gdb/
[deliverable/binutils-gdb.git] / gdb / amd64-tdep.c
1 /* Target-dependent code for AMD64.
2
3 Copyright (C) 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009, 2010,
4 2011 Free Software Foundation, Inc.
5
6 Contributed by Jiri Smid, SuSE Labs.
7
8 This file is part of GDB.
9
10 This program is free software; you can redistribute it and/or modify
11 it under the terms of the GNU General Public License as published by
12 the Free Software Foundation; either version 3 of the License, or
13 (at your option) any later version.
14
15 This program is distributed in the hope that it will be useful,
16 but WITHOUT ANY WARRANTY; without even the implied warranty of
17 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
18 GNU General Public License for more details.
19
20 You should have received a copy of the GNU General Public License
21 along with this program. If not, see <http://www.gnu.org/licenses/>. */
22
23 #include "defs.h"
24 #include "opcode/i386.h"
25 #include "dis-asm.h"
26 #include "arch-utils.h"
27 #include "block.h"
28 #include "dummy-frame.h"
29 #include "frame.h"
30 #include "frame-base.h"
31 #include "frame-unwind.h"
32 #include "inferior.h"
33 #include "gdbcmd.h"
34 #include "gdbcore.h"
35 #include "objfiles.h"
36 #include "regcache.h"
37 #include "regset.h"
38 #include "symfile.h"
39 #include "disasm.h"
40 #include "gdb_assert.h"
41 #include "exceptions.h"
42 #include "amd64-tdep.h"
43 #include "i387-tdep.h"
44
45 #include "features/i386/amd64.c"
46 #include "features/i386/amd64-avx.c"
47
48 /* Note that the AMD64 architecture was previously known as x86-64.
49 The latter is (forever) engraved into the canonical system name as
50 returned by config.guess, and used as the name for the AMD64 port
51 of GNU/Linux. The BSD's have renamed their ports to amd64; they
52 don't like to shout. For GDB we prefer the amd64_-prefix over the
53 x86_64_-prefix since it's so much easier to type. */
54
55 /* Register information. */
56
57 static const char *amd64_register_names[] =
58 {
59 "rax", "rbx", "rcx", "rdx", "rsi", "rdi", "rbp", "rsp",
60
61 /* %r8 is indeed register number 8. */
62 "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15",
63 "rip", "eflags", "cs", "ss", "ds", "es", "fs", "gs",
64
65 /* %st0 is register number 24. */
66 "st0", "st1", "st2", "st3", "st4", "st5", "st6", "st7",
67 "fctrl", "fstat", "ftag", "fiseg", "fioff", "foseg", "fooff", "fop",
68
69 /* %xmm0 is register number 40. */
70 "xmm0", "xmm1", "xmm2", "xmm3", "xmm4", "xmm5", "xmm6", "xmm7",
71 "xmm8", "xmm9", "xmm10", "xmm11", "xmm12", "xmm13", "xmm14", "xmm15",
72 "mxcsr",
73 };
74
75 static const char *amd64_ymm_names[] =
76 {
77 "ymm0", "ymm1", "ymm2", "ymm3",
78 "ymm4", "ymm5", "ymm6", "ymm7",
79 "ymm8", "ymm9", "ymm10", "ymm11",
80 "ymm12", "ymm13", "ymm14", "ymm15"
81 };
82
83 static const char *amd64_ymmh_names[] =
84 {
85 "ymm0h", "ymm1h", "ymm2h", "ymm3h",
86 "ymm4h", "ymm5h", "ymm6h", "ymm7h",
87 "ymm8h", "ymm9h", "ymm10h", "ymm11h",
88 "ymm12h", "ymm13h", "ymm14h", "ymm15h"
89 };
90
91 /* The registers used to pass integer arguments during a function call. */
92 static int amd64_dummy_call_integer_regs[] =
93 {
94 AMD64_RDI_REGNUM, /* %rdi */
95 AMD64_RSI_REGNUM, /* %rsi */
96 AMD64_RDX_REGNUM, /* %rdx */
97 AMD64_RCX_REGNUM, /* %rcx */
98 8, /* %r8 */
99 9 /* %r9 */
100 };
101
102 /* DWARF Register Number Mapping as defined in the System V psABI,
103 section 3.6. */
104
105 static int amd64_dwarf_regmap[] =
106 {
107 /* General Purpose Registers RAX, RDX, RCX, RBX, RSI, RDI. */
108 AMD64_RAX_REGNUM, AMD64_RDX_REGNUM,
109 AMD64_RCX_REGNUM, AMD64_RBX_REGNUM,
110 AMD64_RSI_REGNUM, AMD64_RDI_REGNUM,
111
112 /* Frame Pointer Register RBP. */
113 AMD64_RBP_REGNUM,
114
115 /* Stack Pointer Register RSP. */
116 AMD64_RSP_REGNUM,
117
118 /* Extended Integer Registers 8 - 15. */
119 8, 9, 10, 11, 12, 13, 14, 15,
120
121 /* Return Address RA. Mapped to RIP. */
122 AMD64_RIP_REGNUM,
123
124 /* SSE Registers 0 - 7. */
125 AMD64_XMM0_REGNUM + 0, AMD64_XMM1_REGNUM,
126 AMD64_XMM0_REGNUM + 2, AMD64_XMM0_REGNUM + 3,
127 AMD64_XMM0_REGNUM + 4, AMD64_XMM0_REGNUM + 5,
128 AMD64_XMM0_REGNUM + 6, AMD64_XMM0_REGNUM + 7,
129
130 /* Extended SSE Registers 8 - 15. */
131 AMD64_XMM0_REGNUM + 8, AMD64_XMM0_REGNUM + 9,
132 AMD64_XMM0_REGNUM + 10, AMD64_XMM0_REGNUM + 11,
133 AMD64_XMM0_REGNUM + 12, AMD64_XMM0_REGNUM + 13,
134 AMD64_XMM0_REGNUM + 14, AMD64_XMM0_REGNUM + 15,
135
136 /* Floating Point Registers 0-7. */
137 AMD64_ST0_REGNUM + 0, AMD64_ST0_REGNUM + 1,
138 AMD64_ST0_REGNUM + 2, AMD64_ST0_REGNUM + 3,
139 AMD64_ST0_REGNUM + 4, AMD64_ST0_REGNUM + 5,
140 AMD64_ST0_REGNUM + 6, AMD64_ST0_REGNUM + 7,
141
142 /* Control and Status Flags Register. */
143 AMD64_EFLAGS_REGNUM,
144
145 /* Selector Registers. */
146 AMD64_ES_REGNUM,
147 AMD64_CS_REGNUM,
148 AMD64_SS_REGNUM,
149 AMD64_DS_REGNUM,
150 AMD64_FS_REGNUM,
151 AMD64_GS_REGNUM,
152 -1,
153 -1,
154
155 /* Segment Base Address Registers. */
156 -1,
157 -1,
158 -1,
159 -1,
160
161 /* Special Selector Registers. */
162 -1,
163 -1,
164
165 /* Floating Point Control Registers. */
166 AMD64_MXCSR_REGNUM,
167 AMD64_FCTRL_REGNUM,
168 AMD64_FSTAT_REGNUM
169 };
170
171 static const int amd64_dwarf_regmap_len =
172 (sizeof (amd64_dwarf_regmap) / sizeof (amd64_dwarf_regmap[0]));
173
174 /* Convert DWARF register number REG to the appropriate register
175 number used by GDB. */
176
177 static int
178 amd64_dwarf_reg_to_regnum (struct gdbarch *gdbarch, int reg)
179 {
180 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
181 int ymm0_regnum = tdep->ymm0_regnum;
182 int regnum = -1;
183
184 if (reg >= 0 && reg < amd64_dwarf_regmap_len)
185 regnum = amd64_dwarf_regmap[reg];
186
187 if (regnum == -1)
188 warning (_("Unmapped DWARF Register #%d encountered."), reg);
189 else if (ymm0_regnum >= 0
190 && i386_xmm_regnum_p (gdbarch, regnum))
191 regnum += ymm0_regnum - I387_XMM0_REGNUM (tdep);
192
193 return regnum;
194 }
195
196 /* Map architectural register numbers to gdb register numbers. */
197
198 static const int amd64_arch_regmap[16] =
199 {
200 AMD64_RAX_REGNUM, /* %rax */
201 AMD64_RCX_REGNUM, /* %rcx */
202 AMD64_RDX_REGNUM, /* %rdx */
203 AMD64_RBX_REGNUM, /* %rbx */
204 AMD64_RSP_REGNUM, /* %rsp */
205 AMD64_RBP_REGNUM, /* %rbp */
206 AMD64_RSI_REGNUM, /* %rsi */
207 AMD64_RDI_REGNUM, /* %rdi */
208 AMD64_R8_REGNUM, /* %r8 */
209 AMD64_R9_REGNUM, /* %r9 */
210 AMD64_R10_REGNUM, /* %r10 */
211 AMD64_R11_REGNUM, /* %r11 */
212 AMD64_R12_REGNUM, /* %r12 */
213 AMD64_R13_REGNUM, /* %r13 */
214 AMD64_R14_REGNUM, /* %r14 */
215 AMD64_R15_REGNUM /* %r15 */
216 };
217
218 static const int amd64_arch_regmap_len =
219 (sizeof (amd64_arch_regmap) / sizeof (amd64_arch_regmap[0]));
220
221 /* Convert architectural register number REG to the appropriate register
222 number used by GDB. */
223
224 static int
225 amd64_arch_reg_to_regnum (int reg)
226 {
227 gdb_assert (reg >= 0 && reg < amd64_arch_regmap_len);
228
229 return amd64_arch_regmap[reg];
230 }
231
232 /* Register names for byte pseudo-registers. */
233
234 static const char *amd64_byte_names[] =
235 {
236 "al", "bl", "cl", "dl", "sil", "dil", "bpl", "spl",
237 "r8l", "r9l", "r10l", "r11l", "r12l", "r13l", "r14l", "r15l",
238 "ah", "bh", "ch", "dh"
239 };
240
241 /* Number of lower byte registers. */
242 #define AMD64_NUM_LOWER_BYTE_REGS 16
243
244 /* Register names for word pseudo-registers. */
245
246 static const char *amd64_word_names[] =
247 {
248 "ax", "bx", "cx", "dx", "si", "di", "bp", "",
249 "r8w", "r9w", "r10w", "r11w", "r12w", "r13w", "r14w", "r15w"
250 };
251
252 /* Register names for dword pseudo-registers. */
253
254 static const char *amd64_dword_names[] =
255 {
256 "eax", "ebx", "ecx", "edx", "esi", "edi", "ebp", "esp",
257 "r8d", "r9d", "r10d", "r11d", "r12d", "r13d", "r14d", "r15d"
258 };
259
260 /* Return the name of register REGNUM. */
261
262 static const char *
263 amd64_pseudo_register_name (struct gdbarch *gdbarch, int regnum)
264 {
265 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
266 if (i386_byte_regnum_p (gdbarch, regnum))
267 return amd64_byte_names[regnum - tdep->al_regnum];
268 else if (i386_ymm_regnum_p (gdbarch, regnum))
269 return amd64_ymm_names[regnum - tdep->ymm0_regnum];
270 else if (i386_word_regnum_p (gdbarch, regnum))
271 return amd64_word_names[regnum - tdep->ax_regnum];
272 else if (i386_dword_regnum_p (gdbarch, regnum))
273 return amd64_dword_names[regnum - tdep->eax_regnum];
274 else
275 return i386_pseudo_register_name (gdbarch, regnum);
276 }
277
278 static enum register_status
279 amd64_pseudo_register_read (struct gdbarch *gdbarch,
280 struct regcache *regcache,
281 int regnum, gdb_byte *buf)
282 {
283 gdb_byte raw_buf[MAX_REGISTER_SIZE];
284 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
285 enum register_status status;
286
287 if (i386_byte_regnum_p (gdbarch, regnum))
288 {
289 int gpnum = regnum - tdep->al_regnum;
290
291 /* Extract (always little endian). */
292 if (gpnum >= AMD64_NUM_LOWER_BYTE_REGS)
293 {
294 /* Special handling for AH, BH, CH, DH. */
295 status = regcache_raw_read (regcache,
296 gpnum - AMD64_NUM_LOWER_BYTE_REGS,
297 raw_buf);
298 if (status == REG_VALID)
299 memcpy (buf, raw_buf + 1, 1);
300 }
301 else
302 {
303 status = regcache_raw_read (regcache, gpnum, raw_buf);
304 if (status == REG_VALID)
305 memcpy (buf, raw_buf, 1);
306 }
307
308 return status;
309 }
310 else if (i386_dword_regnum_p (gdbarch, regnum))
311 {
312 int gpnum = regnum - tdep->eax_regnum;
313 /* Extract (always little endian). */
314 status = regcache_raw_read (regcache, gpnum, raw_buf);
315 if (status == REG_VALID)
316 memcpy (buf, raw_buf, 4);
317
318 return status;
319 }
320 else
321 return i386_pseudo_register_read (gdbarch, regcache, regnum, buf);
322 }
323
324 static void
325 amd64_pseudo_register_write (struct gdbarch *gdbarch,
326 struct regcache *regcache,
327 int regnum, const gdb_byte *buf)
328 {
329 gdb_byte raw_buf[MAX_REGISTER_SIZE];
330 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
331
332 if (i386_byte_regnum_p (gdbarch, regnum))
333 {
334 int gpnum = regnum - tdep->al_regnum;
335
336 if (gpnum >= AMD64_NUM_LOWER_BYTE_REGS)
337 {
338 /* Read ... AH, BH, CH, DH. */
339 regcache_raw_read (regcache,
340 gpnum - AMD64_NUM_LOWER_BYTE_REGS, raw_buf);
341 /* ... Modify ... (always little endian). */
342 memcpy (raw_buf + 1, buf, 1);
343 /* ... Write. */
344 regcache_raw_write (regcache,
345 gpnum - AMD64_NUM_LOWER_BYTE_REGS, raw_buf);
346 }
347 else
348 {
349 /* Read ... */
350 regcache_raw_read (regcache, gpnum, raw_buf);
351 /* ... Modify ... (always little endian). */
352 memcpy (raw_buf, buf, 1);
353 /* ... Write. */
354 regcache_raw_write (regcache, gpnum, raw_buf);
355 }
356 }
357 else if (i386_dword_regnum_p (gdbarch, regnum))
358 {
359 int gpnum = regnum - tdep->eax_regnum;
360
361 /* Read ... */
362 regcache_raw_read (regcache, gpnum, raw_buf);
363 /* ... Modify ... (always little endian). */
364 memcpy (raw_buf, buf, 4);
365 /* ... Write. */
366 regcache_raw_write (regcache, gpnum, raw_buf);
367 }
368 else
369 i386_pseudo_register_write (gdbarch, regcache, regnum, buf);
370 }
371
372 \f
373
374 /* Return the union class of CLASS1 and CLASS2. See the psABI for
375 details. */
376
377 static enum amd64_reg_class
378 amd64_merge_classes (enum amd64_reg_class class1, enum amd64_reg_class class2)
379 {
380 /* Rule (a): If both classes are equal, this is the resulting class. */
381 if (class1 == class2)
382 return class1;
383
384 /* Rule (b): If one of the classes is NO_CLASS, the resulting class
385 is the other class. */
386 if (class1 == AMD64_NO_CLASS)
387 return class2;
388 if (class2 == AMD64_NO_CLASS)
389 return class1;
390
391 /* Rule (c): If one of the classes is MEMORY, the result is MEMORY. */
392 if (class1 == AMD64_MEMORY || class2 == AMD64_MEMORY)
393 return AMD64_MEMORY;
394
395 /* Rule (d): If one of the classes is INTEGER, the result is INTEGER. */
396 if (class1 == AMD64_INTEGER || class2 == AMD64_INTEGER)
397 return AMD64_INTEGER;
398
399 /* Rule (e): If one of the classes is X87, X87UP, COMPLEX_X87 class,
400 MEMORY is used as class. */
401 if (class1 == AMD64_X87 || class1 == AMD64_X87UP
402 || class1 == AMD64_COMPLEX_X87 || class2 == AMD64_X87
403 || class2 == AMD64_X87UP || class2 == AMD64_COMPLEX_X87)
404 return AMD64_MEMORY;
405
406 /* Rule (f): Otherwise class SSE is used. */
407 return AMD64_SSE;
408 }
409
410 /* Return non-zero if TYPE is a non-POD structure or union type. */
411
412 static int
413 amd64_non_pod_p (struct type *type)
414 {
415 /* ??? A class with a base class certainly isn't POD, but does this
416 catch all non-POD structure types? */
417 if (TYPE_CODE (type) == TYPE_CODE_STRUCT && TYPE_N_BASECLASSES (type) > 0)
418 return 1;
419
420 return 0;
421 }
422
423 /* Classify TYPE according to the rules for aggregate (structures and
424 arrays) and union types, and store the result in CLASS. */
425
426 static void
427 amd64_classify_aggregate (struct type *type, enum amd64_reg_class class[2])
428 {
429 int len = TYPE_LENGTH (type);
430
431 /* 1. If the size of an object is larger than two eightbytes, or in
432 C++, is a non-POD structure or union type, or contains
433 unaligned fields, it has class memory. */
434 if (len > 16 || amd64_non_pod_p (type))
435 {
436 class[0] = class[1] = AMD64_MEMORY;
437 return;
438 }
439
440 /* 2. Both eightbytes get initialized to class NO_CLASS. */
441 class[0] = class[1] = AMD64_NO_CLASS;
442
443 /* 3. Each field of an object is classified recursively so that
444 always two fields are considered. The resulting class is
445 calculated according to the classes of the fields in the
446 eightbyte: */
447
448 if (TYPE_CODE (type) == TYPE_CODE_ARRAY)
449 {
450 struct type *subtype = check_typedef (TYPE_TARGET_TYPE (type));
451
452 /* All fields in an array have the same type. */
453 amd64_classify (subtype, class);
454 if (len > 8 && class[1] == AMD64_NO_CLASS)
455 class[1] = class[0];
456 }
457 else
458 {
459 int i;
460
461 /* Structure or union. */
462 gdb_assert (TYPE_CODE (type) == TYPE_CODE_STRUCT
463 || TYPE_CODE (type) == TYPE_CODE_UNION);
464
465 for (i = 0; i < TYPE_NFIELDS (type); i++)
466 {
467 struct type *subtype = check_typedef (TYPE_FIELD_TYPE (type, i));
468 int pos = TYPE_FIELD_BITPOS (type, i) / 64;
469 enum amd64_reg_class subclass[2];
470 int bitsize = TYPE_FIELD_BITSIZE (type, i);
471 int endpos;
472
473 if (bitsize == 0)
474 bitsize = TYPE_LENGTH (subtype) * 8;
475 endpos = (TYPE_FIELD_BITPOS (type, i) + bitsize - 1) / 64;
476
477 /* Ignore static fields. */
478 if (field_is_static (&TYPE_FIELD (type, i)))
479 continue;
480
481 gdb_assert (pos == 0 || pos == 1);
482
483 amd64_classify (subtype, subclass);
484 class[pos] = amd64_merge_classes (class[pos], subclass[0]);
485 if (bitsize <= 64 && pos == 0 && endpos == 1)
486 /* This is a bit of an odd case: We have a field that would
487 normally fit in one of the two eightbytes, except that
488 it is placed in a way that this field straddles them.
489 This has been seen with a structure containing an array.
490
491 The ABI is a bit unclear in this case, but we assume that
492 this field's class (stored in subclass[0]) must also be merged
493 into class[1]. In other words, our field has a piece stored
494 in the second eight-byte, and thus its class applies to
495 the second eight-byte as well.
496
497 In the case where the field length exceeds 8 bytes,
498 it should not be necessary to merge the field class
499 into class[1]. As LEN > 8, subclass[1] is necessarily
500 different from AMD64_NO_CLASS. If subclass[1] is equal
501 to subclass[0], then the normal class[1]/subclass[1]
502 merging will take care of everything. For subclass[1]
503 to be different from subclass[0], I can only see the case
504 where we have a SSE/SSEUP or X87/X87UP pair, which both
505 use up all 16 bytes of the aggregate, and are already
506 handled just fine (because each portion sits on its own
507 8-byte). */
508 class[1] = amd64_merge_classes (class[1], subclass[0]);
509 if (pos == 0)
510 class[1] = amd64_merge_classes (class[1], subclass[1]);
511 }
512 }
513
514 /* 4. Then a post merger cleanup is done: */
515
516 /* Rule (a): If one of the classes is MEMORY, the whole argument is
517 passed in memory. */
518 if (class[0] == AMD64_MEMORY || class[1] == AMD64_MEMORY)
519 class[0] = class[1] = AMD64_MEMORY;
520
521 /* Rule (b): If SSEUP is not preceeded by SSE, it is converted to
522 SSE. */
523 if (class[0] == AMD64_SSEUP)
524 class[0] = AMD64_SSE;
525 if (class[1] == AMD64_SSEUP && class[0] != AMD64_SSE)
526 class[1] = AMD64_SSE;
527 }
528
529 /* Classify TYPE, and store the result in CLASS. */
530
531 void
532 amd64_classify (struct type *type, enum amd64_reg_class class[2])
533 {
534 enum type_code code = TYPE_CODE (type);
535 int len = TYPE_LENGTH (type);
536
537 class[0] = class[1] = AMD64_NO_CLASS;
538
539 /* Arguments of types (signed and unsigned) _Bool, char, short, int,
540 long, long long, and pointers are in the INTEGER class. Similarly,
541 range types, used by languages such as Ada, are also in the INTEGER
542 class. */
543 if ((code == TYPE_CODE_INT || code == TYPE_CODE_ENUM
544 || code == TYPE_CODE_BOOL || code == TYPE_CODE_RANGE
545 || code == TYPE_CODE_CHAR
546 || code == TYPE_CODE_PTR || code == TYPE_CODE_REF)
547 && (len == 1 || len == 2 || len == 4 || len == 8))
548 class[0] = AMD64_INTEGER;
549
550 /* Arguments of types float, double, _Decimal32, _Decimal64 and __m64
551 are in class SSE. */
552 else if ((code == TYPE_CODE_FLT || code == TYPE_CODE_DECFLOAT)
553 && (len == 4 || len == 8))
554 /* FIXME: __m64 . */
555 class[0] = AMD64_SSE;
556
557 /* Arguments of types __float128, _Decimal128 and __m128 are split into
558 two halves. The least significant ones belong to class SSE, the most
559 significant one to class SSEUP. */
560 else if (code == TYPE_CODE_DECFLOAT && len == 16)
561 /* FIXME: __float128, __m128. */
562 class[0] = AMD64_SSE, class[1] = AMD64_SSEUP;
563
564 /* The 64-bit mantissa of arguments of type long double belongs to
565 class X87, the 16-bit exponent plus 6 bytes of padding belongs to
566 class X87UP. */
567 else if (code == TYPE_CODE_FLT && len == 16)
568 /* Class X87 and X87UP. */
569 class[0] = AMD64_X87, class[1] = AMD64_X87UP;
570
571 /* Aggregates. */
572 else if (code == TYPE_CODE_ARRAY || code == TYPE_CODE_STRUCT
573 || code == TYPE_CODE_UNION)
574 amd64_classify_aggregate (type, class);
575 }
576
577 static enum return_value_convention
578 amd64_return_value (struct gdbarch *gdbarch, struct type *func_type,
579 struct type *type, struct regcache *regcache,
580 gdb_byte *readbuf, const gdb_byte *writebuf)
581 {
582 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
583 enum amd64_reg_class class[2];
584 int len = TYPE_LENGTH (type);
585 static int integer_regnum[] = { AMD64_RAX_REGNUM, AMD64_RDX_REGNUM };
586 static int sse_regnum[] = { AMD64_XMM0_REGNUM, AMD64_XMM1_REGNUM };
587 int integer_reg = 0;
588 int sse_reg = 0;
589 int i;
590
591 gdb_assert (!(readbuf && writebuf));
592 gdb_assert (tdep->classify);
593
594 /* 1. Classify the return type with the classification algorithm. */
595 tdep->classify (type, class);
596
597 /* 2. If the type has class MEMORY, then the caller provides space
598 for the return value and passes the address of this storage in
599 %rdi as if it were the first argument to the function. In effect,
600 this address becomes a hidden first argument.
601
602 On return %rax will contain the address that has been passed in
603 by the caller in %rdi. */
604 if (class[0] == AMD64_MEMORY)
605 {
606 /* As indicated by the comment above, the ABI guarantees that we
607 can always find the return value just after the function has
608 returned. */
609
610 if (readbuf)
611 {
612 ULONGEST addr;
613
614 regcache_raw_read_unsigned (regcache, AMD64_RAX_REGNUM, &addr);
615 read_memory (addr, readbuf, TYPE_LENGTH (type));
616 }
617
618 return RETURN_VALUE_ABI_RETURNS_ADDRESS;
619 }
620
621 gdb_assert (class[1] != AMD64_MEMORY);
622 gdb_assert (len <= 16);
623
624 for (i = 0; len > 0; i++, len -= 8)
625 {
626 int regnum = -1;
627 int offset = 0;
628
629 switch (class[i])
630 {
631 case AMD64_INTEGER:
632 /* 3. If the class is INTEGER, the next available register
633 of the sequence %rax, %rdx is used. */
634 regnum = integer_regnum[integer_reg++];
635 break;
636
637 case AMD64_SSE:
638 /* 4. If the class is SSE, the next available SSE register
639 of the sequence %xmm0, %xmm1 is used. */
640 regnum = sse_regnum[sse_reg++];
641 break;
642
643 case AMD64_SSEUP:
644 /* 5. If the class is SSEUP, the eightbyte is passed in the
645 upper half of the last used SSE register. */
646 gdb_assert (sse_reg > 0);
647 regnum = sse_regnum[sse_reg - 1];
648 offset = 8;
649 break;
650
651 case AMD64_X87:
652 /* 6. If the class is X87, the value is returned on the X87
653 stack in %st0 as 80-bit x87 number. */
654 regnum = AMD64_ST0_REGNUM;
655 if (writebuf)
656 i387_return_value (gdbarch, regcache);
657 break;
658
659 case AMD64_X87UP:
660 /* 7. If the class is X87UP, the value is returned together
661 with the previous X87 value in %st0. */
662 gdb_assert (i > 0 && class[0] == AMD64_X87);
663 regnum = AMD64_ST0_REGNUM;
664 offset = 8;
665 len = 2;
666 break;
667
668 case AMD64_NO_CLASS:
669 continue;
670
671 default:
672 gdb_assert (!"Unexpected register class.");
673 }
674
675 gdb_assert (regnum != -1);
676
677 if (readbuf)
678 regcache_raw_read_part (regcache, regnum, offset, min (len, 8),
679 readbuf + i * 8);
680 if (writebuf)
681 regcache_raw_write_part (regcache, regnum, offset, min (len, 8),
682 writebuf + i * 8);
683 }
684
685 return RETURN_VALUE_REGISTER_CONVENTION;
686 }
687 \f
688
689 static CORE_ADDR
690 amd64_push_arguments (struct regcache *regcache, int nargs,
691 struct value **args, CORE_ADDR sp, int struct_return)
692 {
693 struct gdbarch *gdbarch = get_regcache_arch (regcache);
694 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
695 int *integer_regs = tdep->call_dummy_integer_regs;
696 int num_integer_regs = tdep->call_dummy_num_integer_regs;
697
698 static int sse_regnum[] =
699 {
700 /* %xmm0 ... %xmm7 */
701 AMD64_XMM0_REGNUM + 0, AMD64_XMM1_REGNUM,
702 AMD64_XMM0_REGNUM + 2, AMD64_XMM0_REGNUM + 3,
703 AMD64_XMM0_REGNUM + 4, AMD64_XMM0_REGNUM + 5,
704 AMD64_XMM0_REGNUM + 6, AMD64_XMM0_REGNUM + 7,
705 };
706 struct value **stack_args = alloca (nargs * sizeof (struct value *));
707 /* An array that mirrors the stack_args array. For all arguments
708 that are passed by MEMORY, if that argument's address also needs
709 to be stored in a register, the ARG_ADDR_REGNO array will contain
710 that register number (or a negative value otherwise). */
711 int *arg_addr_regno = alloca (nargs * sizeof (int));
712 int num_stack_args = 0;
713 int num_elements = 0;
714 int element = 0;
715 int integer_reg = 0;
716 int sse_reg = 0;
717 int i;
718
719 gdb_assert (tdep->classify);
720
721 /* Reserve a register for the "hidden" argument. */
722 if (struct_return)
723 integer_reg++;
724
725 for (i = 0; i < nargs; i++)
726 {
727 struct type *type = value_type (args[i]);
728 int len = TYPE_LENGTH (type);
729 enum amd64_reg_class class[2];
730 int needed_integer_regs = 0;
731 int needed_sse_regs = 0;
732 int j;
733
734 /* Classify argument. */
735 tdep->classify (type, class);
736
737 /* Calculate the number of integer and SSE registers needed for
738 this argument. */
739 for (j = 0; j < 2; j++)
740 {
741 if (class[j] == AMD64_INTEGER)
742 needed_integer_regs++;
743 else if (class[j] == AMD64_SSE)
744 needed_sse_regs++;
745 }
746
747 /* Check whether enough registers are available, and if the
748 argument should be passed in registers at all. */
749 if (integer_reg + needed_integer_regs > num_integer_regs
750 || sse_reg + needed_sse_regs > ARRAY_SIZE (sse_regnum)
751 || (needed_integer_regs == 0 && needed_sse_regs == 0))
752 {
753 /* The argument will be passed on the stack. */
754 num_elements += ((len + 7) / 8);
755 stack_args[num_stack_args] = args[i];
756 /* If this is an AMD64_MEMORY argument whose address must also
757 be passed in one of the integer registers, reserve that
758 register and associate this value to that register so that
759 we can store the argument address as soon as we know it. */
760 if (class[0] == AMD64_MEMORY
761 && tdep->memory_args_by_pointer
762 && integer_reg < tdep->call_dummy_num_integer_regs)
763 arg_addr_regno[num_stack_args] =
764 tdep->call_dummy_integer_regs[integer_reg++];
765 else
766 arg_addr_regno[num_stack_args] = -1;
767 num_stack_args++;
768 }
769 else
770 {
771 /* The argument will be passed in registers. */
772 const gdb_byte *valbuf = value_contents (args[i]);
773 gdb_byte buf[8];
774
775 gdb_assert (len <= 16);
776
777 for (j = 0; len > 0; j++, len -= 8)
778 {
779 int regnum = -1;
780 int offset = 0;
781
782 switch (class[j])
783 {
784 case AMD64_INTEGER:
785 regnum = integer_regs[integer_reg++];
786 break;
787
788 case AMD64_SSE:
789 regnum = sse_regnum[sse_reg++];
790 break;
791
792 case AMD64_SSEUP:
793 gdb_assert (sse_reg > 0);
794 regnum = sse_regnum[sse_reg - 1];
795 offset = 8;
796 break;
797
798 default:
799 gdb_assert (!"Unexpected register class.");
800 }
801
802 gdb_assert (regnum != -1);
803 memset (buf, 0, sizeof buf);
804 memcpy (buf, valbuf + j * 8, min (len, 8));
805 regcache_raw_write_part (regcache, regnum, offset, 8, buf);
806 }
807 }
808 }
809
810 /* Allocate space for the arguments on the stack. */
811 sp -= num_elements * 8;
812
813 /* The psABI says that "The end of the input argument area shall be
814 aligned on a 16 byte boundary." */
815 sp &= ~0xf;
816
817 /* Write out the arguments to the stack. */
818 for (i = 0; i < num_stack_args; i++)
819 {
820 struct type *type = value_type (stack_args[i]);
821 const gdb_byte *valbuf = value_contents (stack_args[i]);
822 int len = TYPE_LENGTH (type);
823 CORE_ADDR arg_addr = sp + element * 8;
824
825 write_memory (arg_addr, valbuf, len);
826 if (arg_addr_regno[i] >= 0)
827 {
828 /* We also need to store the address of that argument in
829 the given register. */
830 gdb_byte buf[8];
831 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
832
833 store_unsigned_integer (buf, 8, byte_order, arg_addr);
834 regcache_cooked_write (regcache, arg_addr_regno[i], buf);
835 }
836 element += ((len + 7) / 8);
837 }
838
839 /* The psABI says that "For calls that may call functions that use
840 varargs or stdargs (prototype-less calls or calls to functions
841 containing ellipsis (...) in the declaration) %al is used as
842 hidden argument to specify the number of SSE registers used. */
843 regcache_raw_write_unsigned (regcache, AMD64_RAX_REGNUM, sse_reg);
844 return sp;
845 }
846
847 static CORE_ADDR
848 amd64_push_dummy_call (struct gdbarch *gdbarch, struct value *function,
849 struct regcache *regcache, CORE_ADDR bp_addr,
850 int nargs, struct value **args, CORE_ADDR sp,
851 int struct_return, CORE_ADDR struct_addr)
852 {
853 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
854 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
855 gdb_byte buf[8];
856
857 /* Pass arguments. */
858 sp = amd64_push_arguments (regcache, nargs, args, sp, struct_return);
859
860 /* Pass "hidden" argument". */
861 if (struct_return)
862 {
863 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
864 /* The "hidden" argument is passed throught the first argument
865 register. */
866 const int arg_regnum = tdep->call_dummy_integer_regs[0];
867
868 store_unsigned_integer (buf, 8, byte_order, struct_addr);
869 regcache_cooked_write (regcache, arg_regnum, buf);
870 }
871
872 /* Reserve some memory on the stack for the integer-parameter registers,
873 if required by the ABI. */
874 if (tdep->integer_param_regs_saved_in_caller_frame)
875 sp -= tdep->call_dummy_num_integer_regs * 8;
876
877 /* Store return address. */
878 sp -= 8;
879 store_unsigned_integer (buf, 8, byte_order, bp_addr);
880 write_memory (sp, buf, 8);
881
882 /* Finally, update the stack pointer... */
883 store_unsigned_integer (buf, 8, byte_order, sp);
884 regcache_cooked_write (regcache, AMD64_RSP_REGNUM, buf);
885
886 /* ...and fake a frame pointer. */
887 regcache_cooked_write (regcache, AMD64_RBP_REGNUM, buf);
888
889 return sp + 16;
890 }
891 \f
892 /* Displaced instruction handling. */
893
894 /* A partially decoded instruction.
895 This contains enough details for displaced stepping purposes. */
896
897 struct amd64_insn
898 {
899 /* The number of opcode bytes. */
900 int opcode_len;
901 /* The offset of the rex prefix or -1 if not present. */
902 int rex_offset;
903 /* The offset to the first opcode byte. */
904 int opcode_offset;
905 /* The offset to the modrm byte or -1 if not present. */
906 int modrm_offset;
907
908 /* The raw instruction. */
909 gdb_byte *raw_insn;
910 };
911
912 struct displaced_step_closure
913 {
914 /* For rip-relative insns, saved copy of the reg we use instead of %rip. */
915 int tmp_used;
916 int tmp_regno;
917 ULONGEST tmp_save;
918
919 /* Details of the instruction. */
920 struct amd64_insn insn_details;
921
922 /* Amount of space allocated to insn_buf. */
923 int max_len;
924
925 /* The possibly modified insn.
926 This is a variable-length field. */
927 gdb_byte insn_buf[1];
928 };
929
930 /* WARNING: Keep onebyte_has_modrm, twobyte_has_modrm in sync with
931 ../opcodes/i386-dis.c (until libopcodes exports them, or an alternative,
932 at which point delete these in favor of libopcodes' versions). */
933
934 static const unsigned char onebyte_has_modrm[256] = {
935 /* 0 1 2 3 4 5 6 7 8 9 a b c d e f */
936 /* ------------------------------- */
937 /* 00 */ 1,1,1,1,0,0,0,0,1,1,1,1,0,0,0,0, /* 00 */
938 /* 10 */ 1,1,1,1,0,0,0,0,1,1,1,1,0,0,0,0, /* 10 */
939 /* 20 */ 1,1,1,1,0,0,0,0,1,1,1,1,0,0,0,0, /* 20 */
940 /* 30 */ 1,1,1,1,0,0,0,0,1,1,1,1,0,0,0,0, /* 30 */
941 /* 40 */ 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, /* 40 */
942 /* 50 */ 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, /* 50 */
943 /* 60 */ 0,0,1,1,0,0,0,0,0,1,0,1,0,0,0,0, /* 60 */
944 /* 70 */ 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, /* 70 */
945 /* 80 */ 1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1, /* 80 */
946 /* 90 */ 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, /* 90 */
947 /* a0 */ 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, /* a0 */
948 /* b0 */ 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, /* b0 */
949 /* c0 */ 1,1,0,0,1,1,1,1,0,0,0,0,0,0,0,0, /* c0 */
950 /* d0 */ 1,1,1,1,0,0,0,0,1,1,1,1,1,1,1,1, /* d0 */
951 /* e0 */ 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, /* e0 */
952 /* f0 */ 0,0,0,0,0,0,1,1,0,0,0,0,0,0,1,1 /* f0 */
953 /* ------------------------------- */
954 /* 0 1 2 3 4 5 6 7 8 9 a b c d e f */
955 };
956
957 static const unsigned char twobyte_has_modrm[256] = {
958 /* 0 1 2 3 4 5 6 7 8 9 a b c d e f */
959 /* ------------------------------- */
960 /* 00 */ 1,1,1,1,0,0,0,0,0,0,0,0,0,1,0,1, /* 0f */
961 /* 10 */ 1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1, /* 1f */
962 /* 20 */ 1,1,1,1,1,1,1,0,1,1,1,1,1,1,1,1, /* 2f */
963 /* 30 */ 0,0,0,0,0,0,0,0,1,0,1,0,0,0,0,0, /* 3f */
964 /* 40 */ 1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1, /* 4f */
965 /* 50 */ 1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1, /* 5f */
966 /* 60 */ 1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1, /* 6f */
967 /* 70 */ 1,1,1,1,1,1,1,0,1,1,1,1,1,1,1,1, /* 7f */
968 /* 80 */ 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, /* 8f */
969 /* 90 */ 1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1, /* 9f */
970 /* a0 */ 0,0,0,1,1,1,1,1,0,0,0,1,1,1,1,1, /* af */
971 /* b0 */ 1,1,1,1,1,1,1,1,1,0,1,1,1,1,1,1, /* bf */
972 /* c0 */ 1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0, /* cf */
973 /* d0 */ 1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1, /* df */
974 /* e0 */ 1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1, /* ef */
975 /* f0 */ 1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,0 /* ff */
976 /* ------------------------------- */
977 /* 0 1 2 3 4 5 6 7 8 9 a b c d e f */
978 };
979
980 static int amd64_syscall_p (const struct amd64_insn *insn, int *lengthp);
981
982 static int
983 rex_prefix_p (gdb_byte pfx)
984 {
985 return REX_PREFIX_P (pfx);
986 }
987
988 /* Skip the legacy instruction prefixes in INSN.
989 We assume INSN is properly sentineled so we don't have to worry
990 about falling off the end of the buffer. */
991
992 static gdb_byte *
993 amd64_skip_prefixes (gdb_byte *insn)
994 {
995 while (1)
996 {
997 switch (*insn)
998 {
999 case DATA_PREFIX_OPCODE:
1000 case ADDR_PREFIX_OPCODE:
1001 case CS_PREFIX_OPCODE:
1002 case DS_PREFIX_OPCODE:
1003 case ES_PREFIX_OPCODE:
1004 case FS_PREFIX_OPCODE:
1005 case GS_PREFIX_OPCODE:
1006 case SS_PREFIX_OPCODE:
1007 case LOCK_PREFIX_OPCODE:
1008 case REPE_PREFIX_OPCODE:
1009 case REPNE_PREFIX_OPCODE:
1010 ++insn;
1011 continue;
1012 default:
1013 break;
1014 }
1015 break;
1016 }
1017
1018 return insn;
1019 }
1020
1021 /* Return an integer register (other than RSP) that is unused as an input
1022 operand in INSN.
1023 In order to not require adding a rex prefix if the insn doesn't already
1024 have one, the result is restricted to RAX ... RDI, sans RSP.
1025 The register numbering of the result follows architecture ordering,
1026 e.g. RDI = 7. */
1027
1028 static int
1029 amd64_get_unused_input_int_reg (const struct amd64_insn *details)
1030 {
1031 /* 1 bit for each reg */
1032 int used_regs_mask = 0;
1033
1034 /* There can be at most 3 int regs used as inputs in an insn, and we have
1035 7 to choose from (RAX ... RDI, sans RSP).
1036 This allows us to take a conservative approach and keep things simple.
1037 E.g. By avoiding RAX, we don't have to specifically watch for opcodes
1038 that implicitly specify RAX. */
1039
1040 /* Avoid RAX. */
1041 used_regs_mask |= 1 << EAX_REG_NUM;
1042 /* Similarily avoid RDX, implicit operand in divides. */
1043 used_regs_mask |= 1 << EDX_REG_NUM;
1044 /* Avoid RSP. */
1045 used_regs_mask |= 1 << ESP_REG_NUM;
1046
1047 /* If the opcode is one byte long and there's no ModRM byte,
1048 assume the opcode specifies a register. */
1049 if (details->opcode_len == 1 && details->modrm_offset == -1)
1050 used_regs_mask |= 1 << (details->raw_insn[details->opcode_offset] & 7);
1051
1052 /* Mark used regs in the modrm/sib bytes. */
1053 if (details->modrm_offset != -1)
1054 {
1055 int modrm = details->raw_insn[details->modrm_offset];
1056 int mod = MODRM_MOD_FIELD (modrm);
1057 int reg = MODRM_REG_FIELD (modrm);
1058 int rm = MODRM_RM_FIELD (modrm);
1059 int have_sib = mod != 3 && rm == 4;
1060
1061 /* Assume the reg field of the modrm byte specifies a register. */
1062 used_regs_mask |= 1 << reg;
1063
1064 if (have_sib)
1065 {
1066 int base = SIB_BASE_FIELD (details->raw_insn[details->modrm_offset + 1]);
1067 int index = SIB_INDEX_FIELD (details->raw_insn[details->modrm_offset + 1]);
1068 used_regs_mask |= 1 << base;
1069 used_regs_mask |= 1 << index;
1070 }
1071 else
1072 {
1073 used_regs_mask |= 1 << rm;
1074 }
1075 }
1076
1077 gdb_assert (used_regs_mask < 256);
1078 gdb_assert (used_regs_mask != 255);
1079
1080 /* Finally, find a free reg. */
1081 {
1082 int i;
1083
1084 for (i = 0; i < 8; ++i)
1085 {
1086 if (! (used_regs_mask & (1 << i)))
1087 return i;
1088 }
1089
1090 /* We shouldn't get here. */
1091 internal_error (__FILE__, __LINE__, _("unable to find free reg"));
1092 }
1093 }
1094
1095 /* Extract the details of INSN that we need. */
1096
1097 static void
1098 amd64_get_insn_details (gdb_byte *insn, struct amd64_insn *details)
1099 {
1100 gdb_byte *start = insn;
1101 int need_modrm;
1102
1103 details->raw_insn = insn;
1104
1105 details->opcode_len = -1;
1106 details->rex_offset = -1;
1107 details->opcode_offset = -1;
1108 details->modrm_offset = -1;
1109
1110 /* Skip legacy instruction prefixes. */
1111 insn = amd64_skip_prefixes (insn);
1112
1113 /* Skip REX instruction prefix. */
1114 if (rex_prefix_p (*insn))
1115 {
1116 details->rex_offset = insn - start;
1117 ++insn;
1118 }
1119
1120 details->opcode_offset = insn - start;
1121
1122 if (*insn == TWO_BYTE_OPCODE_ESCAPE)
1123 {
1124 /* Two or three-byte opcode. */
1125 ++insn;
1126 need_modrm = twobyte_has_modrm[*insn];
1127
1128 /* Check for three-byte opcode. */
1129 switch (*insn)
1130 {
1131 case 0x24:
1132 case 0x25:
1133 case 0x38:
1134 case 0x3a:
1135 case 0x7a:
1136 case 0x7b:
1137 ++insn;
1138 details->opcode_len = 3;
1139 break;
1140 default:
1141 details->opcode_len = 2;
1142 break;
1143 }
1144 }
1145 else
1146 {
1147 /* One-byte opcode. */
1148 need_modrm = onebyte_has_modrm[*insn];
1149 details->opcode_len = 1;
1150 }
1151
1152 if (need_modrm)
1153 {
1154 ++insn;
1155 details->modrm_offset = insn - start;
1156 }
1157 }
1158
1159 /* Update %rip-relative addressing in INSN.
1160
1161 %rip-relative addressing only uses a 32-bit displacement.
1162 32 bits is not enough to be guaranteed to cover the distance between where
1163 the real instruction is and where its copy is.
1164 Convert the insn to use base+disp addressing.
1165 We set base = pc + insn_length so we can leave disp unchanged. */
1166
1167 static void
1168 fixup_riprel (struct gdbarch *gdbarch, struct displaced_step_closure *dsc,
1169 CORE_ADDR from, CORE_ADDR to, struct regcache *regs)
1170 {
1171 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1172 const struct amd64_insn *insn_details = &dsc->insn_details;
1173 int modrm_offset = insn_details->modrm_offset;
1174 gdb_byte *insn = insn_details->raw_insn + modrm_offset;
1175 CORE_ADDR rip_base;
1176 int32_t disp;
1177 int insn_length;
1178 int arch_tmp_regno, tmp_regno;
1179 ULONGEST orig_value;
1180
1181 /* %rip+disp32 addressing mode, displacement follows ModRM byte. */
1182 ++insn;
1183
1184 /* Compute the rip-relative address. */
1185 disp = extract_signed_integer (insn, sizeof (int32_t), byte_order);
1186 insn_length = gdb_buffered_insn_length (gdbarch, dsc->insn_buf,
1187 dsc->max_len, from);
1188 rip_base = from + insn_length;
1189
1190 /* We need a register to hold the address.
1191 Pick one not used in the insn.
1192 NOTE: arch_tmp_regno uses architecture ordering, e.g. RDI = 7. */
1193 arch_tmp_regno = amd64_get_unused_input_int_reg (insn_details);
1194 tmp_regno = amd64_arch_reg_to_regnum (arch_tmp_regno);
1195
1196 /* REX.B should be unset as we were using rip-relative addressing,
1197 but ensure it's unset anyway, tmp_regno is not r8-r15. */
1198 if (insn_details->rex_offset != -1)
1199 dsc->insn_buf[insn_details->rex_offset] &= ~REX_B;
1200
1201 regcache_cooked_read_unsigned (regs, tmp_regno, &orig_value);
1202 dsc->tmp_regno = tmp_regno;
1203 dsc->tmp_save = orig_value;
1204 dsc->tmp_used = 1;
1205
1206 /* Convert the ModRM field to be base+disp. */
1207 dsc->insn_buf[modrm_offset] &= ~0xc7;
1208 dsc->insn_buf[modrm_offset] |= 0x80 + arch_tmp_regno;
1209
1210 regcache_cooked_write_unsigned (regs, tmp_regno, rip_base);
1211
1212 if (debug_displaced)
1213 fprintf_unfiltered (gdb_stdlog, "displaced: %%rip-relative addressing used.\n"
1214 "displaced: using temp reg %d, old value %s, new value %s\n",
1215 dsc->tmp_regno, paddress (gdbarch, dsc->tmp_save),
1216 paddress (gdbarch, rip_base));
1217 }
1218
1219 static void
1220 fixup_displaced_copy (struct gdbarch *gdbarch,
1221 struct displaced_step_closure *dsc,
1222 CORE_ADDR from, CORE_ADDR to, struct regcache *regs)
1223 {
1224 const struct amd64_insn *details = &dsc->insn_details;
1225
1226 if (details->modrm_offset != -1)
1227 {
1228 gdb_byte modrm = details->raw_insn[details->modrm_offset];
1229
1230 if ((modrm & 0xc7) == 0x05)
1231 {
1232 /* The insn uses rip-relative addressing.
1233 Deal with it. */
1234 fixup_riprel (gdbarch, dsc, from, to, regs);
1235 }
1236 }
1237 }
1238
1239 struct displaced_step_closure *
1240 amd64_displaced_step_copy_insn (struct gdbarch *gdbarch,
1241 CORE_ADDR from, CORE_ADDR to,
1242 struct regcache *regs)
1243 {
1244 int len = gdbarch_max_insn_length (gdbarch);
1245 /* Extra space for sentinels so fixup_{riprel,displaced_copy don't have to
1246 continually watch for running off the end of the buffer. */
1247 int fixup_sentinel_space = len;
1248 struct displaced_step_closure *dsc =
1249 xmalloc (sizeof (*dsc) + len + fixup_sentinel_space);
1250 gdb_byte *buf = &dsc->insn_buf[0];
1251 struct amd64_insn *details = &dsc->insn_details;
1252
1253 dsc->tmp_used = 0;
1254 dsc->max_len = len + fixup_sentinel_space;
1255
1256 read_memory (from, buf, len);
1257
1258 /* Set up the sentinel space so we don't have to worry about running
1259 off the end of the buffer. An excessive number of leading prefixes
1260 could otherwise cause this. */
1261 memset (buf + len, 0, fixup_sentinel_space);
1262
1263 amd64_get_insn_details (buf, details);
1264
1265 /* GDB may get control back after the insn after the syscall.
1266 Presumably this is a kernel bug.
1267 If this is a syscall, make sure there's a nop afterwards. */
1268 {
1269 int syscall_length;
1270
1271 if (amd64_syscall_p (details, &syscall_length))
1272 buf[details->opcode_offset + syscall_length] = NOP_OPCODE;
1273 }
1274
1275 /* Modify the insn to cope with the address where it will be executed from.
1276 In particular, handle any rip-relative addressing. */
1277 fixup_displaced_copy (gdbarch, dsc, from, to, regs);
1278
1279 write_memory (to, buf, len);
1280
1281 if (debug_displaced)
1282 {
1283 fprintf_unfiltered (gdb_stdlog, "displaced: copy %s->%s: ",
1284 paddress (gdbarch, from), paddress (gdbarch, to));
1285 displaced_step_dump_bytes (gdb_stdlog, buf, len);
1286 }
1287
1288 return dsc;
1289 }
1290
1291 static int
1292 amd64_absolute_jmp_p (const struct amd64_insn *details)
1293 {
1294 const gdb_byte *insn = &details->raw_insn[details->opcode_offset];
1295
1296 if (insn[0] == 0xff)
1297 {
1298 /* jump near, absolute indirect (/4) */
1299 if ((insn[1] & 0x38) == 0x20)
1300 return 1;
1301
1302 /* jump far, absolute indirect (/5) */
1303 if ((insn[1] & 0x38) == 0x28)
1304 return 1;
1305 }
1306
1307 return 0;
1308 }
1309
1310 static int
1311 amd64_absolute_call_p (const struct amd64_insn *details)
1312 {
1313 const gdb_byte *insn = &details->raw_insn[details->opcode_offset];
1314
1315 if (insn[0] == 0xff)
1316 {
1317 /* Call near, absolute indirect (/2) */
1318 if ((insn[1] & 0x38) == 0x10)
1319 return 1;
1320
1321 /* Call far, absolute indirect (/3) */
1322 if ((insn[1] & 0x38) == 0x18)
1323 return 1;
1324 }
1325
1326 return 0;
1327 }
1328
1329 static int
1330 amd64_ret_p (const struct amd64_insn *details)
1331 {
1332 /* NOTE: gcc can emit "repz ; ret". */
1333 const gdb_byte *insn = &details->raw_insn[details->opcode_offset];
1334
1335 switch (insn[0])
1336 {
1337 case 0xc2: /* ret near, pop N bytes */
1338 case 0xc3: /* ret near */
1339 case 0xca: /* ret far, pop N bytes */
1340 case 0xcb: /* ret far */
1341 case 0xcf: /* iret */
1342 return 1;
1343
1344 default:
1345 return 0;
1346 }
1347 }
1348
1349 static int
1350 amd64_call_p (const struct amd64_insn *details)
1351 {
1352 const gdb_byte *insn = &details->raw_insn[details->opcode_offset];
1353
1354 if (amd64_absolute_call_p (details))
1355 return 1;
1356
1357 /* call near, relative */
1358 if (insn[0] == 0xe8)
1359 return 1;
1360
1361 return 0;
1362 }
1363
1364 /* Return non-zero if INSN is a system call, and set *LENGTHP to its
1365 length in bytes. Otherwise, return zero. */
1366
1367 static int
1368 amd64_syscall_p (const struct amd64_insn *details, int *lengthp)
1369 {
1370 const gdb_byte *insn = &details->raw_insn[details->opcode_offset];
1371
1372 if (insn[0] == 0x0f && insn[1] == 0x05)
1373 {
1374 *lengthp = 2;
1375 return 1;
1376 }
1377
1378 return 0;
1379 }
1380
1381 /* Fix up the state of registers and memory after having single-stepped
1382 a displaced instruction. */
1383
1384 void
1385 amd64_displaced_step_fixup (struct gdbarch *gdbarch,
1386 struct displaced_step_closure *dsc,
1387 CORE_ADDR from, CORE_ADDR to,
1388 struct regcache *regs)
1389 {
1390 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1391 /* The offset we applied to the instruction's address. */
1392 ULONGEST insn_offset = to - from;
1393 gdb_byte *insn = dsc->insn_buf;
1394 const struct amd64_insn *insn_details = &dsc->insn_details;
1395
1396 if (debug_displaced)
1397 fprintf_unfiltered (gdb_stdlog,
1398 "displaced: fixup (%s, %s), "
1399 "insn = 0x%02x 0x%02x ...\n",
1400 paddress (gdbarch, from), paddress (gdbarch, to),
1401 insn[0], insn[1]);
1402
1403 /* If we used a tmp reg, restore it. */
1404
1405 if (dsc->tmp_used)
1406 {
1407 if (debug_displaced)
1408 fprintf_unfiltered (gdb_stdlog, "displaced: restoring reg %d to %s\n",
1409 dsc->tmp_regno, paddress (gdbarch, dsc->tmp_save));
1410 regcache_cooked_write_unsigned (regs, dsc->tmp_regno, dsc->tmp_save);
1411 }
1412
1413 /* The list of issues to contend with here is taken from
1414 resume_execution in arch/x86/kernel/kprobes.c, Linux 2.6.28.
1415 Yay for Free Software! */
1416
1417 /* Relocate the %rip back to the program's instruction stream,
1418 if necessary. */
1419
1420 /* Except in the case of absolute or indirect jump or call
1421 instructions, or a return instruction, the new rip is relative to
1422 the displaced instruction; make it relative to the original insn.
1423 Well, signal handler returns don't need relocation either, but we use the
1424 value of %rip to recognize those; see below. */
1425 if (! amd64_absolute_jmp_p (insn_details)
1426 && ! amd64_absolute_call_p (insn_details)
1427 && ! amd64_ret_p (insn_details))
1428 {
1429 ULONGEST orig_rip;
1430 int insn_len;
1431
1432 regcache_cooked_read_unsigned (regs, AMD64_RIP_REGNUM, &orig_rip);
1433
1434 /* A signal trampoline system call changes the %rip, resuming
1435 execution of the main program after the signal handler has
1436 returned. That makes them like 'return' instructions; we
1437 shouldn't relocate %rip.
1438
1439 But most system calls don't, and we do need to relocate %rip.
1440
1441 Our heuristic for distinguishing these cases: if stepping
1442 over the system call instruction left control directly after
1443 the instruction, the we relocate --- control almost certainly
1444 doesn't belong in the displaced copy. Otherwise, we assume
1445 the instruction has put control where it belongs, and leave
1446 it unrelocated. Goodness help us if there are PC-relative
1447 system calls. */
1448 if (amd64_syscall_p (insn_details, &insn_len)
1449 && orig_rip != to + insn_len
1450 /* GDB can get control back after the insn after the syscall.
1451 Presumably this is a kernel bug.
1452 Fixup ensures its a nop, we add one to the length for it. */
1453 && orig_rip != to + insn_len + 1)
1454 {
1455 if (debug_displaced)
1456 fprintf_unfiltered (gdb_stdlog,
1457 "displaced: syscall changed %%rip; "
1458 "not relocating\n");
1459 }
1460 else
1461 {
1462 ULONGEST rip = orig_rip - insn_offset;
1463
1464 /* If we just stepped over a breakpoint insn, we don't backup
1465 the pc on purpose; this is to match behaviour without
1466 stepping. */
1467
1468 regcache_cooked_write_unsigned (regs, AMD64_RIP_REGNUM, rip);
1469
1470 if (debug_displaced)
1471 fprintf_unfiltered (gdb_stdlog,
1472 "displaced: "
1473 "relocated %%rip from %s to %s\n",
1474 paddress (gdbarch, orig_rip),
1475 paddress (gdbarch, rip));
1476 }
1477 }
1478
1479 /* If the instruction was PUSHFL, then the TF bit will be set in the
1480 pushed value, and should be cleared. We'll leave this for later,
1481 since GDB already messes up the TF flag when stepping over a
1482 pushfl. */
1483
1484 /* If the instruction was a call, the return address now atop the
1485 stack is the address following the copied instruction. We need
1486 to make it the address following the original instruction. */
1487 if (amd64_call_p (insn_details))
1488 {
1489 ULONGEST rsp;
1490 ULONGEST retaddr;
1491 const ULONGEST retaddr_len = 8;
1492
1493 regcache_cooked_read_unsigned (regs, AMD64_RSP_REGNUM, &rsp);
1494 retaddr = read_memory_unsigned_integer (rsp, retaddr_len, byte_order);
1495 retaddr = (retaddr - insn_offset) & 0xffffffffUL;
1496 write_memory_unsigned_integer (rsp, retaddr_len, byte_order, retaddr);
1497
1498 if (debug_displaced)
1499 fprintf_unfiltered (gdb_stdlog,
1500 "displaced: relocated return addr at %s "
1501 "to %s\n",
1502 paddress (gdbarch, rsp),
1503 paddress (gdbarch, retaddr));
1504 }
1505 }
1506
1507 /* If the instruction INSN uses RIP-relative addressing, return the
1508 offset into the raw INSN where the displacement to be adjusted is
1509 found. Returns 0 if the instruction doesn't use RIP-relative
1510 addressing. */
1511
1512 static int
1513 rip_relative_offset (struct amd64_insn *insn)
1514 {
1515 if (insn->modrm_offset != -1)
1516 {
1517 gdb_byte modrm = insn->raw_insn[insn->modrm_offset];
1518
1519 if ((modrm & 0xc7) == 0x05)
1520 {
1521 /* The displacement is found right after the ModRM byte. */
1522 return insn->modrm_offset + 1;
1523 }
1524 }
1525
1526 return 0;
1527 }
1528
1529 static void
1530 append_insns (CORE_ADDR *to, ULONGEST len, const gdb_byte *buf)
1531 {
1532 target_write_memory (*to, buf, len);
1533 *to += len;
1534 }
1535
1536 void
1537 amd64_relocate_instruction (struct gdbarch *gdbarch,
1538 CORE_ADDR *to, CORE_ADDR oldloc)
1539 {
1540 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1541 int len = gdbarch_max_insn_length (gdbarch);
1542 /* Extra space for sentinels. */
1543 int fixup_sentinel_space = len;
1544 gdb_byte *buf = xmalloc (len + fixup_sentinel_space);
1545 struct amd64_insn insn_details;
1546 int offset = 0;
1547 LONGEST rel32, newrel;
1548 gdb_byte *insn;
1549 int insn_length;
1550
1551 read_memory (oldloc, buf, len);
1552
1553 /* Set up the sentinel space so we don't have to worry about running
1554 off the end of the buffer. An excessive number of leading prefixes
1555 could otherwise cause this. */
1556 memset (buf + len, 0, fixup_sentinel_space);
1557
1558 insn = buf;
1559 amd64_get_insn_details (insn, &insn_details);
1560
1561 insn_length = gdb_buffered_insn_length (gdbarch, insn, len, oldloc);
1562
1563 /* Skip legacy instruction prefixes. */
1564 insn = amd64_skip_prefixes (insn);
1565
1566 /* Adjust calls with 32-bit relative addresses as push/jump, with
1567 the address pushed being the location where the original call in
1568 the user program would return to. */
1569 if (insn[0] == 0xe8)
1570 {
1571 gdb_byte push_buf[16];
1572 unsigned int ret_addr;
1573
1574 /* Where "ret" in the original code will return to. */
1575 ret_addr = oldloc + insn_length;
1576 push_buf[0] = 0x68; /* pushq $... */
1577 memcpy (&push_buf[1], &ret_addr, 4);
1578 /* Push the push. */
1579 append_insns (to, 5, push_buf);
1580
1581 /* Convert the relative call to a relative jump. */
1582 insn[0] = 0xe9;
1583
1584 /* Adjust the destination offset. */
1585 rel32 = extract_signed_integer (insn + 1, 4, byte_order);
1586 newrel = (oldloc - *to) + rel32;
1587 store_signed_integer (insn + 1, 4, byte_order, newrel);
1588
1589 if (debug_displaced)
1590 fprintf_unfiltered (gdb_stdlog,
1591 "Adjusted insn rel32=%s at %s to"
1592 " rel32=%s at %s\n",
1593 hex_string (rel32), paddress (gdbarch, oldloc),
1594 hex_string (newrel), paddress (gdbarch, *to));
1595
1596 /* Write the adjusted jump into its displaced location. */
1597 append_insns (to, 5, insn);
1598 return;
1599 }
1600
1601 offset = rip_relative_offset (&insn_details);
1602 if (!offset)
1603 {
1604 /* Adjust jumps with 32-bit relative addresses. Calls are
1605 already handled above. */
1606 if (insn[0] == 0xe9)
1607 offset = 1;
1608 /* Adjust conditional jumps. */
1609 else if (insn[0] == 0x0f && (insn[1] & 0xf0) == 0x80)
1610 offset = 2;
1611 }
1612
1613 if (offset)
1614 {
1615 rel32 = extract_signed_integer (insn + offset, 4, byte_order);
1616 newrel = (oldloc - *to) + rel32;
1617 store_signed_integer (insn + offset, 4, byte_order, newrel);
1618 if (debug_displaced)
1619 fprintf_unfiltered (gdb_stdlog,
1620 "Adjusted insn rel32=%s at %s to"
1621 " rel32=%s at %s\n",
1622 hex_string (rel32), paddress (gdbarch, oldloc),
1623 hex_string (newrel), paddress (gdbarch, *to));
1624 }
1625
1626 /* Write the adjusted instruction into its displaced location. */
1627 append_insns (to, insn_length, buf);
1628 }
1629
1630 \f
1631 /* The maximum number of saved registers. This should include %rip. */
1632 #define AMD64_NUM_SAVED_REGS AMD64_NUM_GREGS
1633
1634 struct amd64_frame_cache
1635 {
1636 /* Base address. */
1637 CORE_ADDR base;
1638 int base_p;
1639 CORE_ADDR sp_offset;
1640 CORE_ADDR pc;
1641
1642 /* Saved registers. */
1643 CORE_ADDR saved_regs[AMD64_NUM_SAVED_REGS];
1644 CORE_ADDR saved_sp;
1645 int saved_sp_reg;
1646
1647 /* Do we have a frame? */
1648 int frameless_p;
1649 };
1650
1651 /* Initialize a frame cache. */
1652
1653 static void
1654 amd64_init_frame_cache (struct amd64_frame_cache *cache)
1655 {
1656 int i;
1657
1658 /* Base address. */
1659 cache->base = 0;
1660 cache->base_p = 0;
1661 cache->sp_offset = -8;
1662 cache->pc = 0;
1663
1664 /* Saved registers. We initialize these to -1 since zero is a valid
1665 offset (that's where %rbp is supposed to be stored).
1666 The values start out as being offsets, and are later converted to
1667 addresses (at which point -1 is interpreted as an address, still meaning
1668 "invalid"). */
1669 for (i = 0; i < AMD64_NUM_SAVED_REGS; i++)
1670 cache->saved_regs[i] = -1;
1671 cache->saved_sp = 0;
1672 cache->saved_sp_reg = -1;
1673
1674 /* Frameless until proven otherwise. */
1675 cache->frameless_p = 1;
1676 }
1677
1678 /* Allocate and initialize a frame cache. */
1679
1680 static struct amd64_frame_cache *
1681 amd64_alloc_frame_cache (void)
1682 {
1683 struct amd64_frame_cache *cache;
1684
1685 cache = FRAME_OBSTACK_ZALLOC (struct amd64_frame_cache);
1686 amd64_init_frame_cache (cache);
1687 return cache;
1688 }
1689
1690 /* GCC 4.4 and later, can put code in the prologue to realign the
1691 stack pointer. Check whether PC points to such code, and update
1692 CACHE accordingly. Return the first instruction after the code
1693 sequence or CURRENT_PC, whichever is smaller. If we don't
1694 recognize the code, return PC. */
1695
1696 static CORE_ADDR
1697 amd64_analyze_stack_align (CORE_ADDR pc, CORE_ADDR current_pc,
1698 struct amd64_frame_cache *cache)
1699 {
1700 /* There are 2 code sequences to re-align stack before the frame
1701 gets set up:
1702
1703 1. Use a caller-saved saved register:
1704
1705 leaq 8(%rsp), %reg
1706 andq $-XXX, %rsp
1707 pushq -8(%reg)
1708
1709 2. Use a callee-saved saved register:
1710
1711 pushq %reg
1712 leaq 16(%rsp), %reg
1713 andq $-XXX, %rsp
1714 pushq -8(%reg)
1715
1716 "andq $-XXX, %rsp" can be either 4 bytes or 7 bytes:
1717
1718 0x48 0x83 0xe4 0xf0 andq $-16, %rsp
1719 0x48 0x81 0xe4 0x00 0xff 0xff 0xff andq $-256, %rsp
1720 */
1721
1722 gdb_byte buf[18];
1723 int reg, r;
1724 int offset, offset_and;
1725
1726 if (target_read_memory (pc, buf, sizeof buf))
1727 return pc;
1728
1729 /* Check caller-saved saved register. The first instruction has
1730 to be "leaq 8(%rsp), %reg". */
1731 if ((buf[0] & 0xfb) == 0x48
1732 && buf[1] == 0x8d
1733 && buf[3] == 0x24
1734 && buf[4] == 0x8)
1735 {
1736 /* MOD must be binary 10 and R/M must be binary 100. */
1737 if ((buf[2] & 0xc7) != 0x44)
1738 return pc;
1739
1740 /* REG has register number. */
1741 reg = (buf[2] >> 3) & 7;
1742
1743 /* Check the REX.R bit. */
1744 if (buf[0] == 0x4c)
1745 reg += 8;
1746
1747 offset = 5;
1748 }
1749 else
1750 {
1751 /* Check callee-saved saved register. The first instruction
1752 has to be "pushq %reg". */
1753 reg = 0;
1754 if ((buf[0] & 0xf8) == 0x50)
1755 offset = 0;
1756 else if ((buf[0] & 0xf6) == 0x40
1757 && (buf[1] & 0xf8) == 0x50)
1758 {
1759 /* Check the REX.B bit. */
1760 if ((buf[0] & 1) != 0)
1761 reg = 8;
1762
1763 offset = 1;
1764 }
1765 else
1766 return pc;
1767
1768 /* Get register. */
1769 reg += buf[offset] & 0x7;
1770
1771 offset++;
1772
1773 /* The next instruction has to be "leaq 16(%rsp), %reg". */
1774 if ((buf[offset] & 0xfb) != 0x48
1775 || buf[offset + 1] != 0x8d
1776 || buf[offset + 3] != 0x24
1777 || buf[offset + 4] != 0x10)
1778 return pc;
1779
1780 /* MOD must be binary 10 and R/M must be binary 100. */
1781 if ((buf[offset + 2] & 0xc7) != 0x44)
1782 return pc;
1783
1784 /* REG has register number. */
1785 r = (buf[offset + 2] >> 3) & 7;
1786
1787 /* Check the REX.R bit. */
1788 if (buf[offset] == 0x4c)
1789 r += 8;
1790
1791 /* Registers in pushq and leaq have to be the same. */
1792 if (reg != r)
1793 return pc;
1794
1795 offset += 5;
1796 }
1797
1798 /* Rigister can't be %rsp nor %rbp. */
1799 if (reg == 4 || reg == 5)
1800 return pc;
1801
1802 /* The next instruction has to be "andq $-XXX, %rsp". */
1803 if (buf[offset] != 0x48
1804 || buf[offset + 2] != 0xe4
1805 || (buf[offset + 1] != 0x81 && buf[offset + 1] != 0x83))
1806 return pc;
1807
1808 offset_and = offset;
1809 offset += buf[offset + 1] == 0x81 ? 7 : 4;
1810
1811 /* The next instruction has to be "pushq -8(%reg)". */
1812 r = 0;
1813 if (buf[offset] == 0xff)
1814 offset++;
1815 else if ((buf[offset] & 0xf6) == 0x40
1816 && buf[offset + 1] == 0xff)
1817 {
1818 /* Check the REX.B bit. */
1819 if ((buf[offset] & 0x1) != 0)
1820 r = 8;
1821 offset += 2;
1822 }
1823 else
1824 return pc;
1825
1826 /* 8bit -8 is 0xf8. REG must be binary 110 and MOD must be binary
1827 01. */
1828 if (buf[offset + 1] != 0xf8
1829 || (buf[offset] & 0xf8) != 0x70)
1830 return pc;
1831
1832 /* R/M has register. */
1833 r += buf[offset] & 7;
1834
1835 /* Registers in leaq and pushq have to be the same. */
1836 if (reg != r)
1837 return pc;
1838
1839 if (current_pc > pc + offset_and)
1840 cache->saved_sp_reg = amd64_arch_reg_to_regnum (reg);
1841
1842 return min (pc + offset + 2, current_pc);
1843 }
1844
1845 /* Do a limited analysis of the prologue at PC and update CACHE
1846 accordingly. Bail out early if CURRENT_PC is reached. Return the
1847 address where the analysis stopped.
1848
1849 We will handle only functions beginning with:
1850
1851 pushq %rbp 0x55
1852 movq %rsp, %rbp 0x48 0x89 0xe5
1853
1854 Any function that doesn't start with this sequence will be assumed
1855 to have no prologue and thus no valid frame pointer in %rbp. */
1856
1857 static CORE_ADDR
1858 amd64_analyze_prologue (struct gdbarch *gdbarch,
1859 CORE_ADDR pc, CORE_ADDR current_pc,
1860 struct amd64_frame_cache *cache)
1861 {
1862 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1863 static gdb_byte proto[3] = { 0x48, 0x89, 0xe5 }; /* movq %rsp, %rbp */
1864 gdb_byte buf[3];
1865 gdb_byte op;
1866
1867 if (current_pc <= pc)
1868 return current_pc;
1869
1870 pc = amd64_analyze_stack_align (pc, current_pc, cache);
1871
1872 op = read_memory_unsigned_integer (pc, 1, byte_order);
1873
1874 if (op == 0x55) /* pushq %rbp */
1875 {
1876 /* Take into account that we've executed the `pushq %rbp' that
1877 starts this instruction sequence. */
1878 cache->saved_regs[AMD64_RBP_REGNUM] = 0;
1879 cache->sp_offset += 8;
1880
1881 /* If that's all, return now. */
1882 if (current_pc <= pc + 1)
1883 return current_pc;
1884
1885 /* Check for `movq %rsp, %rbp'. */
1886 read_memory (pc + 1, buf, 3);
1887 if (memcmp (buf, proto, 3) != 0)
1888 return pc + 1;
1889
1890 /* OK, we actually have a frame. */
1891 cache->frameless_p = 0;
1892 return pc + 4;
1893 }
1894
1895 return pc;
1896 }
1897
1898 /* Return PC of first real instruction. */
1899
1900 static CORE_ADDR
1901 amd64_skip_prologue (struct gdbarch *gdbarch, CORE_ADDR start_pc)
1902 {
1903 struct amd64_frame_cache cache;
1904 CORE_ADDR pc;
1905
1906 amd64_init_frame_cache (&cache);
1907 pc = amd64_analyze_prologue (gdbarch, start_pc, 0xffffffffffffffffLL,
1908 &cache);
1909 if (cache.frameless_p)
1910 return start_pc;
1911
1912 return pc;
1913 }
1914 \f
1915
1916 /* Normal frames. */
1917
1918 static void
1919 amd64_frame_cache_1 (struct frame_info *this_frame,
1920 struct amd64_frame_cache *cache)
1921 {
1922 struct gdbarch *gdbarch = get_frame_arch (this_frame);
1923 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1924 gdb_byte buf[8];
1925 int i;
1926
1927 cache->pc = get_frame_func (this_frame);
1928 if (cache->pc != 0)
1929 amd64_analyze_prologue (gdbarch, cache->pc, get_frame_pc (this_frame),
1930 cache);
1931
1932 if (cache->frameless_p)
1933 {
1934 /* We didn't find a valid frame. If we're at the start of a
1935 function, or somewhere half-way its prologue, the function's
1936 frame probably hasn't been fully setup yet. Try to
1937 reconstruct the base address for the stack frame by looking
1938 at the stack pointer. For truly "frameless" functions this
1939 might work too. */
1940
1941 if (cache->saved_sp_reg != -1)
1942 {
1943 /* Stack pointer has been saved. */
1944 get_frame_register (this_frame, cache->saved_sp_reg, buf);
1945 cache->saved_sp = extract_unsigned_integer (buf, 8, byte_order);
1946
1947 /* We're halfway aligning the stack. */
1948 cache->base = ((cache->saved_sp - 8) & 0xfffffffffffffff0LL) - 8;
1949 cache->saved_regs[AMD64_RIP_REGNUM] = cache->saved_sp - 8;
1950
1951 /* This will be added back below. */
1952 cache->saved_regs[AMD64_RIP_REGNUM] -= cache->base;
1953 }
1954 else
1955 {
1956 get_frame_register (this_frame, AMD64_RSP_REGNUM, buf);
1957 cache->base = extract_unsigned_integer (buf, 8, byte_order)
1958 + cache->sp_offset;
1959 }
1960 }
1961 else
1962 {
1963 get_frame_register (this_frame, AMD64_RBP_REGNUM, buf);
1964 cache->base = extract_unsigned_integer (buf, 8, byte_order);
1965 }
1966
1967 /* Now that we have the base address for the stack frame we can
1968 calculate the value of %rsp in the calling frame. */
1969 cache->saved_sp = cache->base + 16;
1970
1971 /* For normal frames, %rip is stored at 8(%rbp). If we don't have a
1972 frame we find it at the same offset from the reconstructed base
1973 address. If we're halfway aligning the stack, %rip is handled
1974 differently (see above). */
1975 if (!cache->frameless_p || cache->saved_sp_reg == -1)
1976 cache->saved_regs[AMD64_RIP_REGNUM] = 8;
1977
1978 /* Adjust all the saved registers such that they contain addresses
1979 instead of offsets. */
1980 for (i = 0; i < AMD64_NUM_SAVED_REGS; i++)
1981 if (cache->saved_regs[i] != -1)
1982 cache->saved_regs[i] += cache->base;
1983
1984 cache->base_p = 1;
1985 }
1986
1987 static struct amd64_frame_cache *
1988 amd64_frame_cache (struct frame_info *this_frame, void **this_cache)
1989 {
1990 volatile struct gdb_exception ex;
1991 struct amd64_frame_cache *cache;
1992
1993 if (*this_cache)
1994 return *this_cache;
1995
1996 cache = amd64_alloc_frame_cache ();
1997 *this_cache = cache;
1998
1999 TRY_CATCH (ex, RETURN_MASK_ERROR)
2000 {
2001 amd64_frame_cache_1 (this_frame, cache);
2002 }
2003 if (ex.reason < 0 && ex.error != NOT_AVAILABLE_ERROR)
2004 throw_exception (ex);
2005
2006 return cache;
2007 }
2008
2009 static enum unwind_stop_reason
2010 amd64_frame_unwind_stop_reason (struct frame_info *this_frame,
2011 void **this_cache)
2012 {
2013 struct amd64_frame_cache *cache =
2014 amd64_frame_cache (this_frame, this_cache);
2015
2016 if (!cache->base_p)
2017 return UNWIND_UNAVAILABLE;
2018
2019 /* This marks the outermost frame. */
2020 if (cache->base == 0)
2021 return UNWIND_OUTERMOST;
2022
2023 return UNWIND_NO_REASON;
2024 }
2025
2026 static void
2027 amd64_frame_this_id (struct frame_info *this_frame, void **this_cache,
2028 struct frame_id *this_id)
2029 {
2030 struct amd64_frame_cache *cache =
2031 amd64_frame_cache (this_frame, this_cache);
2032
2033 if (!cache->base_p)
2034 return;
2035
2036 /* This marks the outermost frame. */
2037 if (cache->base == 0)
2038 return;
2039
2040 (*this_id) = frame_id_build (cache->base + 16, cache->pc);
2041 }
2042
2043 static struct value *
2044 amd64_frame_prev_register (struct frame_info *this_frame, void **this_cache,
2045 int regnum)
2046 {
2047 struct gdbarch *gdbarch = get_frame_arch (this_frame);
2048 struct amd64_frame_cache *cache =
2049 amd64_frame_cache (this_frame, this_cache);
2050
2051 gdb_assert (regnum >= 0);
2052
2053 if (regnum == gdbarch_sp_regnum (gdbarch) && cache->saved_sp)
2054 return frame_unwind_got_constant (this_frame, regnum, cache->saved_sp);
2055
2056 if (regnum < AMD64_NUM_SAVED_REGS && cache->saved_regs[regnum] != -1)
2057 return frame_unwind_got_memory (this_frame, regnum,
2058 cache->saved_regs[regnum]);
2059
2060 return frame_unwind_got_register (this_frame, regnum, regnum);
2061 }
2062
2063 static const struct frame_unwind amd64_frame_unwind =
2064 {
2065 NORMAL_FRAME,
2066 amd64_frame_unwind_stop_reason,
2067 amd64_frame_this_id,
2068 amd64_frame_prev_register,
2069 NULL,
2070 default_frame_sniffer
2071 };
2072 \f
2073
2074 /* Signal trampolines. */
2075
2076 /* FIXME: kettenis/20030419: Perhaps, we can unify the 32-bit and
2077 64-bit variants. This would require using identical frame caches
2078 on both platforms. */
2079
2080 static struct amd64_frame_cache *
2081 amd64_sigtramp_frame_cache (struct frame_info *this_frame, void **this_cache)
2082 {
2083 struct gdbarch *gdbarch = get_frame_arch (this_frame);
2084 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2085 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
2086 volatile struct gdb_exception ex;
2087 struct amd64_frame_cache *cache;
2088 CORE_ADDR addr;
2089 gdb_byte buf[8];
2090 int i;
2091
2092 if (*this_cache)
2093 return *this_cache;
2094
2095 cache = amd64_alloc_frame_cache ();
2096
2097 TRY_CATCH (ex, RETURN_MASK_ERROR)
2098 {
2099 get_frame_register (this_frame, AMD64_RSP_REGNUM, buf);
2100 cache->base = extract_unsigned_integer (buf, 8, byte_order) - 8;
2101
2102 addr = tdep->sigcontext_addr (this_frame);
2103 gdb_assert (tdep->sc_reg_offset);
2104 gdb_assert (tdep->sc_num_regs <= AMD64_NUM_SAVED_REGS);
2105 for (i = 0; i < tdep->sc_num_regs; i++)
2106 if (tdep->sc_reg_offset[i] != -1)
2107 cache->saved_regs[i] = addr + tdep->sc_reg_offset[i];
2108
2109 cache->base_p = 1;
2110 }
2111 if (ex.reason < 0 && ex.error != NOT_AVAILABLE_ERROR)
2112 throw_exception (ex);
2113
2114 *this_cache = cache;
2115 return cache;
2116 }
2117
2118 static enum unwind_stop_reason
2119 amd64_sigtramp_frame_unwind_stop_reason (struct frame_info *this_frame,
2120 void **this_cache)
2121 {
2122 struct amd64_frame_cache *cache =
2123 amd64_sigtramp_frame_cache (this_frame, this_cache);
2124
2125 if (!cache->base_p)
2126 return UNWIND_UNAVAILABLE;
2127
2128 return UNWIND_NO_REASON;
2129 }
2130
2131 static void
2132 amd64_sigtramp_frame_this_id (struct frame_info *this_frame,
2133 void **this_cache, struct frame_id *this_id)
2134 {
2135 struct amd64_frame_cache *cache =
2136 amd64_sigtramp_frame_cache (this_frame, this_cache);
2137
2138 if (!cache->base_p)
2139 return;
2140
2141 (*this_id) = frame_id_build (cache->base + 16, get_frame_pc (this_frame));
2142 }
2143
2144 static struct value *
2145 amd64_sigtramp_frame_prev_register (struct frame_info *this_frame,
2146 void **this_cache, int regnum)
2147 {
2148 /* Make sure we've initialized the cache. */
2149 amd64_sigtramp_frame_cache (this_frame, this_cache);
2150
2151 return amd64_frame_prev_register (this_frame, this_cache, regnum);
2152 }
2153
2154 static int
2155 amd64_sigtramp_frame_sniffer (const struct frame_unwind *self,
2156 struct frame_info *this_frame,
2157 void **this_cache)
2158 {
2159 struct gdbarch_tdep *tdep = gdbarch_tdep (get_frame_arch (this_frame));
2160
2161 /* We shouldn't even bother if we don't have a sigcontext_addr
2162 handler. */
2163 if (tdep->sigcontext_addr == NULL)
2164 return 0;
2165
2166 if (tdep->sigtramp_p != NULL)
2167 {
2168 if (tdep->sigtramp_p (this_frame))
2169 return 1;
2170 }
2171
2172 if (tdep->sigtramp_start != 0)
2173 {
2174 CORE_ADDR pc = get_frame_pc (this_frame);
2175
2176 gdb_assert (tdep->sigtramp_end != 0);
2177 if (pc >= tdep->sigtramp_start && pc < tdep->sigtramp_end)
2178 return 1;
2179 }
2180
2181 return 0;
2182 }
2183
2184 static const struct frame_unwind amd64_sigtramp_frame_unwind =
2185 {
2186 SIGTRAMP_FRAME,
2187 amd64_sigtramp_frame_unwind_stop_reason,
2188 amd64_sigtramp_frame_this_id,
2189 amd64_sigtramp_frame_prev_register,
2190 NULL,
2191 amd64_sigtramp_frame_sniffer
2192 };
2193 \f
2194
2195 static CORE_ADDR
2196 amd64_frame_base_address (struct frame_info *this_frame, void **this_cache)
2197 {
2198 struct amd64_frame_cache *cache =
2199 amd64_frame_cache (this_frame, this_cache);
2200
2201 return cache->base;
2202 }
2203
2204 static const struct frame_base amd64_frame_base =
2205 {
2206 &amd64_frame_unwind,
2207 amd64_frame_base_address,
2208 amd64_frame_base_address,
2209 amd64_frame_base_address
2210 };
2211
2212 /* Normal frames, but in a function epilogue. */
2213
2214 /* The epilogue is defined here as the 'ret' instruction, which will
2215 follow any instruction such as 'leave' or 'pop %ebp' that destroys
2216 the function's stack frame. */
2217
2218 static int
2219 amd64_in_function_epilogue_p (struct gdbarch *gdbarch, CORE_ADDR pc)
2220 {
2221 gdb_byte insn;
2222 struct symtab *symtab;
2223
2224 symtab = find_pc_symtab (pc);
2225 if (symtab && symtab->epilogue_unwind_valid)
2226 return 0;
2227
2228 if (target_read_memory (pc, &insn, 1))
2229 return 0; /* Can't read memory at pc. */
2230
2231 if (insn != 0xc3) /* 'ret' instruction. */
2232 return 0;
2233
2234 return 1;
2235 }
2236
2237 static int
2238 amd64_epilogue_frame_sniffer (const struct frame_unwind *self,
2239 struct frame_info *this_frame,
2240 void **this_prologue_cache)
2241 {
2242 if (frame_relative_level (this_frame) == 0)
2243 return amd64_in_function_epilogue_p (get_frame_arch (this_frame),
2244 get_frame_pc (this_frame));
2245 else
2246 return 0;
2247 }
2248
2249 static struct amd64_frame_cache *
2250 amd64_epilogue_frame_cache (struct frame_info *this_frame, void **this_cache)
2251 {
2252 struct gdbarch *gdbarch = get_frame_arch (this_frame);
2253 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
2254 volatile struct gdb_exception ex;
2255 struct amd64_frame_cache *cache;
2256 gdb_byte buf[8];
2257
2258 if (*this_cache)
2259 return *this_cache;
2260
2261 cache = amd64_alloc_frame_cache ();
2262 *this_cache = cache;
2263
2264 TRY_CATCH (ex, RETURN_MASK_ERROR)
2265 {
2266 /* Cache base will be %esp plus cache->sp_offset (-8). */
2267 get_frame_register (this_frame, AMD64_RSP_REGNUM, buf);
2268 cache->base = extract_unsigned_integer (buf, 8,
2269 byte_order) + cache->sp_offset;
2270
2271 /* Cache pc will be the frame func. */
2272 cache->pc = get_frame_pc (this_frame);
2273
2274 /* The saved %esp will be at cache->base plus 16. */
2275 cache->saved_sp = cache->base + 16;
2276
2277 /* The saved %eip will be at cache->base plus 8. */
2278 cache->saved_regs[AMD64_RIP_REGNUM] = cache->base + 8;
2279
2280 cache->base_p = 1;
2281 }
2282 if (ex.reason < 0 && ex.error != NOT_AVAILABLE_ERROR)
2283 throw_exception (ex);
2284
2285 return cache;
2286 }
2287
2288 static enum unwind_stop_reason
2289 amd64_epilogue_frame_unwind_stop_reason (struct frame_info *this_frame,
2290 void **this_cache)
2291 {
2292 struct amd64_frame_cache *cache
2293 = amd64_epilogue_frame_cache (this_frame, this_cache);
2294
2295 if (!cache->base_p)
2296 return UNWIND_UNAVAILABLE;
2297
2298 return UNWIND_NO_REASON;
2299 }
2300
2301 static void
2302 amd64_epilogue_frame_this_id (struct frame_info *this_frame,
2303 void **this_cache,
2304 struct frame_id *this_id)
2305 {
2306 struct amd64_frame_cache *cache = amd64_epilogue_frame_cache (this_frame,
2307 this_cache);
2308
2309 if (!cache->base_p)
2310 return;
2311
2312 (*this_id) = frame_id_build (cache->base + 8, cache->pc);
2313 }
2314
2315 static const struct frame_unwind amd64_epilogue_frame_unwind =
2316 {
2317 NORMAL_FRAME,
2318 amd64_epilogue_frame_unwind_stop_reason,
2319 amd64_epilogue_frame_this_id,
2320 amd64_frame_prev_register,
2321 NULL,
2322 amd64_epilogue_frame_sniffer
2323 };
2324
2325 static struct frame_id
2326 amd64_dummy_id (struct gdbarch *gdbarch, struct frame_info *this_frame)
2327 {
2328 CORE_ADDR fp;
2329
2330 fp = get_frame_register_unsigned (this_frame, AMD64_RBP_REGNUM);
2331
2332 return frame_id_build (fp + 16, get_frame_pc (this_frame));
2333 }
2334
2335 /* 16 byte align the SP per frame requirements. */
2336
2337 static CORE_ADDR
2338 amd64_frame_align (struct gdbarch *gdbarch, CORE_ADDR sp)
2339 {
2340 return sp & -(CORE_ADDR)16;
2341 }
2342 \f
2343
2344 /* Supply register REGNUM from the buffer specified by FPREGS and LEN
2345 in the floating-point register set REGSET to register cache
2346 REGCACHE. If REGNUM is -1, do this for all registers in REGSET. */
2347
2348 static void
2349 amd64_supply_fpregset (const struct regset *regset, struct regcache *regcache,
2350 int regnum, const void *fpregs, size_t len)
2351 {
2352 const struct gdbarch_tdep *tdep = gdbarch_tdep (regset->arch);
2353
2354 gdb_assert (len == tdep->sizeof_fpregset);
2355 amd64_supply_fxsave (regcache, regnum, fpregs);
2356 }
2357
2358 /* Collect register REGNUM from the register cache REGCACHE and store
2359 it in the buffer specified by FPREGS and LEN as described by the
2360 floating-point register set REGSET. If REGNUM is -1, do this for
2361 all registers in REGSET. */
2362
2363 static void
2364 amd64_collect_fpregset (const struct regset *regset,
2365 const struct regcache *regcache,
2366 int regnum, void *fpregs, size_t len)
2367 {
2368 const struct gdbarch_tdep *tdep = gdbarch_tdep (regset->arch);
2369
2370 gdb_assert (len == tdep->sizeof_fpregset);
2371 amd64_collect_fxsave (regcache, regnum, fpregs);
2372 }
2373
2374 /* Similar to amd64_supply_fpregset, but use XSAVE extended state. */
2375
2376 static void
2377 amd64_supply_xstateregset (const struct regset *regset,
2378 struct regcache *regcache, int regnum,
2379 const void *xstateregs, size_t len)
2380 {
2381 amd64_supply_xsave (regcache, regnum, xstateregs);
2382 }
2383
2384 /* Similar to amd64_collect_fpregset, but use XSAVE extended state. */
2385
2386 static void
2387 amd64_collect_xstateregset (const struct regset *regset,
2388 const struct regcache *regcache,
2389 int regnum, void *xstateregs, size_t len)
2390 {
2391 amd64_collect_xsave (regcache, regnum, xstateregs, 1);
2392 }
2393
2394 /* Return the appropriate register set for the core section identified
2395 by SECT_NAME and SECT_SIZE. */
2396
2397 static const struct regset *
2398 amd64_regset_from_core_section (struct gdbarch *gdbarch,
2399 const char *sect_name, size_t sect_size)
2400 {
2401 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2402
2403 if (strcmp (sect_name, ".reg2") == 0 && sect_size == tdep->sizeof_fpregset)
2404 {
2405 if (tdep->fpregset == NULL)
2406 tdep->fpregset = regset_alloc (gdbarch, amd64_supply_fpregset,
2407 amd64_collect_fpregset);
2408
2409 return tdep->fpregset;
2410 }
2411
2412 if (strcmp (sect_name, ".reg-xstate") == 0)
2413 {
2414 if (tdep->xstateregset == NULL)
2415 tdep->xstateregset = regset_alloc (gdbarch,
2416 amd64_supply_xstateregset,
2417 amd64_collect_xstateregset);
2418
2419 return tdep->xstateregset;
2420 }
2421
2422 return i386_regset_from_core_section (gdbarch, sect_name, sect_size);
2423 }
2424 \f
2425
2426 /* Figure out where the longjmp will land. Slurp the jmp_buf out of
2427 %rdi. We expect its value to be a pointer to the jmp_buf structure
2428 from which we extract the address that we will land at. This
2429 address is copied into PC. This routine returns non-zero on
2430 success. */
2431
2432 static int
2433 amd64_get_longjmp_target (struct frame_info *frame, CORE_ADDR *pc)
2434 {
2435 gdb_byte buf[8];
2436 CORE_ADDR jb_addr;
2437 struct gdbarch *gdbarch = get_frame_arch (frame);
2438 int jb_pc_offset = gdbarch_tdep (gdbarch)->jb_pc_offset;
2439 int len = TYPE_LENGTH (builtin_type (gdbarch)->builtin_func_ptr);
2440
2441 /* If JB_PC_OFFSET is -1, we have no way to find out where the
2442 longjmp will land. */
2443 if (jb_pc_offset == -1)
2444 return 0;
2445
2446 get_frame_register (frame, AMD64_RDI_REGNUM, buf);
2447 jb_addr= extract_typed_address
2448 (buf, builtin_type (gdbarch)->builtin_data_ptr);
2449 if (target_read_memory (jb_addr + jb_pc_offset, buf, len))
2450 return 0;
2451
2452 *pc = extract_typed_address (buf, builtin_type (gdbarch)->builtin_func_ptr);
2453
2454 return 1;
2455 }
2456
2457 static const int amd64_record_regmap[] =
2458 {
2459 AMD64_RAX_REGNUM, AMD64_RCX_REGNUM, AMD64_RDX_REGNUM, AMD64_RBX_REGNUM,
2460 AMD64_RSP_REGNUM, AMD64_RBP_REGNUM, AMD64_RSI_REGNUM, AMD64_RDI_REGNUM,
2461 AMD64_R8_REGNUM, AMD64_R9_REGNUM, AMD64_R10_REGNUM, AMD64_R11_REGNUM,
2462 AMD64_R12_REGNUM, AMD64_R13_REGNUM, AMD64_R14_REGNUM, AMD64_R15_REGNUM,
2463 AMD64_RIP_REGNUM, AMD64_EFLAGS_REGNUM, AMD64_CS_REGNUM, AMD64_SS_REGNUM,
2464 AMD64_DS_REGNUM, AMD64_ES_REGNUM, AMD64_FS_REGNUM, AMD64_GS_REGNUM
2465 };
2466
2467 void
2468 amd64_init_abi (struct gdbarch_info info, struct gdbarch *gdbarch)
2469 {
2470 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2471 const struct target_desc *tdesc = info.target_desc;
2472
2473 /* AMD64 generally uses `fxsave' instead of `fsave' for saving its
2474 floating-point registers. */
2475 tdep->sizeof_fpregset = I387_SIZEOF_FXSAVE;
2476
2477 if (! tdesc_has_registers (tdesc))
2478 tdesc = tdesc_amd64;
2479 tdep->tdesc = tdesc;
2480
2481 tdep->num_core_regs = AMD64_NUM_GREGS + I387_NUM_REGS;
2482 tdep->register_names = amd64_register_names;
2483
2484 if (tdesc_find_feature (tdesc, "org.gnu.gdb.i386.avx") != NULL)
2485 {
2486 tdep->ymmh_register_names = amd64_ymmh_names;
2487 tdep->num_ymm_regs = 16;
2488 tdep->ymm0h_regnum = AMD64_YMM0H_REGNUM;
2489 }
2490
2491 tdep->num_byte_regs = 20;
2492 tdep->num_word_regs = 16;
2493 tdep->num_dword_regs = 16;
2494 /* Avoid wiring in the MMX registers for now. */
2495 tdep->num_mmx_regs = 0;
2496
2497 set_gdbarch_pseudo_register_read (gdbarch,
2498 amd64_pseudo_register_read);
2499 set_gdbarch_pseudo_register_write (gdbarch,
2500 amd64_pseudo_register_write);
2501
2502 set_tdesc_pseudo_register_name (gdbarch, amd64_pseudo_register_name);
2503
2504 /* AMD64 has an FPU and 16 SSE registers. */
2505 tdep->st0_regnum = AMD64_ST0_REGNUM;
2506 tdep->num_xmm_regs = 16;
2507
2508 /* This is what all the fuss is about. */
2509 set_gdbarch_long_bit (gdbarch, 64);
2510 set_gdbarch_long_long_bit (gdbarch, 64);
2511 set_gdbarch_ptr_bit (gdbarch, 64);
2512
2513 /* In contrast to the i386, on AMD64 a `long double' actually takes
2514 up 128 bits, even though it's still based on the i387 extended
2515 floating-point format which has only 80 significant bits. */
2516 set_gdbarch_long_double_bit (gdbarch, 128);
2517
2518 set_gdbarch_num_regs (gdbarch, AMD64_NUM_REGS);
2519
2520 /* Register numbers of various important registers. */
2521 set_gdbarch_sp_regnum (gdbarch, AMD64_RSP_REGNUM); /* %rsp */
2522 set_gdbarch_pc_regnum (gdbarch, AMD64_RIP_REGNUM); /* %rip */
2523 set_gdbarch_ps_regnum (gdbarch, AMD64_EFLAGS_REGNUM); /* %eflags */
2524 set_gdbarch_fp0_regnum (gdbarch, AMD64_ST0_REGNUM); /* %st(0) */
2525
2526 /* The "default" register numbering scheme for AMD64 is referred to
2527 as the "DWARF Register Number Mapping" in the System V psABI.
2528 The preferred debugging format for all known AMD64 targets is
2529 actually DWARF2, and GCC doesn't seem to support DWARF (that is
2530 DWARF-1), but we provide the same mapping just in case. This
2531 mapping is also used for stabs, which GCC does support. */
2532 set_gdbarch_stab_reg_to_regnum (gdbarch, amd64_dwarf_reg_to_regnum);
2533 set_gdbarch_dwarf2_reg_to_regnum (gdbarch, amd64_dwarf_reg_to_regnum);
2534
2535 /* We don't override SDB_REG_RO_REGNUM, since COFF doesn't seem to
2536 be in use on any of the supported AMD64 targets. */
2537
2538 /* Call dummy code. */
2539 set_gdbarch_push_dummy_call (gdbarch, amd64_push_dummy_call);
2540 set_gdbarch_frame_align (gdbarch, amd64_frame_align);
2541 set_gdbarch_frame_red_zone_size (gdbarch, 128);
2542 tdep->call_dummy_num_integer_regs =
2543 ARRAY_SIZE (amd64_dummy_call_integer_regs);
2544 tdep->call_dummy_integer_regs = amd64_dummy_call_integer_regs;
2545 tdep->classify = amd64_classify;
2546
2547 set_gdbarch_convert_register_p (gdbarch, i387_convert_register_p);
2548 set_gdbarch_register_to_value (gdbarch, i387_register_to_value);
2549 set_gdbarch_value_to_register (gdbarch, i387_value_to_register);
2550
2551 set_gdbarch_return_value (gdbarch, amd64_return_value);
2552
2553 set_gdbarch_skip_prologue (gdbarch, amd64_skip_prologue);
2554
2555 tdep->record_regmap = amd64_record_regmap;
2556
2557 set_gdbarch_dummy_id (gdbarch, amd64_dummy_id);
2558
2559 /* Hook the function epilogue frame unwinder. This unwinder is
2560 appended to the list first, so that it supercedes the other
2561 unwinders in function epilogues. */
2562 frame_unwind_prepend_unwinder (gdbarch, &amd64_epilogue_frame_unwind);
2563
2564 /* Hook the prologue-based frame unwinders. */
2565 frame_unwind_append_unwinder (gdbarch, &amd64_sigtramp_frame_unwind);
2566 frame_unwind_append_unwinder (gdbarch, &amd64_frame_unwind);
2567 frame_base_set_default (gdbarch, &amd64_frame_base);
2568
2569 /* If we have a register mapping, enable the generic core file support. */
2570 if (tdep->gregset_reg_offset)
2571 set_gdbarch_regset_from_core_section (gdbarch,
2572 amd64_regset_from_core_section);
2573
2574 set_gdbarch_get_longjmp_target (gdbarch, amd64_get_longjmp_target);
2575
2576 set_gdbarch_relocate_instruction (gdbarch, amd64_relocate_instruction);
2577 }
2578
2579 /* Provide a prototype to silence -Wmissing-prototypes. */
2580 void _initialize_amd64_tdep (void);
2581
2582 void
2583 _initialize_amd64_tdep (void)
2584 {
2585 initialize_tdesc_amd64 ();
2586 initialize_tdesc_amd64_avx ();
2587 }
2588 \f
2589
2590 /* The 64-bit FXSAVE format differs from the 32-bit format in the
2591 sense that the instruction pointer and data pointer are simply
2592 64-bit offsets into the code segment and the data segment instead
2593 of a selector offset pair. The functions below store the upper 32
2594 bits of these pointers (instead of just the 16-bits of the segment
2595 selector). */
2596
2597 /* Fill register REGNUM in REGCACHE with the appropriate
2598 floating-point or SSE register value from *FXSAVE. If REGNUM is
2599 -1, do this for all registers. This function masks off any of the
2600 reserved bits in *FXSAVE. */
2601
2602 void
2603 amd64_supply_fxsave (struct regcache *regcache, int regnum,
2604 const void *fxsave)
2605 {
2606 struct gdbarch *gdbarch = get_regcache_arch (regcache);
2607 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2608
2609 i387_supply_fxsave (regcache, regnum, fxsave);
2610
2611 if (fxsave && gdbarch_ptr_bit (gdbarch) == 64)
2612 {
2613 const gdb_byte *regs = fxsave;
2614
2615 if (regnum == -1 || regnum == I387_FISEG_REGNUM (tdep))
2616 regcache_raw_supply (regcache, I387_FISEG_REGNUM (tdep), regs + 12);
2617 if (regnum == -1 || regnum == I387_FOSEG_REGNUM (tdep))
2618 regcache_raw_supply (regcache, I387_FOSEG_REGNUM (tdep), regs + 20);
2619 }
2620 }
2621
2622 /* Similar to amd64_supply_fxsave, but use XSAVE extended state. */
2623
2624 void
2625 amd64_supply_xsave (struct regcache *regcache, int regnum,
2626 const void *xsave)
2627 {
2628 struct gdbarch *gdbarch = get_regcache_arch (regcache);
2629 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2630
2631 i387_supply_xsave (regcache, regnum, xsave);
2632
2633 if (xsave && gdbarch_ptr_bit (gdbarch) == 64)
2634 {
2635 const gdb_byte *regs = xsave;
2636
2637 if (regnum == -1 || regnum == I387_FISEG_REGNUM (tdep))
2638 regcache_raw_supply (regcache, I387_FISEG_REGNUM (tdep),
2639 regs + 12);
2640 if (regnum == -1 || regnum == I387_FOSEG_REGNUM (tdep))
2641 regcache_raw_supply (regcache, I387_FOSEG_REGNUM (tdep),
2642 regs + 20);
2643 }
2644 }
2645
2646 /* Fill register REGNUM (if it is a floating-point or SSE register) in
2647 *FXSAVE with the value from REGCACHE. If REGNUM is -1, do this for
2648 all registers. This function doesn't touch any of the reserved
2649 bits in *FXSAVE. */
2650
2651 void
2652 amd64_collect_fxsave (const struct regcache *regcache, int regnum,
2653 void *fxsave)
2654 {
2655 struct gdbarch *gdbarch = get_regcache_arch (regcache);
2656 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2657 gdb_byte *regs = fxsave;
2658
2659 i387_collect_fxsave (regcache, regnum, fxsave);
2660
2661 if (gdbarch_ptr_bit (gdbarch) == 64)
2662 {
2663 if (regnum == -1 || regnum == I387_FISEG_REGNUM (tdep))
2664 regcache_raw_collect (regcache, I387_FISEG_REGNUM (tdep), regs + 12);
2665 if (regnum == -1 || regnum == I387_FOSEG_REGNUM (tdep))
2666 regcache_raw_collect (regcache, I387_FOSEG_REGNUM (tdep), regs + 20);
2667 }
2668 }
2669
2670 /* Similar to amd64_collect_fxsave, but use XSAVE extended state. */
2671
2672 void
2673 amd64_collect_xsave (const struct regcache *regcache, int regnum,
2674 void *xsave, int gcore)
2675 {
2676 struct gdbarch *gdbarch = get_regcache_arch (regcache);
2677 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2678 gdb_byte *regs = xsave;
2679
2680 i387_collect_xsave (regcache, regnum, xsave, gcore);
2681
2682 if (gdbarch_ptr_bit (gdbarch) == 64)
2683 {
2684 if (regnum == -1 || regnum == I387_FISEG_REGNUM (tdep))
2685 regcache_raw_collect (regcache, I387_FISEG_REGNUM (tdep),
2686 regs + 12);
2687 if (regnum == -1 || regnum == I387_FOSEG_REGNUM (tdep))
2688 regcache_raw_collect (regcache, I387_FOSEG_REGNUM (tdep),
2689 regs + 20);
2690 }
2691 }
This page took 0.08973 seconds and 4 git commands to generate.