Add target descriptions for AVX + MPX
[deliverable/binutils-gdb.git] / gdb / amd64-tdep.c
1 /* Target-dependent code for AMD64.
2
3 Copyright (C) 2001-2016 Free Software Foundation, Inc.
4
5 Contributed by Jiri Smid, SuSE Labs.
6
7 This file is part of GDB.
8
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 3 of the License, or
12 (at your option) any later version.
13
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
18
19 You should have received a copy of the GNU General Public License
20 along with this program. If not, see <http://www.gnu.org/licenses/>. */
21
22 #include "defs.h"
23 #include "opcode/i386.h"
24 #include "dis-asm.h"
25 #include "arch-utils.h"
26 #include "block.h"
27 #include "dummy-frame.h"
28 #include "frame.h"
29 #include "frame-base.h"
30 #include "frame-unwind.h"
31 #include "inferior.h"
32 #include "infrun.h"
33 #include "gdbcmd.h"
34 #include "gdbcore.h"
35 #include "objfiles.h"
36 #include "regcache.h"
37 #include "regset.h"
38 #include "symfile.h"
39 #include "disasm.h"
40 #include "amd64-tdep.h"
41 #include "i387-tdep.h"
42 #include "x86-xstate.h"
43
44 #include "features/i386/amd64.c"
45 #include "features/i386/amd64-avx.c"
46 #include "features/i386/amd64-mpx.c"
47 #include "features/i386/amd64-avx-mpx.c"
48 #include "features/i386/amd64-avx512.c"
49
50 #include "features/i386/x32.c"
51 #include "features/i386/x32-avx.c"
52 #include "features/i386/x32-avx512.c"
53
54 #include "ax.h"
55 #include "ax-gdb.h"
56
57 /* Note that the AMD64 architecture was previously known as x86-64.
58 The latter is (forever) engraved into the canonical system name as
59 returned by config.guess, and used as the name for the AMD64 port
60 of GNU/Linux. The BSD's have renamed their ports to amd64; they
61 don't like to shout. For GDB we prefer the amd64_-prefix over the
62 x86_64_-prefix since it's so much easier to type. */
63
64 /* Register information. */
65
66 static const char *amd64_register_names[] =
67 {
68 "rax", "rbx", "rcx", "rdx", "rsi", "rdi", "rbp", "rsp",
69
70 /* %r8 is indeed register number 8. */
71 "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15",
72 "rip", "eflags", "cs", "ss", "ds", "es", "fs", "gs",
73
74 /* %st0 is register number 24. */
75 "st0", "st1", "st2", "st3", "st4", "st5", "st6", "st7",
76 "fctrl", "fstat", "ftag", "fiseg", "fioff", "foseg", "fooff", "fop",
77
78 /* %xmm0 is register number 40. */
79 "xmm0", "xmm1", "xmm2", "xmm3", "xmm4", "xmm5", "xmm6", "xmm7",
80 "xmm8", "xmm9", "xmm10", "xmm11", "xmm12", "xmm13", "xmm14", "xmm15",
81 "mxcsr",
82 };
83
84 static const char *amd64_ymm_names[] =
85 {
86 "ymm0", "ymm1", "ymm2", "ymm3",
87 "ymm4", "ymm5", "ymm6", "ymm7",
88 "ymm8", "ymm9", "ymm10", "ymm11",
89 "ymm12", "ymm13", "ymm14", "ymm15"
90 };
91
92 static const char *amd64_ymm_avx512_names[] =
93 {
94 "ymm16", "ymm17", "ymm18", "ymm19",
95 "ymm20", "ymm21", "ymm22", "ymm23",
96 "ymm24", "ymm25", "ymm26", "ymm27",
97 "ymm28", "ymm29", "ymm30", "ymm31"
98 };
99
100 static const char *amd64_ymmh_names[] =
101 {
102 "ymm0h", "ymm1h", "ymm2h", "ymm3h",
103 "ymm4h", "ymm5h", "ymm6h", "ymm7h",
104 "ymm8h", "ymm9h", "ymm10h", "ymm11h",
105 "ymm12h", "ymm13h", "ymm14h", "ymm15h"
106 };
107
108 static const char *amd64_ymmh_avx512_names[] =
109 {
110 "ymm16h", "ymm17h", "ymm18h", "ymm19h",
111 "ymm20h", "ymm21h", "ymm22h", "ymm23h",
112 "ymm24h", "ymm25h", "ymm26h", "ymm27h",
113 "ymm28h", "ymm29h", "ymm30h", "ymm31h"
114 };
115
116 static const char *amd64_mpx_names[] =
117 {
118 "bnd0raw", "bnd1raw", "bnd2raw", "bnd3raw", "bndcfgu", "bndstatus"
119 };
120
121 static const char *amd64_k_names[] =
122 {
123 "k0", "k1", "k2", "k3",
124 "k4", "k5", "k6", "k7"
125 };
126
127 static const char *amd64_zmmh_names[] =
128 {
129 "zmm0h", "zmm1h", "zmm2h", "zmm3h",
130 "zmm4h", "zmm5h", "zmm6h", "zmm7h",
131 "zmm8h", "zmm9h", "zmm10h", "zmm11h",
132 "zmm12h", "zmm13h", "zmm14h", "zmm15h",
133 "zmm16h", "zmm17h", "zmm18h", "zmm19h",
134 "zmm20h", "zmm21h", "zmm22h", "zmm23h",
135 "zmm24h", "zmm25h", "zmm26h", "zmm27h",
136 "zmm28h", "zmm29h", "zmm30h", "zmm31h"
137 };
138
139 static const char *amd64_zmm_names[] =
140 {
141 "zmm0", "zmm1", "zmm2", "zmm3",
142 "zmm4", "zmm5", "zmm6", "zmm7",
143 "zmm8", "zmm9", "zmm10", "zmm11",
144 "zmm12", "zmm13", "zmm14", "zmm15",
145 "zmm16", "zmm17", "zmm18", "zmm19",
146 "zmm20", "zmm21", "zmm22", "zmm23",
147 "zmm24", "zmm25", "zmm26", "zmm27",
148 "zmm28", "zmm29", "zmm30", "zmm31"
149 };
150
151 static const char *amd64_xmm_avx512_names[] = {
152 "xmm16", "xmm17", "xmm18", "xmm19",
153 "xmm20", "xmm21", "xmm22", "xmm23",
154 "xmm24", "xmm25", "xmm26", "xmm27",
155 "xmm28", "xmm29", "xmm30", "xmm31"
156 };
157
158 /* DWARF Register Number Mapping as defined in the System V psABI,
159 section 3.6. */
160
161 static int amd64_dwarf_regmap[] =
162 {
163 /* General Purpose Registers RAX, RDX, RCX, RBX, RSI, RDI. */
164 AMD64_RAX_REGNUM, AMD64_RDX_REGNUM,
165 AMD64_RCX_REGNUM, AMD64_RBX_REGNUM,
166 AMD64_RSI_REGNUM, AMD64_RDI_REGNUM,
167
168 /* Frame Pointer Register RBP. */
169 AMD64_RBP_REGNUM,
170
171 /* Stack Pointer Register RSP. */
172 AMD64_RSP_REGNUM,
173
174 /* Extended Integer Registers 8 - 15. */
175 AMD64_R8_REGNUM, /* %r8 */
176 AMD64_R9_REGNUM, /* %r9 */
177 AMD64_R10_REGNUM, /* %r10 */
178 AMD64_R11_REGNUM, /* %r11 */
179 AMD64_R12_REGNUM, /* %r12 */
180 AMD64_R13_REGNUM, /* %r13 */
181 AMD64_R14_REGNUM, /* %r14 */
182 AMD64_R15_REGNUM, /* %r15 */
183
184 /* Return Address RA. Mapped to RIP. */
185 AMD64_RIP_REGNUM,
186
187 /* SSE Registers 0 - 7. */
188 AMD64_XMM0_REGNUM + 0, AMD64_XMM1_REGNUM,
189 AMD64_XMM0_REGNUM + 2, AMD64_XMM0_REGNUM + 3,
190 AMD64_XMM0_REGNUM + 4, AMD64_XMM0_REGNUM + 5,
191 AMD64_XMM0_REGNUM + 6, AMD64_XMM0_REGNUM + 7,
192
193 /* Extended SSE Registers 8 - 15. */
194 AMD64_XMM0_REGNUM + 8, AMD64_XMM0_REGNUM + 9,
195 AMD64_XMM0_REGNUM + 10, AMD64_XMM0_REGNUM + 11,
196 AMD64_XMM0_REGNUM + 12, AMD64_XMM0_REGNUM + 13,
197 AMD64_XMM0_REGNUM + 14, AMD64_XMM0_REGNUM + 15,
198
199 /* Floating Point Registers 0-7. */
200 AMD64_ST0_REGNUM + 0, AMD64_ST0_REGNUM + 1,
201 AMD64_ST0_REGNUM + 2, AMD64_ST0_REGNUM + 3,
202 AMD64_ST0_REGNUM + 4, AMD64_ST0_REGNUM + 5,
203 AMD64_ST0_REGNUM + 6, AMD64_ST0_REGNUM + 7,
204
205 /* MMX Registers 0 - 7.
206 We have to handle those registers specifically, as their register
207 number within GDB depends on the target (or they may even not be
208 available at all). */
209 -1, -1, -1, -1, -1, -1, -1, -1,
210
211 /* Control and Status Flags Register. */
212 AMD64_EFLAGS_REGNUM,
213
214 /* Selector Registers. */
215 AMD64_ES_REGNUM,
216 AMD64_CS_REGNUM,
217 AMD64_SS_REGNUM,
218 AMD64_DS_REGNUM,
219 AMD64_FS_REGNUM,
220 AMD64_GS_REGNUM,
221 -1,
222 -1,
223
224 /* Segment Base Address Registers. */
225 -1,
226 -1,
227 -1,
228 -1,
229
230 /* Special Selector Registers. */
231 -1,
232 -1,
233
234 /* Floating Point Control Registers. */
235 AMD64_MXCSR_REGNUM,
236 AMD64_FCTRL_REGNUM,
237 AMD64_FSTAT_REGNUM
238 };
239
240 static const int amd64_dwarf_regmap_len =
241 (sizeof (amd64_dwarf_regmap) / sizeof (amd64_dwarf_regmap[0]));
242
243 /* Convert DWARF register number REG to the appropriate register
244 number used by GDB. */
245
246 static int
247 amd64_dwarf_reg_to_regnum (struct gdbarch *gdbarch, int reg)
248 {
249 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
250 int ymm0_regnum = tdep->ymm0_regnum;
251 int regnum = -1;
252
253 if (reg >= 0 && reg < amd64_dwarf_regmap_len)
254 regnum = amd64_dwarf_regmap[reg];
255
256 if (ymm0_regnum >= 0
257 && i386_xmm_regnum_p (gdbarch, regnum))
258 regnum += ymm0_regnum - I387_XMM0_REGNUM (tdep);
259
260 return regnum;
261 }
262
263 /* Map architectural register numbers to gdb register numbers. */
264
265 static const int amd64_arch_regmap[16] =
266 {
267 AMD64_RAX_REGNUM, /* %rax */
268 AMD64_RCX_REGNUM, /* %rcx */
269 AMD64_RDX_REGNUM, /* %rdx */
270 AMD64_RBX_REGNUM, /* %rbx */
271 AMD64_RSP_REGNUM, /* %rsp */
272 AMD64_RBP_REGNUM, /* %rbp */
273 AMD64_RSI_REGNUM, /* %rsi */
274 AMD64_RDI_REGNUM, /* %rdi */
275 AMD64_R8_REGNUM, /* %r8 */
276 AMD64_R9_REGNUM, /* %r9 */
277 AMD64_R10_REGNUM, /* %r10 */
278 AMD64_R11_REGNUM, /* %r11 */
279 AMD64_R12_REGNUM, /* %r12 */
280 AMD64_R13_REGNUM, /* %r13 */
281 AMD64_R14_REGNUM, /* %r14 */
282 AMD64_R15_REGNUM /* %r15 */
283 };
284
285 static const int amd64_arch_regmap_len =
286 (sizeof (amd64_arch_regmap) / sizeof (amd64_arch_regmap[0]));
287
288 /* Convert architectural register number REG to the appropriate register
289 number used by GDB. */
290
291 static int
292 amd64_arch_reg_to_regnum (int reg)
293 {
294 gdb_assert (reg >= 0 && reg < amd64_arch_regmap_len);
295
296 return amd64_arch_regmap[reg];
297 }
298
299 /* Register names for byte pseudo-registers. */
300
301 static const char *amd64_byte_names[] =
302 {
303 "al", "bl", "cl", "dl", "sil", "dil", "bpl", "spl",
304 "r8l", "r9l", "r10l", "r11l", "r12l", "r13l", "r14l", "r15l",
305 "ah", "bh", "ch", "dh"
306 };
307
308 /* Number of lower byte registers. */
309 #define AMD64_NUM_LOWER_BYTE_REGS 16
310
311 /* Register names for word pseudo-registers. */
312
313 static const char *amd64_word_names[] =
314 {
315 "ax", "bx", "cx", "dx", "si", "di", "bp", "",
316 "r8w", "r9w", "r10w", "r11w", "r12w", "r13w", "r14w", "r15w"
317 };
318
319 /* Register names for dword pseudo-registers. */
320
321 static const char *amd64_dword_names[] =
322 {
323 "eax", "ebx", "ecx", "edx", "esi", "edi", "ebp", "esp",
324 "r8d", "r9d", "r10d", "r11d", "r12d", "r13d", "r14d", "r15d",
325 "eip"
326 };
327
328 /* Return the name of register REGNUM. */
329
330 static const char *
331 amd64_pseudo_register_name (struct gdbarch *gdbarch, int regnum)
332 {
333 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
334 if (i386_byte_regnum_p (gdbarch, regnum))
335 return amd64_byte_names[regnum - tdep->al_regnum];
336 else if (i386_zmm_regnum_p (gdbarch, regnum))
337 return amd64_zmm_names[regnum - tdep->zmm0_regnum];
338 else if (i386_ymm_regnum_p (gdbarch, regnum))
339 return amd64_ymm_names[regnum - tdep->ymm0_regnum];
340 else if (i386_ymm_avx512_regnum_p (gdbarch, regnum))
341 return amd64_ymm_avx512_names[regnum - tdep->ymm16_regnum];
342 else if (i386_word_regnum_p (gdbarch, regnum))
343 return amd64_word_names[regnum - tdep->ax_regnum];
344 else if (i386_dword_regnum_p (gdbarch, regnum))
345 return amd64_dword_names[regnum - tdep->eax_regnum];
346 else
347 return i386_pseudo_register_name (gdbarch, regnum);
348 }
349
350 static struct value *
351 amd64_pseudo_register_read_value (struct gdbarch *gdbarch,
352 struct regcache *regcache,
353 int regnum)
354 {
355 gdb_byte raw_buf[MAX_REGISTER_SIZE];
356 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
357 enum register_status status;
358 struct value *result_value;
359 gdb_byte *buf;
360
361 result_value = allocate_value (register_type (gdbarch, regnum));
362 VALUE_LVAL (result_value) = lval_register;
363 VALUE_REGNUM (result_value) = regnum;
364 buf = value_contents_raw (result_value);
365
366 if (i386_byte_regnum_p (gdbarch, regnum))
367 {
368 int gpnum = regnum - tdep->al_regnum;
369
370 /* Extract (always little endian). */
371 if (gpnum >= AMD64_NUM_LOWER_BYTE_REGS)
372 {
373 /* Special handling for AH, BH, CH, DH. */
374 status = regcache_raw_read (regcache,
375 gpnum - AMD64_NUM_LOWER_BYTE_REGS,
376 raw_buf);
377 if (status == REG_VALID)
378 memcpy (buf, raw_buf + 1, 1);
379 else
380 mark_value_bytes_unavailable (result_value, 0,
381 TYPE_LENGTH (value_type (result_value)));
382 }
383 else
384 {
385 status = regcache_raw_read (regcache, gpnum, raw_buf);
386 if (status == REG_VALID)
387 memcpy (buf, raw_buf, 1);
388 else
389 mark_value_bytes_unavailable (result_value, 0,
390 TYPE_LENGTH (value_type (result_value)));
391 }
392 }
393 else if (i386_dword_regnum_p (gdbarch, regnum))
394 {
395 int gpnum = regnum - tdep->eax_regnum;
396 /* Extract (always little endian). */
397 status = regcache_raw_read (regcache, gpnum, raw_buf);
398 if (status == REG_VALID)
399 memcpy (buf, raw_buf, 4);
400 else
401 mark_value_bytes_unavailable (result_value, 0,
402 TYPE_LENGTH (value_type (result_value)));
403 }
404 else
405 i386_pseudo_register_read_into_value (gdbarch, regcache, regnum,
406 result_value);
407
408 return result_value;
409 }
410
411 static void
412 amd64_pseudo_register_write (struct gdbarch *gdbarch,
413 struct regcache *regcache,
414 int regnum, const gdb_byte *buf)
415 {
416 gdb_byte raw_buf[MAX_REGISTER_SIZE];
417 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
418
419 if (i386_byte_regnum_p (gdbarch, regnum))
420 {
421 int gpnum = regnum - tdep->al_regnum;
422
423 if (gpnum >= AMD64_NUM_LOWER_BYTE_REGS)
424 {
425 /* Read ... AH, BH, CH, DH. */
426 regcache_raw_read (regcache,
427 gpnum - AMD64_NUM_LOWER_BYTE_REGS, raw_buf);
428 /* ... Modify ... (always little endian). */
429 memcpy (raw_buf + 1, buf, 1);
430 /* ... Write. */
431 regcache_raw_write (regcache,
432 gpnum - AMD64_NUM_LOWER_BYTE_REGS, raw_buf);
433 }
434 else
435 {
436 /* Read ... */
437 regcache_raw_read (regcache, gpnum, raw_buf);
438 /* ... Modify ... (always little endian). */
439 memcpy (raw_buf, buf, 1);
440 /* ... Write. */
441 regcache_raw_write (regcache, gpnum, raw_buf);
442 }
443 }
444 else if (i386_dword_regnum_p (gdbarch, regnum))
445 {
446 int gpnum = regnum - tdep->eax_regnum;
447
448 /* Read ... */
449 regcache_raw_read (regcache, gpnum, raw_buf);
450 /* ... Modify ... (always little endian). */
451 memcpy (raw_buf, buf, 4);
452 /* ... Write. */
453 regcache_raw_write (regcache, gpnum, raw_buf);
454 }
455 else
456 i386_pseudo_register_write (gdbarch, regcache, regnum, buf);
457 }
458
459 /* Implement the 'ax_pseudo_register_collect' gdbarch method. */
460
461 static int
462 amd64_ax_pseudo_register_collect (struct gdbarch *gdbarch,
463 struct agent_expr *ax, int regnum)
464 {
465 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
466
467 if (i386_byte_regnum_p (gdbarch, regnum))
468 {
469 int gpnum = regnum - tdep->al_regnum;
470
471 if (gpnum >= AMD64_NUM_LOWER_BYTE_REGS)
472 ax_reg_mask (ax, gpnum - AMD64_NUM_LOWER_BYTE_REGS);
473 else
474 ax_reg_mask (ax, gpnum);
475 return 0;
476 }
477 else if (i386_dword_regnum_p (gdbarch, regnum))
478 {
479 int gpnum = regnum - tdep->eax_regnum;
480
481 ax_reg_mask (ax, gpnum);
482 return 0;
483 }
484 else
485 return i386_ax_pseudo_register_collect (gdbarch, ax, regnum);
486 }
487
488 \f
489
490 /* Register classes as defined in the psABI. */
491
492 enum amd64_reg_class
493 {
494 AMD64_INTEGER,
495 AMD64_SSE,
496 AMD64_SSEUP,
497 AMD64_X87,
498 AMD64_X87UP,
499 AMD64_COMPLEX_X87,
500 AMD64_NO_CLASS,
501 AMD64_MEMORY
502 };
503
504 /* Return the union class of CLASS1 and CLASS2. See the psABI for
505 details. */
506
507 static enum amd64_reg_class
508 amd64_merge_classes (enum amd64_reg_class class1, enum amd64_reg_class class2)
509 {
510 /* Rule (a): If both classes are equal, this is the resulting class. */
511 if (class1 == class2)
512 return class1;
513
514 /* Rule (b): If one of the classes is NO_CLASS, the resulting class
515 is the other class. */
516 if (class1 == AMD64_NO_CLASS)
517 return class2;
518 if (class2 == AMD64_NO_CLASS)
519 return class1;
520
521 /* Rule (c): If one of the classes is MEMORY, the result is MEMORY. */
522 if (class1 == AMD64_MEMORY || class2 == AMD64_MEMORY)
523 return AMD64_MEMORY;
524
525 /* Rule (d): If one of the classes is INTEGER, the result is INTEGER. */
526 if (class1 == AMD64_INTEGER || class2 == AMD64_INTEGER)
527 return AMD64_INTEGER;
528
529 /* Rule (e): If one of the classes is X87, X87UP, COMPLEX_X87 class,
530 MEMORY is used as class. */
531 if (class1 == AMD64_X87 || class1 == AMD64_X87UP
532 || class1 == AMD64_COMPLEX_X87 || class2 == AMD64_X87
533 || class2 == AMD64_X87UP || class2 == AMD64_COMPLEX_X87)
534 return AMD64_MEMORY;
535
536 /* Rule (f): Otherwise class SSE is used. */
537 return AMD64_SSE;
538 }
539
540 static void amd64_classify (struct type *type, enum amd64_reg_class theclass[2]);
541
542 /* Return non-zero if TYPE is a non-POD structure or union type. */
543
544 static int
545 amd64_non_pod_p (struct type *type)
546 {
547 /* ??? A class with a base class certainly isn't POD, but does this
548 catch all non-POD structure types? */
549 if (TYPE_CODE (type) == TYPE_CODE_STRUCT && TYPE_N_BASECLASSES (type) > 0)
550 return 1;
551
552 return 0;
553 }
554
555 /* Classify TYPE according to the rules for aggregate (structures and
556 arrays) and union types, and store the result in CLASS. */
557
558 static void
559 amd64_classify_aggregate (struct type *type, enum amd64_reg_class theclass[2])
560 {
561 /* 1. If the size of an object is larger than two eightbytes, or in
562 C++, is a non-POD structure or union type, or contains
563 unaligned fields, it has class memory. */
564 if (TYPE_LENGTH (type) > 16 || amd64_non_pod_p (type))
565 {
566 theclass[0] = theclass[1] = AMD64_MEMORY;
567 return;
568 }
569
570 /* 2. Both eightbytes get initialized to class NO_CLASS. */
571 theclass[0] = theclass[1] = AMD64_NO_CLASS;
572
573 /* 3. Each field of an object is classified recursively so that
574 always two fields are considered. The resulting class is
575 calculated according to the classes of the fields in the
576 eightbyte: */
577
578 if (TYPE_CODE (type) == TYPE_CODE_ARRAY)
579 {
580 struct type *subtype = check_typedef (TYPE_TARGET_TYPE (type));
581
582 /* All fields in an array have the same type. */
583 amd64_classify (subtype, theclass);
584 if (TYPE_LENGTH (type) > 8 && theclass[1] == AMD64_NO_CLASS)
585 theclass[1] = theclass[0];
586 }
587 else
588 {
589 int i;
590
591 /* Structure or union. */
592 gdb_assert (TYPE_CODE (type) == TYPE_CODE_STRUCT
593 || TYPE_CODE (type) == TYPE_CODE_UNION);
594
595 for (i = 0; i < TYPE_NFIELDS (type); i++)
596 {
597 struct type *subtype = check_typedef (TYPE_FIELD_TYPE (type, i));
598 int pos = TYPE_FIELD_BITPOS (type, i) / 64;
599 enum amd64_reg_class subclass[2];
600 int bitsize = TYPE_FIELD_BITSIZE (type, i);
601 int endpos;
602
603 if (bitsize == 0)
604 bitsize = TYPE_LENGTH (subtype) * 8;
605 endpos = (TYPE_FIELD_BITPOS (type, i) + bitsize - 1) / 64;
606
607 /* Ignore static fields. */
608 if (field_is_static (&TYPE_FIELD (type, i)))
609 continue;
610
611 gdb_assert (pos == 0 || pos == 1);
612
613 amd64_classify (subtype, subclass);
614 theclass[pos] = amd64_merge_classes (theclass[pos], subclass[0]);
615 if (bitsize <= 64 && pos == 0 && endpos == 1)
616 /* This is a bit of an odd case: We have a field that would
617 normally fit in one of the two eightbytes, except that
618 it is placed in a way that this field straddles them.
619 This has been seen with a structure containing an array.
620
621 The ABI is a bit unclear in this case, but we assume that
622 this field's class (stored in subclass[0]) must also be merged
623 into class[1]. In other words, our field has a piece stored
624 in the second eight-byte, and thus its class applies to
625 the second eight-byte as well.
626
627 In the case where the field length exceeds 8 bytes,
628 it should not be necessary to merge the field class
629 into class[1]. As LEN > 8, subclass[1] is necessarily
630 different from AMD64_NO_CLASS. If subclass[1] is equal
631 to subclass[0], then the normal class[1]/subclass[1]
632 merging will take care of everything. For subclass[1]
633 to be different from subclass[0], I can only see the case
634 where we have a SSE/SSEUP or X87/X87UP pair, which both
635 use up all 16 bytes of the aggregate, and are already
636 handled just fine (because each portion sits on its own
637 8-byte). */
638 theclass[1] = amd64_merge_classes (theclass[1], subclass[0]);
639 if (pos == 0)
640 theclass[1] = amd64_merge_classes (theclass[1], subclass[1]);
641 }
642 }
643
644 /* 4. Then a post merger cleanup is done: */
645
646 /* Rule (a): If one of the classes is MEMORY, the whole argument is
647 passed in memory. */
648 if (theclass[0] == AMD64_MEMORY || theclass[1] == AMD64_MEMORY)
649 theclass[0] = theclass[1] = AMD64_MEMORY;
650
651 /* Rule (b): If SSEUP is not preceded by SSE, it is converted to
652 SSE. */
653 if (theclass[0] == AMD64_SSEUP)
654 theclass[0] = AMD64_SSE;
655 if (theclass[1] == AMD64_SSEUP && theclass[0] != AMD64_SSE)
656 theclass[1] = AMD64_SSE;
657 }
658
659 /* Classify TYPE, and store the result in CLASS. */
660
661 static void
662 amd64_classify (struct type *type, enum amd64_reg_class theclass[2])
663 {
664 enum type_code code = TYPE_CODE (type);
665 int len = TYPE_LENGTH (type);
666
667 theclass[0] = theclass[1] = AMD64_NO_CLASS;
668
669 /* Arguments of types (signed and unsigned) _Bool, char, short, int,
670 long, long long, and pointers are in the INTEGER class. Similarly,
671 range types, used by languages such as Ada, are also in the INTEGER
672 class. */
673 if ((code == TYPE_CODE_INT || code == TYPE_CODE_ENUM
674 || code == TYPE_CODE_BOOL || code == TYPE_CODE_RANGE
675 || code == TYPE_CODE_CHAR
676 || code == TYPE_CODE_PTR || code == TYPE_CODE_REF)
677 && (len == 1 || len == 2 || len == 4 || len == 8))
678 theclass[0] = AMD64_INTEGER;
679
680 /* Arguments of types float, double, _Decimal32, _Decimal64 and __m64
681 are in class SSE. */
682 else if ((code == TYPE_CODE_FLT || code == TYPE_CODE_DECFLOAT)
683 && (len == 4 || len == 8))
684 /* FIXME: __m64 . */
685 theclass[0] = AMD64_SSE;
686
687 /* Arguments of types __float128, _Decimal128 and __m128 are split into
688 two halves. The least significant ones belong to class SSE, the most
689 significant one to class SSEUP. */
690 else if (code == TYPE_CODE_DECFLOAT && len == 16)
691 /* FIXME: __float128, __m128. */
692 theclass[0] = AMD64_SSE, theclass[1] = AMD64_SSEUP;
693
694 /* The 64-bit mantissa of arguments of type long double belongs to
695 class X87, the 16-bit exponent plus 6 bytes of padding belongs to
696 class X87UP. */
697 else if (code == TYPE_CODE_FLT && len == 16)
698 /* Class X87 and X87UP. */
699 theclass[0] = AMD64_X87, theclass[1] = AMD64_X87UP;
700
701 /* Arguments of complex T where T is one of the types float or
702 double get treated as if they are implemented as:
703
704 struct complexT {
705 T real;
706 T imag;
707 };
708
709 */
710 else if (code == TYPE_CODE_COMPLEX && len == 8)
711 theclass[0] = AMD64_SSE;
712 else if (code == TYPE_CODE_COMPLEX && len == 16)
713 theclass[0] = theclass[1] = AMD64_SSE;
714
715 /* A variable of type complex long double is classified as type
716 COMPLEX_X87. */
717 else if (code == TYPE_CODE_COMPLEX && len == 32)
718 theclass[0] = AMD64_COMPLEX_X87;
719
720 /* Aggregates. */
721 else if (code == TYPE_CODE_ARRAY || code == TYPE_CODE_STRUCT
722 || code == TYPE_CODE_UNION)
723 amd64_classify_aggregate (type, theclass);
724 }
725
726 static enum return_value_convention
727 amd64_return_value (struct gdbarch *gdbarch, struct value *function,
728 struct type *type, struct regcache *regcache,
729 gdb_byte *readbuf, const gdb_byte *writebuf)
730 {
731 enum amd64_reg_class theclass[2];
732 int len = TYPE_LENGTH (type);
733 static int integer_regnum[] = { AMD64_RAX_REGNUM, AMD64_RDX_REGNUM };
734 static int sse_regnum[] = { AMD64_XMM0_REGNUM, AMD64_XMM1_REGNUM };
735 int integer_reg = 0;
736 int sse_reg = 0;
737 int i;
738
739 gdb_assert (!(readbuf && writebuf));
740
741 /* 1. Classify the return type with the classification algorithm. */
742 amd64_classify (type, theclass);
743
744 /* 2. If the type has class MEMORY, then the caller provides space
745 for the return value and passes the address of this storage in
746 %rdi as if it were the first argument to the function. In effect,
747 this address becomes a hidden first argument.
748
749 On return %rax will contain the address that has been passed in
750 by the caller in %rdi. */
751 if (theclass[0] == AMD64_MEMORY)
752 {
753 /* As indicated by the comment above, the ABI guarantees that we
754 can always find the return value just after the function has
755 returned. */
756
757 if (readbuf)
758 {
759 ULONGEST addr;
760
761 regcache_raw_read_unsigned (regcache, AMD64_RAX_REGNUM, &addr);
762 read_memory (addr, readbuf, TYPE_LENGTH (type));
763 }
764
765 return RETURN_VALUE_ABI_RETURNS_ADDRESS;
766 }
767
768 /* 8. If the class is COMPLEX_X87, the real part of the value is
769 returned in %st0 and the imaginary part in %st1. */
770 if (theclass[0] == AMD64_COMPLEX_X87)
771 {
772 if (readbuf)
773 {
774 regcache_raw_read (regcache, AMD64_ST0_REGNUM, readbuf);
775 regcache_raw_read (regcache, AMD64_ST1_REGNUM, readbuf + 16);
776 }
777
778 if (writebuf)
779 {
780 i387_return_value (gdbarch, regcache);
781 regcache_raw_write (regcache, AMD64_ST0_REGNUM, writebuf);
782 regcache_raw_write (regcache, AMD64_ST1_REGNUM, writebuf + 16);
783
784 /* Fix up the tag word such that both %st(0) and %st(1) are
785 marked as valid. */
786 regcache_raw_write_unsigned (regcache, AMD64_FTAG_REGNUM, 0xfff);
787 }
788
789 return RETURN_VALUE_REGISTER_CONVENTION;
790 }
791
792 gdb_assert (theclass[1] != AMD64_MEMORY);
793 gdb_assert (len <= 16);
794
795 for (i = 0; len > 0; i++, len -= 8)
796 {
797 int regnum = -1;
798 int offset = 0;
799
800 switch (theclass[i])
801 {
802 case AMD64_INTEGER:
803 /* 3. If the class is INTEGER, the next available register
804 of the sequence %rax, %rdx is used. */
805 regnum = integer_regnum[integer_reg++];
806 break;
807
808 case AMD64_SSE:
809 /* 4. If the class is SSE, the next available SSE register
810 of the sequence %xmm0, %xmm1 is used. */
811 regnum = sse_regnum[sse_reg++];
812 break;
813
814 case AMD64_SSEUP:
815 /* 5. If the class is SSEUP, the eightbyte is passed in the
816 upper half of the last used SSE register. */
817 gdb_assert (sse_reg > 0);
818 regnum = sse_regnum[sse_reg - 1];
819 offset = 8;
820 break;
821
822 case AMD64_X87:
823 /* 6. If the class is X87, the value is returned on the X87
824 stack in %st0 as 80-bit x87 number. */
825 regnum = AMD64_ST0_REGNUM;
826 if (writebuf)
827 i387_return_value (gdbarch, regcache);
828 break;
829
830 case AMD64_X87UP:
831 /* 7. If the class is X87UP, the value is returned together
832 with the previous X87 value in %st0. */
833 gdb_assert (i > 0 && theclass[0] == AMD64_X87);
834 regnum = AMD64_ST0_REGNUM;
835 offset = 8;
836 len = 2;
837 break;
838
839 case AMD64_NO_CLASS:
840 continue;
841
842 default:
843 gdb_assert (!"Unexpected register class.");
844 }
845
846 gdb_assert (regnum != -1);
847
848 if (readbuf)
849 regcache_raw_read_part (regcache, regnum, offset, min (len, 8),
850 readbuf + i * 8);
851 if (writebuf)
852 regcache_raw_write_part (regcache, regnum, offset, min (len, 8),
853 writebuf + i * 8);
854 }
855
856 return RETURN_VALUE_REGISTER_CONVENTION;
857 }
858 \f
859
860 static CORE_ADDR
861 amd64_push_arguments (struct regcache *regcache, int nargs,
862 struct value **args, CORE_ADDR sp, int struct_return)
863 {
864 static int integer_regnum[] =
865 {
866 AMD64_RDI_REGNUM, /* %rdi */
867 AMD64_RSI_REGNUM, /* %rsi */
868 AMD64_RDX_REGNUM, /* %rdx */
869 AMD64_RCX_REGNUM, /* %rcx */
870 AMD64_R8_REGNUM, /* %r8 */
871 AMD64_R9_REGNUM /* %r9 */
872 };
873 static int sse_regnum[] =
874 {
875 /* %xmm0 ... %xmm7 */
876 AMD64_XMM0_REGNUM + 0, AMD64_XMM1_REGNUM,
877 AMD64_XMM0_REGNUM + 2, AMD64_XMM0_REGNUM + 3,
878 AMD64_XMM0_REGNUM + 4, AMD64_XMM0_REGNUM + 5,
879 AMD64_XMM0_REGNUM + 6, AMD64_XMM0_REGNUM + 7,
880 };
881 struct value **stack_args = XALLOCAVEC (struct value *, nargs);
882 int num_stack_args = 0;
883 int num_elements = 0;
884 int element = 0;
885 int integer_reg = 0;
886 int sse_reg = 0;
887 int i;
888
889 /* Reserve a register for the "hidden" argument. */
890 if (struct_return)
891 integer_reg++;
892
893 for (i = 0; i < nargs; i++)
894 {
895 struct type *type = value_type (args[i]);
896 int len = TYPE_LENGTH (type);
897 enum amd64_reg_class theclass[2];
898 int needed_integer_regs = 0;
899 int needed_sse_regs = 0;
900 int j;
901
902 /* Classify argument. */
903 amd64_classify (type, theclass);
904
905 /* Calculate the number of integer and SSE registers needed for
906 this argument. */
907 for (j = 0; j < 2; j++)
908 {
909 if (theclass[j] == AMD64_INTEGER)
910 needed_integer_regs++;
911 else if (theclass[j] == AMD64_SSE)
912 needed_sse_regs++;
913 }
914
915 /* Check whether enough registers are available, and if the
916 argument should be passed in registers at all. */
917 if (integer_reg + needed_integer_regs > ARRAY_SIZE (integer_regnum)
918 || sse_reg + needed_sse_regs > ARRAY_SIZE (sse_regnum)
919 || (needed_integer_regs == 0 && needed_sse_regs == 0))
920 {
921 /* The argument will be passed on the stack. */
922 num_elements += ((len + 7) / 8);
923 stack_args[num_stack_args++] = args[i];
924 }
925 else
926 {
927 /* The argument will be passed in registers. */
928 const gdb_byte *valbuf = value_contents (args[i]);
929 gdb_byte buf[8];
930
931 gdb_assert (len <= 16);
932
933 for (j = 0; len > 0; j++, len -= 8)
934 {
935 int regnum = -1;
936 int offset = 0;
937
938 switch (theclass[j])
939 {
940 case AMD64_INTEGER:
941 regnum = integer_regnum[integer_reg++];
942 break;
943
944 case AMD64_SSE:
945 regnum = sse_regnum[sse_reg++];
946 break;
947
948 case AMD64_SSEUP:
949 gdb_assert (sse_reg > 0);
950 regnum = sse_regnum[sse_reg - 1];
951 offset = 8;
952 break;
953
954 default:
955 gdb_assert (!"Unexpected register class.");
956 }
957
958 gdb_assert (regnum != -1);
959 memset (buf, 0, sizeof buf);
960 memcpy (buf, valbuf + j * 8, min (len, 8));
961 regcache_raw_write_part (regcache, regnum, offset, 8, buf);
962 }
963 }
964 }
965
966 /* Allocate space for the arguments on the stack. */
967 sp -= num_elements * 8;
968
969 /* The psABI says that "The end of the input argument area shall be
970 aligned on a 16 byte boundary." */
971 sp &= ~0xf;
972
973 /* Write out the arguments to the stack. */
974 for (i = 0; i < num_stack_args; i++)
975 {
976 struct type *type = value_type (stack_args[i]);
977 const gdb_byte *valbuf = value_contents (stack_args[i]);
978 int len = TYPE_LENGTH (type);
979
980 write_memory (sp + element * 8, valbuf, len);
981 element += ((len + 7) / 8);
982 }
983
984 /* The psABI says that "For calls that may call functions that use
985 varargs or stdargs (prototype-less calls or calls to functions
986 containing ellipsis (...) in the declaration) %al is used as
987 hidden argument to specify the number of SSE registers used. */
988 regcache_raw_write_unsigned (regcache, AMD64_RAX_REGNUM, sse_reg);
989 return sp;
990 }
991
992 static CORE_ADDR
993 amd64_push_dummy_call (struct gdbarch *gdbarch, struct value *function,
994 struct regcache *regcache, CORE_ADDR bp_addr,
995 int nargs, struct value **args, CORE_ADDR sp,
996 int struct_return, CORE_ADDR struct_addr)
997 {
998 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
999 gdb_byte buf[8];
1000
1001 /* Pass arguments. */
1002 sp = amd64_push_arguments (regcache, nargs, args, sp, struct_return);
1003
1004 /* Pass "hidden" argument". */
1005 if (struct_return)
1006 {
1007 store_unsigned_integer (buf, 8, byte_order, struct_addr);
1008 regcache_cooked_write (regcache, AMD64_RDI_REGNUM, buf);
1009 }
1010
1011 /* Store return address. */
1012 sp -= 8;
1013 store_unsigned_integer (buf, 8, byte_order, bp_addr);
1014 write_memory (sp, buf, 8);
1015
1016 /* Finally, update the stack pointer... */
1017 store_unsigned_integer (buf, 8, byte_order, sp);
1018 regcache_cooked_write (regcache, AMD64_RSP_REGNUM, buf);
1019
1020 /* ...and fake a frame pointer. */
1021 regcache_cooked_write (regcache, AMD64_RBP_REGNUM, buf);
1022
1023 return sp + 16;
1024 }
1025 \f
1026 /* Displaced instruction handling. */
1027
1028 /* A partially decoded instruction.
1029 This contains enough details for displaced stepping purposes. */
1030
1031 struct amd64_insn
1032 {
1033 /* The number of opcode bytes. */
1034 int opcode_len;
1035 /* The offset of the rex prefix or -1 if not present. */
1036 int rex_offset;
1037 /* The offset to the first opcode byte. */
1038 int opcode_offset;
1039 /* The offset to the modrm byte or -1 if not present. */
1040 int modrm_offset;
1041
1042 /* The raw instruction. */
1043 gdb_byte *raw_insn;
1044 };
1045
1046 struct displaced_step_closure
1047 {
1048 /* For rip-relative insns, saved copy of the reg we use instead of %rip. */
1049 int tmp_used;
1050 int tmp_regno;
1051 ULONGEST tmp_save;
1052
1053 /* Details of the instruction. */
1054 struct amd64_insn insn_details;
1055
1056 /* Amount of space allocated to insn_buf. */
1057 int max_len;
1058
1059 /* The possibly modified insn.
1060 This is a variable-length field. */
1061 gdb_byte insn_buf[1];
1062 };
1063
1064 /* WARNING: Keep onebyte_has_modrm, twobyte_has_modrm in sync with
1065 ../opcodes/i386-dis.c (until libopcodes exports them, or an alternative,
1066 at which point delete these in favor of libopcodes' versions). */
1067
1068 static const unsigned char onebyte_has_modrm[256] = {
1069 /* 0 1 2 3 4 5 6 7 8 9 a b c d e f */
1070 /* ------------------------------- */
1071 /* 00 */ 1,1,1,1,0,0,0,0,1,1,1,1,0,0,0,0, /* 00 */
1072 /* 10 */ 1,1,1,1,0,0,0,0,1,1,1,1,0,0,0,0, /* 10 */
1073 /* 20 */ 1,1,1,1,0,0,0,0,1,1,1,1,0,0,0,0, /* 20 */
1074 /* 30 */ 1,1,1,1,0,0,0,0,1,1,1,1,0,0,0,0, /* 30 */
1075 /* 40 */ 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, /* 40 */
1076 /* 50 */ 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, /* 50 */
1077 /* 60 */ 0,0,1,1,0,0,0,0,0,1,0,1,0,0,0,0, /* 60 */
1078 /* 70 */ 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, /* 70 */
1079 /* 80 */ 1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1, /* 80 */
1080 /* 90 */ 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, /* 90 */
1081 /* a0 */ 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, /* a0 */
1082 /* b0 */ 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, /* b0 */
1083 /* c0 */ 1,1,0,0,1,1,1,1,0,0,0,0,0,0,0,0, /* c0 */
1084 /* d0 */ 1,1,1,1,0,0,0,0,1,1,1,1,1,1,1,1, /* d0 */
1085 /* e0 */ 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, /* e0 */
1086 /* f0 */ 0,0,0,0,0,0,1,1,0,0,0,0,0,0,1,1 /* f0 */
1087 /* ------------------------------- */
1088 /* 0 1 2 3 4 5 6 7 8 9 a b c d e f */
1089 };
1090
1091 static const unsigned char twobyte_has_modrm[256] = {
1092 /* 0 1 2 3 4 5 6 7 8 9 a b c d e f */
1093 /* ------------------------------- */
1094 /* 00 */ 1,1,1,1,0,0,0,0,0,0,0,0,0,1,0,1, /* 0f */
1095 /* 10 */ 1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1, /* 1f */
1096 /* 20 */ 1,1,1,1,1,1,1,0,1,1,1,1,1,1,1,1, /* 2f */
1097 /* 30 */ 0,0,0,0,0,0,0,0,1,0,1,0,0,0,0,0, /* 3f */
1098 /* 40 */ 1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1, /* 4f */
1099 /* 50 */ 1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1, /* 5f */
1100 /* 60 */ 1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1, /* 6f */
1101 /* 70 */ 1,1,1,1,1,1,1,0,1,1,1,1,1,1,1,1, /* 7f */
1102 /* 80 */ 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, /* 8f */
1103 /* 90 */ 1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1, /* 9f */
1104 /* a0 */ 0,0,0,1,1,1,1,1,0,0,0,1,1,1,1,1, /* af */
1105 /* b0 */ 1,1,1,1,1,1,1,1,1,0,1,1,1,1,1,1, /* bf */
1106 /* c0 */ 1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0, /* cf */
1107 /* d0 */ 1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1, /* df */
1108 /* e0 */ 1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1, /* ef */
1109 /* f0 */ 1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,0 /* ff */
1110 /* ------------------------------- */
1111 /* 0 1 2 3 4 5 6 7 8 9 a b c d e f */
1112 };
1113
1114 static int amd64_syscall_p (const struct amd64_insn *insn, int *lengthp);
1115
1116 static int
1117 rex_prefix_p (gdb_byte pfx)
1118 {
1119 return REX_PREFIX_P (pfx);
1120 }
1121
1122 /* Skip the legacy instruction prefixes in INSN.
1123 We assume INSN is properly sentineled so we don't have to worry
1124 about falling off the end of the buffer. */
1125
1126 static gdb_byte *
1127 amd64_skip_prefixes (gdb_byte *insn)
1128 {
1129 while (1)
1130 {
1131 switch (*insn)
1132 {
1133 case DATA_PREFIX_OPCODE:
1134 case ADDR_PREFIX_OPCODE:
1135 case CS_PREFIX_OPCODE:
1136 case DS_PREFIX_OPCODE:
1137 case ES_PREFIX_OPCODE:
1138 case FS_PREFIX_OPCODE:
1139 case GS_PREFIX_OPCODE:
1140 case SS_PREFIX_OPCODE:
1141 case LOCK_PREFIX_OPCODE:
1142 case REPE_PREFIX_OPCODE:
1143 case REPNE_PREFIX_OPCODE:
1144 ++insn;
1145 continue;
1146 default:
1147 break;
1148 }
1149 break;
1150 }
1151
1152 return insn;
1153 }
1154
1155 /* Return an integer register (other than RSP) that is unused as an input
1156 operand in INSN.
1157 In order to not require adding a rex prefix if the insn doesn't already
1158 have one, the result is restricted to RAX ... RDI, sans RSP.
1159 The register numbering of the result follows architecture ordering,
1160 e.g. RDI = 7. */
1161
1162 static int
1163 amd64_get_unused_input_int_reg (const struct amd64_insn *details)
1164 {
1165 /* 1 bit for each reg */
1166 int used_regs_mask = 0;
1167
1168 /* There can be at most 3 int regs used as inputs in an insn, and we have
1169 7 to choose from (RAX ... RDI, sans RSP).
1170 This allows us to take a conservative approach and keep things simple.
1171 E.g. By avoiding RAX, we don't have to specifically watch for opcodes
1172 that implicitly specify RAX. */
1173
1174 /* Avoid RAX. */
1175 used_regs_mask |= 1 << EAX_REG_NUM;
1176 /* Similarily avoid RDX, implicit operand in divides. */
1177 used_regs_mask |= 1 << EDX_REG_NUM;
1178 /* Avoid RSP. */
1179 used_regs_mask |= 1 << ESP_REG_NUM;
1180
1181 /* If the opcode is one byte long and there's no ModRM byte,
1182 assume the opcode specifies a register. */
1183 if (details->opcode_len == 1 && details->modrm_offset == -1)
1184 used_regs_mask |= 1 << (details->raw_insn[details->opcode_offset] & 7);
1185
1186 /* Mark used regs in the modrm/sib bytes. */
1187 if (details->modrm_offset != -1)
1188 {
1189 int modrm = details->raw_insn[details->modrm_offset];
1190 int mod = MODRM_MOD_FIELD (modrm);
1191 int reg = MODRM_REG_FIELD (modrm);
1192 int rm = MODRM_RM_FIELD (modrm);
1193 int have_sib = mod != 3 && rm == 4;
1194
1195 /* Assume the reg field of the modrm byte specifies a register. */
1196 used_regs_mask |= 1 << reg;
1197
1198 if (have_sib)
1199 {
1200 int base = SIB_BASE_FIELD (details->raw_insn[details->modrm_offset + 1]);
1201 int idx = SIB_INDEX_FIELD (details->raw_insn[details->modrm_offset + 1]);
1202 used_regs_mask |= 1 << base;
1203 used_regs_mask |= 1 << idx;
1204 }
1205 else
1206 {
1207 used_regs_mask |= 1 << rm;
1208 }
1209 }
1210
1211 gdb_assert (used_regs_mask < 256);
1212 gdb_assert (used_regs_mask != 255);
1213
1214 /* Finally, find a free reg. */
1215 {
1216 int i;
1217
1218 for (i = 0; i < 8; ++i)
1219 {
1220 if (! (used_regs_mask & (1 << i)))
1221 return i;
1222 }
1223
1224 /* We shouldn't get here. */
1225 internal_error (__FILE__, __LINE__, _("unable to find free reg"));
1226 }
1227 }
1228
1229 /* Extract the details of INSN that we need. */
1230
1231 static void
1232 amd64_get_insn_details (gdb_byte *insn, struct amd64_insn *details)
1233 {
1234 gdb_byte *start = insn;
1235 int need_modrm;
1236
1237 details->raw_insn = insn;
1238
1239 details->opcode_len = -1;
1240 details->rex_offset = -1;
1241 details->opcode_offset = -1;
1242 details->modrm_offset = -1;
1243
1244 /* Skip legacy instruction prefixes. */
1245 insn = amd64_skip_prefixes (insn);
1246
1247 /* Skip REX instruction prefix. */
1248 if (rex_prefix_p (*insn))
1249 {
1250 details->rex_offset = insn - start;
1251 ++insn;
1252 }
1253
1254 details->opcode_offset = insn - start;
1255
1256 if (*insn == TWO_BYTE_OPCODE_ESCAPE)
1257 {
1258 /* Two or three-byte opcode. */
1259 ++insn;
1260 need_modrm = twobyte_has_modrm[*insn];
1261
1262 /* Check for three-byte opcode. */
1263 switch (*insn)
1264 {
1265 case 0x24:
1266 case 0x25:
1267 case 0x38:
1268 case 0x3a:
1269 case 0x7a:
1270 case 0x7b:
1271 ++insn;
1272 details->opcode_len = 3;
1273 break;
1274 default:
1275 details->opcode_len = 2;
1276 break;
1277 }
1278 }
1279 else
1280 {
1281 /* One-byte opcode. */
1282 need_modrm = onebyte_has_modrm[*insn];
1283 details->opcode_len = 1;
1284 }
1285
1286 if (need_modrm)
1287 {
1288 ++insn;
1289 details->modrm_offset = insn - start;
1290 }
1291 }
1292
1293 /* Update %rip-relative addressing in INSN.
1294
1295 %rip-relative addressing only uses a 32-bit displacement.
1296 32 bits is not enough to be guaranteed to cover the distance between where
1297 the real instruction is and where its copy is.
1298 Convert the insn to use base+disp addressing.
1299 We set base = pc + insn_length so we can leave disp unchanged. */
1300
1301 static void
1302 fixup_riprel (struct gdbarch *gdbarch, struct displaced_step_closure *dsc,
1303 CORE_ADDR from, CORE_ADDR to, struct regcache *regs)
1304 {
1305 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1306 const struct amd64_insn *insn_details = &dsc->insn_details;
1307 int modrm_offset = insn_details->modrm_offset;
1308 gdb_byte *insn = insn_details->raw_insn + modrm_offset;
1309 CORE_ADDR rip_base;
1310 int32_t disp;
1311 int insn_length;
1312 int arch_tmp_regno, tmp_regno;
1313 ULONGEST orig_value;
1314
1315 /* %rip+disp32 addressing mode, displacement follows ModRM byte. */
1316 ++insn;
1317
1318 /* Compute the rip-relative address. */
1319 disp = extract_signed_integer (insn, sizeof (int32_t), byte_order);
1320 insn_length = gdb_buffered_insn_length (gdbarch, dsc->insn_buf,
1321 dsc->max_len, from);
1322 rip_base = from + insn_length;
1323
1324 /* We need a register to hold the address.
1325 Pick one not used in the insn.
1326 NOTE: arch_tmp_regno uses architecture ordering, e.g. RDI = 7. */
1327 arch_tmp_regno = amd64_get_unused_input_int_reg (insn_details);
1328 tmp_regno = amd64_arch_reg_to_regnum (arch_tmp_regno);
1329
1330 /* REX.B should be unset as we were using rip-relative addressing,
1331 but ensure it's unset anyway, tmp_regno is not r8-r15. */
1332 if (insn_details->rex_offset != -1)
1333 dsc->insn_buf[insn_details->rex_offset] &= ~REX_B;
1334
1335 regcache_cooked_read_unsigned (regs, tmp_regno, &orig_value);
1336 dsc->tmp_regno = tmp_regno;
1337 dsc->tmp_save = orig_value;
1338 dsc->tmp_used = 1;
1339
1340 /* Convert the ModRM field to be base+disp. */
1341 dsc->insn_buf[modrm_offset] &= ~0xc7;
1342 dsc->insn_buf[modrm_offset] |= 0x80 + arch_tmp_regno;
1343
1344 regcache_cooked_write_unsigned (regs, tmp_regno, rip_base);
1345
1346 if (debug_displaced)
1347 fprintf_unfiltered (gdb_stdlog, "displaced: %%rip-relative addressing used.\n"
1348 "displaced: using temp reg %d, old value %s, new value %s\n",
1349 dsc->tmp_regno, paddress (gdbarch, dsc->tmp_save),
1350 paddress (gdbarch, rip_base));
1351 }
1352
1353 static void
1354 fixup_displaced_copy (struct gdbarch *gdbarch,
1355 struct displaced_step_closure *dsc,
1356 CORE_ADDR from, CORE_ADDR to, struct regcache *regs)
1357 {
1358 const struct amd64_insn *details = &dsc->insn_details;
1359
1360 if (details->modrm_offset != -1)
1361 {
1362 gdb_byte modrm = details->raw_insn[details->modrm_offset];
1363
1364 if ((modrm & 0xc7) == 0x05)
1365 {
1366 /* The insn uses rip-relative addressing.
1367 Deal with it. */
1368 fixup_riprel (gdbarch, dsc, from, to, regs);
1369 }
1370 }
1371 }
1372
1373 struct displaced_step_closure *
1374 amd64_displaced_step_copy_insn (struct gdbarch *gdbarch,
1375 CORE_ADDR from, CORE_ADDR to,
1376 struct regcache *regs)
1377 {
1378 int len = gdbarch_max_insn_length (gdbarch);
1379 /* Extra space for sentinels so fixup_{riprel,displaced_copy} don't have to
1380 continually watch for running off the end of the buffer. */
1381 int fixup_sentinel_space = len;
1382 struct displaced_step_closure *dsc
1383 = ((struct displaced_step_closure *)
1384 xmalloc (sizeof (*dsc) + len + fixup_sentinel_space));
1385 gdb_byte *buf = &dsc->insn_buf[0];
1386 struct amd64_insn *details = &dsc->insn_details;
1387
1388 dsc->tmp_used = 0;
1389 dsc->max_len = len + fixup_sentinel_space;
1390
1391 read_memory (from, buf, len);
1392
1393 /* Set up the sentinel space so we don't have to worry about running
1394 off the end of the buffer. An excessive number of leading prefixes
1395 could otherwise cause this. */
1396 memset (buf + len, 0, fixup_sentinel_space);
1397
1398 amd64_get_insn_details (buf, details);
1399
1400 /* GDB may get control back after the insn after the syscall.
1401 Presumably this is a kernel bug.
1402 If this is a syscall, make sure there's a nop afterwards. */
1403 {
1404 int syscall_length;
1405
1406 if (amd64_syscall_p (details, &syscall_length))
1407 buf[details->opcode_offset + syscall_length] = NOP_OPCODE;
1408 }
1409
1410 /* Modify the insn to cope with the address where it will be executed from.
1411 In particular, handle any rip-relative addressing. */
1412 fixup_displaced_copy (gdbarch, dsc, from, to, regs);
1413
1414 write_memory (to, buf, len);
1415
1416 if (debug_displaced)
1417 {
1418 fprintf_unfiltered (gdb_stdlog, "displaced: copy %s->%s: ",
1419 paddress (gdbarch, from), paddress (gdbarch, to));
1420 displaced_step_dump_bytes (gdb_stdlog, buf, len);
1421 }
1422
1423 return dsc;
1424 }
1425
1426 static int
1427 amd64_absolute_jmp_p (const struct amd64_insn *details)
1428 {
1429 const gdb_byte *insn = &details->raw_insn[details->opcode_offset];
1430
1431 if (insn[0] == 0xff)
1432 {
1433 /* jump near, absolute indirect (/4) */
1434 if ((insn[1] & 0x38) == 0x20)
1435 return 1;
1436
1437 /* jump far, absolute indirect (/5) */
1438 if ((insn[1] & 0x38) == 0x28)
1439 return 1;
1440 }
1441
1442 return 0;
1443 }
1444
1445 /* Return non-zero if the instruction DETAILS is a jump, zero otherwise. */
1446
1447 static int
1448 amd64_jmp_p (const struct amd64_insn *details)
1449 {
1450 const gdb_byte *insn = &details->raw_insn[details->opcode_offset];
1451
1452 /* jump short, relative. */
1453 if (insn[0] == 0xeb)
1454 return 1;
1455
1456 /* jump near, relative. */
1457 if (insn[0] == 0xe9)
1458 return 1;
1459
1460 return amd64_absolute_jmp_p (details);
1461 }
1462
1463 static int
1464 amd64_absolute_call_p (const struct amd64_insn *details)
1465 {
1466 const gdb_byte *insn = &details->raw_insn[details->opcode_offset];
1467
1468 if (insn[0] == 0xff)
1469 {
1470 /* Call near, absolute indirect (/2) */
1471 if ((insn[1] & 0x38) == 0x10)
1472 return 1;
1473
1474 /* Call far, absolute indirect (/3) */
1475 if ((insn[1] & 0x38) == 0x18)
1476 return 1;
1477 }
1478
1479 return 0;
1480 }
1481
1482 static int
1483 amd64_ret_p (const struct amd64_insn *details)
1484 {
1485 /* NOTE: gcc can emit "repz ; ret". */
1486 const gdb_byte *insn = &details->raw_insn[details->opcode_offset];
1487
1488 switch (insn[0])
1489 {
1490 case 0xc2: /* ret near, pop N bytes */
1491 case 0xc3: /* ret near */
1492 case 0xca: /* ret far, pop N bytes */
1493 case 0xcb: /* ret far */
1494 case 0xcf: /* iret */
1495 return 1;
1496
1497 default:
1498 return 0;
1499 }
1500 }
1501
1502 static int
1503 amd64_call_p (const struct amd64_insn *details)
1504 {
1505 const gdb_byte *insn = &details->raw_insn[details->opcode_offset];
1506
1507 if (amd64_absolute_call_p (details))
1508 return 1;
1509
1510 /* call near, relative */
1511 if (insn[0] == 0xe8)
1512 return 1;
1513
1514 return 0;
1515 }
1516
1517 /* Return non-zero if INSN is a system call, and set *LENGTHP to its
1518 length in bytes. Otherwise, return zero. */
1519
1520 static int
1521 amd64_syscall_p (const struct amd64_insn *details, int *lengthp)
1522 {
1523 const gdb_byte *insn = &details->raw_insn[details->opcode_offset];
1524
1525 if (insn[0] == 0x0f && insn[1] == 0x05)
1526 {
1527 *lengthp = 2;
1528 return 1;
1529 }
1530
1531 return 0;
1532 }
1533
1534 /* Classify the instruction at ADDR using PRED.
1535 Throw an error if the memory can't be read. */
1536
1537 static int
1538 amd64_classify_insn_at (struct gdbarch *gdbarch, CORE_ADDR addr,
1539 int (*pred) (const struct amd64_insn *))
1540 {
1541 struct amd64_insn details;
1542 gdb_byte *buf;
1543 int len, classification;
1544
1545 len = gdbarch_max_insn_length (gdbarch);
1546 buf = (gdb_byte *) alloca (len);
1547
1548 read_code (addr, buf, len);
1549 amd64_get_insn_details (buf, &details);
1550
1551 classification = pred (&details);
1552
1553 return classification;
1554 }
1555
1556 /* The gdbarch insn_is_call method. */
1557
1558 static int
1559 amd64_insn_is_call (struct gdbarch *gdbarch, CORE_ADDR addr)
1560 {
1561 return amd64_classify_insn_at (gdbarch, addr, amd64_call_p);
1562 }
1563
1564 /* The gdbarch insn_is_ret method. */
1565
1566 static int
1567 amd64_insn_is_ret (struct gdbarch *gdbarch, CORE_ADDR addr)
1568 {
1569 return amd64_classify_insn_at (gdbarch, addr, amd64_ret_p);
1570 }
1571
1572 /* The gdbarch insn_is_jump method. */
1573
1574 static int
1575 amd64_insn_is_jump (struct gdbarch *gdbarch, CORE_ADDR addr)
1576 {
1577 return amd64_classify_insn_at (gdbarch, addr, amd64_jmp_p);
1578 }
1579
1580 /* Fix up the state of registers and memory after having single-stepped
1581 a displaced instruction. */
1582
1583 void
1584 amd64_displaced_step_fixup (struct gdbarch *gdbarch,
1585 struct displaced_step_closure *dsc,
1586 CORE_ADDR from, CORE_ADDR to,
1587 struct regcache *regs)
1588 {
1589 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1590 /* The offset we applied to the instruction's address. */
1591 ULONGEST insn_offset = to - from;
1592 gdb_byte *insn = dsc->insn_buf;
1593 const struct amd64_insn *insn_details = &dsc->insn_details;
1594
1595 if (debug_displaced)
1596 fprintf_unfiltered (gdb_stdlog,
1597 "displaced: fixup (%s, %s), "
1598 "insn = 0x%02x 0x%02x ...\n",
1599 paddress (gdbarch, from), paddress (gdbarch, to),
1600 insn[0], insn[1]);
1601
1602 /* If we used a tmp reg, restore it. */
1603
1604 if (dsc->tmp_used)
1605 {
1606 if (debug_displaced)
1607 fprintf_unfiltered (gdb_stdlog, "displaced: restoring reg %d to %s\n",
1608 dsc->tmp_regno, paddress (gdbarch, dsc->tmp_save));
1609 regcache_cooked_write_unsigned (regs, dsc->tmp_regno, dsc->tmp_save);
1610 }
1611
1612 /* The list of issues to contend with here is taken from
1613 resume_execution in arch/x86/kernel/kprobes.c, Linux 2.6.28.
1614 Yay for Free Software! */
1615
1616 /* Relocate the %rip back to the program's instruction stream,
1617 if necessary. */
1618
1619 /* Except in the case of absolute or indirect jump or call
1620 instructions, or a return instruction, the new rip is relative to
1621 the displaced instruction; make it relative to the original insn.
1622 Well, signal handler returns don't need relocation either, but we use the
1623 value of %rip to recognize those; see below. */
1624 if (! amd64_absolute_jmp_p (insn_details)
1625 && ! amd64_absolute_call_p (insn_details)
1626 && ! amd64_ret_p (insn_details))
1627 {
1628 ULONGEST orig_rip;
1629 int insn_len;
1630
1631 regcache_cooked_read_unsigned (regs, AMD64_RIP_REGNUM, &orig_rip);
1632
1633 /* A signal trampoline system call changes the %rip, resuming
1634 execution of the main program after the signal handler has
1635 returned. That makes them like 'return' instructions; we
1636 shouldn't relocate %rip.
1637
1638 But most system calls don't, and we do need to relocate %rip.
1639
1640 Our heuristic for distinguishing these cases: if stepping
1641 over the system call instruction left control directly after
1642 the instruction, the we relocate --- control almost certainly
1643 doesn't belong in the displaced copy. Otherwise, we assume
1644 the instruction has put control where it belongs, and leave
1645 it unrelocated. Goodness help us if there are PC-relative
1646 system calls. */
1647 if (amd64_syscall_p (insn_details, &insn_len)
1648 && orig_rip != to + insn_len
1649 /* GDB can get control back after the insn after the syscall.
1650 Presumably this is a kernel bug.
1651 Fixup ensures its a nop, we add one to the length for it. */
1652 && orig_rip != to + insn_len + 1)
1653 {
1654 if (debug_displaced)
1655 fprintf_unfiltered (gdb_stdlog,
1656 "displaced: syscall changed %%rip; "
1657 "not relocating\n");
1658 }
1659 else
1660 {
1661 ULONGEST rip = orig_rip - insn_offset;
1662
1663 /* If we just stepped over a breakpoint insn, we don't backup
1664 the pc on purpose; this is to match behaviour without
1665 stepping. */
1666
1667 regcache_cooked_write_unsigned (regs, AMD64_RIP_REGNUM, rip);
1668
1669 if (debug_displaced)
1670 fprintf_unfiltered (gdb_stdlog,
1671 "displaced: "
1672 "relocated %%rip from %s to %s\n",
1673 paddress (gdbarch, orig_rip),
1674 paddress (gdbarch, rip));
1675 }
1676 }
1677
1678 /* If the instruction was PUSHFL, then the TF bit will be set in the
1679 pushed value, and should be cleared. We'll leave this for later,
1680 since GDB already messes up the TF flag when stepping over a
1681 pushfl. */
1682
1683 /* If the instruction was a call, the return address now atop the
1684 stack is the address following the copied instruction. We need
1685 to make it the address following the original instruction. */
1686 if (amd64_call_p (insn_details))
1687 {
1688 ULONGEST rsp;
1689 ULONGEST retaddr;
1690 const ULONGEST retaddr_len = 8;
1691
1692 regcache_cooked_read_unsigned (regs, AMD64_RSP_REGNUM, &rsp);
1693 retaddr = read_memory_unsigned_integer (rsp, retaddr_len, byte_order);
1694 retaddr = (retaddr - insn_offset) & 0xffffffffffffffffULL;
1695 write_memory_unsigned_integer (rsp, retaddr_len, byte_order, retaddr);
1696
1697 if (debug_displaced)
1698 fprintf_unfiltered (gdb_stdlog,
1699 "displaced: relocated return addr at %s "
1700 "to %s\n",
1701 paddress (gdbarch, rsp),
1702 paddress (gdbarch, retaddr));
1703 }
1704 }
1705
1706 /* If the instruction INSN uses RIP-relative addressing, return the
1707 offset into the raw INSN where the displacement to be adjusted is
1708 found. Returns 0 if the instruction doesn't use RIP-relative
1709 addressing. */
1710
1711 static int
1712 rip_relative_offset (struct amd64_insn *insn)
1713 {
1714 if (insn->modrm_offset != -1)
1715 {
1716 gdb_byte modrm = insn->raw_insn[insn->modrm_offset];
1717
1718 if ((modrm & 0xc7) == 0x05)
1719 {
1720 /* The displacement is found right after the ModRM byte. */
1721 return insn->modrm_offset + 1;
1722 }
1723 }
1724
1725 return 0;
1726 }
1727
1728 static void
1729 append_insns (CORE_ADDR *to, ULONGEST len, const gdb_byte *buf)
1730 {
1731 target_write_memory (*to, buf, len);
1732 *to += len;
1733 }
1734
1735 static void
1736 amd64_relocate_instruction (struct gdbarch *gdbarch,
1737 CORE_ADDR *to, CORE_ADDR oldloc)
1738 {
1739 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1740 int len = gdbarch_max_insn_length (gdbarch);
1741 /* Extra space for sentinels. */
1742 int fixup_sentinel_space = len;
1743 gdb_byte *buf = (gdb_byte *) xmalloc (len + fixup_sentinel_space);
1744 struct amd64_insn insn_details;
1745 int offset = 0;
1746 LONGEST rel32, newrel;
1747 gdb_byte *insn;
1748 int insn_length;
1749
1750 read_memory (oldloc, buf, len);
1751
1752 /* Set up the sentinel space so we don't have to worry about running
1753 off the end of the buffer. An excessive number of leading prefixes
1754 could otherwise cause this. */
1755 memset (buf + len, 0, fixup_sentinel_space);
1756
1757 insn = buf;
1758 amd64_get_insn_details (insn, &insn_details);
1759
1760 insn_length = gdb_buffered_insn_length (gdbarch, insn, len, oldloc);
1761
1762 /* Skip legacy instruction prefixes. */
1763 insn = amd64_skip_prefixes (insn);
1764
1765 /* Adjust calls with 32-bit relative addresses as push/jump, with
1766 the address pushed being the location where the original call in
1767 the user program would return to. */
1768 if (insn[0] == 0xe8)
1769 {
1770 gdb_byte push_buf[16];
1771 unsigned int ret_addr;
1772
1773 /* Where "ret" in the original code will return to. */
1774 ret_addr = oldloc + insn_length;
1775 push_buf[0] = 0x68; /* pushq $... */
1776 store_unsigned_integer (&push_buf[1], 4, byte_order, ret_addr);
1777 /* Push the push. */
1778 append_insns (to, 5, push_buf);
1779
1780 /* Convert the relative call to a relative jump. */
1781 insn[0] = 0xe9;
1782
1783 /* Adjust the destination offset. */
1784 rel32 = extract_signed_integer (insn + 1, 4, byte_order);
1785 newrel = (oldloc - *to) + rel32;
1786 store_signed_integer (insn + 1, 4, byte_order, newrel);
1787
1788 if (debug_displaced)
1789 fprintf_unfiltered (gdb_stdlog,
1790 "Adjusted insn rel32=%s at %s to"
1791 " rel32=%s at %s\n",
1792 hex_string (rel32), paddress (gdbarch, oldloc),
1793 hex_string (newrel), paddress (gdbarch, *to));
1794
1795 /* Write the adjusted jump into its displaced location. */
1796 append_insns (to, 5, insn);
1797 return;
1798 }
1799
1800 offset = rip_relative_offset (&insn_details);
1801 if (!offset)
1802 {
1803 /* Adjust jumps with 32-bit relative addresses. Calls are
1804 already handled above. */
1805 if (insn[0] == 0xe9)
1806 offset = 1;
1807 /* Adjust conditional jumps. */
1808 else if (insn[0] == 0x0f && (insn[1] & 0xf0) == 0x80)
1809 offset = 2;
1810 }
1811
1812 if (offset)
1813 {
1814 rel32 = extract_signed_integer (insn + offset, 4, byte_order);
1815 newrel = (oldloc - *to) + rel32;
1816 store_signed_integer (insn + offset, 4, byte_order, newrel);
1817 if (debug_displaced)
1818 fprintf_unfiltered (gdb_stdlog,
1819 "Adjusted insn rel32=%s at %s to"
1820 " rel32=%s at %s\n",
1821 hex_string (rel32), paddress (gdbarch, oldloc),
1822 hex_string (newrel), paddress (gdbarch, *to));
1823 }
1824
1825 /* Write the adjusted instruction into its displaced location. */
1826 append_insns (to, insn_length, buf);
1827 }
1828
1829 \f
1830 /* The maximum number of saved registers. This should include %rip. */
1831 #define AMD64_NUM_SAVED_REGS AMD64_NUM_GREGS
1832
1833 struct amd64_frame_cache
1834 {
1835 /* Base address. */
1836 CORE_ADDR base;
1837 int base_p;
1838 CORE_ADDR sp_offset;
1839 CORE_ADDR pc;
1840
1841 /* Saved registers. */
1842 CORE_ADDR saved_regs[AMD64_NUM_SAVED_REGS];
1843 CORE_ADDR saved_sp;
1844 int saved_sp_reg;
1845
1846 /* Do we have a frame? */
1847 int frameless_p;
1848 };
1849
1850 /* Initialize a frame cache. */
1851
1852 static void
1853 amd64_init_frame_cache (struct amd64_frame_cache *cache)
1854 {
1855 int i;
1856
1857 /* Base address. */
1858 cache->base = 0;
1859 cache->base_p = 0;
1860 cache->sp_offset = -8;
1861 cache->pc = 0;
1862
1863 /* Saved registers. We initialize these to -1 since zero is a valid
1864 offset (that's where %rbp is supposed to be stored).
1865 The values start out as being offsets, and are later converted to
1866 addresses (at which point -1 is interpreted as an address, still meaning
1867 "invalid"). */
1868 for (i = 0; i < AMD64_NUM_SAVED_REGS; i++)
1869 cache->saved_regs[i] = -1;
1870 cache->saved_sp = 0;
1871 cache->saved_sp_reg = -1;
1872
1873 /* Frameless until proven otherwise. */
1874 cache->frameless_p = 1;
1875 }
1876
1877 /* Allocate and initialize a frame cache. */
1878
1879 static struct amd64_frame_cache *
1880 amd64_alloc_frame_cache (void)
1881 {
1882 struct amd64_frame_cache *cache;
1883
1884 cache = FRAME_OBSTACK_ZALLOC (struct amd64_frame_cache);
1885 amd64_init_frame_cache (cache);
1886 return cache;
1887 }
1888
1889 /* GCC 4.4 and later, can put code in the prologue to realign the
1890 stack pointer. Check whether PC points to such code, and update
1891 CACHE accordingly. Return the first instruction after the code
1892 sequence or CURRENT_PC, whichever is smaller. If we don't
1893 recognize the code, return PC. */
1894
1895 static CORE_ADDR
1896 amd64_analyze_stack_align (CORE_ADDR pc, CORE_ADDR current_pc,
1897 struct amd64_frame_cache *cache)
1898 {
1899 /* There are 2 code sequences to re-align stack before the frame
1900 gets set up:
1901
1902 1. Use a caller-saved saved register:
1903
1904 leaq 8(%rsp), %reg
1905 andq $-XXX, %rsp
1906 pushq -8(%reg)
1907
1908 2. Use a callee-saved saved register:
1909
1910 pushq %reg
1911 leaq 16(%rsp), %reg
1912 andq $-XXX, %rsp
1913 pushq -8(%reg)
1914
1915 "andq $-XXX, %rsp" can be either 4 bytes or 7 bytes:
1916
1917 0x48 0x83 0xe4 0xf0 andq $-16, %rsp
1918 0x48 0x81 0xe4 0x00 0xff 0xff 0xff andq $-256, %rsp
1919 */
1920
1921 gdb_byte buf[18];
1922 int reg, r;
1923 int offset, offset_and;
1924
1925 if (target_read_code (pc, buf, sizeof buf))
1926 return pc;
1927
1928 /* Check caller-saved saved register. The first instruction has
1929 to be "leaq 8(%rsp), %reg". */
1930 if ((buf[0] & 0xfb) == 0x48
1931 && buf[1] == 0x8d
1932 && buf[3] == 0x24
1933 && buf[4] == 0x8)
1934 {
1935 /* MOD must be binary 10 and R/M must be binary 100. */
1936 if ((buf[2] & 0xc7) != 0x44)
1937 return pc;
1938
1939 /* REG has register number. */
1940 reg = (buf[2] >> 3) & 7;
1941
1942 /* Check the REX.R bit. */
1943 if (buf[0] == 0x4c)
1944 reg += 8;
1945
1946 offset = 5;
1947 }
1948 else
1949 {
1950 /* Check callee-saved saved register. The first instruction
1951 has to be "pushq %reg". */
1952 reg = 0;
1953 if ((buf[0] & 0xf8) == 0x50)
1954 offset = 0;
1955 else if ((buf[0] & 0xf6) == 0x40
1956 && (buf[1] & 0xf8) == 0x50)
1957 {
1958 /* Check the REX.B bit. */
1959 if ((buf[0] & 1) != 0)
1960 reg = 8;
1961
1962 offset = 1;
1963 }
1964 else
1965 return pc;
1966
1967 /* Get register. */
1968 reg += buf[offset] & 0x7;
1969
1970 offset++;
1971
1972 /* The next instruction has to be "leaq 16(%rsp), %reg". */
1973 if ((buf[offset] & 0xfb) != 0x48
1974 || buf[offset + 1] != 0x8d
1975 || buf[offset + 3] != 0x24
1976 || buf[offset + 4] != 0x10)
1977 return pc;
1978
1979 /* MOD must be binary 10 and R/M must be binary 100. */
1980 if ((buf[offset + 2] & 0xc7) != 0x44)
1981 return pc;
1982
1983 /* REG has register number. */
1984 r = (buf[offset + 2] >> 3) & 7;
1985
1986 /* Check the REX.R bit. */
1987 if (buf[offset] == 0x4c)
1988 r += 8;
1989
1990 /* Registers in pushq and leaq have to be the same. */
1991 if (reg != r)
1992 return pc;
1993
1994 offset += 5;
1995 }
1996
1997 /* Rigister can't be %rsp nor %rbp. */
1998 if (reg == 4 || reg == 5)
1999 return pc;
2000
2001 /* The next instruction has to be "andq $-XXX, %rsp". */
2002 if (buf[offset] != 0x48
2003 || buf[offset + 2] != 0xe4
2004 || (buf[offset + 1] != 0x81 && buf[offset + 1] != 0x83))
2005 return pc;
2006
2007 offset_and = offset;
2008 offset += buf[offset + 1] == 0x81 ? 7 : 4;
2009
2010 /* The next instruction has to be "pushq -8(%reg)". */
2011 r = 0;
2012 if (buf[offset] == 0xff)
2013 offset++;
2014 else if ((buf[offset] & 0xf6) == 0x40
2015 && buf[offset + 1] == 0xff)
2016 {
2017 /* Check the REX.B bit. */
2018 if ((buf[offset] & 0x1) != 0)
2019 r = 8;
2020 offset += 2;
2021 }
2022 else
2023 return pc;
2024
2025 /* 8bit -8 is 0xf8. REG must be binary 110 and MOD must be binary
2026 01. */
2027 if (buf[offset + 1] != 0xf8
2028 || (buf[offset] & 0xf8) != 0x70)
2029 return pc;
2030
2031 /* R/M has register. */
2032 r += buf[offset] & 7;
2033
2034 /* Registers in leaq and pushq have to be the same. */
2035 if (reg != r)
2036 return pc;
2037
2038 if (current_pc > pc + offset_and)
2039 cache->saved_sp_reg = amd64_arch_reg_to_regnum (reg);
2040
2041 return min (pc + offset + 2, current_pc);
2042 }
2043
2044 /* Similar to amd64_analyze_stack_align for x32. */
2045
2046 static CORE_ADDR
2047 amd64_x32_analyze_stack_align (CORE_ADDR pc, CORE_ADDR current_pc,
2048 struct amd64_frame_cache *cache)
2049 {
2050 /* There are 2 code sequences to re-align stack before the frame
2051 gets set up:
2052
2053 1. Use a caller-saved saved register:
2054
2055 leaq 8(%rsp), %reg
2056 andq $-XXX, %rsp
2057 pushq -8(%reg)
2058
2059 or
2060
2061 [addr32] leal 8(%rsp), %reg
2062 andl $-XXX, %esp
2063 [addr32] pushq -8(%reg)
2064
2065 2. Use a callee-saved saved register:
2066
2067 pushq %reg
2068 leaq 16(%rsp), %reg
2069 andq $-XXX, %rsp
2070 pushq -8(%reg)
2071
2072 or
2073
2074 pushq %reg
2075 [addr32] leal 16(%rsp), %reg
2076 andl $-XXX, %esp
2077 [addr32] pushq -8(%reg)
2078
2079 "andq $-XXX, %rsp" can be either 4 bytes or 7 bytes:
2080
2081 0x48 0x83 0xe4 0xf0 andq $-16, %rsp
2082 0x48 0x81 0xe4 0x00 0xff 0xff 0xff andq $-256, %rsp
2083
2084 "andl $-XXX, %esp" can be either 3 bytes or 6 bytes:
2085
2086 0x83 0xe4 0xf0 andl $-16, %esp
2087 0x81 0xe4 0x00 0xff 0xff 0xff andl $-256, %esp
2088 */
2089
2090 gdb_byte buf[19];
2091 int reg, r;
2092 int offset, offset_and;
2093
2094 if (target_read_memory (pc, buf, sizeof buf))
2095 return pc;
2096
2097 /* Skip optional addr32 prefix. */
2098 offset = buf[0] == 0x67 ? 1 : 0;
2099
2100 /* Check caller-saved saved register. The first instruction has
2101 to be "leaq 8(%rsp), %reg" or "leal 8(%rsp), %reg". */
2102 if (((buf[offset] & 0xfb) == 0x48 || (buf[offset] & 0xfb) == 0x40)
2103 && buf[offset + 1] == 0x8d
2104 && buf[offset + 3] == 0x24
2105 && buf[offset + 4] == 0x8)
2106 {
2107 /* MOD must be binary 10 and R/M must be binary 100. */
2108 if ((buf[offset + 2] & 0xc7) != 0x44)
2109 return pc;
2110
2111 /* REG has register number. */
2112 reg = (buf[offset + 2] >> 3) & 7;
2113
2114 /* Check the REX.R bit. */
2115 if ((buf[offset] & 0x4) != 0)
2116 reg += 8;
2117
2118 offset += 5;
2119 }
2120 else
2121 {
2122 /* Check callee-saved saved register. The first instruction
2123 has to be "pushq %reg". */
2124 reg = 0;
2125 if ((buf[offset] & 0xf6) == 0x40
2126 && (buf[offset + 1] & 0xf8) == 0x50)
2127 {
2128 /* Check the REX.B bit. */
2129 if ((buf[offset] & 1) != 0)
2130 reg = 8;
2131
2132 offset += 1;
2133 }
2134 else if ((buf[offset] & 0xf8) != 0x50)
2135 return pc;
2136
2137 /* Get register. */
2138 reg += buf[offset] & 0x7;
2139
2140 offset++;
2141
2142 /* Skip optional addr32 prefix. */
2143 if (buf[offset] == 0x67)
2144 offset++;
2145
2146 /* The next instruction has to be "leaq 16(%rsp), %reg" or
2147 "leal 16(%rsp), %reg". */
2148 if (((buf[offset] & 0xfb) != 0x48 && (buf[offset] & 0xfb) != 0x40)
2149 || buf[offset + 1] != 0x8d
2150 || buf[offset + 3] != 0x24
2151 || buf[offset + 4] != 0x10)
2152 return pc;
2153
2154 /* MOD must be binary 10 and R/M must be binary 100. */
2155 if ((buf[offset + 2] & 0xc7) != 0x44)
2156 return pc;
2157
2158 /* REG has register number. */
2159 r = (buf[offset + 2] >> 3) & 7;
2160
2161 /* Check the REX.R bit. */
2162 if ((buf[offset] & 0x4) != 0)
2163 r += 8;
2164
2165 /* Registers in pushq and leaq have to be the same. */
2166 if (reg != r)
2167 return pc;
2168
2169 offset += 5;
2170 }
2171
2172 /* Rigister can't be %rsp nor %rbp. */
2173 if (reg == 4 || reg == 5)
2174 return pc;
2175
2176 /* The next instruction may be "andq $-XXX, %rsp" or
2177 "andl $-XXX, %esp". */
2178 if (buf[offset] != 0x48)
2179 offset--;
2180
2181 if (buf[offset + 2] != 0xe4
2182 || (buf[offset + 1] != 0x81 && buf[offset + 1] != 0x83))
2183 return pc;
2184
2185 offset_and = offset;
2186 offset += buf[offset + 1] == 0x81 ? 7 : 4;
2187
2188 /* Skip optional addr32 prefix. */
2189 if (buf[offset] == 0x67)
2190 offset++;
2191
2192 /* The next instruction has to be "pushq -8(%reg)". */
2193 r = 0;
2194 if (buf[offset] == 0xff)
2195 offset++;
2196 else if ((buf[offset] & 0xf6) == 0x40
2197 && buf[offset + 1] == 0xff)
2198 {
2199 /* Check the REX.B bit. */
2200 if ((buf[offset] & 0x1) != 0)
2201 r = 8;
2202 offset += 2;
2203 }
2204 else
2205 return pc;
2206
2207 /* 8bit -8 is 0xf8. REG must be binary 110 and MOD must be binary
2208 01. */
2209 if (buf[offset + 1] != 0xf8
2210 || (buf[offset] & 0xf8) != 0x70)
2211 return pc;
2212
2213 /* R/M has register. */
2214 r += buf[offset] & 7;
2215
2216 /* Registers in leaq and pushq have to be the same. */
2217 if (reg != r)
2218 return pc;
2219
2220 if (current_pc > pc + offset_and)
2221 cache->saved_sp_reg = amd64_arch_reg_to_regnum (reg);
2222
2223 return min (pc + offset + 2, current_pc);
2224 }
2225
2226 /* Do a limited analysis of the prologue at PC and update CACHE
2227 accordingly. Bail out early if CURRENT_PC is reached. Return the
2228 address where the analysis stopped.
2229
2230 We will handle only functions beginning with:
2231
2232 pushq %rbp 0x55
2233 movq %rsp, %rbp 0x48 0x89 0xe5 (or 0x48 0x8b 0xec)
2234
2235 or (for the X32 ABI):
2236
2237 pushq %rbp 0x55
2238 movl %esp, %ebp 0x89 0xe5 (or 0x8b 0xec)
2239
2240 Any function that doesn't start with one of these sequences will be
2241 assumed to have no prologue and thus no valid frame pointer in
2242 %rbp. */
2243
2244 static CORE_ADDR
2245 amd64_analyze_prologue (struct gdbarch *gdbarch,
2246 CORE_ADDR pc, CORE_ADDR current_pc,
2247 struct amd64_frame_cache *cache)
2248 {
2249 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
2250 /* There are two variations of movq %rsp, %rbp. */
2251 static const gdb_byte mov_rsp_rbp_1[3] = { 0x48, 0x89, 0xe5 };
2252 static const gdb_byte mov_rsp_rbp_2[3] = { 0x48, 0x8b, 0xec };
2253 /* Ditto for movl %esp, %ebp. */
2254 static const gdb_byte mov_esp_ebp_1[2] = { 0x89, 0xe5 };
2255 static const gdb_byte mov_esp_ebp_2[2] = { 0x8b, 0xec };
2256
2257 gdb_byte buf[3];
2258 gdb_byte op;
2259
2260 if (current_pc <= pc)
2261 return current_pc;
2262
2263 if (gdbarch_ptr_bit (gdbarch) == 32)
2264 pc = amd64_x32_analyze_stack_align (pc, current_pc, cache);
2265 else
2266 pc = amd64_analyze_stack_align (pc, current_pc, cache);
2267
2268 op = read_code_unsigned_integer (pc, 1, byte_order);
2269
2270 if (op == 0x55) /* pushq %rbp */
2271 {
2272 /* Take into account that we've executed the `pushq %rbp' that
2273 starts this instruction sequence. */
2274 cache->saved_regs[AMD64_RBP_REGNUM] = 0;
2275 cache->sp_offset += 8;
2276
2277 /* If that's all, return now. */
2278 if (current_pc <= pc + 1)
2279 return current_pc;
2280
2281 read_code (pc + 1, buf, 3);
2282
2283 /* Check for `movq %rsp, %rbp'. */
2284 if (memcmp (buf, mov_rsp_rbp_1, 3) == 0
2285 || memcmp (buf, mov_rsp_rbp_2, 3) == 0)
2286 {
2287 /* OK, we actually have a frame. */
2288 cache->frameless_p = 0;
2289 return pc + 4;
2290 }
2291
2292 /* For X32, also check for `movq %esp, %ebp'. */
2293 if (gdbarch_ptr_bit (gdbarch) == 32)
2294 {
2295 if (memcmp (buf, mov_esp_ebp_1, 2) == 0
2296 || memcmp (buf, mov_esp_ebp_2, 2) == 0)
2297 {
2298 /* OK, we actually have a frame. */
2299 cache->frameless_p = 0;
2300 return pc + 3;
2301 }
2302 }
2303
2304 return pc + 1;
2305 }
2306
2307 return pc;
2308 }
2309
2310 /* Work around false termination of prologue - GCC PR debug/48827.
2311
2312 START_PC is the first instruction of a function, PC is its minimal already
2313 determined advanced address. Function returns PC if it has nothing to do.
2314
2315 84 c0 test %al,%al
2316 74 23 je after
2317 <-- here is 0 lines advance - the false prologue end marker.
2318 0f 29 85 70 ff ff ff movaps %xmm0,-0x90(%rbp)
2319 0f 29 4d 80 movaps %xmm1,-0x80(%rbp)
2320 0f 29 55 90 movaps %xmm2,-0x70(%rbp)
2321 0f 29 5d a0 movaps %xmm3,-0x60(%rbp)
2322 0f 29 65 b0 movaps %xmm4,-0x50(%rbp)
2323 0f 29 6d c0 movaps %xmm5,-0x40(%rbp)
2324 0f 29 75 d0 movaps %xmm6,-0x30(%rbp)
2325 0f 29 7d e0 movaps %xmm7,-0x20(%rbp)
2326 after: */
2327
2328 static CORE_ADDR
2329 amd64_skip_xmm_prologue (CORE_ADDR pc, CORE_ADDR start_pc)
2330 {
2331 struct symtab_and_line start_pc_sal, next_sal;
2332 gdb_byte buf[4 + 8 * 7];
2333 int offset, xmmreg;
2334
2335 if (pc == start_pc)
2336 return pc;
2337
2338 start_pc_sal = find_pc_sect_line (start_pc, NULL, 0);
2339 if (start_pc_sal.symtab == NULL
2340 || producer_is_gcc_ge_4 (COMPUNIT_PRODUCER
2341 (SYMTAB_COMPUNIT (start_pc_sal.symtab))) < 6
2342 || start_pc_sal.pc != start_pc || pc >= start_pc_sal.end)
2343 return pc;
2344
2345 next_sal = find_pc_sect_line (start_pc_sal.end, NULL, 0);
2346 if (next_sal.line != start_pc_sal.line)
2347 return pc;
2348
2349 /* START_PC can be from overlayed memory, ignored here. */
2350 if (target_read_code (next_sal.pc - 4, buf, sizeof (buf)) != 0)
2351 return pc;
2352
2353 /* test %al,%al */
2354 if (buf[0] != 0x84 || buf[1] != 0xc0)
2355 return pc;
2356 /* je AFTER */
2357 if (buf[2] != 0x74)
2358 return pc;
2359
2360 offset = 4;
2361 for (xmmreg = 0; xmmreg < 8; xmmreg++)
2362 {
2363 /* 0x0f 0x29 0b??000101 movaps %xmmreg?,-0x??(%rbp) */
2364 if (buf[offset] != 0x0f || buf[offset + 1] != 0x29
2365 || (buf[offset + 2] & 0x3f) != (xmmreg << 3 | 0x5))
2366 return pc;
2367
2368 /* 0b01?????? */
2369 if ((buf[offset + 2] & 0xc0) == 0x40)
2370 {
2371 /* 8-bit displacement. */
2372 offset += 4;
2373 }
2374 /* 0b10?????? */
2375 else if ((buf[offset + 2] & 0xc0) == 0x80)
2376 {
2377 /* 32-bit displacement. */
2378 offset += 7;
2379 }
2380 else
2381 return pc;
2382 }
2383
2384 /* je AFTER */
2385 if (offset - 4 != buf[3])
2386 return pc;
2387
2388 return next_sal.end;
2389 }
2390
2391 /* Return PC of first real instruction. */
2392
2393 static CORE_ADDR
2394 amd64_skip_prologue (struct gdbarch *gdbarch, CORE_ADDR start_pc)
2395 {
2396 struct amd64_frame_cache cache;
2397 CORE_ADDR pc;
2398 CORE_ADDR func_addr;
2399
2400 if (find_pc_partial_function (start_pc, NULL, &func_addr, NULL))
2401 {
2402 CORE_ADDR post_prologue_pc
2403 = skip_prologue_using_sal (gdbarch, func_addr);
2404 struct compunit_symtab *cust = find_pc_compunit_symtab (func_addr);
2405
2406 /* Clang always emits a line note before the prologue and another
2407 one after. We trust clang to emit usable line notes. */
2408 if (post_prologue_pc
2409 && (cust != NULL
2410 && COMPUNIT_PRODUCER (cust) != NULL
2411 && startswith (COMPUNIT_PRODUCER (cust), "clang ")))
2412 return max (start_pc, post_prologue_pc);
2413 }
2414
2415 amd64_init_frame_cache (&cache);
2416 pc = amd64_analyze_prologue (gdbarch, start_pc, 0xffffffffffffffffLL,
2417 &cache);
2418 if (cache.frameless_p)
2419 return start_pc;
2420
2421 return amd64_skip_xmm_prologue (pc, start_pc);
2422 }
2423 \f
2424
2425 /* Normal frames. */
2426
2427 static void
2428 amd64_frame_cache_1 (struct frame_info *this_frame,
2429 struct amd64_frame_cache *cache)
2430 {
2431 struct gdbarch *gdbarch = get_frame_arch (this_frame);
2432 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
2433 gdb_byte buf[8];
2434 int i;
2435
2436 cache->pc = get_frame_func (this_frame);
2437 if (cache->pc != 0)
2438 amd64_analyze_prologue (gdbarch, cache->pc, get_frame_pc (this_frame),
2439 cache);
2440
2441 if (cache->frameless_p)
2442 {
2443 /* We didn't find a valid frame. If we're at the start of a
2444 function, or somewhere half-way its prologue, the function's
2445 frame probably hasn't been fully setup yet. Try to
2446 reconstruct the base address for the stack frame by looking
2447 at the stack pointer. For truly "frameless" functions this
2448 might work too. */
2449
2450 if (cache->saved_sp_reg != -1)
2451 {
2452 /* Stack pointer has been saved. */
2453 get_frame_register (this_frame, cache->saved_sp_reg, buf);
2454 cache->saved_sp = extract_unsigned_integer (buf, 8, byte_order);
2455
2456 /* We're halfway aligning the stack. */
2457 cache->base = ((cache->saved_sp - 8) & 0xfffffffffffffff0LL) - 8;
2458 cache->saved_regs[AMD64_RIP_REGNUM] = cache->saved_sp - 8;
2459
2460 /* This will be added back below. */
2461 cache->saved_regs[AMD64_RIP_REGNUM] -= cache->base;
2462 }
2463 else
2464 {
2465 get_frame_register (this_frame, AMD64_RSP_REGNUM, buf);
2466 cache->base = extract_unsigned_integer (buf, 8, byte_order)
2467 + cache->sp_offset;
2468 }
2469 }
2470 else
2471 {
2472 get_frame_register (this_frame, AMD64_RBP_REGNUM, buf);
2473 cache->base = extract_unsigned_integer (buf, 8, byte_order);
2474 }
2475
2476 /* Now that we have the base address for the stack frame we can
2477 calculate the value of %rsp in the calling frame. */
2478 cache->saved_sp = cache->base + 16;
2479
2480 /* For normal frames, %rip is stored at 8(%rbp). If we don't have a
2481 frame we find it at the same offset from the reconstructed base
2482 address. If we're halfway aligning the stack, %rip is handled
2483 differently (see above). */
2484 if (!cache->frameless_p || cache->saved_sp_reg == -1)
2485 cache->saved_regs[AMD64_RIP_REGNUM] = 8;
2486
2487 /* Adjust all the saved registers such that they contain addresses
2488 instead of offsets. */
2489 for (i = 0; i < AMD64_NUM_SAVED_REGS; i++)
2490 if (cache->saved_regs[i] != -1)
2491 cache->saved_regs[i] += cache->base;
2492
2493 cache->base_p = 1;
2494 }
2495
2496 static struct amd64_frame_cache *
2497 amd64_frame_cache (struct frame_info *this_frame, void **this_cache)
2498 {
2499 struct amd64_frame_cache *cache;
2500
2501 if (*this_cache)
2502 return (struct amd64_frame_cache *) *this_cache;
2503
2504 cache = amd64_alloc_frame_cache ();
2505 *this_cache = cache;
2506
2507 TRY
2508 {
2509 amd64_frame_cache_1 (this_frame, cache);
2510 }
2511 CATCH (ex, RETURN_MASK_ERROR)
2512 {
2513 if (ex.error != NOT_AVAILABLE_ERROR)
2514 throw_exception (ex);
2515 }
2516 END_CATCH
2517
2518 return cache;
2519 }
2520
2521 static enum unwind_stop_reason
2522 amd64_frame_unwind_stop_reason (struct frame_info *this_frame,
2523 void **this_cache)
2524 {
2525 struct amd64_frame_cache *cache =
2526 amd64_frame_cache (this_frame, this_cache);
2527
2528 if (!cache->base_p)
2529 return UNWIND_UNAVAILABLE;
2530
2531 /* This marks the outermost frame. */
2532 if (cache->base == 0)
2533 return UNWIND_OUTERMOST;
2534
2535 return UNWIND_NO_REASON;
2536 }
2537
2538 static void
2539 amd64_frame_this_id (struct frame_info *this_frame, void **this_cache,
2540 struct frame_id *this_id)
2541 {
2542 struct amd64_frame_cache *cache =
2543 amd64_frame_cache (this_frame, this_cache);
2544
2545 if (!cache->base_p)
2546 (*this_id) = frame_id_build_unavailable_stack (cache->pc);
2547 else if (cache->base == 0)
2548 {
2549 /* This marks the outermost frame. */
2550 return;
2551 }
2552 else
2553 (*this_id) = frame_id_build (cache->base + 16, cache->pc);
2554 }
2555
2556 static struct value *
2557 amd64_frame_prev_register (struct frame_info *this_frame, void **this_cache,
2558 int regnum)
2559 {
2560 struct gdbarch *gdbarch = get_frame_arch (this_frame);
2561 struct amd64_frame_cache *cache =
2562 amd64_frame_cache (this_frame, this_cache);
2563
2564 gdb_assert (regnum >= 0);
2565
2566 if (regnum == gdbarch_sp_regnum (gdbarch) && cache->saved_sp)
2567 return frame_unwind_got_constant (this_frame, regnum, cache->saved_sp);
2568
2569 if (regnum < AMD64_NUM_SAVED_REGS && cache->saved_regs[regnum] != -1)
2570 return frame_unwind_got_memory (this_frame, regnum,
2571 cache->saved_regs[regnum]);
2572
2573 return frame_unwind_got_register (this_frame, regnum, regnum);
2574 }
2575
2576 static const struct frame_unwind amd64_frame_unwind =
2577 {
2578 NORMAL_FRAME,
2579 amd64_frame_unwind_stop_reason,
2580 amd64_frame_this_id,
2581 amd64_frame_prev_register,
2582 NULL,
2583 default_frame_sniffer
2584 };
2585 \f
2586 /* Generate a bytecode expression to get the value of the saved PC. */
2587
2588 static void
2589 amd64_gen_return_address (struct gdbarch *gdbarch,
2590 struct agent_expr *ax, struct axs_value *value,
2591 CORE_ADDR scope)
2592 {
2593 /* The following sequence assumes the traditional use of the base
2594 register. */
2595 ax_reg (ax, AMD64_RBP_REGNUM);
2596 ax_const_l (ax, 8);
2597 ax_simple (ax, aop_add);
2598 value->type = register_type (gdbarch, AMD64_RIP_REGNUM);
2599 value->kind = axs_lvalue_memory;
2600 }
2601 \f
2602
2603 /* Signal trampolines. */
2604
2605 /* FIXME: kettenis/20030419: Perhaps, we can unify the 32-bit and
2606 64-bit variants. This would require using identical frame caches
2607 on both platforms. */
2608
2609 static struct amd64_frame_cache *
2610 amd64_sigtramp_frame_cache (struct frame_info *this_frame, void **this_cache)
2611 {
2612 struct gdbarch *gdbarch = get_frame_arch (this_frame);
2613 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2614 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
2615 struct amd64_frame_cache *cache;
2616 CORE_ADDR addr;
2617 gdb_byte buf[8];
2618 int i;
2619
2620 if (*this_cache)
2621 return (struct amd64_frame_cache *) *this_cache;
2622
2623 cache = amd64_alloc_frame_cache ();
2624
2625 TRY
2626 {
2627 get_frame_register (this_frame, AMD64_RSP_REGNUM, buf);
2628 cache->base = extract_unsigned_integer (buf, 8, byte_order) - 8;
2629
2630 addr = tdep->sigcontext_addr (this_frame);
2631 gdb_assert (tdep->sc_reg_offset);
2632 gdb_assert (tdep->sc_num_regs <= AMD64_NUM_SAVED_REGS);
2633 for (i = 0; i < tdep->sc_num_regs; i++)
2634 if (tdep->sc_reg_offset[i] != -1)
2635 cache->saved_regs[i] = addr + tdep->sc_reg_offset[i];
2636
2637 cache->base_p = 1;
2638 }
2639 CATCH (ex, RETURN_MASK_ERROR)
2640 {
2641 if (ex.error != NOT_AVAILABLE_ERROR)
2642 throw_exception (ex);
2643 }
2644 END_CATCH
2645
2646 *this_cache = cache;
2647 return cache;
2648 }
2649
2650 static enum unwind_stop_reason
2651 amd64_sigtramp_frame_unwind_stop_reason (struct frame_info *this_frame,
2652 void **this_cache)
2653 {
2654 struct amd64_frame_cache *cache =
2655 amd64_sigtramp_frame_cache (this_frame, this_cache);
2656
2657 if (!cache->base_p)
2658 return UNWIND_UNAVAILABLE;
2659
2660 return UNWIND_NO_REASON;
2661 }
2662
2663 static void
2664 amd64_sigtramp_frame_this_id (struct frame_info *this_frame,
2665 void **this_cache, struct frame_id *this_id)
2666 {
2667 struct amd64_frame_cache *cache =
2668 amd64_sigtramp_frame_cache (this_frame, this_cache);
2669
2670 if (!cache->base_p)
2671 (*this_id) = frame_id_build_unavailable_stack (get_frame_pc (this_frame));
2672 else if (cache->base == 0)
2673 {
2674 /* This marks the outermost frame. */
2675 return;
2676 }
2677 else
2678 (*this_id) = frame_id_build (cache->base + 16, get_frame_pc (this_frame));
2679 }
2680
2681 static struct value *
2682 amd64_sigtramp_frame_prev_register (struct frame_info *this_frame,
2683 void **this_cache, int regnum)
2684 {
2685 /* Make sure we've initialized the cache. */
2686 amd64_sigtramp_frame_cache (this_frame, this_cache);
2687
2688 return amd64_frame_prev_register (this_frame, this_cache, regnum);
2689 }
2690
2691 static int
2692 amd64_sigtramp_frame_sniffer (const struct frame_unwind *self,
2693 struct frame_info *this_frame,
2694 void **this_cache)
2695 {
2696 struct gdbarch_tdep *tdep = gdbarch_tdep (get_frame_arch (this_frame));
2697
2698 /* We shouldn't even bother if we don't have a sigcontext_addr
2699 handler. */
2700 if (tdep->sigcontext_addr == NULL)
2701 return 0;
2702
2703 if (tdep->sigtramp_p != NULL)
2704 {
2705 if (tdep->sigtramp_p (this_frame))
2706 return 1;
2707 }
2708
2709 if (tdep->sigtramp_start != 0)
2710 {
2711 CORE_ADDR pc = get_frame_pc (this_frame);
2712
2713 gdb_assert (tdep->sigtramp_end != 0);
2714 if (pc >= tdep->sigtramp_start && pc < tdep->sigtramp_end)
2715 return 1;
2716 }
2717
2718 return 0;
2719 }
2720
2721 static const struct frame_unwind amd64_sigtramp_frame_unwind =
2722 {
2723 SIGTRAMP_FRAME,
2724 amd64_sigtramp_frame_unwind_stop_reason,
2725 amd64_sigtramp_frame_this_id,
2726 amd64_sigtramp_frame_prev_register,
2727 NULL,
2728 amd64_sigtramp_frame_sniffer
2729 };
2730 \f
2731
2732 static CORE_ADDR
2733 amd64_frame_base_address (struct frame_info *this_frame, void **this_cache)
2734 {
2735 struct amd64_frame_cache *cache =
2736 amd64_frame_cache (this_frame, this_cache);
2737
2738 return cache->base;
2739 }
2740
2741 static const struct frame_base amd64_frame_base =
2742 {
2743 &amd64_frame_unwind,
2744 amd64_frame_base_address,
2745 amd64_frame_base_address,
2746 amd64_frame_base_address
2747 };
2748
2749 /* Normal frames, but in a function epilogue. */
2750
2751 /* Implement the stack_frame_destroyed_p gdbarch method.
2752
2753 The epilogue is defined here as the 'ret' instruction, which will
2754 follow any instruction such as 'leave' or 'pop %ebp' that destroys
2755 the function's stack frame. */
2756
2757 static int
2758 amd64_stack_frame_destroyed_p (struct gdbarch *gdbarch, CORE_ADDR pc)
2759 {
2760 gdb_byte insn;
2761 struct compunit_symtab *cust;
2762
2763 cust = find_pc_compunit_symtab (pc);
2764 if (cust != NULL && COMPUNIT_EPILOGUE_UNWIND_VALID (cust))
2765 return 0;
2766
2767 if (target_read_memory (pc, &insn, 1))
2768 return 0; /* Can't read memory at pc. */
2769
2770 if (insn != 0xc3) /* 'ret' instruction. */
2771 return 0;
2772
2773 return 1;
2774 }
2775
2776 static int
2777 amd64_epilogue_frame_sniffer (const struct frame_unwind *self,
2778 struct frame_info *this_frame,
2779 void **this_prologue_cache)
2780 {
2781 if (frame_relative_level (this_frame) == 0)
2782 return amd64_stack_frame_destroyed_p (get_frame_arch (this_frame),
2783 get_frame_pc (this_frame));
2784 else
2785 return 0;
2786 }
2787
2788 static struct amd64_frame_cache *
2789 amd64_epilogue_frame_cache (struct frame_info *this_frame, void **this_cache)
2790 {
2791 struct gdbarch *gdbarch = get_frame_arch (this_frame);
2792 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
2793 struct amd64_frame_cache *cache;
2794 gdb_byte buf[8];
2795
2796 if (*this_cache)
2797 return (struct amd64_frame_cache *) *this_cache;
2798
2799 cache = amd64_alloc_frame_cache ();
2800 *this_cache = cache;
2801
2802 TRY
2803 {
2804 /* Cache base will be %esp plus cache->sp_offset (-8). */
2805 get_frame_register (this_frame, AMD64_RSP_REGNUM, buf);
2806 cache->base = extract_unsigned_integer (buf, 8,
2807 byte_order) + cache->sp_offset;
2808
2809 /* Cache pc will be the frame func. */
2810 cache->pc = get_frame_pc (this_frame);
2811
2812 /* The saved %esp will be at cache->base plus 16. */
2813 cache->saved_sp = cache->base + 16;
2814
2815 /* The saved %eip will be at cache->base plus 8. */
2816 cache->saved_regs[AMD64_RIP_REGNUM] = cache->base + 8;
2817
2818 cache->base_p = 1;
2819 }
2820 CATCH (ex, RETURN_MASK_ERROR)
2821 {
2822 if (ex.error != NOT_AVAILABLE_ERROR)
2823 throw_exception (ex);
2824 }
2825 END_CATCH
2826
2827 return cache;
2828 }
2829
2830 static enum unwind_stop_reason
2831 amd64_epilogue_frame_unwind_stop_reason (struct frame_info *this_frame,
2832 void **this_cache)
2833 {
2834 struct amd64_frame_cache *cache
2835 = amd64_epilogue_frame_cache (this_frame, this_cache);
2836
2837 if (!cache->base_p)
2838 return UNWIND_UNAVAILABLE;
2839
2840 return UNWIND_NO_REASON;
2841 }
2842
2843 static void
2844 amd64_epilogue_frame_this_id (struct frame_info *this_frame,
2845 void **this_cache,
2846 struct frame_id *this_id)
2847 {
2848 struct amd64_frame_cache *cache = amd64_epilogue_frame_cache (this_frame,
2849 this_cache);
2850
2851 if (!cache->base_p)
2852 (*this_id) = frame_id_build_unavailable_stack (cache->pc);
2853 else
2854 (*this_id) = frame_id_build (cache->base + 8, cache->pc);
2855 }
2856
2857 static const struct frame_unwind amd64_epilogue_frame_unwind =
2858 {
2859 NORMAL_FRAME,
2860 amd64_epilogue_frame_unwind_stop_reason,
2861 amd64_epilogue_frame_this_id,
2862 amd64_frame_prev_register,
2863 NULL,
2864 amd64_epilogue_frame_sniffer
2865 };
2866
2867 static struct frame_id
2868 amd64_dummy_id (struct gdbarch *gdbarch, struct frame_info *this_frame)
2869 {
2870 CORE_ADDR fp;
2871
2872 fp = get_frame_register_unsigned (this_frame, AMD64_RBP_REGNUM);
2873
2874 return frame_id_build (fp + 16, get_frame_pc (this_frame));
2875 }
2876
2877 /* 16 byte align the SP per frame requirements. */
2878
2879 static CORE_ADDR
2880 amd64_frame_align (struct gdbarch *gdbarch, CORE_ADDR sp)
2881 {
2882 return sp & -(CORE_ADDR)16;
2883 }
2884 \f
2885
2886 /* Supply register REGNUM from the buffer specified by FPREGS and LEN
2887 in the floating-point register set REGSET to register cache
2888 REGCACHE. If REGNUM is -1, do this for all registers in REGSET. */
2889
2890 static void
2891 amd64_supply_fpregset (const struct regset *regset, struct regcache *regcache,
2892 int regnum, const void *fpregs, size_t len)
2893 {
2894 struct gdbarch *gdbarch = get_regcache_arch (regcache);
2895 const struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2896
2897 gdb_assert (len >= tdep->sizeof_fpregset);
2898 amd64_supply_fxsave (regcache, regnum, fpregs);
2899 }
2900
2901 /* Collect register REGNUM from the register cache REGCACHE and store
2902 it in the buffer specified by FPREGS and LEN as described by the
2903 floating-point register set REGSET. If REGNUM is -1, do this for
2904 all registers in REGSET. */
2905
2906 static void
2907 amd64_collect_fpregset (const struct regset *regset,
2908 const struct regcache *regcache,
2909 int regnum, void *fpregs, size_t len)
2910 {
2911 struct gdbarch *gdbarch = get_regcache_arch (regcache);
2912 const struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2913
2914 gdb_assert (len >= tdep->sizeof_fpregset);
2915 amd64_collect_fxsave (regcache, regnum, fpregs);
2916 }
2917
2918 const struct regset amd64_fpregset =
2919 {
2920 NULL, amd64_supply_fpregset, amd64_collect_fpregset
2921 };
2922 \f
2923
2924 /* Figure out where the longjmp will land. Slurp the jmp_buf out of
2925 %rdi. We expect its value to be a pointer to the jmp_buf structure
2926 from which we extract the address that we will land at. This
2927 address is copied into PC. This routine returns non-zero on
2928 success. */
2929
2930 static int
2931 amd64_get_longjmp_target (struct frame_info *frame, CORE_ADDR *pc)
2932 {
2933 gdb_byte buf[8];
2934 CORE_ADDR jb_addr;
2935 struct gdbarch *gdbarch = get_frame_arch (frame);
2936 int jb_pc_offset = gdbarch_tdep (gdbarch)->jb_pc_offset;
2937 int len = TYPE_LENGTH (builtin_type (gdbarch)->builtin_func_ptr);
2938
2939 /* If JB_PC_OFFSET is -1, we have no way to find out where the
2940 longjmp will land. */
2941 if (jb_pc_offset == -1)
2942 return 0;
2943
2944 get_frame_register (frame, AMD64_RDI_REGNUM, buf);
2945 jb_addr= extract_typed_address
2946 (buf, builtin_type (gdbarch)->builtin_data_ptr);
2947 if (target_read_memory (jb_addr + jb_pc_offset, buf, len))
2948 return 0;
2949
2950 *pc = extract_typed_address (buf, builtin_type (gdbarch)->builtin_func_ptr);
2951
2952 return 1;
2953 }
2954
2955 static const int amd64_record_regmap[] =
2956 {
2957 AMD64_RAX_REGNUM, AMD64_RCX_REGNUM, AMD64_RDX_REGNUM, AMD64_RBX_REGNUM,
2958 AMD64_RSP_REGNUM, AMD64_RBP_REGNUM, AMD64_RSI_REGNUM, AMD64_RDI_REGNUM,
2959 AMD64_R8_REGNUM, AMD64_R9_REGNUM, AMD64_R10_REGNUM, AMD64_R11_REGNUM,
2960 AMD64_R12_REGNUM, AMD64_R13_REGNUM, AMD64_R14_REGNUM, AMD64_R15_REGNUM,
2961 AMD64_RIP_REGNUM, AMD64_EFLAGS_REGNUM, AMD64_CS_REGNUM, AMD64_SS_REGNUM,
2962 AMD64_DS_REGNUM, AMD64_ES_REGNUM, AMD64_FS_REGNUM, AMD64_GS_REGNUM
2963 };
2964
2965 void
2966 amd64_init_abi (struct gdbarch_info info, struct gdbarch *gdbarch)
2967 {
2968 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2969 const struct target_desc *tdesc = info.target_desc;
2970 static const char *const stap_integer_prefixes[] = { "$", NULL };
2971 static const char *const stap_register_prefixes[] = { "%", NULL };
2972 static const char *const stap_register_indirection_prefixes[] = { "(",
2973 NULL };
2974 static const char *const stap_register_indirection_suffixes[] = { ")",
2975 NULL };
2976
2977 /* AMD64 generally uses `fxsave' instead of `fsave' for saving its
2978 floating-point registers. */
2979 tdep->sizeof_fpregset = I387_SIZEOF_FXSAVE;
2980 tdep->fpregset = &amd64_fpregset;
2981
2982 if (! tdesc_has_registers (tdesc))
2983 tdesc = tdesc_amd64;
2984 tdep->tdesc = tdesc;
2985
2986 tdep->num_core_regs = AMD64_NUM_GREGS + I387_NUM_REGS;
2987 tdep->register_names = amd64_register_names;
2988
2989 if (tdesc_find_feature (tdesc, "org.gnu.gdb.i386.avx512") != NULL)
2990 {
2991 tdep->zmmh_register_names = amd64_zmmh_names;
2992 tdep->k_register_names = amd64_k_names;
2993 tdep->xmm_avx512_register_names = amd64_xmm_avx512_names;
2994 tdep->ymm16h_register_names = amd64_ymmh_avx512_names;
2995
2996 tdep->num_zmm_regs = 32;
2997 tdep->num_xmm_avx512_regs = 16;
2998 tdep->num_ymm_avx512_regs = 16;
2999
3000 tdep->zmm0h_regnum = AMD64_ZMM0H_REGNUM;
3001 tdep->k0_regnum = AMD64_K0_REGNUM;
3002 tdep->xmm16_regnum = AMD64_XMM16_REGNUM;
3003 tdep->ymm16h_regnum = AMD64_YMM16H_REGNUM;
3004 }
3005
3006 if (tdesc_find_feature (tdesc, "org.gnu.gdb.i386.avx") != NULL)
3007 {
3008 tdep->ymmh_register_names = amd64_ymmh_names;
3009 tdep->num_ymm_regs = 16;
3010 tdep->ymm0h_regnum = AMD64_YMM0H_REGNUM;
3011 }
3012
3013 if (tdesc_find_feature (tdesc, "org.gnu.gdb.i386.mpx") != NULL)
3014 {
3015 tdep->mpx_register_names = amd64_mpx_names;
3016 tdep->bndcfgu_regnum = AMD64_BNDCFGU_REGNUM;
3017 tdep->bnd0r_regnum = AMD64_BND0R_REGNUM;
3018 }
3019
3020 tdep->num_byte_regs = 20;
3021 tdep->num_word_regs = 16;
3022 tdep->num_dword_regs = 16;
3023 /* Avoid wiring in the MMX registers for now. */
3024 tdep->num_mmx_regs = 0;
3025
3026 set_gdbarch_pseudo_register_read_value (gdbarch,
3027 amd64_pseudo_register_read_value);
3028 set_gdbarch_pseudo_register_write (gdbarch,
3029 amd64_pseudo_register_write);
3030 set_gdbarch_ax_pseudo_register_collect (gdbarch,
3031 amd64_ax_pseudo_register_collect);
3032
3033 set_tdesc_pseudo_register_name (gdbarch, amd64_pseudo_register_name);
3034
3035 /* AMD64 has an FPU and 16 SSE registers. */
3036 tdep->st0_regnum = AMD64_ST0_REGNUM;
3037 tdep->num_xmm_regs = 16;
3038
3039 /* This is what all the fuss is about. */
3040 set_gdbarch_long_bit (gdbarch, 64);
3041 set_gdbarch_long_long_bit (gdbarch, 64);
3042 set_gdbarch_ptr_bit (gdbarch, 64);
3043
3044 /* In contrast to the i386, on AMD64 a `long double' actually takes
3045 up 128 bits, even though it's still based on the i387 extended
3046 floating-point format which has only 80 significant bits. */
3047 set_gdbarch_long_double_bit (gdbarch, 128);
3048
3049 set_gdbarch_num_regs (gdbarch, AMD64_NUM_REGS);
3050
3051 /* Register numbers of various important registers. */
3052 set_gdbarch_sp_regnum (gdbarch, AMD64_RSP_REGNUM); /* %rsp */
3053 set_gdbarch_pc_regnum (gdbarch, AMD64_RIP_REGNUM); /* %rip */
3054 set_gdbarch_ps_regnum (gdbarch, AMD64_EFLAGS_REGNUM); /* %eflags */
3055 set_gdbarch_fp0_regnum (gdbarch, AMD64_ST0_REGNUM); /* %st(0) */
3056
3057 /* The "default" register numbering scheme for AMD64 is referred to
3058 as the "DWARF Register Number Mapping" in the System V psABI.
3059 The preferred debugging format for all known AMD64 targets is
3060 actually DWARF2, and GCC doesn't seem to support DWARF (that is
3061 DWARF-1), but we provide the same mapping just in case. This
3062 mapping is also used for stabs, which GCC does support. */
3063 set_gdbarch_stab_reg_to_regnum (gdbarch, amd64_dwarf_reg_to_regnum);
3064 set_gdbarch_dwarf2_reg_to_regnum (gdbarch, amd64_dwarf_reg_to_regnum);
3065
3066 /* We don't override SDB_REG_RO_REGNUM, since COFF doesn't seem to
3067 be in use on any of the supported AMD64 targets. */
3068
3069 /* Call dummy code. */
3070 set_gdbarch_push_dummy_call (gdbarch, amd64_push_dummy_call);
3071 set_gdbarch_frame_align (gdbarch, amd64_frame_align);
3072 set_gdbarch_frame_red_zone_size (gdbarch, 128);
3073
3074 set_gdbarch_convert_register_p (gdbarch, i387_convert_register_p);
3075 set_gdbarch_register_to_value (gdbarch, i387_register_to_value);
3076 set_gdbarch_value_to_register (gdbarch, i387_value_to_register);
3077
3078 set_gdbarch_return_value (gdbarch, amd64_return_value);
3079
3080 set_gdbarch_skip_prologue (gdbarch, amd64_skip_prologue);
3081
3082 tdep->record_regmap = amd64_record_regmap;
3083
3084 set_gdbarch_dummy_id (gdbarch, amd64_dummy_id);
3085
3086 /* Hook the function epilogue frame unwinder. This unwinder is
3087 appended to the list first, so that it supercedes the other
3088 unwinders in function epilogues. */
3089 frame_unwind_prepend_unwinder (gdbarch, &amd64_epilogue_frame_unwind);
3090
3091 /* Hook the prologue-based frame unwinders. */
3092 frame_unwind_append_unwinder (gdbarch, &amd64_sigtramp_frame_unwind);
3093 frame_unwind_append_unwinder (gdbarch, &amd64_frame_unwind);
3094 frame_base_set_default (gdbarch, &amd64_frame_base);
3095
3096 set_gdbarch_get_longjmp_target (gdbarch, amd64_get_longjmp_target);
3097
3098 set_gdbarch_relocate_instruction (gdbarch, amd64_relocate_instruction);
3099
3100 set_gdbarch_gen_return_address (gdbarch, amd64_gen_return_address);
3101
3102 /* SystemTap variables and functions. */
3103 set_gdbarch_stap_integer_prefixes (gdbarch, stap_integer_prefixes);
3104 set_gdbarch_stap_register_prefixes (gdbarch, stap_register_prefixes);
3105 set_gdbarch_stap_register_indirection_prefixes (gdbarch,
3106 stap_register_indirection_prefixes);
3107 set_gdbarch_stap_register_indirection_suffixes (gdbarch,
3108 stap_register_indirection_suffixes);
3109 set_gdbarch_stap_is_single_operand (gdbarch,
3110 i386_stap_is_single_operand);
3111 set_gdbarch_stap_parse_special_token (gdbarch,
3112 i386_stap_parse_special_token);
3113 set_gdbarch_insn_is_call (gdbarch, amd64_insn_is_call);
3114 set_gdbarch_insn_is_ret (gdbarch, amd64_insn_is_ret);
3115 set_gdbarch_insn_is_jump (gdbarch, amd64_insn_is_jump);
3116 }
3117 \f
3118
3119 static struct type *
3120 amd64_x32_pseudo_register_type (struct gdbarch *gdbarch, int regnum)
3121 {
3122 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3123
3124 switch (regnum - tdep->eax_regnum)
3125 {
3126 case AMD64_RBP_REGNUM: /* %ebp */
3127 case AMD64_RSP_REGNUM: /* %esp */
3128 return builtin_type (gdbarch)->builtin_data_ptr;
3129 case AMD64_RIP_REGNUM: /* %eip */
3130 return builtin_type (gdbarch)->builtin_func_ptr;
3131 }
3132
3133 return i386_pseudo_register_type (gdbarch, regnum);
3134 }
3135
3136 void
3137 amd64_x32_init_abi (struct gdbarch_info info, struct gdbarch *gdbarch)
3138 {
3139 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3140 const struct target_desc *tdesc = info.target_desc;
3141
3142 amd64_init_abi (info, gdbarch);
3143
3144 if (! tdesc_has_registers (tdesc))
3145 tdesc = tdesc_x32;
3146 tdep->tdesc = tdesc;
3147
3148 tdep->num_dword_regs = 17;
3149 set_tdesc_pseudo_register_type (gdbarch, amd64_x32_pseudo_register_type);
3150
3151 set_gdbarch_long_bit (gdbarch, 32);
3152 set_gdbarch_ptr_bit (gdbarch, 32);
3153 }
3154
3155 /* Return the target description for a specified XSAVE feature mask. */
3156
3157 const struct target_desc *
3158 amd64_target_description (uint64_t xcr0)
3159 {
3160 switch (xcr0 & X86_XSTATE_ALL_MASK)
3161 {
3162 case X86_XSTATE_MPX_AVX512_MASK:
3163 case X86_XSTATE_AVX512_MASK:
3164 return tdesc_amd64_avx512;
3165 case X86_XSTATE_MPX_MASK:
3166 return tdesc_amd64_mpx;
3167 case X86_XSTATE_AVX_MPX_MASK:
3168 return tdesc_amd64_avx_mpx;
3169 case X86_XSTATE_AVX_MASK:
3170 return tdesc_amd64_avx;
3171 default:
3172 return tdesc_amd64;
3173 }
3174 }
3175
3176 /* Provide a prototype to silence -Wmissing-prototypes. */
3177 void _initialize_amd64_tdep (void);
3178
3179 void
3180 _initialize_amd64_tdep (void)
3181 {
3182 initialize_tdesc_amd64 ();
3183 initialize_tdesc_amd64_avx ();
3184 initialize_tdesc_amd64_mpx ();
3185 initialize_tdesc_amd64_avx_mpx ();
3186 initialize_tdesc_amd64_avx512 ();
3187
3188 initialize_tdesc_x32 ();
3189 initialize_tdesc_x32_avx ();
3190 initialize_tdesc_x32_avx512 ();
3191 }
3192 \f
3193
3194 /* The 64-bit FXSAVE format differs from the 32-bit format in the
3195 sense that the instruction pointer and data pointer are simply
3196 64-bit offsets into the code segment and the data segment instead
3197 of a selector offset pair. The functions below store the upper 32
3198 bits of these pointers (instead of just the 16-bits of the segment
3199 selector). */
3200
3201 /* Fill register REGNUM in REGCACHE with the appropriate
3202 floating-point or SSE register value from *FXSAVE. If REGNUM is
3203 -1, do this for all registers. This function masks off any of the
3204 reserved bits in *FXSAVE. */
3205
3206 void
3207 amd64_supply_fxsave (struct regcache *regcache, int regnum,
3208 const void *fxsave)
3209 {
3210 struct gdbarch *gdbarch = get_regcache_arch (regcache);
3211 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3212
3213 i387_supply_fxsave (regcache, regnum, fxsave);
3214
3215 if (fxsave
3216 && gdbarch_bfd_arch_info (gdbarch)->bits_per_word == 64)
3217 {
3218 const gdb_byte *regs = (const gdb_byte *) fxsave;
3219
3220 if (regnum == -1 || regnum == I387_FISEG_REGNUM (tdep))
3221 regcache_raw_supply (regcache, I387_FISEG_REGNUM (tdep), regs + 12);
3222 if (regnum == -1 || regnum == I387_FOSEG_REGNUM (tdep))
3223 regcache_raw_supply (regcache, I387_FOSEG_REGNUM (tdep), regs + 20);
3224 }
3225 }
3226
3227 /* Similar to amd64_supply_fxsave, but use XSAVE extended state. */
3228
3229 void
3230 amd64_supply_xsave (struct regcache *regcache, int regnum,
3231 const void *xsave)
3232 {
3233 struct gdbarch *gdbarch = get_regcache_arch (regcache);
3234 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3235
3236 i387_supply_xsave (regcache, regnum, xsave);
3237
3238 if (xsave
3239 && gdbarch_bfd_arch_info (gdbarch)->bits_per_word == 64)
3240 {
3241 const gdb_byte *regs = (const gdb_byte *) xsave;
3242
3243 if (regnum == -1 || regnum == I387_FISEG_REGNUM (tdep))
3244 regcache_raw_supply (regcache, I387_FISEG_REGNUM (tdep),
3245 regs + 12);
3246 if (regnum == -1 || regnum == I387_FOSEG_REGNUM (tdep))
3247 regcache_raw_supply (regcache, I387_FOSEG_REGNUM (tdep),
3248 regs + 20);
3249 }
3250 }
3251
3252 /* Fill register REGNUM (if it is a floating-point or SSE register) in
3253 *FXSAVE with the value from REGCACHE. If REGNUM is -1, do this for
3254 all registers. This function doesn't touch any of the reserved
3255 bits in *FXSAVE. */
3256
3257 void
3258 amd64_collect_fxsave (const struct regcache *regcache, int regnum,
3259 void *fxsave)
3260 {
3261 struct gdbarch *gdbarch = get_regcache_arch (regcache);
3262 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3263 gdb_byte *regs = (gdb_byte *) fxsave;
3264
3265 i387_collect_fxsave (regcache, regnum, fxsave);
3266
3267 if (gdbarch_bfd_arch_info (gdbarch)->bits_per_word == 64)
3268 {
3269 if (regnum == -1 || regnum == I387_FISEG_REGNUM (tdep))
3270 regcache_raw_collect (regcache, I387_FISEG_REGNUM (tdep), regs + 12);
3271 if (regnum == -1 || regnum == I387_FOSEG_REGNUM (tdep))
3272 regcache_raw_collect (regcache, I387_FOSEG_REGNUM (tdep), regs + 20);
3273 }
3274 }
3275
3276 /* Similar to amd64_collect_fxsave, but use XSAVE extended state. */
3277
3278 void
3279 amd64_collect_xsave (const struct regcache *regcache, int regnum,
3280 void *xsave, int gcore)
3281 {
3282 struct gdbarch *gdbarch = get_regcache_arch (regcache);
3283 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3284 gdb_byte *regs = (gdb_byte *) xsave;
3285
3286 i387_collect_xsave (regcache, regnum, xsave, gcore);
3287
3288 if (gdbarch_bfd_arch_info (gdbarch)->bits_per_word == 64)
3289 {
3290 if (regnum == -1 || regnum == I387_FISEG_REGNUM (tdep))
3291 regcache_raw_collect (regcache, I387_FISEG_REGNUM (tdep),
3292 regs + 12);
3293 if (regnum == -1 || regnum == I387_FOSEG_REGNUM (tdep))
3294 regcache_raw_collect (regcache, I387_FOSEG_REGNUM (tdep),
3295 regs + 20);
3296 }
3297 }
This page took 0.152329 seconds and 4 git commands to generate.