 alphanbsd_sigcontext_addr (struct frame_info *frame)
189 {
190 /* FIXME: This is not correct for all versions of NetBSD/alpha.
191 We will probably need to disassemble the trampoline to figure
192 out which trampoline frame type we have. */
193 return frame->frame;
194 }
195
196 static CORE_ADDR
197 alphanbsd_skip_sigtramp_frame (struct frame_info *frame, CORE_ADDR pc)
198 {
199 char *name;
200
201 /* FIXME: This is not correct for all versions of NetBSD/alpha.
202 We will probably need to disassemble the trampoline to figure
203 out which trampoline frame type we have. */
204 find_pc_partial_function (pc, &name, (CORE_ADDR *) NULL, (CORE_ADDR *) NULL);
205 if (PC_IN_SIGTRAMP (pc, name))
206 return frame->frame;
207 return 0;
208 }
209
210 static void
211 alphanbsd_init_abi (struct gdbarch_info info,
212 struct gdbarch *gdbarch)
213 {
214 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
215
216 set_gdbarch_pc_in_sigtramp (gdbarch, alphanbsd_pc_in_sigtramp);
217
218 /* NetBSD/alpha does not provide single step support via ptrace(2); we
219 must use software single-stepping. */
220 set_gdbarch_software_single_step (gdbarch, alpha_software_single_step);
221
222 set_solib_svr4_fetch_link_map_offsets (gdbarch,
223 nbsd_lp64_solib_svr4_fetch_link_map_offsets);
224
225 tdep->skip_sigtramp_frame = alphanbsd_skip_sigtramp_frame;
226 tdep->dynamic_sigtramp_offset = alphanbsd_sigtramp_offset;
227 tdep->sigcontext_addr = alphanbsd_sigcontext_addr;
228
229 tdep->jb_pc = 2;
230 tdep->jb_elt_size = 8;
231 }
232
233 void
234 _initialize_alphanbsd_tdep (void)
235 {
236 gdbarch_register_osabi (bfd_arch_alpha, 0, GDB_OSABI_NETBSD_ELF,
237 alphanbsd_init_abi);
238
239 add_core_fns (&alphanbsd_core_fns);
240 add_core_fns (&alphanbsd_elfcore_fns);
241 }
This page took 0.035029 seconds and 4 git commands to generate.