This commit was generated by cvs2svn to track changes on a CVS vendor
[deliverable/binutils-gdb.git] / gdb / am29k-tdep.c
1 /* Target-machine dependent code for the AMD 29000
2 Copyright (C) 1990 Free Software Foundation, Inc.
3 Contributed by Cygnus Support. Written by Jim Kingdon.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 1, or (at your option)
10 any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program; see the file COPYING. If not, write to
19 the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA. */
20
21 #include "defs.h"
22 #include "gdbcore.h"
23 #include <stdio.h>
24 #include "frame.h"
25 #include "value.h"
26 #include "param.h"
27 #include "symtab.h"
28 #include "inferior.h"
29
30 /* Structure to hold cached info about function prologues. */
31 struct prologue_info
32 {
33 CORE_ADDR pc; /* First addr after fn prologue */
34 unsigned rsize, msize; /* register stack frame size, mem stack ditto */
35 unsigned mfp_used : 1; /* memory frame pointer used */
36 unsigned rsize_valid : 1; /* Validity bits for the above */
37 unsigned msize_valid : 1;
38 unsigned mfp_valid : 1;
39 };
40
41 /* Examine the prologue of a function which starts at PC. Return
42 the first addess past the prologue. If MSIZE is non-NULL, then
43 set *MSIZE to the memory stack frame size. If RSIZE is non-NULL,
44 then set *RSIZE to the register stack frame size (not including
45 incoming arguments and the return address & frame pointer stored
46 with them). If no prologue is found, *RSIZE is set to zero.
47 If no prologue is found, or a prologue which doesn't involve
48 allocating a memory stack frame, then set *MSIZE to zero.
49
50 Note that both msize and rsize are in bytes. This is not consistent
51 with the _User's Manual_ with respect to rsize, but it is much more
52 convenient.
53
54 If MFP_USED is non-NULL, *MFP_USED is set to nonzero if a memory
55 frame pointer is being used. */
56 CORE_ADDR
57 examine_prologue (pc, rsize, msize, mfp_used)
58 CORE_ADDR pc;
59 unsigned *msize;
60 unsigned *rsize;
61 int *mfp_used;
62 {
63 long insn;
64 CORE_ADDR p = pc;
65 int misc_index = find_pc_misc_function (pc);
66 struct prologue_info *mi = 0;
67
68 if (misc_index >= 0)
69 mi = (struct prologue_info *)misc_function_vector[misc_index].misc_info;
70
71 if (mi != 0)
72 {
73 int valid = 1;
74 if (rsize != NULL)
75 {
76 *rsize = mi->rsize;
77 valid &= mi->rsize_valid;
78 }
79 if (msize != NULL)
80 {
81 *msize = mi->msize;
82 valid &= mi->msize_valid;
83 }
84 if (mfp_used != NULL)
85 {
86 *mfp_used = mi->mfp_used;
87 valid &= mi->mfp_valid;
88 }
89 if (valid)
90 return mi->pc;
91 }
92
93 if (rsize != NULL)
94 *rsize = 0;
95 if (msize != NULL)
96 *msize = 0;
97 if (mfp_used != NULL)
98 *mfp_used = 0;
99
100 /* Prologue must start with subtracting a constant from gr1.
101 Normally this is sub gr1,gr1,<rsize * 4>. */
102 insn = read_memory_integer (p, 4);
103 if ((insn & 0xffffff00) != 0x25010100)
104 {
105 /* If the frame is large, instead of a single instruction it
106 might be a pair of instructions:
107 const <reg>, <rsize * 4>
108 sub gr1,gr1,<reg>
109 */
110 int reg;
111 /* Possible value for rsize. */
112 unsigned int rsize0;
113
114 if ((insn & 0xff000000) != 0x03000000)
115 {
116 p = pc;
117 goto done;
118 }
119 reg = (insn >> 8) & 0xff;
120 rsize0 = (((insn >> 8) & 0xff00) | (insn & 0xff));
121 p += 4;
122 insn = read_memory_integer (p, 4);
123 if ((insn & 0xffffff00) != 0x24010100
124 || (insn & 0xff) != reg)
125 {
126 p = pc;
127 goto done;
128 }
129 if (rsize != NULL)
130 *rsize = rsize0;
131 }
132 else
133 {
134 if (rsize != NULL)
135 *rsize = (insn & 0xff);
136 }
137 p += 4;
138
139 /* Next instruction must be asgeu V_SPILL,gr1,rab. */
140 insn = read_memory_integer (p, 4);
141 if (insn != 0x5e40017e)
142 {
143 p = pc;
144 goto done;
145 }
146 p += 4;
147
148 /* Next instruction usually sets the frame pointer (lr1) by adding
149 <size * 4> from gr1. However, this can (and high C does) be
150 deferred until anytime before the first function call. So it is
151 OK if we don't see anything which sets lr1. */
152 /* Normally this is just add lr1,gr1,<size * 4>. */
153 insn = read_memory_integer (p, 4);
154 if ((insn & 0xffffff00) == 0x15810100)
155 p += 4;
156 else
157 {
158 /* However, for large frames it can be
159 const <reg>, <size *4>
160 add lr1,gr1,<reg>
161 */
162 int reg;
163 CORE_ADDR q;
164
165 if ((insn & 0xff000000) == 0x03000000)
166 {
167 reg = (insn >> 8) & 0xff;
168 q = p + 4;
169 insn = read_memory_integer (q, 4);
170 if ((insn & 0xffffff00) == 0x14810100
171 && (insn & 0xff) == reg)
172 p = q;
173 }
174 }
175
176 /* Next comes "add lr{<rsize-1>},msp,0", but only if a memory
177 frame pointer is in use. We just check for add lr<anything>,msp,0;
178 we don't check this rsize against the first instruction, and
179 we don't check that the trace-back tag indicates a memory frame pointer
180 is in use.
181
182 The recommended instruction is actually "sll lr<whatever>,msp,0".
183 We check for that, too. Originally Jim Kingdon's code seemed
184 to be looking for a "sub" instruction here, but the mask was set
185 up to lose all the time. */
186 insn = read_memory_integer (p, 4);
187 if (((insn & 0xff80ffff) == 0x15807d00) /* add */
188 || ((insn & 0xff80ffff) == 0x81807d00) ) /* sll */
189 {
190 p += 4;
191 if (mfp_used != NULL)
192 *mfp_used = 1;
193 }
194
195 /* Next comes a subtraction from msp to allocate a memory frame,
196 but only if a memory frame is
197 being used. We don't check msize against the trace-back tag.
198
199 Normally this is just
200 sub msp,msp,<msize>
201 */
202 insn = read_memory_integer (p, 4);
203 if ((insn & 0xffffff00) == 0x257d7d00)
204 {
205 p += 4;
206 if (msize != NULL)
207 *msize = insn & 0xff;
208 }
209 else
210 {
211 /* For large frames, instead of a single instruction it might
212 be
213
214 const <reg>, <msize>
215 consth <reg>, <msize> ; optional
216 sub msp,msp,<reg>
217 */
218 int reg;
219 unsigned msize0;
220 CORE_ADDR q = p;
221
222 if ((insn & 0xff000000) == 0x03000000)
223 {
224 reg = (insn >> 8) & 0xff;
225 msize0 = ((insn >> 8) & 0xff00) | (insn & 0xff);
226 q += 4;
227 insn = read_memory_integer (q, 4);
228 /* Check for consth. */
229 if ((insn & 0xff000000) == 0x02000000
230 && (insn & 0x0000ff00) == reg)
231 {
232 msize0 |= (insn << 8) & 0xff000000;
233 msize0 |= (insn << 16) & 0x00ff0000;
234 q += 4;
235 insn = read_memory_integer (q, 4);
236 }
237 /* Check for sub msp,msp,<reg>. */
238 if ((insn & 0xffffff00) == 0x247d7d00
239 && (insn & 0xff) == reg)
240 {
241 p = q + 4;
242 if (msize != NULL)
243 *msize = msize0;
244 }
245 }
246 }
247
248 done:
249 if (misc_index >= 0)
250 {
251 if (mi == 0)
252 {
253 /* Add a new cache entry. */
254 mi = (struct prologue_info *)xmalloc (sizeof (struct prologue_info));
255 misc_function_vector[misc_index].misc_info = (char *)mi;
256 mi->rsize_valid = 0;
257 mi->msize_valid = 0;
258 mi->mfp_valid = 0;
259 }
260 /* else, cache entry exists, but info is incomplete. */
261 mi->pc = p;
262 if (rsize != NULL)
263 {
264 mi->rsize = *rsize;
265 mi->rsize_valid = 1;
266 }
267 if (msize != NULL)
268 {
269 mi->msize = *msize;
270 mi->msize_valid = 1;
271 }
272 if (mfp_used != NULL)
273 {
274 mi->mfp_used = *mfp_used;
275 mi->mfp_valid = 1;
276 }
277 }
278 return p;
279 }
280
281 /* Advance PC across any function entry prologue instructions
282 to reach some "real" code. */
283
284 CORE_ADDR
285 skip_prologue (pc)
286 CORE_ADDR pc;
287 {
288 return examine_prologue (pc, (unsigned *)NULL, (unsigned *)NULL,
289 (int *)NULL);
290 }
291
292 /* Initialize the frame. In addition to setting "extra" frame info,
293 we also set ->frame because we use it in a nonstandard way, and ->pc
294 because we need to know it to get the other stuff. See the diagram
295 of stacks and the frame cache in tm-29k.h for more detail. */
296 static void
297 init_frame_info (innermost_frame, fci)
298 int innermost_frame;
299 struct frame_info *fci;
300 {
301 CORE_ADDR p;
302 long insn;
303 unsigned rsize;
304 unsigned msize;
305 int mfp_used;
306 struct symbol *func;
307
308 p = fci->pc;
309
310 if (innermost_frame)
311 fci->frame = read_register (GR1_REGNUM);
312 else
313 fci->frame = fci->next_frame + fci->next->rsize;
314
315 #if CALL_DUMMY_LOCATION == ON_STACK
316 This wont work;
317 #else
318 if (PC_IN_CALL_DUMMY (p, 0, 0))
319 #endif
320 {
321 fci->rsize = DUMMY_FRAME_RSIZE;
322 /* This doesn't matter since we never try to get locals or args
323 from a dummy frame. */
324 fci->msize = 0;
325 /* Dummy frames always use a memory frame pointer. */
326 fci->saved_msp =
327 read_register_stack_integer (fci->frame + DUMMY_FRAME_RSIZE - 4, 4);
328 return;
329 }
330
331 func = find_pc_function (p);
332 if (func != NULL)
333 p = BLOCK_START (SYMBOL_BLOCK_VALUE (func));
334 else
335 {
336 /* Search backward to find the trace-back tag. However,
337 do not trace back beyond the start of the text segment
338 (just as a sanity check to avoid going into never-never land). */
339 while (p >= text_start
340 && ((insn = read_memory_integer (p, 4)) & 0xff000000) != 0)
341 p -= 4;
342
343 if (p < text_start)
344 {
345 /* Couldn't find the trace-back tag.
346 Something strange is going on. */
347 fci->saved_msp = 0;
348 fci->rsize = 0;
349 fci->msize = 0;
350 return;
351 }
352 else
353 /* Advance to the first word of the function, i.e. the word
354 after the trace-back tag. */
355 p += 4;
356 }
357 /* We've found the start of the function. Since High C interchanges
358 the meanings of bits 23 and 22 (as of Jul 90), and we
359 need to look at the prologue anyway to figure out
360 what rsize is, ignore the contents of the trace-back tag. */
361 examine_prologue (p, &rsize, &msize, &mfp_used);
362 fci->rsize = rsize;
363 fci->msize = msize;
364 if (innermost_frame)
365 {
366 fci->saved_msp = read_register (MSP_REGNUM) + msize;
367 }
368 else
369 {
370 if (mfp_used)
371 fci->saved_msp =
372 read_register_stack_integer (fci->frame + rsize - 1, 4);
373 else
374 fci->saved_msp = fci->next->saved_msp + msize;
375 }
376 }
377
378 void
379 init_extra_frame_info (fci)
380 struct frame_info *fci;
381 {
382 if (fci->next == 0)
383 /* Assume innermost frame. May produce strange results for "info frame"
384 but there isn't any way to tell the difference. */
385 init_frame_info (1, fci);
386 else
387 /* We're in get_prev_frame_info.
388 Take care of everything in init_frame_pc. */
389 ;
390 }
391
392 void
393 init_frame_pc (fromleaf, fci)
394 int fromleaf;
395 struct frame_info *fci;
396 {
397 fci->pc = (fromleaf ? SAVED_PC_AFTER_CALL (fci->next) :
398 fci->next ? FRAME_SAVED_PC (fci->next) : read_pc ());
399 init_frame_info (0, fci);
400 }
401 \f
402 /* Local variables (i.e. LOC_LOCAL) are on the memory stack, with their
403 offsets being relative to the memory stack pointer (high C) or
404 saved_msp (gcc). */
405
406 CORE_ADDR
407 frame_locals_address (fi)
408 struct frame_info *fi;
409 {
410 struct block *b = block_for_pc (fi->pc);
411 /* If compiled without -g, assume GCC. */
412 if (b == NULL || BLOCK_GCC_COMPILED (b))
413 return fi->saved_msp;
414 else
415 return fi->saved_msp - fi->msize;
416 }
417 \f
418 /* Routines for reading the register stack. The caller gets to treat
419 the register stack as a uniform stack in memory, from address $gr1
420 straight through $rfb and beyond. */
421
422 /* Analogous to read_memory except the length is understood to be 4.
423 Also, myaddr can be NULL (meaning don't bother to read), and
424 if actual_mem_addr is non-NULL, store there the address that it
425 was fetched from (or if from a register the offset within
426 registers). Set *LVAL to lval_memory or lval_register, depending
427 on where it came from. */
428 void
429 read_register_stack (memaddr, myaddr, actual_mem_addr, lval)
430 CORE_ADDR memaddr;
431 char *myaddr;
432 CORE_ADDR *actual_mem_addr;
433 enum lval_type *lval;
434 {
435 long rfb = read_register (RFB_REGNUM);
436 long rsp = read_register (RSP_REGNUM);
437 if (memaddr < rfb)
438 {
439 /* It's in a register. */
440 int regnum = (memaddr - rsp) / 4 + LR0_REGNUM;
441 if (regnum < LR0_REGNUM || regnum > LR0_REGNUM + 127)
442 error ("Attempt to read register stack out of range.");
443 if (myaddr != NULL)
444 read_register_gen (regnum, myaddr);
445 if (lval != NULL)
446 *lval = lval_register;
447 if (actual_mem_addr != NULL)
448 *actual_mem_addr = REGISTER_BYTE (regnum);
449 }
450 else
451 {
452 /* It's in the memory portion of the register stack. */
453 if (myaddr != NULL)
454 read_memory (memaddr, myaddr, 4);
455 if (lval != NULL)
456 *lval = lval_memory;
457 if (actual_mem_addr != NULL)
458 *actual_mem_addr == memaddr;
459 }
460 }
461
462 /* Analogous to read_memory_integer
463 except the length is understood to be 4. */
464 long
465 read_register_stack_integer (memaddr, len)
466 CORE_ADDR memaddr;
467 int len;
468 {
469 long buf;
470 read_register_stack (memaddr, &buf, NULL, NULL);
471 SWAP_TARGET_AND_HOST (&buf, 4);
472 return buf;
473 }
474
475 /* Copy 4 bytes from GDB memory at MYADDR into inferior memory
476 at MEMADDR and put the actual address written into in
477 *ACTUAL_MEM_ADDR. */
478 static void
479 write_register_stack (memaddr, myaddr, actual_mem_addr)
480 CORE_ADDR memaddr;
481 char *myaddr;
482 CORE_ADDR *actual_mem_addr;
483 {
484 long rfb = read_register (RFB_REGNUM);
485 long rsp = read_register (RSP_REGNUM);
486 if (memaddr < rfb)
487 {
488 /* It's in a register. */
489 int regnum = (memaddr - rsp) / 4 + LR0_REGNUM;
490 if (regnum < LR0_REGNUM || regnum > LR0_REGNUM + 127)
491 error ("Attempt to read register stack out of range.");
492 if (myaddr != NULL)
493 write_register (regnum, *(long *)myaddr);
494 if (actual_mem_addr != NULL)
495 *actual_mem_addr = NULL;
496 }
497 else
498 {
499 /* It's in the memory portion of the register stack. */
500 if (myaddr != NULL)
501 write_memory (memaddr, myaddr, 4);
502 if (actual_mem_addr != NULL)
503 *actual_mem_addr == memaddr;
504 }
505 }
506 \f
507 /* Find register number REGNUM relative to FRAME and put its
508 (raw) contents in *RAW_BUFFER. Set *OPTIMIZED if the variable
509 was optimized out (and thus can't be fetched). If the variable
510 was fetched from memory, set *ADDRP to where it was fetched from,
511 otherwise it was fetched from a register.
512
513 The argument RAW_BUFFER must point to aligned memory. */
514 void
515 get_saved_register (raw_buffer, optimized, addrp, frame, regnum, lvalp)
516 char *raw_buffer;
517 int *optimized;
518 CORE_ADDR *addrp;
519 FRAME frame;
520 int regnum;
521 enum lval_type *lvalp;
522 {
523 struct frame_info *fi = get_frame_info (frame);
524 CORE_ADDR addr;
525 enum lval_type lval;
526
527 /* Once something has a register number, it doesn't get optimized out. */
528 if (optimized != NULL)
529 *optimized = 0;
530 if (regnum == RSP_REGNUM)
531 {
532 if (raw_buffer != NULL)
533 *(CORE_ADDR *)raw_buffer = fi->frame;
534 if (lvalp != NULL)
535 *lvalp = not_lval;
536 return;
537 }
538 else if (regnum == PC_REGNUM)
539 {
540 if (raw_buffer != NULL)
541 *(CORE_ADDR *)raw_buffer = fi->pc;
542
543 /* Not sure we have to do this. */
544 if (lvalp != NULL)
545 *lvalp = not_lval;
546
547 return;
548 }
549 else if (regnum == MSP_REGNUM)
550 {
551 if (raw_buffer != NULL)
552 {
553 if (fi->next != NULL)
554 *(CORE_ADDR *)raw_buffer = fi->next->saved_msp;
555 else
556 *(CORE_ADDR *)raw_buffer = read_register (MSP_REGNUM);
557 }
558 /* The value may have been computed, not fetched. */
559 if (lvalp != NULL)
560 *lvalp = not_lval;
561 return;
562 }
563 else if (regnum < LR0_REGNUM || regnum >= LR0_REGNUM + 128)
564 {
565 /* These registers are not saved over procedure calls,
566 so just print out the current values. */
567 if (raw_buffer != NULL)
568 *(CORE_ADDR *)raw_buffer = read_register (regnum);
569 if (lvalp != NULL)
570 *lvalp = lval_register;
571 if (addrp != NULL)
572 *addrp = REGISTER_BYTE (regnum);
573 return;
574 }
575
576 addr = fi->frame + (regnum - LR0_REGNUM) * 4;
577 if (raw_buffer != NULL)
578 read_register_stack (addr, raw_buffer, &addr, &lval);
579 if (lvalp != NULL)
580 *lvalp = lval;
581 if (addrp != NULL)
582 *addrp = addr;
583 }
584 \f
585 /* Discard from the stack the innermost frame,
586 restoring all saved registers. */
587
588 void
589 pop_frame ()
590 {
591 FRAME frame = get_current_frame ();
592 struct frame_info *fi = get_frame_info (frame);
593 CORE_ADDR rfb = read_register (RFB_REGNUM);
594 CORE_ADDR gr1 = fi->frame + fi->rsize;
595 CORE_ADDR lr1;
596 CORE_ADDR ret_addr;
597 int i;
598
599 /* If popping a dummy frame, need to restore registers. */
600 if (PC_IN_CALL_DUMMY (read_register (PC_REGNUM),
601 read_register (SP_REGNUM),
602 FRAME_FP (fi)))
603 {
604 for (i = 0; i < DUMMY_SAVE_SR128; ++i)
605 write_register
606 (SR_REGNUM (i + 128),
607 read_register (LR0_REGNUM + DUMMY_ARG / 4 + i));
608 for (i = 0; i < DUMMY_SAVE_GR96; ++i)
609 write_register
610 (GR96_REGNUM + i,
611 read_register (LR0_REGNUM + DUMMY_ARG / 4 + DUMMY_SAVE_SR128 + i));
612 }
613
614 /* Restore the memory stack pointer. */
615 write_register (MSP_REGNUM, fi->saved_msp);
616 /* Restore the register stack pointer. */
617 write_register (GR1_REGNUM, gr1);
618 /* Check whether we need to fill registers. */
619 lr1 = read_register (LR0_REGNUM + 1);
620 if (lr1 > rfb)
621 {
622 /* Fill. */
623 int num_bytes = lr1 - rfb;
624 int i;
625 long word;
626 write_register (RAB_REGNUM, read_register (RAB_REGNUM) + num_bytes);
627 write_register (RFB_REGNUM, lr1);
628 for (i = 0; i < num_bytes; i += 4)
629 {
630 /* Note: word is in host byte order. */
631 word = read_memory_integer (rfb + i, 4);
632 write_register (LR0_REGNUM + ((rfb - gr1) % 0x80) + i / 4, word);
633 }
634 }
635 ret_addr = read_register (LR0_REGNUM);
636 write_register (PC_REGNUM, ret_addr);
637 write_register (NPC_REGNUM, ret_addr + 4);
638 flush_cached_frames ();
639 set_current_frame (create_new_frame (0, read_pc()));
640 }
641
642 /* Push an empty stack frame, to record the current PC, etc. */
643
644 void
645 push_dummy_frame ()
646 {
647 long w;
648 CORE_ADDR rab, gr1;
649 CORE_ADDR msp = read_register (MSP_REGNUM);
650 int i;
651
652 /* Save the PC. */
653 write_register (LR0_REGNUM, read_register (PC_REGNUM));
654
655 /* Allocate the new frame. */
656 gr1 = read_register (GR1_REGNUM) - DUMMY_FRAME_RSIZE;
657 write_register (GR1_REGNUM, gr1);
658
659 rab = read_register (RAB_REGNUM);
660 if (gr1 < rab)
661 {
662 /* We need to spill registers. */
663 int num_bytes = rab - gr1;
664 CORE_ADDR rfb = read_register (RFB_REGNUM);
665 int i;
666 long word;
667
668 write_register (RFB_REGNUM, rfb - num_bytes);
669 write_register (RAB_REGNUM, gr1);
670 for (i = 0; i < num_bytes; i += 4)
671 {
672 /* Note: word is in target byte order. */
673 read_register_gen (LR0_REGNUM + i / 4, &word, 4);
674 write_memory (rfb - num_bytes + i, &word, 4);
675 }
676 }
677
678 /* There are no arguments in to the dummy frame, so we don't need
679 more than rsize plus the return address and lr1. */
680 write_register (LR0_REGNUM + 1, gr1 + DUMMY_FRAME_RSIZE + 2 * 4);
681
682 /* Set the memory frame pointer. */
683 write_register (LR0_REGNUM + DUMMY_FRAME_RSIZE / 4 - 1, msp);
684
685 /* Allocate arg_slop. */
686 write_register (MSP_REGNUM, msp - 16 * 4);
687
688 /* Save registers. */
689 for (i = 0; i < DUMMY_SAVE_SR128; ++i)
690 write_register (LR0_REGNUM + DUMMY_ARG / 4 + i,
691 read_register (SR_REGNUM (i + 128)));
692 for (i = 0; i < DUMMY_SAVE_GR96; ++i)
693 write_register (LR0_REGNUM + DUMMY_ARG / 4 + DUMMY_SAVE_SR128 + i,
694 read_register (GR96_REGNUM + i));
695 }
This page took 0.045682 seconds and 5 git commands to generate.