import strstr and strerror modules
[deliverable/binutils-gdb.git] / gdb / amd64-tdep.c
1 /* Target-dependent code for AMD64.
2
3 Copyright (C) 2001-2013 Free Software Foundation, Inc.
4
5 Contributed by Jiri Smid, SuSE Labs.
6
7 This file is part of GDB.
8
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 3 of the License, or
12 (at your option) any later version.
13
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
18
19 You should have received a copy of the GNU General Public License
20 along with this program. If not, see <http://www.gnu.org/licenses/>. */
21
22 #include "defs.h"
23 #include "opcode/i386.h"
24 #include "dis-asm.h"
25 #include "arch-utils.h"
26 #include "block.h"
27 #include "dummy-frame.h"
28 #include "frame.h"
29 #include "frame-base.h"
30 #include "frame-unwind.h"
31 #include "inferior.h"
32 #include "gdbcmd.h"
33 #include "gdbcore.h"
34 #include "objfiles.h"
35 #include "regcache.h"
36 #include "regset.h"
37 #include "symfile.h"
38 #include "disasm.h"
39 #include "gdb_assert.h"
40 #include "exceptions.h"
41 #include "amd64-tdep.h"
42 #include "i387-tdep.h"
43
44 #include "features/i386/amd64.c"
45 #include "features/i386/amd64-avx.c"
46 #include "features/i386/x32.c"
47 #include "features/i386/x32-avx.c"
48
49 #include "ax.h"
50 #include "ax-gdb.h"
51
52 /* Note that the AMD64 architecture was previously known as x86-64.
53 The latter is (forever) engraved into the canonical system name as
54 returned by config.guess, and used as the name for the AMD64 port
55 of GNU/Linux. The BSD's have renamed their ports to amd64; they
56 don't like to shout. For GDB we prefer the amd64_-prefix over the
57 x86_64_-prefix since it's so much easier to type. */
58
59 /* Register information. */
60
61 static const char *amd64_register_names[] =
62 {
63 "rax", "rbx", "rcx", "rdx", "rsi", "rdi", "rbp", "rsp",
64
65 /* %r8 is indeed register number 8. */
66 "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15",
67 "rip", "eflags", "cs", "ss", "ds", "es", "fs", "gs",
68
69 /* %st0 is register number 24. */
70 "st0", "st1", "st2", "st3", "st4", "st5", "st6", "st7",
71 "fctrl", "fstat", "ftag", "fiseg", "fioff", "foseg", "fooff", "fop",
72
73 /* %xmm0 is register number 40. */
74 "xmm0", "xmm1", "xmm2", "xmm3", "xmm4", "xmm5", "xmm6", "xmm7",
75 "xmm8", "xmm9", "xmm10", "xmm11", "xmm12", "xmm13", "xmm14", "xmm15",
76 "mxcsr",
77 };
78
79 static const char *amd64_ymm_names[] =
80 {
81 "ymm0", "ymm1", "ymm2", "ymm3",
82 "ymm4", "ymm5", "ymm6", "ymm7",
83 "ymm8", "ymm9", "ymm10", "ymm11",
84 "ymm12", "ymm13", "ymm14", "ymm15"
85 };
86
87 static const char *amd64_ymmh_names[] =
88 {
89 "ymm0h", "ymm1h", "ymm2h", "ymm3h",
90 "ymm4h", "ymm5h", "ymm6h", "ymm7h",
91 "ymm8h", "ymm9h", "ymm10h", "ymm11h",
92 "ymm12h", "ymm13h", "ymm14h", "ymm15h"
93 };
94
95 /* DWARF Register Number Mapping as defined in the System V psABI,
96 section 3.6. */
97
98 static int amd64_dwarf_regmap[] =
99 {
100 /* General Purpose Registers RAX, RDX, RCX, RBX, RSI, RDI. */
101 AMD64_RAX_REGNUM, AMD64_RDX_REGNUM,
102 AMD64_RCX_REGNUM, AMD64_RBX_REGNUM,
103 AMD64_RSI_REGNUM, AMD64_RDI_REGNUM,
104
105 /* Frame Pointer Register RBP. */
106 AMD64_RBP_REGNUM,
107
108 /* Stack Pointer Register RSP. */
109 AMD64_RSP_REGNUM,
110
111 /* Extended Integer Registers 8 - 15. */
112 AMD64_R8_REGNUM, /* %r8 */
113 AMD64_R9_REGNUM, /* %r9 */
114 AMD64_R10_REGNUM, /* %r10 */
115 AMD64_R11_REGNUM, /* %r11 */
116 AMD64_R12_REGNUM, /* %r12 */
117 AMD64_R13_REGNUM, /* %r13 */
118 AMD64_R14_REGNUM, /* %r14 */
119 AMD64_R15_REGNUM, /* %r15 */
120
121 /* Return Address RA. Mapped to RIP. */
122 AMD64_RIP_REGNUM,
123
124 /* SSE Registers 0 - 7. */
125 AMD64_XMM0_REGNUM + 0, AMD64_XMM1_REGNUM,
126 AMD64_XMM0_REGNUM + 2, AMD64_XMM0_REGNUM + 3,
127 AMD64_XMM0_REGNUM + 4, AMD64_XMM0_REGNUM + 5,
128 AMD64_XMM0_REGNUM + 6, AMD64_XMM0_REGNUM + 7,
129
130 /* Extended SSE Registers 8 - 15. */
131 AMD64_XMM0_REGNUM + 8, AMD64_XMM0_REGNUM + 9,
132 AMD64_XMM0_REGNUM + 10, AMD64_XMM0_REGNUM + 11,
133 AMD64_XMM0_REGNUM + 12, AMD64_XMM0_REGNUM + 13,
134 AMD64_XMM0_REGNUM + 14, AMD64_XMM0_REGNUM + 15,
135
136 /* Floating Point Registers 0-7. */
137 AMD64_ST0_REGNUM + 0, AMD64_ST0_REGNUM + 1,
138 AMD64_ST0_REGNUM + 2, AMD64_ST0_REGNUM + 3,
139 AMD64_ST0_REGNUM + 4, AMD64_ST0_REGNUM + 5,
140 AMD64_ST0_REGNUM + 6, AMD64_ST0_REGNUM + 7,
141
142 /* Control and Status Flags Register. */
143 AMD64_EFLAGS_REGNUM,
144
145 /* Selector Registers. */
146 AMD64_ES_REGNUM,
147 AMD64_CS_REGNUM,
148 AMD64_SS_REGNUM,
149 AMD64_DS_REGNUM,
150 AMD64_FS_REGNUM,
151 AMD64_GS_REGNUM,
152 -1,
153 -1,
154
155 /* Segment Base Address Registers. */
156 -1,
157 -1,
158 -1,
159 -1,
160
161 /* Special Selector Registers. */
162 -1,
163 -1,
164
165 /* Floating Point Control Registers. */
166 AMD64_MXCSR_REGNUM,
167 AMD64_FCTRL_REGNUM,
168 AMD64_FSTAT_REGNUM
169 };
170
171 static const int amd64_dwarf_regmap_len =
172 (sizeof (amd64_dwarf_regmap) / sizeof (amd64_dwarf_regmap[0]));
173
174 /* Convert DWARF register number REG to the appropriate register
175 number used by GDB. */
176
177 static int
178 amd64_dwarf_reg_to_regnum (struct gdbarch *gdbarch, int reg)
179 {
180 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
181 int ymm0_regnum = tdep->ymm0_regnum;
182 int regnum = -1;
183
184 if (reg >= 0 && reg < amd64_dwarf_regmap_len)
185 regnum = amd64_dwarf_regmap[reg];
186
187 if (regnum == -1)
188 warning (_("Unmapped DWARF Register #%d encountered."), reg);
189 else if (ymm0_regnum >= 0
190 && i386_xmm_regnum_p (gdbarch, regnum))
191 regnum += ymm0_regnum - I387_XMM0_REGNUM (tdep);
192
193 return regnum;
194 }
195
196 /* Map architectural register numbers to gdb register numbers. */
197
198 static const int amd64_arch_regmap[16] =
199 {
200 AMD64_RAX_REGNUM, /* %rax */
201 AMD64_RCX_REGNUM, /* %rcx */
202 AMD64_RDX_REGNUM, /* %rdx */
203 AMD64_RBX_REGNUM, /* %rbx */
204 AMD64_RSP_REGNUM, /* %rsp */
205 AMD64_RBP_REGNUM, /* %rbp */
206 AMD64_RSI_REGNUM, /* %rsi */
207 AMD64_RDI_REGNUM, /* %rdi */
208 AMD64_R8_REGNUM, /* %r8 */
209 AMD64_R9_REGNUM, /* %r9 */
210 AMD64_R10_REGNUM, /* %r10 */
211 AMD64_R11_REGNUM, /* %r11 */
212 AMD64_R12_REGNUM, /* %r12 */
213 AMD64_R13_REGNUM, /* %r13 */
214 AMD64_R14_REGNUM, /* %r14 */
215 AMD64_R15_REGNUM /* %r15 */
216 };
217
218 static const int amd64_arch_regmap_len =
219 (sizeof (amd64_arch_regmap) / sizeof (amd64_arch_regmap[0]));
220
221 /* Convert architectural register number REG to the appropriate register
222 number used by GDB. */
223
224 static int
225 amd64_arch_reg_to_regnum (int reg)
226 {
227 gdb_assert (reg >= 0 && reg < amd64_arch_regmap_len);
228
229 return amd64_arch_regmap[reg];
230 }
231
232 /* Register names for byte pseudo-registers. */
233
234 static const char *amd64_byte_names[] =
235 {
236 "al", "bl", "cl", "dl", "sil", "dil", "bpl", "spl",
237 "r8l", "r9l", "r10l", "r11l", "r12l", "r13l", "r14l", "r15l",
238 "ah", "bh", "ch", "dh"
239 };
240
241 /* Number of lower byte registers. */
242 #define AMD64_NUM_LOWER_BYTE_REGS 16
243
244 /* Register names for word pseudo-registers. */
245
246 static const char *amd64_word_names[] =
247 {
248 "ax", "bx", "cx", "dx", "si", "di", "bp", "",
249 "r8w", "r9w", "r10w", "r11w", "r12w", "r13w", "r14w", "r15w"
250 };
251
252 /* Register names for dword pseudo-registers. */
253
254 static const char *amd64_dword_names[] =
255 {
256 "eax", "ebx", "ecx", "edx", "esi", "edi", "ebp", "esp",
257 "r8d", "r9d", "r10d", "r11d", "r12d", "r13d", "r14d", "r15d",
258 "eip"
259 };
260
261 /* Return the name of register REGNUM. */
262
263 static const char *
264 amd64_pseudo_register_name (struct gdbarch *gdbarch, int regnum)
265 {
266 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
267 if (i386_byte_regnum_p (gdbarch, regnum))
268 return amd64_byte_names[regnum - tdep->al_regnum];
269 else if (i386_ymm_regnum_p (gdbarch, regnum))
270 return amd64_ymm_names[regnum - tdep->ymm0_regnum];
271 else if (i386_word_regnum_p (gdbarch, regnum))
272 return amd64_word_names[regnum - tdep->ax_regnum];
273 else if (i386_dword_regnum_p (gdbarch, regnum))
274 return amd64_dword_names[regnum - tdep->eax_regnum];
275 else
276 return i386_pseudo_register_name (gdbarch, regnum);
277 }
278
279 static struct value *
280 amd64_pseudo_register_read_value (struct gdbarch *gdbarch,
281 struct regcache *regcache,
282 int regnum)
283 {
284 gdb_byte raw_buf[MAX_REGISTER_SIZE];
285 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
286 enum register_status status;
287 struct value *result_value;
288 gdb_byte *buf;
289
290 result_value = allocate_value (register_type (gdbarch, regnum));
291 VALUE_LVAL (result_value) = lval_register;
292 VALUE_REGNUM (result_value) = regnum;
293 buf = value_contents_raw (result_value);
294
295 if (i386_byte_regnum_p (gdbarch, regnum))
296 {
297 int gpnum = regnum - tdep->al_regnum;
298
299 /* Extract (always little endian). */
300 if (gpnum >= AMD64_NUM_LOWER_BYTE_REGS)
301 {
302 /* Special handling for AH, BH, CH, DH. */
303 status = regcache_raw_read (regcache,
304 gpnum - AMD64_NUM_LOWER_BYTE_REGS,
305 raw_buf);
306 if (status == REG_VALID)
307 memcpy (buf, raw_buf + 1, 1);
308 else
309 mark_value_bytes_unavailable (result_value, 0,
310 TYPE_LENGTH (value_type (result_value)));
311 }
312 else
313 {
314 status = regcache_raw_read (regcache, gpnum, raw_buf);
315 if (status == REG_VALID)
316 memcpy (buf, raw_buf, 1);
317 else
318 mark_value_bytes_unavailable (result_value, 0,
319 TYPE_LENGTH (value_type (result_value)));
320 }
321 }
322 else if (i386_dword_regnum_p (gdbarch, regnum))
323 {
324 int gpnum = regnum - tdep->eax_regnum;
325 /* Extract (always little endian). */
326 status = regcache_raw_read (regcache, gpnum, raw_buf);
327 if (status == REG_VALID)
328 memcpy (buf, raw_buf, 4);
329 else
330 mark_value_bytes_unavailable (result_value, 0,
331 TYPE_LENGTH (value_type (result_value)));
332 }
333 else
334 i386_pseudo_register_read_into_value (gdbarch, regcache, regnum,
335 result_value);
336
337 return result_value;
338 }
339
340 static void
341 amd64_pseudo_register_write (struct gdbarch *gdbarch,
342 struct regcache *regcache,
343 int regnum, const gdb_byte *buf)
344 {
345 gdb_byte raw_buf[MAX_REGISTER_SIZE];
346 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
347
348 if (i386_byte_regnum_p (gdbarch, regnum))
349 {
350 int gpnum = regnum - tdep->al_regnum;
351
352 if (gpnum >= AMD64_NUM_LOWER_BYTE_REGS)
353 {
354 /* Read ... AH, BH, CH, DH. */
355 regcache_raw_read (regcache,
356 gpnum - AMD64_NUM_LOWER_BYTE_REGS, raw_buf);
357 /* ... Modify ... (always little endian). */
358 memcpy (raw_buf + 1, buf, 1);
359 /* ... Write. */
360 regcache_raw_write (regcache,
361 gpnum - AMD64_NUM_LOWER_BYTE_REGS, raw_buf);
362 }
363 else
364 {
365 /* Read ... */
366 regcache_raw_read (regcache, gpnum, raw_buf);
367 /* ... Modify ... (always little endian). */
368 memcpy (raw_buf, buf, 1);
369 /* ... Write. */
370 regcache_raw_write (regcache, gpnum, raw_buf);
371 }
372 }
373 else if (i386_dword_regnum_p (gdbarch, regnum))
374 {
375 int gpnum = regnum - tdep->eax_regnum;
376
377 /* Read ... */
378 regcache_raw_read (regcache, gpnum, raw_buf);
379 /* ... Modify ... (always little endian). */
380 memcpy (raw_buf, buf, 4);
381 /* ... Write. */
382 regcache_raw_write (regcache, gpnum, raw_buf);
383 }
384 else
385 i386_pseudo_register_write (gdbarch, regcache, regnum, buf);
386 }
387
388 \f
389
390 /* Register classes as defined in the psABI. */
391
392 enum amd64_reg_class
393 {
394 AMD64_INTEGER,
395 AMD64_SSE,
396 AMD64_SSEUP,
397 AMD64_X87,
398 AMD64_X87UP,
399 AMD64_COMPLEX_X87,
400 AMD64_NO_CLASS,
401 AMD64_MEMORY
402 };
403
404 /* Return the union class of CLASS1 and CLASS2. See the psABI for
405 details. */
406
407 static enum amd64_reg_class
408 amd64_merge_classes (enum amd64_reg_class class1, enum amd64_reg_class class2)
409 {
410 /* Rule (a): If both classes are equal, this is the resulting class. */
411 if (class1 == class2)
412 return class1;
413
414 /* Rule (b): If one of the classes is NO_CLASS, the resulting class
415 is the other class. */
416 if (class1 == AMD64_NO_CLASS)
417 return class2;
418 if (class2 == AMD64_NO_CLASS)
419 return class1;
420
421 /* Rule (c): If one of the classes is MEMORY, the result is MEMORY. */
422 if (class1 == AMD64_MEMORY || class2 == AMD64_MEMORY)
423 return AMD64_MEMORY;
424
425 /* Rule (d): If one of the classes is INTEGER, the result is INTEGER. */
426 if (class1 == AMD64_INTEGER || class2 == AMD64_INTEGER)
427 return AMD64_INTEGER;
428
429 /* Rule (e): If one of the classes is X87, X87UP, COMPLEX_X87 class,
430 MEMORY is used as class. */
431 if (class1 == AMD64_X87 || class1 == AMD64_X87UP
432 || class1 == AMD64_COMPLEX_X87 || class2 == AMD64_X87
433 || class2 == AMD64_X87UP || class2 == AMD64_COMPLEX_X87)
434 return AMD64_MEMORY;
435
436 /* Rule (f): Otherwise class SSE is used. */
437 return AMD64_SSE;
438 }
439
440 static void amd64_classify (struct type *type, enum amd64_reg_class class[2]);
441
442 /* Return non-zero if TYPE is a non-POD structure or union type. */
443
444 static int
445 amd64_non_pod_p (struct type *type)
446 {
447 /* ??? A class with a base class certainly isn't POD, but does this
448 catch all non-POD structure types? */
449 if (TYPE_CODE (type) == TYPE_CODE_STRUCT && TYPE_N_BASECLASSES (type) > 0)
450 return 1;
451
452 return 0;
453 }
454
455 /* Classify TYPE according to the rules for aggregate (structures and
456 arrays) and union types, and store the result in CLASS. */
457
458 static void
459 amd64_classify_aggregate (struct type *type, enum amd64_reg_class class[2])
460 {
461 /* 1. If the size of an object is larger than two eightbytes, or in
462 C++, is a non-POD structure or union type, or contains
463 unaligned fields, it has class memory. */
464 if (TYPE_LENGTH (type) > 16 || amd64_non_pod_p (type))
465 {
466 class[0] = class[1] = AMD64_MEMORY;
467 return;
468 }
469
470 /* 2. Both eightbytes get initialized to class NO_CLASS. */
471 class[0] = class[1] = AMD64_NO_CLASS;
472
473 /* 3. Each field of an object is classified recursively so that
474 always two fields are considered. The resulting class is
475 calculated according to the classes of the fields in the
476 eightbyte: */
477
478 if (TYPE_CODE (type) == TYPE_CODE_ARRAY)
479 {
480 struct type *subtype = check_typedef (TYPE_TARGET_TYPE (type));
481
482 /* All fields in an array have the same type. */
483 amd64_classify (subtype, class);
484 if (TYPE_LENGTH (type) > 8 && class[1] == AMD64_NO_CLASS)
485 class[1] = class[0];
486 }
487 else
488 {
489 int i;
490
491 /* Structure or union. */
492 gdb_assert (TYPE_CODE (type) == TYPE_CODE_STRUCT
493 || TYPE_CODE (type) == TYPE_CODE_UNION);
494
495 for (i = 0; i < TYPE_NFIELDS (type); i++)
496 {
497 struct type *subtype = check_typedef (TYPE_FIELD_TYPE (type, i));
498 int pos = TYPE_FIELD_BITPOS (type, i) / 64;
499 enum amd64_reg_class subclass[2];
500 int bitsize = TYPE_FIELD_BITSIZE (type, i);
501 int endpos;
502
503 if (bitsize == 0)
504 bitsize = TYPE_LENGTH (subtype) * 8;
505 endpos = (TYPE_FIELD_BITPOS (type, i) + bitsize - 1) / 64;
506
507 /* Ignore static fields. */
508 if (field_is_static (&TYPE_FIELD (type, i)))
509 continue;
510
511 gdb_assert (pos == 0 || pos == 1);
512
513 amd64_classify (subtype, subclass);
514 class[pos] = amd64_merge_classes (class[pos], subclass[0]);
515 if (bitsize <= 64 && pos == 0 && endpos == 1)
516 /* This is a bit of an odd case: We have a field that would
517 normally fit in one of the two eightbytes, except that
518 it is placed in a way that this field straddles them.
519 This has been seen with a structure containing an array.
520
521 The ABI is a bit unclear in this case, but we assume that
522 this field's class (stored in subclass[0]) must also be merged
523 into class[1]. In other words, our field has a piece stored
524 in the second eight-byte, and thus its class applies to
525 the second eight-byte as well.
526
527 In the case where the field length exceeds 8 bytes,
528 it should not be necessary to merge the field class
529 into class[1]. As LEN > 8, subclass[1] is necessarily
530 different from AMD64_NO_CLASS. If subclass[1] is equal
531 to subclass[0], then the normal class[1]/subclass[1]
532 merging will take care of everything. For subclass[1]
533 to be different from subclass[0], I can only see the case
534 where we have a SSE/SSEUP or X87/X87UP pair, which both
535 use up all 16 bytes of the aggregate, and are already
536 handled just fine (because each portion sits on its own
537 8-byte). */
538 class[1] = amd64_merge_classes (class[1], subclass[0]);
539 if (pos == 0)
540 class[1] = amd64_merge_classes (class[1], subclass[1]);
541 }
542 }
543
544 /* 4. Then a post merger cleanup is done: */
545
546 /* Rule (a): If one of the classes is MEMORY, the whole argument is
547 passed in memory. */
548 if (class[0] == AMD64_MEMORY || class[1] == AMD64_MEMORY)
549 class[0] = class[1] = AMD64_MEMORY;
550
551 /* Rule (b): If SSEUP is not preceded by SSE, it is converted to
552 SSE. */
553 if (class[0] == AMD64_SSEUP)
554 class[0] = AMD64_SSE;
555 if (class[1] == AMD64_SSEUP && class[0] != AMD64_SSE)
556 class[1] = AMD64_SSE;
557 }
558
559 /* Classify TYPE, and store the result in CLASS. */
560
561 static void
562 amd64_classify (struct type *type, enum amd64_reg_class class[2])
563 {
564 enum type_code code = TYPE_CODE (type);
565 int len = TYPE_LENGTH (type);
566
567 class[0] = class[1] = AMD64_NO_CLASS;
568
569 /* Arguments of types (signed and unsigned) _Bool, char, short, int,
570 long, long long, and pointers are in the INTEGER class. Similarly,
571 range types, used by languages such as Ada, are also in the INTEGER
572 class. */
573 if ((code == TYPE_CODE_INT || code == TYPE_CODE_ENUM
574 || code == TYPE_CODE_BOOL || code == TYPE_CODE_RANGE
575 || code == TYPE_CODE_CHAR
576 || code == TYPE_CODE_PTR || code == TYPE_CODE_REF)
577 && (len == 1 || len == 2 || len == 4 || len == 8))
578 class[0] = AMD64_INTEGER;
579
580 /* Arguments of types float, double, _Decimal32, _Decimal64 and __m64
581 are in class SSE. */
582 else if ((code == TYPE_CODE_FLT || code == TYPE_CODE_DECFLOAT)
583 && (len == 4 || len == 8))
584 /* FIXME: __m64 . */
585 class[0] = AMD64_SSE;
586
587 /* Arguments of types __float128, _Decimal128 and __m128 are split into
588 two halves. The least significant ones belong to class SSE, the most
589 significant one to class SSEUP. */
590 else if (code == TYPE_CODE_DECFLOAT && len == 16)
591 /* FIXME: __float128, __m128. */
592 class[0] = AMD64_SSE, class[1] = AMD64_SSEUP;
593
594 /* The 64-bit mantissa of arguments of type long double belongs to
595 class X87, the 16-bit exponent plus 6 bytes of padding belongs to
596 class X87UP. */
597 else if (code == TYPE_CODE_FLT && len == 16)
598 /* Class X87 and X87UP. */
599 class[0] = AMD64_X87, class[1] = AMD64_X87UP;
600
601 /* Arguments of complex T where T is one of the types float or
602 double get treated as if they are implemented as:
603
604 struct complexT {
605 T real;
606 T imag;
607 }; */
608 else if (code == TYPE_CODE_COMPLEX && len == 8)
609 class[0] = AMD64_SSE;
610 else if (code == TYPE_CODE_COMPLEX && len == 16)
611 class[0] = class[1] = AMD64_SSE;
612
613 /* A variable of type complex long double is classified as type
614 COMPLEX_X87. */
615 else if (code == TYPE_CODE_COMPLEX && len == 32)
616 class[0] = AMD64_COMPLEX_X87;
617
618 /* Aggregates. */
619 else if (code == TYPE_CODE_ARRAY || code == TYPE_CODE_STRUCT
620 || code == TYPE_CODE_UNION)
621 amd64_classify_aggregate (type, class);
622 }
623
624 static enum return_value_convention
625 amd64_return_value (struct gdbarch *gdbarch, struct value *function,
626 struct type *type, struct regcache *regcache,
627 gdb_byte *readbuf, const gdb_byte *writebuf)
628 {
629 enum amd64_reg_class class[2];
630 int len = TYPE_LENGTH (type);
631 static int integer_regnum[] = { AMD64_RAX_REGNUM, AMD64_RDX_REGNUM };
632 static int sse_regnum[] = { AMD64_XMM0_REGNUM, AMD64_XMM1_REGNUM };
633 int integer_reg = 0;
634 int sse_reg = 0;
635 int i;
636
637 gdb_assert (!(readbuf && writebuf));
638
639 /* 1. Classify the return type with the classification algorithm. */
640 amd64_classify (type, class);
641
642 /* 2. If the type has class MEMORY, then the caller provides space
643 for the return value and passes the address of this storage in
644 %rdi as if it were the first argument to the function. In effect,
645 this address becomes a hidden first argument.
646
647 On return %rax will contain the address that has been passed in
648 by the caller in %rdi. */
649 if (class[0] == AMD64_MEMORY)
650 {
651 /* As indicated by the comment above, the ABI guarantees that we
652 can always find the return value just after the function has
653 returned. */
654
655 if (readbuf)
656 {
657 ULONGEST addr;
658
659 regcache_raw_read_unsigned (regcache, AMD64_RAX_REGNUM, &addr);
660 read_memory (addr, readbuf, TYPE_LENGTH (type));
661 }
662
663 return RETURN_VALUE_ABI_RETURNS_ADDRESS;
664 }
665
666 /* 8. If the class is COMPLEX_X87, the real part of the value is
667 returned in %st0 and the imaginary part in %st1. */
668 if (class[0] == AMD64_COMPLEX_X87)
669 {
670 if (readbuf)
671 {
672 regcache_raw_read (regcache, AMD64_ST0_REGNUM, readbuf);
673 regcache_raw_read (regcache, AMD64_ST1_REGNUM, readbuf + 16);
674 }
675
676 if (writebuf)
677 {
678 i387_return_value (gdbarch, regcache);
679 regcache_raw_write (regcache, AMD64_ST0_REGNUM, writebuf);
680 regcache_raw_write (regcache, AMD64_ST1_REGNUM, writebuf + 16);
681
682 /* Fix up the tag word such that both %st(0) and %st(1) are
683 marked as valid. */
684 regcache_raw_write_unsigned (regcache, AMD64_FTAG_REGNUM, 0xfff);
685 }
686
687 return RETURN_VALUE_REGISTER_CONVENTION;
688 }
689
690 gdb_assert (class[1] != AMD64_MEMORY);
691 gdb_assert (len <= 16);
692
693 for (i = 0; len > 0; i++, len -= 8)
694 {
695 int regnum = -1;
696 int offset = 0;
697
698 switch (class[i])
699 {
700 case AMD64_INTEGER:
701 /* 3. If the class is INTEGER, the next available register
702 of the sequence %rax, %rdx is used. */
703 regnum = integer_regnum[integer_reg++];
704 break;
705
706 case AMD64_SSE:
707 /* 4. If the class is SSE, the next available SSE register
708 of the sequence %xmm0, %xmm1 is used. */
709 regnum = sse_regnum[sse_reg++];
710 break;
711
712 case AMD64_SSEUP:
713 /* 5. If the class is SSEUP, the eightbyte is passed in the
714 upper half of the last used SSE register. */
715 gdb_assert (sse_reg > 0);
716 regnum = sse_regnum[sse_reg - 1];
717 offset = 8;
718 break;
719
720 case AMD64_X87:
721 /* 6. If the class is X87, the value is returned on the X87
722 stack in %st0 as 80-bit x87 number. */
723 regnum = AMD64_ST0_REGNUM;
724 if (writebuf)
725 i387_return_value (gdbarch, regcache);
726 break;
727
728 case AMD64_X87UP:
729 /* 7. If the class is X87UP, the value is returned together
730 with the previous X87 value in %st0. */
731 gdb_assert (i > 0 && class[0] == AMD64_X87);
732 regnum = AMD64_ST0_REGNUM;
733 offset = 8;
734 len = 2;
735 break;
736
737 case AMD64_NO_CLASS:
738 continue;
739
740 default:
741 gdb_assert (!"Unexpected register class.");
742 }
743
744 gdb_assert (regnum != -1);
745
746 if (readbuf)
747 regcache_raw_read_part (regcache, regnum, offset, min (len, 8),
748 readbuf + i * 8);
749 if (writebuf)
750 regcache_raw_write_part (regcache, regnum, offset, min (len, 8),
751 writebuf + i * 8);
752 }
753
754 return RETURN_VALUE_REGISTER_CONVENTION;
755 }
756 \f
757
758 static CORE_ADDR
759 amd64_push_arguments (struct regcache *regcache, int nargs,
760 struct value **args, CORE_ADDR sp, int struct_return)
761 {
762 static int integer_regnum[] =
763 {
764 AMD64_RDI_REGNUM, /* %rdi */
765 AMD64_RSI_REGNUM, /* %rsi */
766 AMD64_RDX_REGNUM, /* %rdx */
767 AMD64_RCX_REGNUM, /* %rcx */
768 AMD64_R8_REGNUM, /* %r8 */
769 AMD64_R9_REGNUM /* %r9 */
770 };
771 static int sse_regnum[] =
772 {
773 /* %xmm0 ... %xmm7 */
774 AMD64_XMM0_REGNUM + 0, AMD64_XMM1_REGNUM,
775 AMD64_XMM0_REGNUM + 2, AMD64_XMM0_REGNUM + 3,
776 AMD64_XMM0_REGNUM + 4, AMD64_XMM0_REGNUM + 5,
777 AMD64_XMM0_REGNUM + 6, AMD64_XMM0_REGNUM + 7,
778 };
779 struct value **stack_args = alloca (nargs * sizeof (struct value *));
780 int num_stack_args = 0;
781 int num_elements = 0;
782 int element = 0;
783 int integer_reg = 0;
784 int sse_reg = 0;
785 int i;
786
787 /* Reserve a register for the "hidden" argument. */
788 if (struct_return)
789 integer_reg++;
790
791 for (i = 0; i < nargs; i++)
792 {
793 struct type *type = value_type (args[i]);
794 int len = TYPE_LENGTH (type);
795 enum amd64_reg_class class[2];
796 int needed_integer_regs = 0;
797 int needed_sse_regs = 0;
798 int j;
799
800 /* Classify argument. */
801 amd64_classify (type, class);
802
803 /* Calculate the number of integer and SSE registers needed for
804 this argument. */
805 for (j = 0; j < 2; j++)
806 {
807 if (class[j] == AMD64_INTEGER)
808 needed_integer_regs++;
809 else if (class[j] == AMD64_SSE)
810 needed_sse_regs++;
811 }
812
813 /* Check whether enough registers are available, and if the
814 argument should be passed in registers at all. */
815 if (integer_reg + needed_integer_regs > ARRAY_SIZE (integer_regnum)
816 || sse_reg + needed_sse_regs > ARRAY_SIZE (sse_regnum)
817 || (needed_integer_regs == 0 && needed_sse_regs == 0))
818 {
819 /* The argument will be passed on the stack. */
820 num_elements += ((len + 7) / 8);
821 stack_args[num_stack_args++] = args[i];
822 }
823 else
824 {
825 /* The argument will be passed in registers. */
826 const gdb_byte *valbuf = value_contents (args[i]);
827 gdb_byte buf[8];
828
829 gdb_assert (len <= 16);
830
831 for (j = 0; len > 0; j++, len -= 8)
832 {
833 int regnum = -1;
834 int offset = 0;
835
836 switch (class[j])
837 {
838 case AMD64_INTEGER:
839 regnum = integer_regnum[integer_reg++];
840 break;
841
842 case AMD64_SSE:
843 regnum = sse_regnum[sse_reg++];
844 break;
845
846 case AMD64_SSEUP:
847 gdb_assert (sse_reg > 0);
848 regnum = sse_regnum[sse_reg - 1];
849 offset = 8;
850 break;
851
852 default:
853 gdb_assert (!"Unexpected register class.");
854 }
855
856 gdb_assert (regnum != -1);
857 memset (buf, 0, sizeof buf);
858 memcpy (buf, valbuf + j * 8, min (len, 8));
859 regcache_raw_write_part (regcache, regnum, offset, 8, buf);
860 }
861 }
862 }
863
864 /* Allocate space for the arguments on the stack. */
865 sp -= num_elements * 8;
866
867 /* The psABI says that "The end of the input argument area shall be
868 aligned on a 16 byte boundary." */
869 sp &= ~0xf;
870
871 /* Write out the arguments to the stack. */
872 for (i = 0; i < num_stack_args; i++)
873 {
874 struct type *type = value_type (stack_args[i]);
875 const gdb_byte *valbuf = value_contents (stack_args[i]);
876 int len = TYPE_LENGTH (type);
877
878 write_memory (sp + element * 8, valbuf, len);
879 element += ((len + 7) / 8);
880 }
881
882 /* The psABI says that "For calls that may call functions that use
883 varargs or stdargs (prototype-less calls or calls to functions
884 containing ellipsis (...) in the declaration) %al is used as
885 hidden argument to specify the number of SSE registers used. */
886 regcache_raw_write_unsigned (regcache, AMD64_RAX_REGNUM, sse_reg);
887 return sp;
888 }
889
890 static CORE_ADDR
891 amd64_push_dummy_call (struct gdbarch *gdbarch, struct value *function,
892 struct regcache *regcache, CORE_ADDR bp_addr,
893 int nargs, struct value **args, CORE_ADDR sp,
894 int struct_return, CORE_ADDR struct_addr)
895 {
896 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
897 gdb_byte buf[8];
898
899 /* Pass arguments. */
900 sp = amd64_push_arguments (regcache, nargs, args, sp, struct_return);
901
902 /* Pass "hidden" argument". */
903 if (struct_return)
904 {
905 store_unsigned_integer (buf, 8, byte_order, struct_addr);
906 regcache_cooked_write (regcache, AMD64_RDI_REGNUM, buf);
907 }
908
909 /* Store return address. */
910 sp -= 8;
911 store_unsigned_integer (buf, 8, byte_order, bp_addr);
912 write_memory (sp, buf, 8);
913
914 /* Finally, update the stack pointer... */
915 store_unsigned_integer (buf, 8, byte_order, sp);
916 regcache_cooked_write (regcache, AMD64_RSP_REGNUM, buf);
917
918 /* ...and fake a frame pointer. */
919 regcache_cooked_write (regcache, AMD64_RBP_REGNUM, buf);
920
921 return sp + 16;
922 }
923 \f
924 /* Displaced instruction handling. */
925
926 /* A partially decoded instruction.
927 This contains enough details for displaced stepping purposes. */
928
929 struct amd64_insn
930 {
931 /* The number of opcode bytes. */
932 int opcode_len;
933 /* The offset of the rex prefix or -1 if not present. */
934 int rex_offset;
935 /* The offset to the first opcode byte. */
936 int opcode_offset;
937 /* The offset to the modrm byte or -1 if not present. */
938 int modrm_offset;
939
940 /* The raw instruction. */
941 gdb_byte *raw_insn;
942 };
943
944 struct displaced_step_closure
945 {
946 /* For rip-relative insns, saved copy of the reg we use instead of %rip. */
947 int tmp_used;
948 int tmp_regno;
949 ULONGEST tmp_save;
950
951 /* Details of the instruction. */
952 struct amd64_insn insn_details;
953
954 /* Amount of space allocated to insn_buf. */
955 int max_len;
956
957 /* The possibly modified insn.
958 This is a variable-length field. */
959 gdb_byte insn_buf[1];
960 };
961
962 /* WARNING: Keep onebyte_has_modrm, twobyte_has_modrm in sync with
963 ../opcodes/i386-dis.c (until libopcodes exports them, or an alternative,
964 at which point delete these in favor of libopcodes' versions). */
965
966 static const unsigned char onebyte_has_modrm[256] = {
967 /* 0 1 2 3 4 5 6 7 8 9 a b c d e f */
968 /* ------------------------------- */
969 /* 00 */ 1,1,1,1,0,0,0,0,1,1,1,1,0,0,0,0, /* 00 */
970 /* 10 */ 1,1,1,1,0,0,0,0,1,1,1,1,0,0,0,0, /* 10 */
971 /* 20 */ 1,1,1,1,0,0,0,0,1,1,1,1,0,0,0,0, /* 20 */
972 /* 30 */ 1,1,1,1,0,0,0,0,1,1,1,1,0,0,0,0, /* 30 */
973 /* 40 */ 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, /* 40 */
974 /* 50 */ 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, /* 50 */
975 /* 60 */ 0,0,1,1,0,0,0,0,0,1,0,1,0,0,0,0, /* 60 */
976 /* 70 */ 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, /* 70 */
977 /* 80 */ 1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1, /* 80 */
978 /* 90 */ 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, /* 90 */
979 /* a0 */ 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, /* a0 */
980 /* b0 */ 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, /* b0 */
981 /* c0 */ 1,1,0,0,1,1,1,1,0,0,0,0,0,0,0,0, /* c0 */
982 /* d0 */ 1,1,1,1,0,0,0,0,1,1,1,1,1,1,1,1, /* d0 */
983 /* e0 */ 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, /* e0 */
984 /* f0 */ 0,0,0,0,0,0,1,1,0,0,0,0,0,0,1,1 /* f0 */
985 /* ------------------------------- */
986 /* 0 1 2 3 4 5 6 7 8 9 a b c d e f */
987 };
988
989 static const unsigned char twobyte_has_modrm[256] = {
990 /* 0 1 2 3 4 5 6 7 8 9 a b c d e f */
991 /* ------------------------------- */
992 /* 00 */ 1,1,1,1,0,0,0,0,0,0,0,0,0,1,0,1, /* 0f */
993 /* 10 */ 1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1, /* 1f */
994 /* 20 */ 1,1,1,1,1,1,1,0,1,1,1,1,1,1,1,1, /* 2f */
995 /* 30 */ 0,0,0,0,0,0,0,0,1,0,1,0,0,0,0,0, /* 3f */
996 /* 40 */ 1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1, /* 4f */
997 /* 50 */ 1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1, /* 5f */
998 /* 60 */ 1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1, /* 6f */
999 /* 70 */ 1,1,1,1,1,1,1,0,1,1,1,1,1,1,1,1, /* 7f */
1000 /* 80 */ 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, /* 8f */
1001 /* 90 */ 1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1, /* 9f */
1002 /* a0 */ 0,0,0,1,1,1,1,1,0,0,0,1,1,1,1,1, /* af */
1003 /* b0 */ 1,1,1,1,1,1,1,1,1,0,1,1,1,1,1,1, /* bf */
1004 /* c0 */ 1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0, /* cf */
1005 /* d0 */ 1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1, /* df */
1006 /* e0 */ 1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1, /* ef */
1007 /* f0 */ 1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,0 /* ff */
1008 /* ------------------------------- */
1009 /* 0 1 2 3 4 5 6 7 8 9 a b c d e f */
1010 };
1011
1012 static int amd64_syscall_p (const struct amd64_insn *insn, int *lengthp);
1013
1014 static int
1015 rex_prefix_p (gdb_byte pfx)
1016 {
1017 return REX_PREFIX_P (pfx);
1018 }
1019
1020 /* Skip the legacy instruction prefixes in INSN.
1021 We assume INSN is properly sentineled so we don't have to worry
1022 about falling off the end of the buffer. */
1023
1024 static gdb_byte *
1025 amd64_skip_prefixes (gdb_byte *insn)
1026 {
1027 while (1)
1028 {
1029 switch (*insn)
1030 {
1031 case DATA_PREFIX_OPCODE:
1032 case ADDR_PREFIX_OPCODE:
1033 case CS_PREFIX_OPCODE:
1034 case DS_PREFIX_OPCODE:
1035 case ES_PREFIX_OPCODE:
1036 case FS_PREFIX_OPCODE:
1037 case GS_PREFIX_OPCODE:
1038 case SS_PREFIX_OPCODE:
1039 case LOCK_PREFIX_OPCODE:
1040 case REPE_PREFIX_OPCODE:
1041 case REPNE_PREFIX_OPCODE:
1042 ++insn;
1043 continue;
1044 default:
1045 break;
1046 }
1047 break;
1048 }
1049
1050 return insn;
1051 }
1052
1053 /* Return an integer register (other than RSP) that is unused as an input
1054 operand in INSN.
1055 In order to not require adding a rex prefix if the insn doesn't already
1056 have one, the result is restricted to RAX ... RDI, sans RSP.
1057 The register numbering of the result follows architecture ordering,
1058 e.g. RDI = 7. */
1059
1060 static int
1061 amd64_get_unused_input_int_reg (const struct amd64_insn *details)
1062 {
1063 /* 1 bit for each reg */
1064 int used_regs_mask = 0;
1065
1066 /* There can be at most 3 int regs used as inputs in an insn, and we have
1067 7 to choose from (RAX ... RDI, sans RSP).
1068 This allows us to take a conservative approach and keep things simple.
1069 E.g. By avoiding RAX, we don't have to specifically watch for opcodes
1070 that implicitly specify RAX. */
1071
1072 /* Avoid RAX. */
1073 used_regs_mask |= 1 << EAX_REG_NUM;
1074 /* Similarily avoid RDX, implicit operand in divides. */
1075 used_regs_mask |= 1 << EDX_REG_NUM;
1076 /* Avoid RSP. */
1077 used_regs_mask |= 1 << ESP_REG_NUM;
1078
1079 /* If the opcode is one byte long and there's no ModRM byte,
1080 assume the opcode specifies a register. */
1081 if (details->opcode_len == 1 && details->modrm_offset == -1)
1082 used_regs_mask |= 1 << (details->raw_insn[details->opcode_offset] & 7);
1083
1084 /* Mark used regs in the modrm/sib bytes. */
1085 if (details->modrm_offset != -1)
1086 {
1087 int modrm = details->raw_insn[details->modrm_offset];
1088 int mod = MODRM_MOD_FIELD (modrm);
1089 int reg = MODRM_REG_FIELD (modrm);
1090 int rm = MODRM_RM_FIELD (modrm);
1091 int have_sib = mod != 3 && rm == 4;
1092
1093 /* Assume the reg field of the modrm byte specifies a register. */
1094 used_regs_mask |= 1 << reg;
1095
1096 if (have_sib)
1097 {
1098 int base = SIB_BASE_FIELD (details->raw_insn[details->modrm_offset + 1]);
1099 int idx = SIB_INDEX_FIELD (details->raw_insn[details->modrm_offset + 1]);
1100 used_regs_mask |= 1 << base;
1101 used_regs_mask |= 1 << idx;
1102 }
1103 else
1104 {
1105 used_regs_mask |= 1 << rm;
1106 }
1107 }
1108
1109 gdb_assert (used_regs_mask < 256);
1110 gdb_assert (used_regs_mask != 255);
1111
1112 /* Finally, find a free reg. */
1113 {
1114 int i;
1115
1116 for (i = 0; i < 8; ++i)
1117 {
1118 if (! (used_regs_mask & (1 << i)))
1119 return i;
1120 }
1121
1122 /* We shouldn't get here. */
1123 internal_error (__FILE__, __LINE__, _("unable to find free reg"));
1124 }
1125 }
1126
1127 /* Extract the details of INSN that we need. */
1128
1129 static void
1130 amd64_get_insn_details (gdb_byte *insn, struct amd64_insn *details)
1131 {
1132 gdb_byte *start = insn;
1133 int need_modrm;
1134
1135 details->raw_insn = insn;
1136
1137 details->opcode_len = -1;
1138 details->rex_offset = -1;
1139 details->opcode_offset = -1;
1140 details->modrm_offset = -1;
1141
1142 /* Skip legacy instruction prefixes. */
1143 insn = amd64_skip_prefixes (insn);
1144
1145 /* Skip REX instruction prefix. */
1146 if (rex_prefix_p (*insn))
1147 {
1148 details->rex_offset = insn - start;
1149 ++insn;
1150 }
1151
1152 details->opcode_offset = insn - start;
1153
1154 if (*insn == TWO_BYTE_OPCODE_ESCAPE)
1155 {
1156 /* Two or three-byte opcode. */
1157 ++insn;
1158 need_modrm = twobyte_has_modrm[*insn];
1159
1160 /* Check for three-byte opcode. */
1161 switch (*insn)
1162 {
1163 case 0x24:
1164 case 0x25:
1165 case 0x38:
1166 case 0x3a:
1167 case 0x7a:
1168 case 0x7b:
1169 ++insn;
1170 details->opcode_len = 3;
1171 break;
1172 default:
1173 details->opcode_len = 2;
1174 break;
1175 }
1176 }
1177 else
1178 {
1179 /* One-byte opcode. */
1180 need_modrm = onebyte_has_modrm[*insn];
1181 details->opcode_len = 1;
1182 }
1183
1184 if (need_modrm)
1185 {
1186 ++insn;
1187 details->modrm_offset = insn - start;
1188 }
1189 }
1190
1191 /* Update %rip-relative addressing in INSN.
1192
1193 %rip-relative addressing only uses a 32-bit displacement.
1194 32 bits is not enough to be guaranteed to cover the distance between where
1195 the real instruction is and where its copy is.
1196 Convert the insn to use base+disp addressing.
1197 We set base = pc + insn_length so we can leave disp unchanged. */
1198
1199 static void
1200 fixup_riprel (struct gdbarch *gdbarch, struct displaced_step_closure *dsc,
1201 CORE_ADDR from, CORE_ADDR to, struct regcache *regs)
1202 {
1203 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1204 const struct amd64_insn *insn_details = &dsc->insn_details;
1205 int modrm_offset = insn_details->modrm_offset;
1206 gdb_byte *insn = insn_details->raw_insn + modrm_offset;
1207 CORE_ADDR rip_base;
1208 int32_t disp;
1209 int insn_length;
1210 int arch_tmp_regno, tmp_regno;
1211 ULONGEST orig_value;
1212
1213 /* %rip+disp32 addressing mode, displacement follows ModRM byte. */
1214 ++insn;
1215
1216 /* Compute the rip-relative address. */
1217 disp = extract_signed_integer (insn, sizeof (int32_t), byte_order);
1218 insn_length = gdb_buffered_insn_length (gdbarch, dsc->insn_buf,
1219 dsc->max_len, from);
1220 rip_base = from + insn_length;
1221
1222 /* We need a register to hold the address.
1223 Pick one not used in the insn.
1224 NOTE: arch_tmp_regno uses architecture ordering, e.g. RDI = 7. */
1225 arch_tmp_regno = amd64_get_unused_input_int_reg (insn_details);
1226 tmp_regno = amd64_arch_reg_to_regnum (arch_tmp_regno);
1227
1228 /* REX.B should be unset as we were using rip-relative addressing,
1229 but ensure it's unset anyway, tmp_regno is not r8-r15. */
1230 if (insn_details->rex_offset != -1)
1231 dsc->insn_buf[insn_details->rex_offset] &= ~REX_B;
1232
1233 regcache_cooked_read_unsigned (regs, tmp_regno, &orig_value);
1234 dsc->tmp_regno = tmp_regno;
1235 dsc->tmp_save = orig_value;
1236 dsc->tmp_used = 1;
1237
1238 /* Convert the ModRM field to be base+disp. */
1239 dsc->insn_buf[modrm_offset] &= ~0xc7;
1240 dsc->insn_buf[modrm_offset] |= 0x80 + arch_tmp_regno;
1241
1242 regcache_cooked_write_unsigned (regs, tmp_regno, rip_base);
1243
1244 if (debug_displaced)
1245 fprintf_unfiltered (gdb_stdlog, "displaced: %%rip-relative addressing used.\n"
1246 "displaced: using temp reg %d, old value %s, new value %s\n",
1247 dsc->tmp_regno, paddress (gdbarch, dsc->tmp_save),
1248 paddress (gdbarch, rip_base));
1249 }
1250
1251 static void
1252 fixup_displaced_copy (struct gdbarch *gdbarch,
1253 struct displaced_step_closure *dsc,
1254 CORE_ADDR from, CORE_ADDR to, struct regcache *regs)
1255 {
1256 const struct amd64_insn *details = &dsc->insn_details;
1257
1258 if (details->modrm_offset != -1)
1259 {
1260 gdb_byte modrm = details->raw_insn[details->modrm_offset];
1261
1262 if ((modrm & 0xc7) == 0x05)
1263 {
1264 /* The insn uses rip-relative addressing.
1265 Deal with it. */
1266 fixup_riprel (gdbarch, dsc, from, to, regs);
1267 }
1268 }
1269 }
1270
1271 struct displaced_step_closure *
1272 amd64_displaced_step_copy_insn (struct gdbarch *gdbarch,
1273 CORE_ADDR from, CORE_ADDR to,
1274 struct regcache *regs)
1275 {
1276 int len = gdbarch_max_insn_length (gdbarch);
1277 /* Extra space for sentinels so fixup_{riprel,displaced_copy} don't have to
1278 continually watch for running off the end of the buffer. */
1279 int fixup_sentinel_space = len;
1280 struct displaced_step_closure *dsc =
1281 xmalloc (sizeof (*dsc) + len + fixup_sentinel_space);
1282 gdb_byte *buf = &dsc->insn_buf[0];
1283 struct amd64_insn *details = &dsc->insn_details;
1284
1285 dsc->tmp_used = 0;
1286 dsc->max_len = len + fixup_sentinel_space;
1287
1288 read_memory (from, buf, len);
1289
1290 /* Set up the sentinel space so we don't have to worry about running
1291 off the end of the buffer. An excessive number of leading prefixes
1292 could otherwise cause this. */
1293 memset (buf + len, 0, fixup_sentinel_space);
1294
1295 amd64_get_insn_details (buf, details);
1296
1297 /* GDB may get control back after the insn after the syscall.
1298 Presumably this is a kernel bug.
1299 If this is a syscall, make sure there's a nop afterwards. */
1300 {
1301 int syscall_length;
1302
1303 if (amd64_syscall_p (details, &syscall_length))
1304 buf[details->opcode_offset + syscall_length] = NOP_OPCODE;
1305 }
1306
1307 /* Modify the insn to cope with the address where it will be executed from.
1308 In particular, handle any rip-relative addressing. */
1309 fixup_displaced_copy (gdbarch, dsc, from, to, regs);
1310
1311 write_memory (to, buf, len);
1312
1313 if (debug_displaced)
1314 {
1315 fprintf_unfiltered (gdb_stdlog, "displaced: copy %s->%s: ",
1316 paddress (gdbarch, from), paddress (gdbarch, to));
1317 displaced_step_dump_bytes (gdb_stdlog, buf, len);
1318 }
1319
1320 return dsc;
1321 }
1322
1323 static int
1324 amd64_absolute_jmp_p (const struct amd64_insn *details)
1325 {
1326 const gdb_byte *insn = &details->raw_insn[details->opcode_offset];
1327
1328 if (insn[0] == 0xff)
1329 {
1330 /* jump near, absolute indirect (/4) */
1331 if ((insn[1] & 0x38) == 0x20)
1332 return 1;
1333
1334 /* jump far, absolute indirect (/5) */
1335 if ((insn[1] & 0x38) == 0x28)
1336 return 1;
1337 }
1338
1339 return 0;
1340 }
1341
1342 static int
1343 amd64_absolute_call_p (const struct amd64_insn *details)
1344 {
1345 const gdb_byte *insn = &details->raw_insn[details->opcode_offset];
1346
1347 if (insn[0] == 0xff)
1348 {
1349 /* Call near, absolute indirect (/2) */
1350 if ((insn[1] & 0x38) == 0x10)
1351 return 1;
1352
1353 /* Call far, absolute indirect (/3) */
1354 if ((insn[1] & 0x38) == 0x18)
1355 return 1;
1356 }
1357
1358 return 0;
1359 }
1360
1361 static int
1362 amd64_ret_p (const struct amd64_insn *details)
1363 {
1364 /* NOTE: gcc can emit "repz ; ret". */
1365 const gdb_byte *insn = &details->raw_insn[details->opcode_offset];
1366
1367 switch (insn[0])
1368 {
1369 case 0xc2: /* ret near, pop N bytes */
1370 case 0xc3: /* ret near */
1371 case 0xca: /* ret far, pop N bytes */
1372 case 0xcb: /* ret far */
1373 case 0xcf: /* iret */
1374 return 1;
1375
1376 default:
1377 return 0;
1378 }
1379 }
1380
1381 static int
1382 amd64_call_p (const struct amd64_insn *details)
1383 {
1384 const gdb_byte *insn = &details->raw_insn[details->opcode_offset];
1385
1386 if (amd64_absolute_call_p (details))
1387 return 1;
1388
1389 /* call near, relative */
1390 if (insn[0] == 0xe8)
1391 return 1;
1392
1393 return 0;
1394 }
1395
1396 /* Return non-zero if INSN is a system call, and set *LENGTHP to its
1397 length in bytes. Otherwise, return zero. */
1398
1399 static int
1400 amd64_syscall_p (const struct amd64_insn *details, int *lengthp)
1401 {
1402 const gdb_byte *insn = &details->raw_insn[details->opcode_offset];
1403
1404 if (insn[0] == 0x0f && insn[1] == 0x05)
1405 {
1406 *lengthp = 2;
1407 return 1;
1408 }
1409
1410 return 0;
1411 }
1412
1413 /* Fix up the state of registers and memory after having single-stepped
1414 a displaced instruction. */
1415
1416 void
1417 amd64_displaced_step_fixup (struct gdbarch *gdbarch,
1418 struct displaced_step_closure *dsc,
1419 CORE_ADDR from, CORE_ADDR to,
1420 struct regcache *regs)
1421 {
1422 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1423 /* The offset we applied to the instruction's address. */
1424 ULONGEST insn_offset = to - from;
1425 gdb_byte *insn = dsc->insn_buf;
1426 const struct amd64_insn *insn_details = &dsc->insn_details;
1427
1428 if (debug_displaced)
1429 fprintf_unfiltered (gdb_stdlog,
1430 "displaced: fixup (%s, %s), "
1431 "insn = 0x%02x 0x%02x ...\n",
1432 paddress (gdbarch, from), paddress (gdbarch, to),
1433 insn[0], insn[1]);
1434
1435 /* If we used a tmp reg, restore it. */
1436
1437 if (dsc->tmp_used)
1438 {
1439 if (debug_displaced)
1440 fprintf_unfiltered (gdb_stdlog, "displaced: restoring reg %d to %s\n",
1441 dsc->tmp_regno, paddress (gdbarch, dsc->tmp_save));
1442 regcache_cooked_write_unsigned (regs, dsc->tmp_regno, dsc->tmp_save);
1443 }
1444
1445 /* The list of issues to contend with here is taken from
1446 resume_execution in arch/x86/kernel/kprobes.c, Linux 2.6.28.
1447 Yay for Free Software! */
1448
1449 /* Relocate the %rip back to the program's instruction stream,
1450 if necessary. */
1451
1452 /* Except in the case of absolute or indirect jump or call
1453 instructions, or a return instruction, the new rip is relative to
1454 the displaced instruction; make it relative to the original insn.
1455 Well, signal handler returns don't need relocation either, but we use the
1456 value of %rip to recognize those; see below. */
1457 if (! amd64_absolute_jmp_p (insn_details)
1458 && ! amd64_absolute_call_p (insn_details)
1459 && ! amd64_ret_p (insn_details))
1460 {
1461 ULONGEST orig_rip;
1462 int insn_len;
1463
1464 regcache_cooked_read_unsigned (regs, AMD64_RIP_REGNUM, &orig_rip);
1465
1466 /* A signal trampoline system call changes the %rip, resuming
1467 execution of the main program after the signal handler has
1468 returned. That makes them like 'return' instructions; we
1469 shouldn't relocate %rip.
1470
1471 But most system calls don't, and we do need to relocate %rip.
1472
1473 Our heuristic for distinguishing these cases: if stepping
1474 over the system call instruction left control directly after
1475 the instruction, the we relocate --- control almost certainly
1476 doesn't belong in the displaced copy. Otherwise, we assume
1477 the instruction has put control where it belongs, and leave
1478 it unrelocated. Goodness help us if there are PC-relative
1479 system calls. */
1480 if (amd64_syscall_p (insn_details, &insn_len)
1481 && orig_rip != to + insn_len
1482 /* GDB can get control back after the insn after the syscall.
1483 Presumably this is a kernel bug.
1484 Fixup ensures its a nop, we add one to the length for it. */
1485 && orig_rip != to + insn_len + 1)
1486 {
1487 if (debug_displaced)
1488 fprintf_unfiltered (gdb_stdlog,
1489 "displaced: syscall changed %%rip; "
1490 "not relocating\n");
1491 }
1492 else
1493 {
1494 ULONGEST rip = orig_rip - insn_offset;
1495
1496 /* If we just stepped over a breakpoint insn, we don't backup
1497 the pc on purpose; this is to match behaviour without
1498 stepping. */
1499
1500 regcache_cooked_write_unsigned (regs, AMD64_RIP_REGNUM, rip);
1501
1502 if (debug_displaced)
1503 fprintf_unfiltered (gdb_stdlog,
1504 "displaced: "
1505 "relocated %%rip from %s to %s\n",
1506 paddress (gdbarch, orig_rip),
1507 paddress (gdbarch, rip));
1508 }
1509 }
1510
1511 /* If the instruction was PUSHFL, then the TF bit will be set in the
1512 pushed value, and should be cleared. We'll leave this for later,
1513 since GDB already messes up the TF flag when stepping over a
1514 pushfl. */
1515
1516 /* If the instruction was a call, the return address now atop the
1517 stack is the address following the copied instruction. We need
1518 to make it the address following the original instruction. */
1519 if (amd64_call_p (insn_details))
1520 {
1521 ULONGEST rsp;
1522 ULONGEST retaddr;
1523 const ULONGEST retaddr_len = 8;
1524
1525 regcache_cooked_read_unsigned (regs, AMD64_RSP_REGNUM, &rsp);
1526 retaddr = read_memory_unsigned_integer (rsp, retaddr_len, byte_order);
1527 retaddr = (retaddr - insn_offset) & 0xffffffffUL;
1528 write_memory_unsigned_integer (rsp, retaddr_len, byte_order, retaddr);
1529
1530 if (debug_displaced)
1531 fprintf_unfiltered (gdb_stdlog,
1532 "displaced: relocated return addr at %s "
1533 "to %s\n",
1534 paddress (gdbarch, rsp),
1535 paddress (gdbarch, retaddr));
1536 }
1537 }
1538
1539 /* If the instruction INSN uses RIP-relative addressing, return the
1540 offset into the raw INSN where the displacement to be adjusted is
1541 found. Returns 0 if the instruction doesn't use RIP-relative
1542 addressing. */
1543
1544 static int
1545 rip_relative_offset (struct amd64_insn *insn)
1546 {
1547 if (insn->modrm_offset != -1)
1548 {
1549 gdb_byte modrm = insn->raw_insn[insn->modrm_offset];
1550
1551 if ((modrm & 0xc7) == 0x05)
1552 {
1553 /* The displacement is found right after the ModRM byte. */
1554 return insn->modrm_offset + 1;
1555 }
1556 }
1557
1558 return 0;
1559 }
1560
1561 static void
1562 append_insns (CORE_ADDR *to, ULONGEST len, const gdb_byte *buf)
1563 {
1564 target_write_memory (*to, buf, len);
1565 *to += len;
1566 }
1567
1568 static void
1569 amd64_relocate_instruction (struct gdbarch *gdbarch,
1570 CORE_ADDR *to, CORE_ADDR oldloc)
1571 {
1572 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1573 int len = gdbarch_max_insn_length (gdbarch);
1574 /* Extra space for sentinels. */
1575 int fixup_sentinel_space = len;
1576 gdb_byte *buf = xmalloc (len + fixup_sentinel_space);
1577 struct amd64_insn insn_details;
1578 int offset = 0;
1579 LONGEST rel32, newrel;
1580 gdb_byte *insn;
1581 int insn_length;
1582
1583 read_memory (oldloc, buf, len);
1584
1585 /* Set up the sentinel space so we don't have to worry about running
1586 off the end of the buffer. An excessive number of leading prefixes
1587 could otherwise cause this. */
1588 memset (buf + len, 0, fixup_sentinel_space);
1589
1590 insn = buf;
1591 amd64_get_insn_details (insn, &insn_details);
1592
1593 insn_length = gdb_buffered_insn_length (gdbarch, insn, len, oldloc);
1594
1595 /* Skip legacy instruction prefixes. */
1596 insn = amd64_skip_prefixes (insn);
1597
1598 /* Adjust calls with 32-bit relative addresses as push/jump, with
1599 the address pushed being the location where the original call in
1600 the user program would return to. */
1601 if (insn[0] == 0xe8)
1602 {
1603 gdb_byte push_buf[16];
1604 unsigned int ret_addr;
1605
1606 /* Where "ret" in the original code will return to. */
1607 ret_addr = oldloc + insn_length;
1608 push_buf[0] = 0x68; /* pushq $... */
1609 store_unsigned_integer (&push_buf[1], 4, byte_order, ret_addr);
1610 /* Push the push. */
1611 append_insns (to, 5, push_buf);
1612
1613 /* Convert the relative call to a relative jump. */
1614 insn[0] = 0xe9;
1615
1616 /* Adjust the destination offset. */
1617 rel32 = extract_signed_integer (insn + 1, 4, byte_order);
1618 newrel = (oldloc - *to) + rel32;
1619 store_signed_integer (insn + 1, 4, byte_order, newrel);
1620
1621 if (debug_displaced)
1622 fprintf_unfiltered (gdb_stdlog,
1623 "Adjusted insn rel32=%s at %s to"
1624 " rel32=%s at %s\n",
1625 hex_string (rel32), paddress (gdbarch, oldloc),
1626 hex_string (newrel), paddress (gdbarch, *to));
1627
1628 /* Write the adjusted jump into its displaced location. */
1629 append_insns (to, 5, insn);
1630 return;
1631 }
1632
1633 offset = rip_relative_offset (&insn_details);
1634 if (!offset)
1635 {
1636 /* Adjust jumps with 32-bit relative addresses. Calls are
1637 already handled above. */
1638 if (insn[0] == 0xe9)
1639 offset = 1;
1640 /* Adjust conditional jumps. */
1641 else if (insn[0] == 0x0f && (insn[1] & 0xf0) == 0x80)
1642 offset = 2;
1643 }
1644
1645 if (offset)
1646 {
1647 rel32 = extract_signed_integer (insn + offset, 4, byte_order);
1648 newrel = (oldloc - *to) + rel32;
1649 store_signed_integer (insn + offset, 4, byte_order, newrel);
1650 if (debug_displaced)
1651 fprintf_unfiltered (gdb_stdlog,
1652 "Adjusted insn rel32=%s at %s to"
1653 " rel32=%s at %s\n",
1654 hex_string (rel32), paddress (gdbarch, oldloc),
1655 hex_string (newrel), paddress (gdbarch, *to));
1656 }
1657
1658 /* Write the adjusted instruction into its displaced location. */
1659 append_insns (to, insn_length, buf);
1660 }
1661
1662 \f
1663 /* The maximum number of saved registers. This should include %rip. */
1664 #define AMD64_NUM_SAVED_REGS AMD64_NUM_GREGS
1665
1666 struct amd64_frame_cache
1667 {
1668 /* Base address. */
1669 CORE_ADDR base;
1670 int base_p;
1671 CORE_ADDR sp_offset;
1672 CORE_ADDR pc;
1673
1674 /* Saved registers. */
1675 CORE_ADDR saved_regs[AMD64_NUM_SAVED_REGS];
1676 CORE_ADDR saved_sp;
1677 int saved_sp_reg;
1678
1679 /* Do we have a frame? */
1680 int frameless_p;
1681 };
1682
1683 /* Initialize a frame cache. */
1684
1685 static void
1686 amd64_init_frame_cache (struct amd64_frame_cache *cache)
1687 {
1688 int i;
1689
1690 /* Base address. */
1691 cache->base = 0;
1692 cache->base_p = 0;
1693 cache->sp_offset = -8;
1694 cache->pc = 0;
1695
1696 /* Saved registers. We initialize these to -1 since zero is a valid
1697 offset (that's where %rbp is supposed to be stored).
1698 The values start out as being offsets, and are later converted to
1699 addresses (at which point -1 is interpreted as an address, still meaning
1700 "invalid"). */
1701 for (i = 0; i < AMD64_NUM_SAVED_REGS; i++)
1702 cache->saved_regs[i] = -1;
1703 cache->saved_sp = 0;
1704 cache->saved_sp_reg = -1;
1705
1706 /* Frameless until proven otherwise. */
1707 cache->frameless_p = 1;
1708 }
1709
1710 /* Allocate and initialize a frame cache. */
1711
1712 static struct amd64_frame_cache *
1713 amd64_alloc_frame_cache (void)
1714 {
1715 struct amd64_frame_cache *cache;
1716
1717 cache = FRAME_OBSTACK_ZALLOC (struct amd64_frame_cache);
1718 amd64_init_frame_cache (cache);
1719 return cache;
1720 }
1721
1722 /* GCC 4.4 and later, can put code in the prologue to realign the
1723 stack pointer. Check whether PC points to such code, and update
1724 CACHE accordingly. Return the first instruction after the code
1725 sequence or CURRENT_PC, whichever is smaller. If we don't
1726 recognize the code, return PC. */
1727
1728 static CORE_ADDR
1729 amd64_analyze_stack_align (CORE_ADDR pc, CORE_ADDR current_pc,
1730 struct amd64_frame_cache *cache)
1731 {
1732 /* There are 2 code sequences to re-align stack before the frame
1733 gets set up:
1734
1735 1. Use a caller-saved saved register:
1736
1737 leaq 8(%rsp), %reg
1738 andq $-XXX, %rsp
1739 pushq -8(%reg)
1740
1741 2. Use a callee-saved saved register:
1742
1743 pushq %reg
1744 leaq 16(%rsp), %reg
1745 andq $-XXX, %rsp
1746 pushq -8(%reg)
1747
1748 "andq $-XXX, %rsp" can be either 4 bytes or 7 bytes:
1749
1750 0x48 0x83 0xe4 0xf0 andq $-16, %rsp
1751 0x48 0x81 0xe4 0x00 0xff 0xff 0xff andq $-256, %rsp
1752 */
1753
1754 gdb_byte buf[18];
1755 int reg, r;
1756 int offset, offset_and;
1757
1758 if (target_read_memory (pc, buf, sizeof buf))
1759 return pc;
1760
1761 /* Check caller-saved saved register. The first instruction has
1762 to be "leaq 8(%rsp), %reg". */
1763 if ((buf[0] & 0xfb) == 0x48
1764 && buf[1] == 0x8d
1765 && buf[3] == 0x24
1766 && buf[4] == 0x8)
1767 {
1768 /* MOD must be binary 10 and R/M must be binary 100. */
1769 if ((buf[2] & 0xc7) != 0x44)
1770 return pc;
1771
1772 /* REG has register number. */
1773 reg = (buf[2] >> 3) & 7;
1774
1775 /* Check the REX.R bit. */
1776 if (buf[0] == 0x4c)
1777 reg += 8;
1778
1779 offset = 5;
1780 }
1781 else
1782 {
1783 /* Check callee-saved saved register. The first instruction
1784 has to be "pushq %reg". */
1785 reg = 0;
1786 if ((buf[0] & 0xf8) == 0x50)
1787 offset = 0;
1788 else if ((buf[0] & 0xf6) == 0x40
1789 && (buf[1] & 0xf8) == 0x50)
1790 {
1791 /* Check the REX.B bit. */
1792 if ((buf[0] & 1) != 0)
1793 reg = 8;
1794
1795 offset = 1;
1796 }
1797 else
1798 return pc;
1799
1800 /* Get register. */
1801 reg += buf[offset] & 0x7;
1802
1803 offset++;
1804
1805 /* The next instruction has to be "leaq 16(%rsp), %reg". */
1806 if ((buf[offset] & 0xfb) != 0x48
1807 || buf[offset + 1] != 0x8d
1808 || buf[offset + 3] != 0x24
1809 || buf[offset + 4] != 0x10)
1810 return pc;
1811
1812 /* MOD must be binary 10 and R/M must be binary 100. */
1813 if ((buf[offset + 2] & 0xc7) != 0x44)
1814 return pc;
1815
1816 /* REG has register number. */
1817 r = (buf[offset + 2] >> 3) & 7;
1818
1819 /* Check the REX.R bit. */
1820 if (buf[offset] == 0x4c)
1821 r += 8;
1822
1823 /* Registers in pushq and leaq have to be the same. */
1824 if (reg != r)
1825 return pc;
1826
1827 offset += 5;
1828 }
1829
1830 /* Rigister can't be %rsp nor %rbp. */
1831 if (reg == 4 || reg == 5)
1832 return pc;
1833
1834 /* The next instruction has to be "andq $-XXX, %rsp". */
1835 if (buf[offset] != 0x48
1836 || buf[offset + 2] != 0xe4
1837 || (buf[offset + 1] != 0x81 && buf[offset + 1] != 0x83))
1838 return pc;
1839
1840 offset_and = offset;
1841 offset += buf[offset + 1] == 0x81 ? 7 : 4;
1842
1843 /* The next instruction has to be "pushq -8(%reg)". */
1844 r = 0;
1845 if (buf[offset] == 0xff)
1846 offset++;
1847 else if ((buf[offset] & 0xf6) == 0x40
1848 && buf[offset + 1] == 0xff)
1849 {
1850 /* Check the REX.B bit. */
1851 if ((buf[offset] & 0x1) != 0)
1852 r = 8;
1853 offset += 2;
1854 }
1855 else
1856 return pc;
1857
1858 /* 8bit -8 is 0xf8. REG must be binary 110 and MOD must be binary
1859 01. */
1860 if (buf[offset + 1] != 0xf8
1861 || (buf[offset] & 0xf8) != 0x70)
1862 return pc;
1863
1864 /* R/M has register. */
1865 r += buf[offset] & 7;
1866
1867 /* Registers in leaq and pushq have to be the same. */
1868 if (reg != r)
1869 return pc;
1870
1871 if (current_pc > pc + offset_and)
1872 cache->saved_sp_reg = amd64_arch_reg_to_regnum (reg);
1873
1874 return min (pc + offset + 2, current_pc);
1875 }
1876
1877 /* Similar to amd64_analyze_stack_align for x32. */
1878
1879 static CORE_ADDR
1880 amd64_x32_analyze_stack_align (CORE_ADDR pc, CORE_ADDR current_pc,
1881 struct amd64_frame_cache *cache)
1882 {
1883 /* There are 2 code sequences to re-align stack before the frame
1884 gets set up:
1885
1886 1. Use a caller-saved saved register:
1887
1888 leaq 8(%rsp), %reg
1889 andq $-XXX, %rsp
1890 pushq -8(%reg)
1891
1892 or
1893
1894 [addr32] leal 8(%rsp), %reg
1895 andl $-XXX, %esp
1896 [addr32] pushq -8(%reg)
1897
1898 2. Use a callee-saved saved register:
1899
1900 pushq %reg
1901 leaq 16(%rsp), %reg
1902 andq $-XXX, %rsp
1903 pushq -8(%reg)
1904
1905 or
1906
1907 pushq %reg
1908 [addr32] leal 16(%rsp), %reg
1909 andl $-XXX, %esp
1910 [addr32] pushq -8(%reg)
1911
1912 "andq $-XXX, %rsp" can be either 4 bytes or 7 bytes:
1913
1914 0x48 0x83 0xe4 0xf0 andq $-16, %rsp
1915 0x48 0x81 0xe4 0x00 0xff 0xff 0xff andq $-256, %rsp
1916
1917 "andl $-XXX, %esp" can be either 3 bytes or 6 bytes:
1918
1919 0x83 0xe4 0xf0 andl $-16, %esp
1920 0x81 0xe4 0x00 0xff 0xff 0xff andl $-256, %esp
1921 */
1922
1923 gdb_byte buf[19];
1924 int reg, r;
1925 int offset, offset_and;
1926
1927 if (target_read_memory (pc, buf, sizeof buf))
1928 return pc;
1929
1930 /* Skip optional addr32 prefix. */
1931 offset = buf[0] == 0x67 ? 1 : 0;
1932
1933 /* Check caller-saved saved register. The first instruction has
1934 to be "leaq 8(%rsp), %reg" or "leal 8(%rsp), %reg". */
1935 if (((buf[offset] & 0xfb) == 0x48 || (buf[offset] & 0xfb) == 0x40)
1936 && buf[offset + 1] == 0x8d
1937 && buf[offset + 3] == 0x24
1938 && buf[offset + 4] == 0x8)
1939 {
1940 /* MOD must be binary 10 and R/M must be binary 100. */
1941 if ((buf[offset + 2] & 0xc7) != 0x44)
1942 return pc;
1943
1944 /* REG has register number. */
1945 reg = (buf[offset + 2] >> 3) & 7;
1946
1947 /* Check the REX.R bit. */
1948 if ((buf[offset] & 0x4) != 0)
1949 reg += 8;
1950
1951 offset += 5;
1952 }
1953 else
1954 {
1955 /* Check callee-saved saved register. The first instruction
1956 has to be "pushq %reg". */
1957 reg = 0;
1958 if ((buf[offset] & 0xf6) == 0x40
1959 && (buf[offset + 1] & 0xf8) == 0x50)
1960 {
1961 /* Check the REX.B bit. */
1962 if ((buf[offset] & 1) != 0)
1963 reg = 8;
1964
1965 offset += 1;
1966 }
1967 else if ((buf[offset] & 0xf8) != 0x50)
1968 return pc;
1969
1970 /* Get register. */
1971 reg += buf[offset] & 0x7;
1972
1973 offset++;
1974
1975 /* Skip optional addr32 prefix. */
1976 if (buf[offset] == 0x67)
1977 offset++;
1978
1979 /* The next instruction has to be "leaq 16(%rsp), %reg" or
1980 "leal 16(%rsp), %reg". */
1981 if (((buf[offset] & 0xfb) != 0x48 && (buf[offset] & 0xfb) != 0x40)
1982 || buf[offset + 1] != 0x8d
1983 || buf[offset + 3] != 0x24
1984 || buf[offset + 4] != 0x10)
1985 return pc;
1986
1987 /* MOD must be binary 10 and R/M must be binary 100. */
1988 if ((buf[offset + 2] & 0xc7) != 0x44)
1989 return pc;
1990
1991 /* REG has register number. */
1992 r = (buf[offset + 2] >> 3) & 7;
1993
1994 /* Check the REX.R bit. */
1995 if ((buf[offset] & 0x4) != 0)
1996 r += 8;
1997
1998 /* Registers in pushq and leaq have to be the same. */
1999 if (reg != r)
2000 return pc;
2001
2002 offset += 5;
2003 }
2004
2005 /* Rigister can't be %rsp nor %rbp. */
2006 if (reg == 4 || reg == 5)
2007 return pc;
2008
2009 /* The next instruction may be "andq $-XXX, %rsp" or
2010 "andl $-XXX, %esp". */
2011 if (buf[offset] != 0x48)
2012 offset--;
2013
2014 if (buf[offset + 2] != 0xe4
2015 || (buf[offset + 1] != 0x81 && buf[offset + 1] != 0x83))
2016 return pc;
2017
2018 offset_and = offset;
2019 offset += buf[offset + 1] == 0x81 ? 7 : 4;
2020
2021 /* Skip optional addr32 prefix. */
2022 if (buf[offset] == 0x67)
2023 offset++;
2024
2025 /* The next instruction has to be "pushq -8(%reg)". */
2026 r = 0;
2027 if (buf[offset] == 0xff)
2028 offset++;
2029 else if ((buf[offset] & 0xf6) == 0x40
2030 && buf[offset + 1] == 0xff)
2031 {
2032 /* Check the REX.B bit. */
2033 if ((buf[offset] & 0x1) != 0)
2034 r = 8;
2035 offset += 2;
2036 }
2037 else
2038 return pc;
2039
2040 /* 8bit -8 is 0xf8. REG must be binary 110 and MOD must be binary
2041 01. */
2042 if (buf[offset + 1] != 0xf8
2043 || (buf[offset] & 0xf8) != 0x70)
2044 return pc;
2045
2046 /* R/M has register. */
2047 r += buf[offset] & 7;
2048
2049 /* Registers in leaq and pushq have to be the same. */
2050 if (reg != r)
2051 return pc;
2052
2053 if (current_pc > pc + offset_and)
2054 cache->saved_sp_reg = amd64_arch_reg_to_regnum (reg);
2055
2056 return min (pc + offset + 2, current_pc);
2057 }
2058
2059 /* Do a limited analysis of the prologue at PC and update CACHE
2060 accordingly. Bail out early if CURRENT_PC is reached. Return the
2061 address where the analysis stopped.
2062
2063 We will handle only functions beginning with:
2064
2065 pushq %rbp 0x55
2066 movq %rsp, %rbp 0x48 0x89 0xe5 (or 0x48 0x8b 0xec)
2067
2068 or (for the X32 ABI):
2069
2070 pushq %rbp 0x55
2071 movl %esp, %ebp 0x89 0xe5 (or 0x8b 0xec)
2072
2073 Any function that doesn't start with one of these sequences will be
2074 assumed to have no prologue and thus no valid frame pointer in
2075 %rbp. */
2076
2077 static CORE_ADDR
2078 amd64_analyze_prologue (struct gdbarch *gdbarch,
2079 CORE_ADDR pc, CORE_ADDR current_pc,
2080 struct amd64_frame_cache *cache)
2081 {
2082 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
2083 /* There are two variations of movq %rsp, %rbp. */
2084 static const gdb_byte mov_rsp_rbp_1[3] = { 0x48, 0x89, 0xe5 };
2085 static const gdb_byte mov_rsp_rbp_2[3] = { 0x48, 0x8b, 0xec };
2086 /* Ditto for movl %esp, %ebp. */
2087 static const gdb_byte mov_esp_ebp_1[2] = { 0x89, 0xe5 };
2088 static const gdb_byte mov_esp_ebp_2[2] = { 0x8b, 0xec };
2089
2090 gdb_byte buf[3];
2091 gdb_byte op;
2092
2093 if (current_pc <= pc)
2094 return current_pc;
2095
2096 if (gdbarch_ptr_bit (gdbarch) == 32)
2097 pc = amd64_x32_analyze_stack_align (pc, current_pc, cache);
2098 else
2099 pc = amd64_analyze_stack_align (pc, current_pc, cache);
2100
2101 op = read_memory_unsigned_integer (pc, 1, byte_order);
2102
2103 if (op == 0x55) /* pushq %rbp */
2104 {
2105 /* Take into account that we've executed the `pushq %rbp' that
2106 starts this instruction sequence. */
2107 cache->saved_regs[AMD64_RBP_REGNUM] = 0;
2108 cache->sp_offset += 8;
2109
2110 /* If that's all, return now. */
2111 if (current_pc <= pc + 1)
2112 return current_pc;
2113
2114 read_memory (pc + 1, buf, 3);
2115
2116 /* Check for `movq %rsp, %rbp'. */
2117 if (memcmp (buf, mov_rsp_rbp_1, 3) == 0
2118 || memcmp (buf, mov_rsp_rbp_2, 3) == 0)
2119 {
2120 /* OK, we actually have a frame. */
2121 cache->frameless_p = 0;
2122 return pc + 4;
2123 }
2124
2125 /* For X32, also check for `movq %esp, %ebp'. */
2126 if (gdbarch_ptr_bit (gdbarch) == 32)
2127 {
2128 if (memcmp (buf, mov_esp_ebp_1, 2) == 0
2129 || memcmp (buf, mov_esp_ebp_2, 2) == 0)
2130 {
2131 /* OK, we actually have a frame. */
2132 cache->frameless_p = 0;
2133 return pc + 3;
2134 }
2135 }
2136
2137 return pc + 1;
2138 }
2139
2140 return pc;
2141 }
2142
2143 /* Work around false termination of prologue - GCC PR debug/48827.
2144
2145 START_PC is the first instruction of a function, PC is its minimal already
2146 determined advanced address. Function returns PC if it has nothing to do.
2147
2148 84 c0 test %al,%al
2149 74 23 je after
2150 <-- here is 0 lines advance - the false prologue end marker.
2151 0f 29 85 70 ff ff ff movaps %xmm0,-0x90(%rbp)
2152 0f 29 4d 80 movaps %xmm1,-0x80(%rbp)
2153 0f 29 55 90 movaps %xmm2,-0x70(%rbp)
2154 0f 29 5d a0 movaps %xmm3,-0x60(%rbp)
2155 0f 29 65 b0 movaps %xmm4,-0x50(%rbp)
2156 0f 29 6d c0 movaps %xmm5,-0x40(%rbp)
2157 0f 29 75 d0 movaps %xmm6,-0x30(%rbp)
2158 0f 29 7d e0 movaps %xmm7,-0x20(%rbp)
2159 after: */
2160
2161 static CORE_ADDR
2162 amd64_skip_xmm_prologue (CORE_ADDR pc, CORE_ADDR start_pc)
2163 {
2164 struct symtab_and_line start_pc_sal, next_sal;
2165 gdb_byte buf[4 + 8 * 7];
2166 int offset, xmmreg;
2167
2168 if (pc == start_pc)
2169 return pc;
2170
2171 start_pc_sal = find_pc_sect_line (start_pc, NULL, 0);
2172 if (start_pc_sal.symtab == NULL
2173 || producer_is_gcc_ge_4 (start_pc_sal.symtab->producer) < 6
2174 || start_pc_sal.pc != start_pc || pc >= start_pc_sal.end)
2175 return pc;
2176
2177 next_sal = find_pc_sect_line (start_pc_sal.end, NULL, 0);
2178 if (next_sal.line != start_pc_sal.line)
2179 return pc;
2180
2181 /* START_PC can be from overlayed memory, ignored here. */
2182 if (target_read_memory (next_sal.pc - 4, buf, sizeof (buf)) != 0)
2183 return pc;
2184
2185 /* test %al,%al */
2186 if (buf[0] != 0x84 || buf[1] != 0xc0)
2187 return pc;
2188 /* je AFTER */
2189 if (buf[2] != 0x74)
2190 return pc;
2191
2192 offset = 4;
2193 for (xmmreg = 0; xmmreg < 8; xmmreg++)
2194 {
2195 /* 0x0f 0x29 0b??000101 movaps %xmmreg?,-0x??(%rbp) */
2196 if (buf[offset] != 0x0f || buf[offset + 1] != 0x29
2197 || (buf[offset + 2] & 0x3f) != (xmmreg << 3 | 0x5))
2198 return pc;
2199
2200 /* 0b01?????? */
2201 if ((buf[offset + 2] & 0xc0) == 0x40)
2202 {
2203 /* 8-bit displacement. */
2204 offset += 4;
2205 }
2206 /* 0b10?????? */
2207 else if ((buf[offset + 2] & 0xc0) == 0x80)
2208 {
2209 /* 32-bit displacement. */
2210 offset += 7;
2211 }
2212 else
2213 return pc;
2214 }
2215
2216 /* je AFTER */
2217 if (offset - 4 != buf[3])
2218 return pc;
2219
2220 return next_sal.end;
2221 }
2222
2223 /* Return PC of first real instruction. */
2224
2225 static CORE_ADDR
2226 amd64_skip_prologue (struct gdbarch *gdbarch, CORE_ADDR start_pc)
2227 {
2228 struct amd64_frame_cache cache;
2229 CORE_ADDR pc;
2230 CORE_ADDR func_addr;
2231
2232 if (find_pc_partial_function (start_pc, NULL, &func_addr, NULL))
2233 {
2234 CORE_ADDR post_prologue_pc
2235 = skip_prologue_using_sal (gdbarch, func_addr);
2236 struct symtab *s = find_pc_symtab (func_addr);
2237
2238 /* Clang always emits a line note before the prologue and another
2239 one after. We trust clang to emit usable line notes. */
2240 if (post_prologue_pc
2241 && (s != NULL
2242 && s->producer != NULL
2243 && strncmp (s->producer, "clang ", sizeof ("clang ") - 1) == 0))
2244 return max (start_pc, post_prologue_pc);
2245 }
2246
2247 amd64_init_frame_cache (&cache);
2248 pc = amd64_analyze_prologue (gdbarch, start_pc, 0xffffffffffffffffLL,
2249 &cache);
2250 if (cache.frameless_p)
2251 return start_pc;
2252
2253 return amd64_skip_xmm_prologue (pc, start_pc);
2254 }
2255 \f
2256
2257 /* Normal frames. */
2258
2259 static void
2260 amd64_frame_cache_1 (struct frame_info *this_frame,
2261 struct amd64_frame_cache *cache)
2262 {
2263 struct gdbarch *gdbarch = get_frame_arch (this_frame);
2264 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
2265 gdb_byte buf[8];
2266 int i;
2267
2268 cache->pc = get_frame_func (this_frame);
2269 if (cache->pc != 0)
2270 amd64_analyze_prologue (gdbarch, cache->pc, get_frame_pc (this_frame),
2271 cache);
2272
2273 if (cache->frameless_p)
2274 {
2275 /* We didn't find a valid frame. If we're at the start of a
2276 function, or somewhere half-way its prologue, the function's
2277 frame probably hasn't been fully setup yet. Try to
2278 reconstruct the base address for the stack frame by looking
2279 at the stack pointer. For truly "frameless" functions this
2280 might work too. */
2281
2282 if (cache->saved_sp_reg != -1)
2283 {
2284 /* Stack pointer has been saved. */
2285 get_frame_register (this_frame, cache->saved_sp_reg, buf);
2286 cache->saved_sp = extract_unsigned_integer (buf, 8, byte_order);
2287
2288 /* We're halfway aligning the stack. */
2289 cache->base = ((cache->saved_sp - 8) & 0xfffffffffffffff0LL) - 8;
2290 cache->saved_regs[AMD64_RIP_REGNUM] = cache->saved_sp - 8;
2291
2292 /* This will be added back below. */
2293 cache->saved_regs[AMD64_RIP_REGNUM] -= cache->base;
2294 }
2295 else
2296 {
2297 get_frame_register (this_frame, AMD64_RSP_REGNUM, buf);
2298 cache->base = extract_unsigned_integer (buf, 8, byte_order)
2299 + cache->sp_offset;
2300 }
2301 }
2302 else
2303 {
2304 get_frame_register (this_frame, AMD64_RBP_REGNUM, buf);
2305 cache->base = extract_unsigned_integer (buf, 8, byte_order);
2306 }
2307
2308 /* Now that we have the base address for the stack frame we can
2309 calculate the value of %rsp in the calling frame. */
2310 cache->saved_sp = cache->base + 16;
2311
2312 /* For normal frames, %rip is stored at 8(%rbp). If we don't have a
2313 frame we find it at the same offset from the reconstructed base
2314 address. If we're halfway aligning the stack, %rip is handled
2315 differently (see above). */
2316 if (!cache->frameless_p || cache->saved_sp_reg == -1)
2317 cache->saved_regs[AMD64_RIP_REGNUM] = 8;
2318
2319 /* Adjust all the saved registers such that they contain addresses
2320 instead of offsets. */
2321 for (i = 0; i < AMD64_NUM_SAVED_REGS; i++)
2322 if (cache->saved_regs[i] != -1)
2323 cache->saved_regs[i] += cache->base;
2324
2325 cache->base_p = 1;
2326 }
2327
2328 static struct amd64_frame_cache *
2329 amd64_frame_cache (struct frame_info *this_frame, void **this_cache)
2330 {
2331 volatile struct gdb_exception ex;
2332 struct amd64_frame_cache *cache;
2333
2334 if (*this_cache)
2335 return *this_cache;
2336
2337 cache = amd64_alloc_frame_cache ();
2338 *this_cache = cache;
2339
2340 TRY_CATCH (ex, RETURN_MASK_ERROR)
2341 {
2342 amd64_frame_cache_1 (this_frame, cache);
2343 }
2344 if (ex.reason < 0 && ex.error != NOT_AVAILABLE_ERROR)
2345 throw_exception (ex);
2346
2347 return cache;
2348 }
2349
2350 static enum unwind_stop_reason
2351 amd64_frame_unwind_stop_reason (struct frame_info *this_frame,
2352 void **this_cache)
2353 {
2354 struct amd64_frame_cache *cache =
2355 amd64_frame_cache (this_frame, this_cache);
2356
2357 if (!cache->base_p)
2358 return UNWIND_UNAVAILABLE;
2359
2360 /* This marks the outermost frame. */
2361 if (cache->base == 0)
2362 return UNWIND_OUTERMOST;
2363
2364 return UNWIND_NO_REASON;
2365 }
2366
2367 static void
2368 amd64_frame_this_id (struct frame_info *this_frame, void **this_cache,
2369 struct frame_id *this_id)
2370 {
2371 struct amd64_frame_cache *cache =
2372 amd64_frame_cache (this_frame, this_cache);
2373
2374 if (!cache->base_p)
2375 return;
2376
2377 /* This marks the outermost frame. */
2378 if (cache->base == 0)
2379 return;
2380
2381 (*this_id) = frame_id_build (cache->base + 16, cache->pc);
2382 }
2383
2384 static struct value *
2385 amd64_frame_prev_register (struct frame_info *this_frame, void **this_cache,
2386 int regnum)
2387 {
2388 struct gdbarch *gdbarch = get_frame_arch (this_frame);
2389 struct amd64_frame_cache *cache =
2390 amd64_frame_cache (this_frame, this_cache);
2391
2392 gdb_assert (regnum >= 0);
2393
2394 if (regnum == gdbarch_sp_regnum (gdbarch) && cache->saved_sp)
2395 return frame_unwind_got_constant (this_frame, regnum, cache->saved_sp);
2396
2397 if (regnum < AMD64_NUM_SAVED_REGS && cache->saved_regs[regnum] != -1)
2398 return frame_unwind_got_memory (this_frame, regnum,
2399 cache->saved_regs[regnum]);
2400
2401 return frame_unwind_got_register (this_frame, regnum, regnum);
2402 }
2403
2404 static const struct frame_unwind amd64_frame_unwind =
2405 {
2406 NORMAL_FRAME,
2407 amd64_frame_unwind_stop_reason,
2408 amd64_frame_this_id,
2409 amd64_frame_prev_register,
2410 NULL,
2411 default_frame_sniffer
2412 };
2413 \f
2414 /* Generate a bytecode expression to get the value of the saved PC. */
2415
2416 static void
2417 amd64_gen_return_address (struct gdbarch *gdbarch,
2418 struct agent_expr *ax, struct axs_value *value,
2419 CORE_ADDR scope)
2420 {
2421 /* The following sequence assumes the traditional use of the base
2422 register. */
2423 ax_reg (ax, AMD64_RBP_REGNUM);
2424 ax_const_l (ax, 8);
2425 ax_simple (ax, aop_add);
2426 value->type = register_type (gdbarch, AMD64_RIP_REGNUM);
2427 value->kind = axs_lvalue_memory;
2428 }
2429 \f
2430
2431 /* Signal trampolines. */
2432
2433 /* FIXME: kettenis/20030419: Perhaps, we can unify the 32-bit and
2434 64-bit variants. This would require using identical frame caches
2435 on both platforms. */
2436
2437 static struct amd64_frame_cache *
2438 amd64_sigtramp_frame_cache (struct frame_info *this_frame, void **this_cache)
2439 {
2440 struct gdbarch *gdbarch = get_frame_arch (this_frame);
2441 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2442 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
2443 volatile struct gdb_exception ex;
2444 struct amd64_frame_cache *cache;
2445 CORE_ADDR addr;
2446 gdb_byte buf[8];
2447 int i;
2448
2449 if (*this_cache)
2450 return *this_cache;
2451
2452 cache = amd64_alloc_frame_cache ();
2453
2454 TRY_CATCH (ex, RETURN_MASK_ERROR)
2455 {
2456 get_frame_register (this_frame, AMD64_RSP_REGNUM, buf);
2457 cache->base = extract_unsigned_integer (buf, 8, byte_order) - 8;
2458
2459 addr = tdep->sigcontext_addr (this_frame);
2460 gdb_assert (tdep->sc_reg_offset);
2461 gdb_assert (tdep->sc_num_regs <= AMD64_NUM_SAVED_REGS);
2462 for (i = 0; i < tdep->sc_num_regs; i++)
2463 if (tdep->sc_reg_offset[i] != -1)
2464 cache->saved_regs[i] = addr + tdep->sc_reg_offset[i];
2465
2466 cache->base_p = 1;
2467 }
2468 if (ex.reason < 0 && ex.error != NOT_AVAILABLE_ERROR)
2469 throw_exception (ex);
2470
2471 *this_cache = cache;
2472 return cache;
2473 }
2474
2475 static enum unwind_stop_reason
2476 amd64_sigtramp_frame_unwind_stop_reason (struct frame_info *this_frame,
2477 void **this_cache)
2478 {
2479 struct amd64_frame_cache *cache =
2480 amd64_sigtramp_frame_cache (this_frame, this_cache);
2481
2482 if (!cache->base_p)
2483 return UNWIND_UNAVAILABLE;
2484
2485 return UNWIND_NO_REASON;
2486 }
2487
2488 static void
2489 amd64_sigtramp_frame_this_id (struct frame_info *this_frame,
2490 void **this_cache, struct frame_id *this_id)
2491 {
2492 struct amd64_frame_cache *cache =
2493 amd64_sigtramp_frame_cache (this_frame, this_cache);
2494
2495 if (!cache->base_p)
2496 return;
2497
2498 (*this_id) = frame_id_build (cache->base + 16, get_frame_pc (this_frame));
2499 }
2500
2501 static struct value *
2502 amd64_sigtramp_frame_prev_register (struct frame_info *this_frame,
2503 void **this_cache, int regnum)
2504 {
2505 /* Make sure we've initialized the cache. */
2506 amd64_sigtramp_frame_cache (this_frame, this_cache);
2507
2508 return amd64_frame_prev_register (this_frame, this_cache, regnum);
2509 }
2510
2511 static int
2512 amd64_sigtramp_frame_sniffer (const struct frame_unwind *self,
2513 struct frame_info *this_frame,
2514 void **this_cache)
2515 {
2516 struct gdbarch_tdep *tdep = gdbarch_tdep (get_frame_arch (this_frame));
2517
2518 /* We shouldn't even bother if we don't have a sigcontext_addr
2519 handler. */
2520 if (tdep->sigcontext_addr == NULL)
2521 return 0;
2522
2523 if (tdep->sigtramp_p != NULL)
2524 {
2525 if (tdep->sigtramp_p (this_frame))
2526 return 1;
2527 }
2528
2529 if (tdep->sigtramp_start != 0)
2530 {
2531 CORE_ADDR pc = get_frame_pc (this_frame);
2532
2533 gdb_assert (tdep->sigtramp_end != 0);
2534 if (pc >= tdep->sigtramp_start && pc < tdep->sigtramp_end)
2535 return 1;
2536 }
2537
2538 return 0;
2539 }
2540
2541 static const struct frame_unwind amd64_sigtramp_frame_unwind =
2542 {
2543 SIGTRAMP_FRAME,
2544 amd64_sigtramp_frame_unwind_stop_reason,
2545 amd64_sigtramp_frame_this_id,
2546 amd64_sigtramp_frame_prev_register,
2547 NULL,
2548 amd64_sigtramp_frame_sniffer
2549 };
2550 \f
2551
2552 static CORE_ADDR
2553 amd64_frame_base_address (struct frame_info *this_frame, void **this_cache)
2554 {
2555 struct amd64_frame_cache *cache =
2556 amd64_frame_cache (this_frame, this_cache);
2557
2558 return cache->base;
2559 }
2560
2561 static const struct frame_base amd64_frame_base =
2562 {
2563 &amd64_frame_unwind,
2564 amd64_frame_base_address,
2565 amd64_frame_base_address,
2566 amd64_frame_base_address
2567 };
2568
2569 /* Normal frames, but in a function epilogue. */
2570
2571 /* The epilogue is defined here as the 'ret' instruction, which will
2572 follow any instruction such as 'leave' or 'pop %ebp' that destroys
2573 the function's stack frame. */
2574
2575 static int
2576 amd64_in_function_epilogue_p (struct gdbarch *gdbarch, CORE_ADDR pc)
2577 {
2578 gdb_byte insn;
2579 struct symtab *symtab;
2580
2581 symtab = find_pc_symtab (pc);
2582 if (symtab && symtab->epilogue_unwind_valid)
2583 return 0;
2584
2585 if (target_read_memory (pc, &insn, 1))
2586 return 0; /* Can't read memory at pc. */
2587
2588 if (insn != 0xc3) /* 'ret' instruction. */
2589 return 0;
2590
2591 return 1;
2592 }
2593
2594 static int
2595 amd64_epilogue_frame_sniffer (const struct frame_unwind *self,
2596 struct frame_info *this_frame,
2597 void **this_prologue_cache)
2598 {
2599 if (frame_relative_level (this_frame) == 0)
2600 return amd64_in_function_epilogue_p (get_frame_arch (this_frame),
2601 get_frame_pc (this_frame));
2602 else
2603 return 0;
2604 }
2605
2606 static struct amd64_frame_cache *
2607 amd64_epilogue_frame_cache (struct frame_info *this_frame, void **this_cache)
2608 {
2609 struct gdbarch *gdbarch = get_frame_arch (this_frame);
2610 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
2611 volatile struct gdb_exception ex;
2612 struct amd64_frame_cache *cache;
2613 gdb_byte buf[8];
2614
2615 if (*this_cache)
2616 return *this_cache;
2617
2618 cache = amd64_alloc_frame_cache ();
2619 *this_cache = cache;
2620
2621 TRY_CATCH (ex, RETURN_MASK_ERROR)
2622 {
2623 /* Cache base will be %esp plus cache->sp_offset (-8). */
2624 get_frame_register (this_frame, AMD64_RSP_REGNUM, buf);
2625 cache->base = extract_unsigned_integer (buf, 8,
2626 byte_order) + cache->sp_offset;
2627
2628 /* Cache pc will be the frame func. */
2629 cache->pc = get_frame_pc (this_frame);
2630
2631 /* The saved %esp will be at cache->base plus 16. */
2632 cache->saved_sp = cache->base + 16;
2633
2634 /* The saved %eip will be at cache->base plus 8. */
2635 cache->saved_regs[AMD64_RIP_REGNUM] = cache->base + 8;
2636
2637 cache->base_p = 1;
2638 }
2639 if (ex.reason < 0 && ex.error != NOT_AVAILABLE_ERROR)
2640 throw_exception (ex);
2641
2642 return cache;
2643 }
2644
2645 static enum unwind_stop_reason
2646 amd64_epilogue_frame_unwind_stop_reason (struct frame_info *this_frame,
2647 void **this_cache)
2648 {
2649 struct amd64_frame_cache *cache
2650 = amd64_epilogue_frame_cache (this_frame, this_cache);
2651
2652 if (!cache->base_p)
2653 return UNWIND_UNAVAILABLE;
2654
2655 return UNWIND_NO_REASON;
2656 }
2657
2658 static void
2659 amd64_epilogue_frame_this_id (struct frame_info *this_frame,
2660 void **this_cache,
2661 struct frame_id *this_id)
2662 {
2663 struct amd64_frame_cache *cache = amd64_epilogue_frame_cache (this_frame,
2664 this_cache);
2665
2666 if (!cache->base_p)
2667 return;
2668
2669 (*this_id) = frame_id_build (cache->base + 8, cache->pc);
2670 }
2671
2672 static const struct frame_unwind amd64_epilogue_frame_unwind =
2673 {
2674 NORMAL_FRAME,
2675 amd64_epilogue_frame_unwind_stop_reason,
2676 amd64_epilogue_frame_this_id,
2677 amd64_frame_prev_register,
2678 NULL,
2679 amd64_epilogue_frame_sniffer
2680 };
2681
2682 static struct frame_id
2683 amd64_dummy_id (struct gdbarch *gdbarch, struct frame_info *this_frame)
2684 {
2685 CORE_ADDR fp;
2686
2687 fp = get_frame_register_unsigned (this_frame, AMD64_RBP_REGNUM);
2688
2689 return frame_id_build (fp + 16, get_frame_pc (this_frame));
2690 }
2691
2692 /* 16 byte align the SP per frame requirements. */
2693
2694 static CORE_ADDR
2695 amd64_frame_align (struct gdbarch *gdbarch, CORE_ADDR sp)
2696 {
2697 return sp & -(CORE_ADDR)16;
2698 }
2699 \f
2700
2701 /* Supply register REGNUM from the buffer specified by FPREGS and LEN
2702 in the floating-point register set REGSET to register cache
2703 REGCACHE. If REGNUM is -1, do this for all registers in REGSET. */
2704
2705 static void
2706 amd64_supply_fpregset (const struct regset *regset, struct regcache *regcache,
2707 int regnum, const void *fpregs, size_t len)
2708 {
2709 const struct gdbarch_tdep *tdep = gdbarch_tdep (regset->arch);
2710
2711 gdb_assert (len == tdep->sizeof_fpregset);
2712 amd64_supply_fxsave (regcache, regnum, fpregs);
2713 }
2714
2715 /* Collect register REGNUM from the register cache REGCACHE and store
2716 it in the buffer specified by FPREGS and LEN as described by the
2717 floating-point register set REGSET. If REGNUM is -1, do this for
2718 all registers in REGSET. */
2719
2720 static void
2721 amd64_collect_fpregset (const struct regset *regset,
2722 const struct regcache *regcache,
2723 int regnum, void *fpregs, size_t len)
2724 {
2725 const struct gdbarch_tdep *tdep = gdbarch_tdep (regset->arch);
2726
2727 gdb_assert (len == tdep->sizeof_fpregset);
2728 amd64_collect_fxsave (regcache, regnum, fpregs);
2729 }
2730
2731 /* Similar to amd64_supply_fpregset, but use XSAVE extended state. */
2732
2733 static void
2734 amd64_supply_xstateregset (const struct regset *regset,
2735 struct regcache *regcache, int regnum,
2736 const void *xstateregs, size_t len)
2737 {
2738 amd64_supply_xsave (regcache, regnum, xstateregs);
2739 }
2740
2741 /* Similar to amd64_collect_fpregset, but use XSAVE extended state. */
2742
2743 static void
2744 amd64_collect_xstateregset (const struct regset *regset,
2745 const struct regcache *regcache,
2746 int regnum, void *xstateregs, size_t len)
2747 {
2748 amd64_collect_xsave (regcache, regnum, xstateregs, 1);
2749 }
2750
2751 /* Return the appropriate register set for the core section identified
2752 by SECT_NAME and SECT_SIZE. */
2753
2754 static const struct regset *
2755 amd64_regset_from_core_section (struct gdbarch *gdbarch,
2756 const char *sect_name, size_t sect_size)
2757 {
2758 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2759
2760 if (strcmp (sect_name, ".reg2") == 0 && sect_size == tdep->sizeof_fpregset)
2761 {
2762 if (tdep->fpregset == NULL)
2763 tdep->fpregset = regset_alloc (gdbarch, amd64_supply_fpregset,
2764 amd64_collect_fpregset);
2765
2766 return tdep->fpregset;
2767 }
2768
2769 if (strcmp (sect_name, ".reg-xstate") == 0)
2770 {
2771 if (tdep->xstateregset == NULL)
2772 tdep->xstateregset = regset_alloc (gdbarch,
2773 amd64_supply_xstateregset,
2774 amd64_collect_xstateregset);
2775
2776 return tdep->xstateregset;
2777 }
2778
2779 return i386_regset_from_core_section (gdbarch, sect_name, sect_size);
2780 }
2781 \f
2782
2783 /* Figure out where the longjmp will land. Slurp the jmp_buf out of
2784 %rdi. We expect its value to be a pointer to the jmp_buf structure
2785 from which we extract the address that we will land at. This
2786 address is copied into PC. This routine returns non-zero on
2787 success. */
2788
2789 static int
2790 amd64_get_longjmp_target (struct frame_info *frame, CORE_ADDR *pc)
2791 {
2792 gdb_byte buf[8];
2793 CORE_ADDR jb_addr;
2794 struct gdbarch *gdbarch = get_frame_arch (frame);
2795 int jb_pc_offset = gdbarch_tdep (gdbarch)->jb_pc_offset;
2796 int len = TYPE_LENGTH (builtin_type (gdbarch)->builtin_func_ptr);
2797
2798 /* If JB_PC_OFFSET is -1, we have no way to find out where the
2799 longjmp will land. */
2800 if (jb_pc_offset == -1)
2801 return 0;
2802
2803 get_frame_register (frame, AMD64_RDI_REGNUM, buf);
2804 jb_addr= extract_typed_address
2805 (buf, builtin_type (gdbarch)->builtin_data_ptr);
2806 if (target_read_memory (jb_addr + jb_pc_offset, buf, len))
2807 return 0;
2808
2809 *pc = extract_typed_address (buf, builtin_type (gdbarch)->builtin_func_ptr);
2810
2811 return 1;
2812 }
2813
2814 static const int amd64_record_regmap[] =
2815 {
2816 AMD64_RAX_REGNUM, AMD64_RCX_REGNUM, AMD64_RDX_REGNUM, AMD64_RBX_REGNUM,
2817 AMD64_RSP_REGNUM, AMD64_RBP_REGNUM, AMD64_RSI_REGNUM, AMD64_RDI_REGNUM,
2818 AMD64_R8_REGNUM, AMD64_R9_REGNUM, AMD64_R10_REGNUM, AMD64_R11_REGNUM,
2819 AMD64_R12_REGNUM, AMD64_R13_REGNUM, AMD64_R14_REGNUM, AMD64_R15_REGNUM,
2820 AMD64_RIP_REGNUM, AMD64_EFLAGS_REGNUM, AMD64_CS_REGNUM, AMD64_SS_REGNUM,
2821 AMD64_DS_REGNUM, AMD64_ES_REGNUM, AMD64_FS_REGNUM, AMD64_GS_REGNUM
2822 };
2823
2824 void
2825 amd64_init_abi (struct gdbarch_info info, struct gdbarch *gdbarch)
2826 {
2827 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2828 const struct target_desc *tdesc = info.target_desc;
2829
2830 /* AMD64 generally uses `fxsave' instead of `fsave' for saving its
2831 floating-point registers. */
2832 tdep->sizeof_fpregset = I387_SIZEOF_FXSAVE;
2833
2834 if (! tdesc_has_registers (tdesc))
2835 tdesc = tdesc_amd64;
2836 tdep->tdesc = tdesc;
2837
2838 tdep->num_core_regs = AMD64_NUM_GREGS + I387_NUM_REGS;
2839 tdep->register_names = amd64_register_names;
2840
2841 if (tdesc_find_feature (tdesc, "org.gnu.gdb.i386.avx") != NULL)
2842 {
2843 tdep->ymmh_register_names = amd64_ymmh_names;
2844 tdep->num_ymm_regs = 16;
2845 tdep->ymm0h_regnum = AMD64_YMM0H_REGNUM;
2846 }
2847
2848 tdep->num_byte_regs = 20;
2849 tdep->num_word_regs = 16;
2850 tdep->num_dword_regs = 16;
2851 /* Avoid wiring in the MMX registers for now. */
2852 tdep->num_mmx_regs = 0;
2853
2854 set_gdbarch_pseudo_register_read_value (gdbarch,
2855 amd64_pseudo_register_read_value);
2856 set_gdbarch_pseudo_register_write (gdbarch,
2857 amd64_pseudo_register_write);
2858
2859 set_tdesc_pseudo_register_name (gdbarch, amd64_pseudo_register_name);
2860
2861 /* AMD64 has an FPU and 16 SSE registers. */
2862 tdep->st0_regnum = AMD64_ST0_REGNUM;
2863 tdep->num_xmm_regs = 16;
2864
2865 /* This is what all the fuss is about. */
2866 set_gdbarch_long_bit (gdbarch, 64);
2867 set_gdbarch_long_long_bit (gdbarch, 64);
2868 set_gdbarch_ptr_bit (gdbarch, 64);
2869
2870 /* In contrast to the i386, on AMD64 a `long double' actually takes
2871 up 128 bits, even though it's still based on the i387 extended
2872 floating-point format which has only 80 significant bits. */
2873 set_gdbarch_long_double_bit (gdbarch, 128);
2874
2875 set_gdbarch_num_regs (gdbarch, AMD64_NUM_REGS);
2876
2877 /* Register numbers of various important registers. */
2878 set_gdbarch_sp_regnum (gdbarch, AMD64_RSP_REGNUM); /* %rsp */
2879 set_gdbarch_pc_regnum (gdbarch, AMD64_RIP_REGNUM); /* %rip */
2880 set_gdbarch_ps_regnum (gdbarch, AMD64_EFLAGS_REGNUM); /* %eflags */
2881 set_gdbarch_fp0_regnum (gdbarch, AMD64_ST0_REGNUM); /* %st(0) */
2882
2883 /* The "default" register numbering scheme for AMD64 is referred to
2884 as the "DWARF Register Number Mapping" in the System V psABI.
2885 The preferred debugging format for all known AMD64 targets is
2886 actually DWARF2, and GCC doesn't seem to support DWARF (that is
2887 DWARF-1), but we provide the same mapping just in case. This
2888 mapping is also used for stabs, which GCC does support. */
2889 set_gdbarch_stab_reg_to_regnum (gdbarch, amd64_dwarf_reg_to_regnum);
2890 set_gdbarch_dwarf2_reg_to_regnum (gdbarch, amd64_dwarf_reg_to_regnum);
2891
2892 /* We don't override SDB_REG_RO_REGNUM, since COFF doesn't seem to
2893 be in use on any of the supported AMD64 targets. */
2894
2895 /* Call dummy code. */
2896 set_gdbarch_push_dummy_call (gdbarch, amd64_push_dummy_call);
2897 set_gdbarch_frame_align (gdbarch, amd64_frame_align);
2898 set_gdbarch_frame_red_zone_size (gdbarch, 128);
2899
2900 set_gdbarch_convert_register_p (gdbarch, i387_convert_register_p);
2901 set_gdbarch_register_to_value (gdbarch, i387_register_to_value);
2902 set_gdbarch_value_to_register (gdbarch, i387_value_to_register);
2903
2904 set_gdbarch_return_value (gdbarch, amd64_return_value);
2905
2906 set_gdbarch_skip_prologue (gdbarch, amd64_skip_prologue);
2907
2908 tdep->record_regmap = amd64_record_regmap;
2909
2910 set_gdbarch_dummy_id (gdbarch, amd64_dummy_id);
2911
2912 /* Hook the function epilogue frame unwinder. This unwinder is
2913 appended to the list first, so that it supercedes the other
2914 unwinders in function epilogues. */
2915 frame_unwind_prepend_unwinder (gdbarch, &amd64_epilogue_frame_unwind);
2916
2917 /* Hook the prologue-based frame unwinders. */
2918 frame_unwind_append_unwinder (gdbarch, &amd64_sigtramp_frame_unwind);
2919 frame_unwind_append_unwinder (gdbarch, &amd64_frame_unwind);
2920 frame_base_set_default (gdbarch, &amd64_frame_base);
2921
2922 /* If we have a register mapping, enable the generic core file support. */
2923 if (tdep->gregset_reg_offset)
2924 set_gdbarch_regset_from_core_section (gdbarch,
2925 amd64_regset_from_core_section);
2926
2927 set_gdbarch_get_longjmp_target (gdbarch, amd64_get_longjmp_target);
2928
2929 set_gdbarch_relocate_instruction (gdbarch, amd64_relocate_instruction);
2930
2931 set_gdbarch_gen_return_address (gdbarch, amd64_gen_return_address);
2932
2933 /* SystemTap variables and functions. */
2934 set_gdbarch_stap_integer_prefix (gdbarch, "$");
2935 set_gdbarch_stap_register_prefix (gdbarch, "%");
2936 set_gdbarch_stap_register_indirection_prefix (gdbarch, "(");
2937 set_gdbarch_stap_register_indirection_suffix (gdbarch, ")");
2938 set_gdbarch_stap_is_single_operand (gdbarch,
2939 i386_stap_is_single_operand);
2940 set_gdbarch_stap_parse_special_token (gdbarch,
2941 i386_stap_parse_special_token);
2942 }
2943 \f
2944
2945 static struct type *
2946 amd64_x32_pseudo_register_type (struct gdbarch *gdbarch, int regnum)
2947 {
2948 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2949
2950 switch (regnum - tdep->eax_regnum)
2951 {
2952 case AMD64_RBP_REGNUM: /* %ebp */
2953 case AMD64_RSP_REGNUM: /* %esp */
2954 return builtin_type (gdbarch)->builtin_data_ptr;
2955 case AMD64_RIP_REGNUM: /* %eip */
2956 return builtin_type (gdbarch)->builtin_func_ptr;
2957 }
2958
2959 return i386_pseudo_register_type (gdbarch, regnum);
2960 }
2961
2962 void
2963 amd64_x32_init_abi (struct gdbarch_info info, struct gdbarch *gdbarch)
2964 {
2965 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2966 const struct target_desc *tdesc = info.target_desc;
2967
2968 amd64_init_abi (info, gdbarch);
2969
2970 if (! tdesc_has_registers (tdesc))
2971 tdesc = tdesc_x32;
2972 tdep->tdesc = tdesc;
2973
2974 tdep->num_dword_regs = 17;
2975 set_tdesc_pseudo_register_type (gdbarch, amd64_x32_pseudo_register_type);
2976
2977 set_gdbarch_long_bit (gdbarch, 32);
2978 set_gdbarch_ptr_bit (gdbarch, 32);
2979 }
2980
2981 /* Provide a prototype to silence -Wmissing-prototypes. */
2982 void _initialize_amd64_tdep (void);
2983
2984 void
2985 _initialize_amd64_tdep (void)
2986 {
2987 initialize_tdesc_amd64 ();
2988 initialize_tdesc_amd64_avx ();
2989 initialize_tdesc_x32 ();
2990 initialize_tdesc_x32_avx ();
2991 }
2992 \f
2993
2994 /* The 64-bit FXSAVE format differs from the 32-bit format in the
2995 sense that the instruction pointer and data pointer are simply
2996 64-bit offsets into the code segment and the data segment instead
2997 of a selector offset pair. The functions below store the upper 32
2998 bits of these pointers (instead of just the 16-bits of the segment
2999 selector). */
3000
3001 /* Fill register REGNUM in REGCACHE with the appropriate
3002 floating-point or SSE register value from *FXSAVE. If REGNUM is
3003 -1, do this for all registers. This function masks off any of the
3004 reserved bits in *FXSAVE. */
3005
3006 void
3007 amd64_supply_fxsave (struct regcache *regcache, int regnum,
3008 const void *fxsave)
3009 {
3010 struct gdbarch *gdbarch = get_regcache_arch (regcache);
3011 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3012
3013 i387_supply_fxsave (regcache, regnum, fxsave);
3014
3015 if (fxsave
3016 && gdbarch_bfd_arch_info (gdbarch)->bits_per_word == 64)
3017 {
3018 const gdb_byte *regs = fxsave;
3019
3020 if (regnum == -1 || regnum == I387_FISEG_REGNUM (tdep))
3021 regcache_raw_supply (regcache, I387_FISEG_REGNUM (tdep), regs + 12);
3022 if (regnum == -1 || regnum == I387_FOSEG_REGNUM (tdep))
3023 regcache_raw_supply (regcache, I387_FOSEG_REGNUM (tdep), regs + 20);
3024 }
3025 }
3026
3027 /* Similar to amd64_supply_fxsave, but use XSAVE extended state. */
3028
3029 void
3030 amd64_supply_xsave (struct regcache *regcache, int regnum,
3031 const void *xsave)
3032 {
3033 struct gdbarch *gdbarch = get_regcache_arch (regcache);
3034 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3035
3036 i387_supply_xsave (regcache, regnum, xsave);
3037
3038 if (xsave
3039 && gdbarch_bfd_arch_info (gdbarch)->bits_per_word == 64)
3040 {
3041 const gdb_byte *regs = xsave;
3042
3043 if (regnum == -1 || regnum == I387_FISEG_REGNUM (tdep))
3044 regcache_raw_supply (regcache, I387_FISEG_REGNUM (tdep),
3045 regs + 12);
3046 if (regnum == -1 || regnum == I387_FOSEG_REGNUM (tdep))
3047 regcache_raw_supply (regcache, I387_FOSEG_REGNUM (tdep),
3048 regs + 20);
3049 }
3050 }
3051
3052 /* Fill register REGNUM (if it is a floating-point or SSE register) in
3053 *FXSAVE with the value from REGCACHE. If REGNUM is -1, do this for
3054 all registers. This function doesn't touch any of the reserved
3055 bits in *FXSAVE. */
3056
3057 void
3058 amd64_collect_fxsave (const struct regcache *regcache, int regnum,
3059 void *fxsave)
3060 {
3061 struct gdbarch *gdbarch = get_regcache_arch (regcache);
3062 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3063 gdb_byte *regs = fxsave;
3064
3065 i387_collect_fxsave (regcache, regnum, fxsave);
3066
3067 if (gdbarch_bfd_arch_info (gdbarch)->bits_per_word == 64)
3068 {
3069 if (regnum == -1 || regnum == I387_FISEG_REGNUM (tdep))
3070 regcache_raw_collect (regcache, I387_FISEG_REGNUM (tdep), regs + 12);
3071 if (regnum == -1 || regnum == I387_FOSEG_REGNUM (tdep))
3072 regcache_raw_collect (regcache, I387_FOSEG_REGNUM (tdep), regs + 20);
3073 }
3074 }
3075
3076 /* Similar to amd64_collect_fxsave, but use XSAVE extended state. */
3077
3078 void
3079 amd64_collect_xsave (const struct regcache *regcache, int regnum,
3080 void *xsave, int gcore)
3081 {
3082 struct gdbarch *gdbarch = get_regcache_arch (regcache);
3083 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3084 gdb_byte *regs = xsave;
3085
3086 i387_collect_xsave (regcache, regnum, xsave, gcore);
3087
3088 if (gdbarch_bfd_arch_info (gdbarch)->bits_per_word == 64)
3089 {
3090 if (regnum == -1 || regnum == I387_FISEG_REGNUM (tdep))
3091 regcache_raw_collect (regcache, I387_FISEG_REGNUM (tdep),
3092 regs + 12);
3093 if (regnum == -1 || regnum == I387_FOSEG_REGNUM (tdep))
3094 regcache_raw_collect (regcache, I387_FOSEG_REGNUM (tdep),
3095 regs + 20);
3096 }
3097 }
This page took 0.093831 seconds and 4 git commands to generate.