54249265a71ec8a6f02e24312198b0775d7cb188
[deliverable/binutils-gdb.git] / gdb / amd64-tdep.c
1 /* Target-dependent code for AMD64.
2
3 Copyright (C) 2001-2012 Free Software Foundation, Inc.
4
5 Contributed by Jiri Smid, SuSE Labs.
6
7 This file is part of GDB.
8
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 3 of the License, or
12 (at your option) any later version.
13
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
18
19 You should have received a copy of the GNU General Public License
20 along with this program. If not, see <http://www.gnu.org/licenses/>. */
21
22 #include "defs.h"
23 #include "opcode/i386.h"
24 #include "dis-asm.h"
25 #include "arch-utils.h"
26 #include "block.h"
27 #include "dummy-frame.h"
28 #include "frame.h"
29 #include "frame-base.h"
30 #include "frame-unwind.h"
31 #include "inferior.h"
32 #include "gdbcmd.h"
33 #include "gdbcore.h"
34 #include "objfiles.h"
35 #include "regcache.h"
36 #include "regset.h"
37 #include "symfile.h"
38 #include "disasm.h"
39 #include "gdb_assert.h"
40 #include "exceptions.h"
41 #include "amd64-tdep.h"
42 #include "i387-tdep.h"
43
44 #include "features/i386/amd64.c"
45 #include "features/i386/amd64-avx.c"
46 #include "features/i386/x32.c"
47 #include "features/i386/x32-avx.c"
48
49 #include "ax.h"
50 #include "ax-gdb.h"
51
52 /* Note that the AMD64 architecture was previously known as x86-64.
53 The latter is (forever) engraved into the canonical system name as
54 returned by config.guess, and used as the name for the AMD64 port
55 of GNU/Linux. The BSD's have renamed their ports to amd64; they
56 don't like to shout. For GDB we prefer the amd64_-prefix over the
57 x86_64_-prefix since it's so much easier to type. */
58
59 /* Register information. */
60
61 static const char *amd64_register_names[] =
62 {
63 "rax", "rbx", "rcx", "rdx", "rsi", "rdi", "rbp", "rsp",
64
65 /* %r8 is indeed register number 8. */
66 "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15",
67 "rip", "eflags", "cs", "ss", "ds", "es", "fs", "gs",
68
69 /* %st0 is register number 24. */
70 "st0", "st1", "st2", "st3", "st4", "st5", "st6", "st7",
71 "fctrl", "fstat", "ftag", "fiseg", "fioff", "foseg", "fooff", "fop",
72
73 /* %xmm0 is register number 40. */
74 "xmm0", "xmm1", "xmm2", "xmm3", "xmm4", "xmm5", "xmm6", "xmm7",
75 "xmm8", "xmm9", "xmm10", "xmm11", "xmm12", "xmm13", "xmm14", "xmm15",
76 "mxcsr",
77 };
78
79 static const char *amd64_ymm_names[] =
80 {
81 "ymm0", "ymm1", "ymm2", "ymm3",
82 "ymm4", "ymm5", "ymm6", "ymm7",
83 "ymm8", "ymm9", "ymm10", "ymm11",
84 "ymm12", "ymm13", "ymm14", "ymm15"
85 };
86
87 static const char *amd64_ymmh_names[] =
88 {
89 "ymm0h", "ymm1h", "ymm2h", "ymm3h",
90 "ymm4h", "ymm5h", "ymm6h", "ymm7h",
91 "ymm8h", "ymm9h", "ymm10h", "ymm11h",
92 "ymm12h", "ymm13h", "ymm14h", "ymm15h"
93 };
94
95 /* The registers used to pass integer arguments during a function call. */
96 static int amd64_dummy_call_integer_regs[] =
97 {
98 AMD64_RDI_REGNUM, /* %rdi */
99 AMD64_RSI_REGNUM, /* %rsi */
100 AMD64_RDX_REGNUM, /* %rdx */
101 AMD64_RCX_REGNUM, /* %rcx */
102 8, /* %r8 */
103 9 /* %r9 */
104 };
105
106 /* DWARF Register Number Mapping as defined in the System V psABI,
107 section 3.6. */
108
109 static int amd64_dwarf_regmap[] =
110 {
111 /* General Purpose Registers RAX, RDX, RCX, RBX, RSI, RDI. */
112 AMD64_RAX_REGNUM, AMD64_RDX_REGNUM,
113 AMD64_RCX_REGNUM, AMD64_RBX_REGNUM,
114 AMD64_RSI_REGNUM, AMD64_RDI_REGNUM,
115
116 /* Frame Pointer Register RBP. */
117 AMD64_RBP_REGNUM,
118
119 /* Stack Pointer Register RSP. */
120 AMD64_RSP_REGNUM,
121
122 /* Extended Integer Registers 8 - 15. */
123 8, 9, 10, 11, 12, 13, 14, 15,
124
125 /* Return Address RA. Mapped to RIP. */
126 AMD64_RIP_REGNUM,
127
128 /* SSE Registers 0 - 7. */
129 AMD64_XMM0_REGNUM + 0, AMD64_XMM1_REGNUM,
130 AMD64_XMM0_REGNUM + 2, AMD64_XMM0_REGNUM + 3,
131 AMD64_XMM0_REGNUM + 4, AMD64_XMM0_REGNUM + 5,
132 AMD64_XMM0_REGNUM + 6, AMD64_XMM0_REGNUM + 7,
133
134 /* Extended SSE Registers 8 - 15. */
135 AMD64_XMM0_REGNUM + 8, AMD64_XMM0_REGNUM + 9,
136 AMD64_XMM0_REGNUM + 10, AMD64_XMM0_REGNUM + 11,
137 AMD64_XMM0_REGNUM + 12, AMD64_XMM0_REGNUM + 13,
138 AMD64_XMM0_REGNUM + 14, AMD64_XMM0_REGNUM + 15,
139
140 /* Floating Point Registers 0-7. */
141 AMD64_ST0_REGNUM + 0, AMD64_ST0_REGNUM + 1,
142 AMD64_ST0_REGNUM + 2, AMD64_ST0_REGNUM + 3,
143 AMD64_ST0_REGNUM + 4, AMD64_ST0_REGNUM + 5,
144 AMD64_ST0_REGNUM + 6, AMD64_ST0_REGNUM + 7,
145
146 /* Control and Status Flags Register. */
147 AMD64_EFLAGS_REGNUM,
148
149 /* Selector Registers. */
150 AMD64_ES_REGNUM,
151 AMD64_CS_REGNUM,
152 AMD64_SS_REGNUM,
153 AMD64_DS_REGNUM,
154 AMD64_FS_REGNUM,
155 AMD64_GS_REGNUM,
156 -1,
157 -1,
158
159 /* Segment Base Address Registers. */
160 -1,
161 -1,
162 -1,
163 -1,
164
165 /* Special Selector Registers. */
166 -1,
167 -1,
168
169 /* Floating Point Control Registers. */
170 AMD64_MXCSR_REGNUM,
171 AMD64_FCTRL_REGNUM,
172 AMD64_FSTAT_REGNUM
173 };
174
175 static const int amd64_dwarf_regmap_len =
176 (sizeof (amd64_dwarf_regmap) / sizeof (amd64_dwarf_regmap[0]));
177
178 /* Convert DWARF register number REG to the appropriate register
179 number used by GDB. */
180
181 static int
182 amd64_dwarf_reg_to_regnum (struct gdbarch *gdbarch, int reg)
183 {
184 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
185 int ymm0_regnum = tdep->ymm0_regnum;
186 int regnum = -1;
187
188 if (reg >= 0 && reg < amd64_dwarf_regmap_len)
189 regnum = amd64_dwarf_regmap[reg];
190
191 if (regnum == -1)
192 warning (_("Unmapped DWARF Register #%d encountered."), reg);
193 else if (ymm0_regnum >= 0
194 && i386_xmm_regnum_p (gdbarch, regnum))
195 regnum += ymm0_regnum - I387_XMM0_REGNUM (tdep);
196
197 return regnum;
198 }
199
200 /* Map architectural register numbers to gdb register numbers. */
201
202 static const int amd64_arch_regmap[16] =
203 {
204 AMD64_RAX_REGNUM, /* %rax */
205 AMD64_RCX_REGNUM, /* %rcx */
206 AMD64_RDX_REGNUM, /* %rdx */
207 AMD64_RBX_REGNUM, /* %rbx */
208 AMD64_RSP_REGNUM, /* %rsp */
209 AMD64_RBP_REGNUM, /* %rbp */
210 AMD64_RSI_REGNUM, /* %rsi */
211 AMD64_RDI_REGNUM, /* %rdi */
212 AMD64_R8_REGNUM, /* %r8 */
213 AMD64_R9_REGNUM, /* %r9 */
214 AMD64_R10_REGNUM, /* %r10 */
215 AMD64_R11_REGNUM, /* %r11 */
216 AMD64_R12_REGNUM, /* %r12 */
217 AMD64_R13_REGNUM, /* %r13 */
218 AMD64_R14_REGNUM, /* %r14 */
219 AMD64_R15_REGNUM /* %r15 */
220 };
221
222 static const int amd64_arch_regmap_len =
223 (sizeof (amd64_arch_regmap) / sizeof (amd64_arch_regmap[0]));
224
225 /* Convert architectural register number REG to the appropriate register
226 number used by GDB. */
227
228 static int
229 amd64_arch_reg_to_regnum (int reg)
230 {
231 gdb_assert (reg >= 0 && reg < amd64_arch_regmap_len);
232
233 return amd64_arch_regmap[reg];
234 }
235
236 /* Register names for byte pseudo-registers. */
237
238 static const char *amd64_byte_names[] =
239 {
240 "al", "bl", "cl", "dl", "sil", "dil", "bpl", "spl",
241 "r8l", "r9l", "r10l", "r11l", "r12l", "r13l", "r14l", "r15l",
242 "ah", "bh", "ch", "dh"
243 };
244
245 /* Number of lower byte registers. */
246 #define AMD64_NUM_LOWER_BYTE_REGS 16
247
248 /* Register names for word pseudo-registers. */
249
250 static const char *amd64_word_names[] =
251 {
252 "ax", "bx", "cx", "dx", "si", "di", "bp", "",
253 "r8w", "r9w", "r10w", "r11w", "r12w", "r13w", "r14w", "r15w"
254 };
255
256 /* Register names for dword pseudo-registers. */
257
258 static const char *amd64_dword_names[] =
259 {
260 "eax", "ebx", "ecx", "edx", "esi", "edi", "ebp", "esp",
261 "r8d", "r9d", "r10d", "r11d", "r12d", "r13d", "r14d", "r15d",
262 "eip"
263 };
264
265 /* Return the name of register REGNUM. */
266
267 static const char *
268 amd64_pseudo_register_name (struct gdbarch *gdbarch, int regnum)
269 {
270 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
271 if (i386_byte_regnum_p (gdbarch, regnum))
272 return amd64_byte_names[regnum - tdep->al_regnum];
273 else if (i386_ymm_regnum_p (gdbarch, regnum))
274 return amd64_ymm_names[regnum - tdep->ymm0_regnum];
275 else if (i386_word_regnum_p (gdbarch, regnum))
276 return amd64_word_names[regnum - tdep->ax_regnum];
277 else if (i386_dword_regnum_p (gdbarch, regnum))
278 return amd64_dword_names[regnum - tdep->eax_regnum];
279 else
280 return i386_pseudo_register_name (gdbarch, regnum);
281 }
282
283 static struct value *
284 amd64_pseudo_register_read_value (struct gdbarch *gdbarch,
285 struct regcache *regcache,
286 int regnum)
287 {
288 gdb_byte raw_buf[MAX_REGISTER_SIZE];
289 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
290 enum register_status status;
291 struct value *result_value;
292 gdb_byte *buf;
293
294 result_value = allocate_value (register_type (gdbarch, regnum));
295 VALUE_LVAL (result_value) = lval_register;
296 VALUE_REGNUM (result_value) = regnum;
297 buf = value_contents_raw (result_value);
298
299 if (i386_byte_regnum_p (gdbarch, regnum))
300 {
301 int gpnum = regnum - tdep->al_regnum;
302
303 /* Extract (always little endian). */
304 if (gpnum >= AMD64_NUM_LOWER_BYTE_REGS)
305 {
306 /* Special handling for AH, BH, CH, DH. */
307 status = regcache_raw_read (regcache,
308 gpnum - AMD64_NUM_LOWER_BYTE_REGS,
309 raw_buf);
310 if (status == REG_VALID)
311 memcpy (buf, raw_buf + 1, 1);
312 else
313 mark_value_bytes_unavailable (result_value, 0,
314 TYPE_LENGTH (value_type (result_value)));
315 }
316 else
317 {
318 status = regcache_raw_read (regcache, gpnum, raw_buf);
319 if (status == REG_VALID)
320 memcpy (buf, raw_buf, 1);
321 else
322 mark_value_bytes_unavailable (result_value, 0,
323 TYPE_LENGTH (value_type (result_value)));
324 }
325 }
326 else if (i386_dword_regnum_p (gdbarch, regnum))
327 {
328 int gpnum = regnum - tdep->eax_regnum;
329 /* Extract (always little endian). */
330 status = regcache_raw_read (regcache, gpnum, raw_buf);
331 if (status == REG_VALID)
332 memcpy (buf, raw_buf, 4);
333 else
334 mark_value_bytes_unavailable (result_value, 0,
335 TYPE_LENGTH (value_type (result_value)));
336 }
337 else
338 i386_pseudo_register_read_into_value (gdbarch, regcache, regnum,
339 result_value);
340
341 return result_value;
342 }
343
344 static void
345 amd64_pseudo_register_write (struct gdbarch *gdbarch,
346 struct regcache *regcache,
347 int regnum, const gdb_byte *buf)
348 {
349 gdb_byte raw_buf[MAX_REGISTER_SIZE];
350 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
351
352 if (i386_byte_regnum_p (gdbarch, regnum))
353 {
354 int gpnum = regnum - tdep->al_regnum;
355
356 if (gpnum >= AMD64_NUM_LOWER_BYTE_REGS)
357 {
358 /* Read ... AH, BH, CH, DH. */
359 regcache_raw_read (regcache,
360 gpnum - AMD64_NUM_LOWER_BYTE_REGS, raw_buf);
361 /* ... Modify ... (always little endian). */
362 memcpy (raw_buf + 1, buf, 1);
363 /* ... Write. */
364 regcache_raw_write (regcache,
365 gpnum - AMD64_NUM_LOWER_BYTE_REGS, raw_buf);
366 }
367 else
368 {
369 /* Read ... */
370 regcache_raw_read (regcache, gpnum, raw_buf);
371 /* ... Modify ... (always little endian). */
372 memcpy (raw_buf, buf, 1);
373 /* ... Write. */
374 regcache_raw_write (regcache, gpnum, raw_buf);
375 }
376 }
377 else if (i386_dword_regnum_p (gdbarch, regnum))
378 {
379 int gpnum = regnum - tdep->eax_regnum;
380
381 /* Read ... */
382 regcache_raw_read (regcache, gpnum, raw_buf);
383 /* ... Modify ... (always little endian). */
384 memcpy (raw_buf, buf, 4);
385 /* ... Write. */
386 regcache_raw_write (regcache, gpnum, raw_buf);
387 }
388 else
389 i386_pseudo_register_write (gdbarch, regcache, regnum, buf);
390 }
391
392 \f
393
394 /* Return the union class of CLASS1 and CLASS2. See the psABI for
395 details. */
396
397 static enum amd64_reg_class
398 amd64_merge_classes (enum amd64_reg_class class1, enum amd64_reg_class class2)
399 {
400 /* Rule (a): If both classes are equal, this is the resulting class. */
401 if (class1 == class2)
402 return class1;
403
404 /* Rule (b): If one of the classes is NO_CLASS, the resulting class
405 is the other class. */
406 if (class1 == AMD64_NO_CLASS)
407 return class2;
408 if (class2 == AMD64_NO_CLASS)
409 return class1;
410
411 /* Rule (c): If one of the classes is MEMORY, the result is MEMORY. */
412 if (class1 == AMD64_MEMORY || class2 == AMD64_MEMORY)
413 return AMD64_MEMORY;
414
415 /* Rule (d): If one of the classes is INTEGER, the result is INTEGER. */
416 if (class1 == AMD64_INTEGER || class2 == AMD64_INTEGER)
417 return AMD64_INTEGER;
418
419 /* Rule (e): If one of the classes is X87, X87UP, COMPLEX_X87 class,
420 MEMORY is used as class. */
421 if (class1 == AMD64_X87 || class1 == AMD64_X87UP
422 || class1 == AMD64_COMPLEX_X87 || class2 == AMD64_X87
423 || class2 == AMD64_X87UP || class2 == AMD64_COMPLEX_X87)
424 return AMD64_MEMORY;
425
426 /* Rule (f): Otherwise class SSE is used. */
427 return AMD64_SSE;
428 }
429
430 /* Return non-zero if TYPE is a non-POD structure or union type. */
431
432 static int
433 amd64_non_pod_p (struct type *type)
434 {
435 /* ??? A class with a base class certainly isn't POD, but does this
436 catch all non-POD structure types? */
437 if (TYPE_CODE (type) == TYPE_CODE_STRUCT && TYPE_N_BASECLASSES (type) > 0)
438 return 1;
439
440 return 0;
441 }
442
443 /* Classify TYPE according to the rules for aggregate (structures and
444 arrays) and union types, and store the result in CLASS. */
445
446 static void
447 amd64_classify_aggregate (struct type *type, enum amd64_reg_class class[2])
448 {
449 int len = TYPE_LENGTH (type);
450
451 /* 1. If the size of an object is larger than two eightbytes, or in
452 C++, is a non-POD structure or union type, or contains
453 unaligned fields, it has class memory. */
454 if (len > 16 || amd64_non_pod_p (type))
455 {
456 class[0] = class[1] = AMD64_MEMORY;
457 return;
458 }
459
460 /* 2. Both eightbytes get initialized to class NO_CLASS. */
461 class[0] = class[1] = AMD64_NO_CLASS;
462
463 /* 3. Each field of an object is classified recursively so that
464 always two fields are considered. The resulting class is
465 calculated according to the classes of the fields in the
466 eightbyte: */
467
468 if (TYPE_CODE (type) == TYPE_CODE_ARRAY)
469 {
470 struct type *subtype = check_typedef (TYPE_TARGET_TYPE (type));
471
472 /* All fields in an array have the same type. */
473 amd64_classify (subtype, class);
474 if (len > 8 && class[1] == AMD64_NO_CLASS)
475 class[1] = class[0];
476 }
477 else
478 {
479 int i;
480
481 /* Structure or union. */
482 gdb_assert (TYPE_CODE (type) == TYPE_CODE_STRUCT
483 || TYPE_CODE (type) == TYPE_CODE_UNION);
484
485 for (i = 0; i < TYPE_NFIELDS (type); i++)
486 {
487 struct type *subtype = check_typedef (TYPE_FIELD_TYPE (type, i));
488 int pos = TYPE_FIELD_BITPOS (type, i) / 64;
489 enum amd64_reg_class subclass[2];
490 int bitsize = TYPE_FIELD_BITSIZE (type, i);
491 int endpos;
492
493 if (bitsize == 0)
494 bitsize = TYPE_LENGTH (subtype) * 8;
495 endpos = (TYPE_FIELD_BITPOS (type, i) + bitsize - 1) / 64;
496
497 /* Ignore static fields. */
498 if (field_is_static (&TYPE_FIELD (type, i)))
499 continue;
500
501 gdb_assert (pos == 0 || pos == 1);
502
503 amd64_classify (subtype, subclass);
504 class[pos] = amd64_merge_classes (class[pos], subclass[0]);
505 if (bitsize <= 64 && pos == 0 && endpos == 1)
506 /* This is a bit of an odd case: We have a field that would
507 normally fit in one of the two eightbytes, except that
508 it is placed in a way that this field straddles them.
509 This has been seen with a structure containing an array.
510
511 The ABI is a bit unclear in this case, but we assume that
512 this field's class (stored in subclass[0]) must also be merged
513 into class[1]. In other words, our field has a piece stored
514 in the second eight-byte, and thus its class applies to
515 the second eight-byte as well.
516
517 In the case where the field length exceeds 8 bytes,
518 it should not be necessary to merge the field class
519 into class[1]. As LEN > 8, subclass[1] is necessarily
520 different from AMD64_NO_CLASS. If subclass[1] is equal
521 to subclass[0], then the normal class[1]/subclass[1]
522 merging will take care of everything. For subclass[1]
523 to be different from subclass[0], I can only see the case
524 where we have a SSE/SSEUP or X87/X87UP pair, which both
525 use up all 16 bytes of the aggregate, and are already
526 handled just fine (because each portion sits on its own
527 8-byte). */
528 class[1] = amd64_merge_classes (class[1], subclass[0]);
529 if (pos == 0)
530 class[1] = amd64_merge_classes (class[1], subclass[1]);
531 }
532 }
533
534 /* 4. Then a post merger cleanup is done: */
535
536 /* Rule (a): If one of the classes is MEMORY, the whole argument is
537 passed in memory. */
538 if (class[0] == AMD64_MEMORY || class[1] == AMD64_MEMORY)
539 class[0] = class[1] = AMD64_MEMORY;
540
541 /* Rule (b): If SSEUP is not preceded by SSE, it is converted to
542 SSE. */
543 if (class[0] == AMD64_SSEUP)
544 class[0] = AMD64_SSE;
545 if (class[1] == AMD64_SSEUP && class[0] != AMD64_SSE)
546 class[1] = AMD64_SSE;
547 }
548
549 /* Classify TYPE, and store the result in CLASS. */
550
551 void
552 amd64_classify (struct type *type, enum amd64_reg_class class[2])
553 {
554 enum type_code code = TYPE_CODE (type);
555 int len = TYPE_LENGTH (type);
556
557 class[0] = class[1] = AMD64_NO_CLASS;
558
559 /* Arguments of types (signed and unsigned) _Bool, char, short, int,
560 long, long long, and pointers are in the INTEGER class. Similarly,
561 range types, used by languages such as Ada, are also in the INTEGER
562 class. */
563 if ((code == TYPE_CODE_INT || code == TYPE_CODE_ENUM
564 || code == TYPE_CODE_BOOL || code == TYPE_CODE_RANGE
565 || code == TYPE_CODE_CHAR
566 || code == TYPE_CODE_PTR || code == TYPE_CODE_REF)
567 && (len == 1 || len == 2 || len == 4 || len == 8))
568 class[0] = AMD64_INTEGER;
569
570 /* Arguments of types float, double, _Decimal32, _Decimal64 and __m64
571 are in class SSE. */
572 else if ((code == TYPE_CODE_FLT || code == TYPE_CODE_DECFLOAT)
573 && (len == 4 || len == 8))
574 /* FIXME: __m64 . */
575 class[0] = AMD64_SSE;
576
577 /* Arguments of types __float128, _Decimal128 and __m128 are split into
578 two halves. The least significant ones belong to class SSE, the most
579 significant one to class SSEUP. */
580 else if (code == TYPE_CODE_DECFLOAT && len == 16)
581 /* FIXME: __float128, __m128. */
582 class[0] = AMD64_SSE, class[1] = AMD64_SSEUP;
583
584 /* The 64-bit mantissa of arguments of type long double belongs to
585 class X87, the 16-bit exponent plus 6 bytes of padding belongs to
586 class X87UP. */
587 else if (code == TYPE_CODE_FLT && len == 16)
588 /* Class X87 and X87UP. */
589 class[0] = AMD64_X87, class[1] = AMD64_X87UP;
590
591 /* Aggregates. */
592 else if (code == TYPE_CODE_ARRAY || code == TYPE_CODE_STRUCT
593 || code == TYPE_CODE_UNION)
594 amd64_classify_aggregate (type, class);
595 }
596
597 static enum return_value_convention
598 amd64_return_value (struct gdbarch *gdbarch, struct value *function,
599 struct type *type, struct regcache *regcache,
600 gdb_byte *readbuf, const gdb_byte *writebuf)
601 {
602 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
603 enum amd64_reg_class class[2];
604 int len = TYPE_LENGTH (type);
605 static int integer_regnum[] = { AMD64_RAX_REGNUM, AMD64_RDX_REGNUM };
606 static int sse_regnum[] = { AMD64_XMM0_REGNUM, AMD64_XMM1_REGNUM };
607 int integer_reg = 0;
608 int sse_reg = 0;
609 int i;
610
611 gdb_assert (!(readbuf && writebuf));
612 gdb_assert (tdep->classify);
613
614 /* 1. Classify the return type with the classification algorithm. */
615 tdep->classify (type, class);
616
617 /* 2. If the type has class MEMORY, then the caller provides space
618 for the return value and passes the address of this storage in
619 %rdi as if it were the first argument to the function. In effect,
620 this address becomes a hidden first argument.
621
622 On return %rax will contain the address that has been passed in
623 by the caller in %rdi. */
624 if (class[0] == AMD64_MEMORY)
625 {
626 /* As indicated by the comment above, the ABI guarantees that we
627 can always find the return value just after the function has
628 returned. */
629
630 if (readbuf)
631 {
632 ULONGEST addr;
633
634 regcache_raw_read_unsigned (regcache, AMD64_RAX_REGNUM, &addr);
635 read_memory (addr, readbuf, TYPE_LENGTH (type));
636 }
637
638 return RETURN_VALUE_ABI_RETURNS_ADDRESS;
639 }
640
641 gdb_assert (class[1] != AMD64_MEMORY);
642 gdb_assert (len <= 16);
643
644 for (i = 0; len > 0; i++, len -= 8)
645 {
646 int regnum = -1;
647 int offset = 0;
648
649 switch (class[i])
650 {
651 case AMD64_INTEGER:
652 /* 3. If the class is INTEGER, the next available register
653 of the sequence %rax, %rdx is used. */
654 regnum = integer_regnum[integer_reg++];
655 break;
656
657 case AMD64_SSE:
658 /* 4. If the class is SSE, the next available SSE register
659 of the sequence %xmm0, %xmm1 is used. */
660 regnum = sse_regnum[sse_reg++];
661 break;
662
663 case AMD64_SSEUP:
664 /* 5. If the class is SSEUP, the eightbyte is passed in the
665 upper half of the last used SSE register. */
666 gdb_assert (sse_reg > 0);
667 regnum = sse_regnum[sse_reg - 1];
668 offset = 8;
669 break;
670
671 case AMD64_X87:
672 /* 6. If the class is X87, the value is returned on the X87
673 stack in %st0 as 80-bit x87 number. */
674 regnum = AMD64_ST0_REGNUM;
675 if (writebuf)
676 i387_return_value (gdbarch, regcache);
677 break;
678
679 case AMD64_X87UP:
680 /* 7. If the class is X87UP, the value is returned together
681 with the previous X87 value in %st0. */
682 gdb_assert (i > 0 && class[0] == AMD64_X87);
683 regnum = AMD64_ST0_REGNUM;
684 offset = 8;
685 len = 2;
686 break;
687
688 case AMD64_NO_CLASS:
689 continue;
690
691 default:
692 gdb_assert (!"Unexpected register class.");
693 }
694
695 gdb_assert (regnum != -1);
696
697 if (readbuf)
698 regcache_raw_read_part (regcache, regnum, offset, min (len, 8),
699 readbuf + i * 8);
700 if (writebuf)
701 regcache_raw_write_part (regcache, regnum, offset, min (len, 8),
702 writebuf + i * 8);
703 }
704
705 return RETURN_VALUE_REGISTER_CONVENTION;
706 }
707 \f
708
709 static CORE_ADDR
710 amd64_push_arguments (struct regcache *regcache, int nargs,
711 struct value **args, CORE_ADDR sp, int struct_return)
712 {
713 struct gdbarch *gdbarch = get_regcache_arch (regcache);
714 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
715 int *integer_regs = tdep->call_dummy_integer_regs;
716 int num_integer_regs = tdep->call_dummy_num_integer_regs;
717
718 static int sse_regnum[] =
719 {
720 /* %xmm0 ... %xmm7 */
721 AMD64_XMM0_REGNUM + 0, AMD64_XMM1_REGNUM,
722 AMD64_XMM0_REGNUM + 2, AMD64_XMM0_REGNUM + 3,
723 AMD64_XMM0_REGNUM + 4, AMD64_XMM0_REGNUM + 5,
724 AMD64_XMM0_REGNUM + 6, AMD64_XMM0_REGNUM + 7,
725 };
726 struct value **stack_args = alloca (nargs * sizeof (struct value *));
727 /* An array that mirrors the stack_args array. For all arguments
728 that are passed by MEMORY, if that argument's address also needs
729 to be stored in a register, the ARG_ADDR_REGNO array will contain
730 that register number (or a negative value otherwise). */
731 int *arg_addr_regno = alloca (nargs * sizeof (int));
732 int num_stack_args = 0;
733 int num_elements = 0;
734 int element = 0;
735 int integer_reg = 0;
736 int sse_reg = 0;
737 int i;
738
739 gdb_assert (tdep->classify);
740
741 /* Reserve a register for the "hidden" argument. */
742 if (struct_return)
743 integer_reg++;
744
745 for (i = 0; i < nargs; i++)
746 {
747 struct type *type = value_type (args[i]);
748 int len = TYPE_LENGTH (type);
749 enum amd64_reg_class class[2];
750 int needed_integer_regs = 0;
751 int needed_sse_regs = 0;
752 int j;
753
754 /* Classify argument. */
755 tdep->classify (type, class);
756
757 /* Calculate the number of integer and SSE registers needed for
758 this argument. */
759 for (j = 0; j < 2; j++)
760 {
761 if (class[j] == AMD64_INTEGER)
762 needed_integer_regs++;
763 else if (class[j] == AMD64_SSE)
764 needed_sse_regs++;
765 }
766
767 /* Check whether enough registers are available, and if the
768 argument should be passed in registers at all. */
769 if (integer_reg + needed_integer_regs > num_integer_regs
770 || sse_reg + needed_sse_regs > ARRAY_SIZE (sse_regnum)
771 || (needed_integer_regs == 0 && needed_sse_regs == 0))
772 {
773 /* The argument will be passed on the stack. */
774 num_elements += ((len + 7) / 8);
775 stack_args[num_stack_args] = args[i];
776 /* If this is an AMD64_MEMORY argument whose address must also
777 be passed in one of the integer registers, reserve that
778 register and associate this value to that register so that
779 we can store the argument address as soon as we know it. */
780 if (class[0] == AMD64_MEMORY
781 && tdep->memory_args_by_pointer
782 && integer_reg < tdep->call_dummy_num_integer_regs)
783 arg_addr_regno[num_stack_args] =
784 tdep->call_dummy_integer_regs[integer_reg++];
785 else
786 arg_addr_regno[num_stack_args] = -1;
787 num_stack_args++;
788 }
789 else
790 {
791 /* The argument will be passed in registers. */
792 const gdb_byte *valbuf = value_contents (args[i]);
793 gdb_byte buf[8];
794
795 gdb_assert (len <= 16);
796
797 for (j = 0; len > 0; j++, len -= 8)
798 {
799 int regnum = -1;
800 int offset = 0;
801
802 switch (class[j])
803 {
804 case AMD64_INTEGER:
805 regnum = integer_regs[integer_reg++];
806 break;
807
808 case AMD64_SSE:
809 regnum = sse_regnum[sse_reg++];
810 break;
811
812 case AMD64_SSEUP:
813 gdb_assert (sse_reg > 0);
814 regnum = sse_regnum[sse_reg - 1];
815 offset = 8;
816 break;
817
818 default:
819 gdb_assert (!"Unexpected register class.");
820 }
821
822 gdb_assert (regnum != -1);
823 memset (buf, 0, sizeof buf);
824 memcpy (buf, valbuf + j * 8, min (len, 8));
825 regcache_raw_write_part (regcache, regnum, offset, 8, buf);
826 }
827 }
828 }
829
830 /* Allocate space for the arguments on the stack. */
831 sp -= num_elements * 8;
832
833 /* The psABI says that "The end of the input argument area shall be
834 aligned on a 16 byte boundary." */
835 sp &= ~0xf;
836
837 /* Write out the arguments to the stack. */
838 for (i = 0; i < num_stack_args; i++)
839 {
840 struct type *type = value_type (stack_args[i]);
841 const gdb_byte *valbuf = value_contents (stack_args[i]);
842 int len = TYPE_LENGTH (type);
843 CORE_ADDR arg_addr = sp + element * 8;
844
845 write_memory (arg_addr, valbuf, len);
846 if (arg_addr_regno[i] >= 0)
847 {
848 /* We also need to store the address of that argument in
849 the given register. */
850 gdb_byte buf[8];
851 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
852
853 store_unsigned_integer (buf, 8, byte_order, arg_addr);
854 regcache_cooked_write (regcache, arg_addr_regno[i], buf);
855 }
856 element += ((len + 7) / 8);
857 }
858
859 /* The psABI says that "For calls that may call functions that use
860 varargs or stdargs (prototype-less calls or calls to functions
861 containing ellipsis (...) in the declaration) %al is used as
862 hidden argument to specify the number of SSE registers used. */
863 regcache_raw_write_unsigned (regcache, AMD64_RAX_REGNUM, sse_reg);
864 return sp;
865 }
866
867 static CORE_ADDR
868 amd64_push_dummy_call (struct gdbarch *gdbarch, struct value *function,
869 struct regcache *regcache, CORE_ADDR bp_addr,
870 int nargs, struct value **args, CORE_ADDR sp,
871 int struct_return, CORE_ADDR struct_addr)
872 {
873 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
874 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
875 gdb_byte buf[8];
876
877 /* Pass arguments. */
878 sp = amd64_push_arguments (regcache, nargs, args, sp, struct_return);
879
880 /* Pass "hidden" argument". */
881 if (struct_return)
882 {
883 /* The "hidden" argument is passed throught the first argument
884 register. */
885 const int arg_regnum = tdep->call_dummy_integer_regs[0];
886
887 store_unsigned_integer (buf, 8, byte_order, struct_addr);
888 regcache_cooked_write (regcache, arg_regnum, buf);
889 }
890
891 /* Reserve some memory on the stack for the integer-parameter registers,
892 if required by the ABI. */
893 if (tdep->integer_param_regs_saved_in_caller_frame)
894 sp -= tdep->call_dummy_num_integer_regs * 8;
895
896 /* Store return address. */
897 sp -= 8;
898 store_unsigned_integer (buf, 8, byte_order, bp_addr);
899 write_memory (sp, buf, 8);
900
901 /* Finally, update the stack pointer... */
902 store_unsigned_integer (buf, 8, byte_order, sp);
903 regcache_cooked_write (regcache, AMD64_RSP_REGNUM, buf);
904
905 /* ...and fake a frame pointer. */
906 regcache_cooked_write (regcache, AMD64_RBP_REGNUM, buf);
907
908 return sp + 16;
909 }
910 \f
911 /* Displaced instruction handling. */
912
913 /* A partially decoded instruction.
914 This contains enough details for displaced stepping purposes. */
915
916 struct amd64_insn
917 {
918 /* The number of opcode bytes. */
919 int opcode_len;
920 /* The offset of the rex prefix or -1 if not present. */
921 int rex_offset;
922 /* The offset to the first opcode byte. */
923 int opcode_offset;
924 /* The offset to the modrm byte or -1 if not present. */
925 int modrm_offset;
926
927 /* The raw instruction. */
928 gdb_byte *raw_insn;
929 };
930
931 struct displaced_step_closure
932 {
933 /* For rip-relative insns, saved copy of the reg we use instead of %rip. */
934 int tmp_used;
935 int tmp_regno;
936 ULONGEST tmp_save;
937
938 /* Details of the instruction. */
939 struct amd64_insn insn_details;
940
941 /* Amount of space allocated to insn_buf. */
942 int max_len;
943
944 /* The possibly modified insn.
945 This is a variable-length field. */
946 gdb_byte insn_buf[1];
947 };
948
949 /* WARNING: Keep onebyte_has_modrm, twobyte_has_modrm in sync with
950 ../opcodes/i386-dis.c (until libopcodes exports them, or an alternative,
951 at which point delete these in favor of libopcodes' versions). */
952
953 static const unsigned char onebyte_has_modrm[256] = {
954 /* 0 1 2 3 4 5 6 7 8 9 a b c d e f */
955 /* ------------------------------- */
956 /* 00 */ 1,1,1,1,0,0,0,0,1,1,1,1,0,0,0,0, /* 00 */
957 /* 10 */ 1,1,1,1,0,0,0,0,1,1,1,1,0,0,0,0, /* 10 */
958 /* 20 */ 1,1,1,1,0,0,0,0,1,1,1,1,0,0,0,0, /* 20 */
959 /* 30 */ 1,1,1,1,0,0,0,0,1,1,1,1,0,0,0,0, /* 30 */
960 /* 40 */ 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, /* 40 */
961 /* 50 */ 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, /* 50 */
962 /* 60 */ 0,0,1,1,0,0,0,0,0,1,0,1,0,0,0,0, /* 60 */
963 /* 70 */ 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, /* 70 */
964 /* 80 */ 1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1, /* 80 */
965 /* 90 */ 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, /* 90 */
966 /* a0 */ 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, /* a0 */
967 /* b0 */ 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, /* b0 */
968 /* c0 */ 1,1,0,0,1,1,1,1,0,0,0,0,0,0,0,0, /* c0 */
969 /* d0 */ 1,1,1,1,0,0,0,0,1,1,1,1,1,1,1,1, /* d0 */
970 /* e0 */ 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, /* e0 */
971 /* f0 */ 0,0,0,0,0,0,1,1,0,0,0,0,0,0,1,1 /* f0 */
972 /* ------------------------------- */
973 /* 0 1 2 3 4 5 6 7 8 9 a b c d e f */
974 };
975
976 static const unsigned char twobyte_has_modrm[256] = {
977 /* 0 1 2 3 4 5 6 7 8 9 a b c d e f */
978 /* ------------------------------- */
979 /* 00 */ 1,1,1,1,0,0,0,0,0,0,0,0,0,1,0,1, /* 0f */
980 /* 10 */ 1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1, /* 1f */
981 /* 20 */ 1,1,1,1,1,1,1,0,1,1,1,1,1,1,1,1, /* 2f */
982 /* 30 */ 0,0,0,0,0,0,0,0,1,0,1,0,0,0,0,0, /* 3f */
983 /* 40 */ 1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1, /* 4f */
984 /* 50 */ 1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1, /* 5f */
985 /* 60 */ 1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1, /* 6f */
986 /* 70 */ 1,1,1,1,1,1,1,0,1,1,1,1,1,1,1,1, /* 7f */
987 /* 80 */ 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, /* 8f */
988 /* 90 */ 1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1, /* 9f */
989 /* a0 */ 0,0,0,1,1,1,1,1,0,0,0,1,1,1,1,1, /* af */
990 /* b0 */ 1,1,1,1,1,1,1,1,1,0,1,1,1,1,1,1, /* bf */
991 /* c0 */ 1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0, /* cf */
992 /* d0 */ 1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1, /* df */
993 /* e0 */ 1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1, /* ef */
994 /* f0 */ 1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,0 /* ff */
995 /* ------------------------------- */
996 /* 0 1 2 3 4 5 6 7 8 9 a b c d e f */
997 };
998
999 static int amd64_syscall_p (const struct amd64_insn *insn, int *lengthp);
1000
1001 static int
1002 rex_prefix_p (gdb_byte pfx)
1003 {
1004 return REX_PREFIX_P (pfx);
1005 }
1006
1007 /* Skip the legacy instruction prefixes in INSN.
1008 We assume INSN is properly sentineled so we don't have to worry
1009 about falling off the end of the buffer. */
1010
1011 static gdb_byte *
1012 amd64_skip_prefixes (gdb_byte *insn)
1013 {
1014 while (1)
1015 {
1016 switch (*insn)
1017 {
1018 case DATA_PREFIX_OPCODE:
1019 case ADDR_PREFIX_OPCODE:
1020 case CS_PREFIX_OPCODE:
1021 case DS_PREFIX_OPCODE:
1022 case ES_PREFIX_OPCODE:
1023 case FS_PREFIX_OPCODE:
1024 case GS_PREFIX_OPCODE:
1025 case SS_PREFIX_OPCODE:
1026 case LOCK_PREFIX_OPCODE:
1027 case REPE_PREFIX_OPCODE:
1028 case REPNE_PREFIX_OPCODE:
1029 ++insn;
1030 continue;
1031 default:
1032 break;
1033 }
1034 break;
1035 }
1036
1037 return insn;
1038 }
1039
1040 /* Return an integer register (other than RSP) that is unused as an input
1041 operand in INSN.
1042 In order to not require adding a rex prefix if the insn doesn't already
1043 have one, the result is restricted to RAX ... RDI, sans RSP.
1044 The register numbering of the result follows architecture ordering,
1045 e.g. RDI = 7. */
1046
1047 static int
1048 amd64_get_unused_input_int_reg (const struct amd64_insn *details)
1049 {
1050 /* 1 bit for each reg */
1051 int used_regs_mask = 0;
1052
1053 /* There can be at most 3 int regs used as inputs in an insn, and we have
1054 7 to choose from (RAX ... RDI, sans RSP).
1055 This allows us to take a conservative approach and keep things simple.
1056 E.g. By avoiding RAX, we don't have to specifically watch for opcodes
1057 that implicitly specify RAX. */
1058
1059 /* Avoid RAX. */
1060 used_regs_mask |= 1 << EAX_REG_NUM;
1061 /* Similarily avoid RDX, implicit operand in divides. */
1062 used_regs_mask |= 1 << EDX_REG_NUM;
1063 /* Avoid RSP. */
1064 used_regs_mask |= 1 << ESP_REG_NUM;
1065
1066 /* If the opcode is one byte long and there's no ModRM byte,
1067 assume the opcode specifies a register. */
1068 if (details->opcode_len == 1 && details->modrm_offset == -1)
1069 used_regs_mask |= 1 << (details->raw_insn[details->opcode_offset] & 7);
1070
1071 /* Mark used regs in the modrm/sib bytes. */
1072 if (details->modrm_offset != -1)
1073 {
1074 int modrm = details->raw_insn[details->modrm_offset];
1075 int mod = MODRM_MOD_FIELD (modrm);
1076 int reg = MODRM_REG_FIELD (modrm);
1077 int rm = MODRM_RM_FIELD (modrm);
1078 int have_sib = mod != 3 && rm == 4;
1079
1080 /* Assume the reg field of the modrm byte specifies a register. */
1081 used_regs_mask |= 1 << reg;
1082
1083 if (have_sib)
1084 {
1085 int base = SIB_BASE_FIELD (details->raw_insn[details->modrm_offset + 1]);
1086 int idx = SIB_INDEX_FIELD (details->raw_insn[details->modrm_offset + 1]);
1087 used_regs_mask |= 1 << base;
1088 used_regs_mask |= 1 << idx;
1089 }
1090 else
1091 {
1092 used_regs_mask |= 1 << rm;
1093 }
1094 }
1095
1096 gdb_assert (used_regs_mask < 256);
1097 gdb_assert (used_regs_mask != 255);
1098
1099 /* Finally, find a free reg. */
1100 {
1101 int i;
1102
1103 for (i = 0; i < 8; ++i)
1104 {
1105 if (! (used_regs_mask & (1 << i)))
1106 return i;
1107 }
1108
1109 /* We shouldn't get here. */
1110 internal_error (__FILE__, __LINE__, _("unable to find free reg"));
1111 }
1112 }
1113
1114 /* Extract the details of INSN that we need. */
1115
1116 static void
1117 amd64_get_insn_details (gdb_byte *insn, struct amd64_insn *details)
1118 {
1119 gdb_byte *start = insn;
1120 int need_modrm;
1121
1122 details->raw_insn = insn;
1123
1124 details->opcode_len = -1;
1125 details->rex_offset = -1;
1126 details->opcode_offset = -1;
1127 details->modrm_offset = -1;
1128
1129 /* Skip legacy instruction prefixes. */
1130 insn = amd64_skip_prefixes (insn);
1131
1132 /* Skip REX instruction prefix. */
1133 if (rex_prefix_p (*insn))
1134 {
1135 details->rex_offset = insn - start;
1136 ++insn;
1137 }
1138
1139 details->opcode_offset = insn - start;
1140
1141 if (*insn == TWO_BYTE_OPCODE_ESCAPE)
1142 {
1143 /* Two or three-byte opcode. */
1144 ++insn;
1145 need_modrm = twobyte_has_modrm[*insn];
1146
1147 /* Check for three-byte opcode. */
1148 switch (*insn)
1149 {
1150 case 0x24:
1151 case 0x25:
1152 case 0x38:
1153 case 0x3a:
1154 case 0x7a:
1155 case 0x7b:
1156 ++insn;
1157 details->opcode_len = 3;
1158 break;
1159 default:
1160 details->opcode_len = 2;
1161 break;
1162 }
1163 }
1164 else
1165 {
1166 /* One-byte opcode. */
1167 need_modrm = onebyte_has_modrm[*insn];
1168 details->opcode_len = 1;
1169 }
1170
1171 if (need_modrm)
1172 {
1173 ++insn;
1174 details->modrm_offset = insn - start;
1175 }
1176 }
1177
1178 /* Update %rip-relative addressing in INSN.
1179
1180 %rip-relative addressing only uses a 32-bit displacement.
1181 32 bits is not enough to be guaranteed to cover the distance between where
1182 the real instruction is and where its copy is.
1183 Convert the insn to use base+disp addressing.
1184 We set base = pc + insn_length so we can leave disp unchanged. */
1185
1186 static void
1187 fixup_riprel (struct gdbarch *gdbarch, struct displaced_step_closure *dsc,
1188 CORE_ADDR from, CORE_ADDR to, struct regcache *regs)
1189 {
1190 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1191 const struct amd64_insn *insn_details = &dsc->insn_details;
1192 int modrm_offset = insn_details->modrm_offset;
1193 gdb_byte *insn = insn_details->raw_insn + modrm_offset;
1194 CORE_ADDR rip_base;
1195 int32_t disp;
1196 int insn_length;
1197 int arch_tmp_regno, tmp_regno;
1198 ULONGEST orig_value;
1199
1200 /* %rip+disp32 addressing mode, displacement follows ModRM byte. */
1201 ++insn;
1202
1203 /* Compute the rip-relative address. */
1204 disp = extract_signed_integer (insn, sizeof (int32_t), byte_order);
1205 insn_length = gdb_buffered_insn_length (gdbarch, dsc->insn_buf,
1206 dsc->max_len, from);
1207 rip_base = from + insn_length;
1208
1209 /* We need a register to hold the address.
1210 Pick one not used in the insn.
1211 NOTE: arch_tmp_regno uses architecture ordering, e.g. RDI = 7. */
1212 arch_tmp_regno = amd64_get_unused_input_int_reg (insn_details);
1213 tmp_regno = amd64_arch_reg_to_regnum (arch_tmp_regno);
1214
1215 /* REX.B should be unset as we were using rip-relative addressing,
1216 but ensure it's unset anyway, tmp_regno is not r8-r15. */
1217 if (insn_details->rex_offset != -1)
1218 dsc->insn_buf[insn_details->rex_offset] &= ~REX_B;
1219
1220 regcache_cooked_read_unsigned (regs, tmp_regno, &orig_value);
1221 dsc->tmp_regno = tmp_regno;
1222 dsc->tmp_save = orig_value;
1223 dsc->tmp_used = 1;
1224
1225 /* Convert the ModRM field to be base+disp. */
1226 dsc->insn_buf[modrm_offset] &= ~0xc7;
1227 dsc->insn_buf[modrm_offset] |= 0x80 + arch_tmp_regno;
1228
1229 regcache_cooked_write_unsigned (regs, tmp_regno, rip_base);
1230
1231 if (debug_displaced)
1232 fprintf_unfiltered (gdb_stdlog, "displaced: %%rip-relative addressing used.\n"
1233 "displaced: using temp reg %d, old value %s, new value %s\n",
1234 dsc->tmp_regno, paddress (gdbarch, dsc->tmp_save),
1235 paddress (gdbarch, rip_base));
1236 }
1237
1238 static void
1239 fixup_displaced_copy (struct gdbarch *gdbarch,
1240 struct displaced_step_closure *dsc,
1241 CORE_ADDR from, CORE_ADDR to, struct regcache *regs)
1242 {
1243 const struct amd64_insn *details = &dsc->insn_details;
1244
1245 if (details->modrm_offset != -1)
1246 {
1247 gdb_byte modrm = details->raw_insn[details->modrm_offset];
1248
1249 if ((modrm & 0xc7) == 0x05)
1250 {
1251 /* The insn uses rip-relative addressing.
1252 Deal with it. */
1253 fixup_riprel (gdbarch, dsc, from, to, regs);
1254 }
1255 }
1256 }
1257
1258 struct displaced_step_closure *
1259 amd64_displaced_step_copy_insn (struct gdbarch *gdbarch,
1260 CORE_ADDR from, CORE_ADDR to,
1261 struct regcache *regs)
1262 {
1263 int len = gdbarch_max_insn_length (gdbarch);
1264 /* Extra space for sentinels so fixup_{riprel,displaced_copy} don't have to
1265 continually watch for running off the end of the buffer. */
1266 int fixup_sentinel_space = len;
1267 struct displaced_step_closure *dsc =
1268 xmalloc (sizeof (*dsc) + len + fixup_sentinel_space);
1269 gdb_byte *buf = &dsc->insn_buf[0];
1270 struct amd64_insn *details = &dsc->insn_details;
1271
1272 dsc->tmp_used = 0;
1273 dsc->max_len = len + fixup_sentinel_space;
1274
1275 read_memory (from, buf, len);
1276
1277 /* Set up the sentinel space so we don't have to worry about running
1278 off the end of the buffer. An excessive number of leading prefixes
1279 could otherwise cause this. */
1280 memset (buf + len, 0, fixup_sentinel_space);
1281
1282 amd64_get_insn_details (buf, details);
1283
1284 /* GDB may get control back after the insn after the syscall.
1285 Presumably this is a kernel bug.
1286 If this is a syscall, make sure there's a nop afterwards. */
1287 {
1288 int syscall_length;
1289
1290 if (amd64_syscall_p (details, &syscall_length))
1291 buf[details->opcode_offset + syscall_length] = NOP_OPCODE;
1292 }
1293
1294 /* Modify the insn to cope with the address where it will be executed from.
1295 In particular, handle any rip-relative addressing. */
1296 fixup_displaced_copy (gdbarch, dsc, from, to, regs);
1297
1298 write_memory (to, buf, len);
1299
1300 if (debug_displaced)
1301 {
1302 fprintf_unfiltered (gdb_stdlog, "displaced: copy %s->%s: ",
1303 paddress (gdbarch, from), paddress (gdbarch, to));
1304 displaced_step_dump_bytes (gdb_stdlog, buf, len);
1305 }
1306
1307 return dsc;
1308 }
1309
1310 static int
1311 amd64_absolute_jmp_p (const struct amd64_insn *details)
1312 {
1313 const gdb_byte *insn = &details->raw_insn[details->opcode_offset];
1314
1315 if (insn[0] == 0xff)
1316 {
1317 /* jump near, absolute indirect (/4) */
1318 if ((insn[1] & 0x38) == 0x20)
1319 return 1;
1320
1321 /* jump far, absolute indirect (/5) */
1322 if ((insn[1] & 0x38) == 0x28)
1323 return 1;
1324 }
1325
1326 return 0;
1327 }
1328
1329 static int
1330 amd64_absolute_call_p (const struct amd64_insn *details)
1331 {
1332 const gdb_byte *insn = &details->raw_insn[details->opcode_offset];
1333
1334 if (insn[0] == 0xff)
1335 {
1336 /* Call near, absolute indirect (/2) */
1337 if ((insn[1] & 0x38) == 0x10)
1338 return 1;
1339
1340 /* Call far, absolute indirect (/3) */
1341 if ((insn[1] & 0x38) == 0x18)
1342 return 1;
1343 }
1344
1345 return 0;
1346 }
1347
1348 static int
1349 amd64_ret_p (const struct amd64_insn *details)
1350 {
1351 /* NOTE: gcc can emit "repz ; ret". */
1352 const gdb_byte *insn = &details->raw_insn[details->opcode_offset];
1353
1354 switch (insn[0])
1355 {
1356 case 0xc2: /* ret near, pop N bytes */
1357 case 0xc3: /* ret near */
1358 case 0xca: /* ret far, pop N bytes */
1359 case 0xcb: /* ret far */
1360 case 0xcf: /* iret */
1361 return 1;
1362
1363 default:
1364 return 0;
1365 }
1366 }
1367
1368 static int
1369 amd64_call_p (const struct amd64_insn *details)
1370 {
1371 const gdb_byte *insn = &details->raw_insn[details->opcode_offset];
1372
1373 if (amd64_absolute_call_p (details))
1374 return 1;
1375
1376 /* call near, relative */
1377 if (insn[0] == 0xe8)
1378 return 1;
1379
1380 return 0;
1381 }
1382
1383 /* Return non-zero if INSN is a system call, and set *LENGTHP to its
1384 length in bytes. Otherwise, return zero. */
1385
1386 static int
1387 amd64_syscall_p (const struct amd64_insn *details, int *lengthp)
1388 {
1389 const gdb_byte *insn = &details->raw_insn[details->opcode_offset];
1390
1391 if (insn[0] == 0x0f && insn[1] == 0x05)
1392 {
1393 *lengthp = 2;
1394 return 1;
1395 }
1396
1397 return 0;
1398 }
1399
1400 /* Fix up the state of registers and memory after having single-stepped
1401 a displaced instruction. */
1402
1403 void
1404 amd64_displaced_step_fixup (struct gdbarch *gdbarch,
1405 struct displaced_step_closure *dsc,
1406 CORE_ADDR from, CORE_ADDR to,
1407 struct regcache *regs)
1408 {
1409 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1410 /* The offset we applied to the instruction's address. */
1411 ULONGEST insn_offset = to - from;
1412 gdb_byte *insn = dsc->insn_buf;
1413 const struct amd64_insn *insn_details = &dsc->insn_details;
1414
1415 if (debug_displaced)
1416 fprintf_unfiltered (gdb_stdlog,
1417 "displaced: fixup (%s, %s), "
1418 "insn = 0x%02x 0x%02x ...\n",
1419 paddress (gdbarch, from), paddress (gdbarch, to),
1420 insn[0], insn[1]);
1421
1422 /* If we used a tmp reg, restore it. */
1423
1424 if (dsc->tmp_used)
1425 {
1426 if (debug_displaced)
1427 fprintf_unfiltered (gdb_stdlog, "displaced: restoring reg %d to %s\n",
1428 dsc->tmp_regno, paddress (gdbarch, dsc->tmp_save));
1429 regcache_cooked_write_unsigned (regs, dsc->tmp_regno, dsc->tmp_save);
1430 }
1431
1432 /* The list of issues to contend with here is taken from
1433 resume_execution in arch/x86/kernel/kprobes.c, Linux 2.6.28.
1434 Yay for Free Software! */
1435
1436 /* Relocate the %rip back to the program's instruction stream,
1437 if necessary. */
1438
1439 /* Except in the case of absolute or indirect jump or call
1440 instructions, or a return instruction, the new rip is relative to
1441 the displaced instruction; make it relative to the original insn.
1442 Well, signal handler returns don't need relocation either, but we use the
1443 value of %rip to recognize those; see below. */
1444 if (! amd64_absolute_jmp_p (insn_details)
1445 && ! amd64_absolute_call_p (insn_details)
1446 && ! amd64_ret_p (insn_details))
1447 {
1448 ULONGEST orig_rip;
1449 int insn_len;
1450
1451 regcache_cooked_read_unsigned (regs, AMD64_RIP_REGNUM, &orig_rip);
1452
1453 /* A signal trampoline system call changes the %rip, resuming
1454 execution of the main program after the signal handler has
1455 returned. That makes them like 'return' instructions; we
1456 shouldn't relocate %rip.
1457
1458 But most system calls don't, and we do need to relocate %rip.
1459
1460 Our heuristic for distinguishing these cases: if stepping
1461 over the system call instruction left control directly after
1462 the instruction, the we relocate --- control almost certainly
1463 doesn't belong in the displaced copy. Otherwise, we assume
1464 the instruction has put control where it belongs, and leave
1465 it unrelocated. Goodness help us if there are PC-relative
1466 system calls. */
1467 if (amd64_syscall_p (insn_details, &insn_len)
1468 && orig_rip != to + insn_len
1469 /* GDB can get control back after the insn after the syscall.
1470 Presumably this is a kernel bug.
1471 Fixup ensures its a nop, we add one to the length for it. */
1472 && orig_rip != to + insn_len + 1)
1473 {
1474 if (debug_displaced)
1475 fprintf_unfiltered (gdb_stdlog,
1476 "displaced: syscall changed %%rip; "
1477 "not relocating\n");
1478 }
1479 else
1480 {
1481 ULONGEST rip = orig_rip - insn_offset;
1482
1483 /* If we just stepped over a breakpoint insn, we don't backup
1484 the pc on purpose; this is to match behaviour without
1485 stepping. */
1486
1487 regcache_cooked_write_unsigned (regs, AMD64_RIP_REGNUM, rip);
1488
1489 if (debug_displaced)
1490 fprintf_unfiltered (gdb_stdlog,
1491 "displaced: "
1492 "relocated %%rip from %s to %s\n",
1493 paddress (gdbarch, orig_rip),
1494 paddress (gdbarch, rip));
1495 }
1496 }
1497
1498 /* If the instruction was PUSHFL, then the TF bit will be set in the
1499 pushed value, and should be cleared. We'll leave this for later,
1500 since GDB already messes up the TF flag when stepping over a
1501 pushfl. */
1502
1503 /* If the instruction was a call, the return address now atop the
1504 stack is the address following the copied instruction. We need
1505 to make it the address following the original instruction. */
1506 if (amd64_call_p (insn_details))
1507 {
1508 ULONGEST rsp;
1509 ULONGEST retaddr;
1510 const ULONGEST retaddr_len = 8;
1511
1512 regcache_cooked_read_unsigned (regs, AMD64_RSP_REGNUM, &rsp);
1513 retaddr = read_memory_unsigned_integer (rsp, retaddr_len, byte_order);
1514 retaddr = (retaddr - insn_offset) & 0xffffffffUL;
1515 write_memory_unsigned_integer (rsp, retaddr_len, byte_order, retaddr);
1516
1517 if (debug_displaced)
1518 fprintf_unfiltered (gdb_stdlog,
1519 "displaced: relocated return addr at %s "
1520 "to %s\n",
1521 paddress (gdbarch, rsp),
1522 paddress (gdbarch, retaddr));
1523 }
1524 }
1525
1526 /* If the instruction INSN uses RIP-relative addressing, return the
1527 offset into the raw INSN where the displacement to be adjusted is
1528 found. Returns 0 if the instruction doesn't use RIP-relative
1529 addressing. */
1530
1531 static int
1532 rip_relative_offset (struct amd64_insn *insn)
1533 {
1534 if (insn->modrm_offset != -1)
1535 {
1536 gdb_byte modrm = insn->raw_insn[insn->modrm_offset];
1537
1538 if ((modrm & 0xc7) == 0x05)
1539 {
1540 /* The displacement is found right after the ModRM byte. */
1541 return insn->modrm_offset + 1;
1542 }
1543 }
1544
1545 return 0;
1546 }
1547
1548 static void
1549 append_insns (CORE_ADDR *to, ULONGEST len, const gdb_byte *buf)
1550 {
1551 target_write_memory (*to, buf, len);
1552 *to += len;
1553 }
1554
1555 static void
1556 amd64_relocate_instruction (struct gdbarch *gdbarch,
1557 CORE_ADDR *to, CORE_ADDR oldloc)
1558 {
1559 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1560 int len = gdbarch_max_insn_length (gdbarch);
1561 /* Extra space for sentinels. */
1562 int fixup_sentinel_space = len;
1563 gdb_byte *buf = xmalloc (len + fixup_sentinel_space);
1564 struct amd64_insn insn_details;
1565 int offset = 0;
1566 LONGEST rel32, newrel;
1567 gdb_byte *insn;
1568 int insn_length;
1569
1570 read_memory (oldloc, buf, len);
1571
1572 /* Set up the sentinel space so we don't have to worry about running
1573 off the end of the buffer. An excessive number of leading prefixes
1574 could otherwise cause this. */
1575 memset (buf + len, 0, fixup_sentinel_space);
1576
1577 insn = buf;
1578 amd64_get_insn_details (insn, &insn_details);
1579
1580 insn_length = gdb_buffered_insn_length (gdbarch, insn, len, oldloc);
1581
1582 /* Skip legacy instruction prefixes. */
1583 insn = amd64_skip_prefixes (insn);
1584
1585 /* Adjust calls with 32-bit relative addresses as push/jump, with
1586 the address pushed being the location where the original call in
1587 the user program would return to. */
1588 if (insn[0] == 0xe8)
1589 {
1590 gdb_byte push_buf[16];
1591 unsigned int ret_addr;
1592
1593 /* Where "ret" in the original code will return to. */
1594 ret_addr = oldloc + insn_length;
1595 push_buf[0] = 0x68; /* pushq $... */
1596 memcpy (&push_buf[1], &ret_addr, 4);
1597 /* Push the push. */
1598 append_insns (to, 5, push_buf);
1599
1600 /* Convert the relative call to a relative jump. */
1601 insn[0] = 0xe9;
1602
1603 /* Adjust the destination offset. */
1604 rel32 = extract_signed_integer (insn + 1, 4, byte_order);
1605 newrel = (oldloc - *to) + rel32;
1606 store_signed_integer (insn + 1, 4, byte_order, newrel);
1607
1608 if (debug_displaced)
1609 fprintf_unfiltered (gdb_stdlog,
1610 "Adjusted insn rel32=%s at %s to"
1611 " rel32=%s at %s\n",
1612 hex_string (rel32), paddress (gdbarch, oldloc),
1613 hex_string (newrel), paddress (gdbarch, *to));
1614
1615 /* Write the adjusted jump into its displaced location. */
1616 append_insns (to, 5, insn);
1617 return;
1618 }
1619
1620 offset = rip_relative_offset (&insn_details);
1621 if (!offset)
1622 {
1623 /* Adjust jumps with 32-bit relative addresses. Calls are
1624 already handled above. */
1625 if (insn[0] == 0xe9)
1626 offset = 1;
1627 /* Adjust conditional jumps. */
1628 else if (insn[0] == 0x0f && (insn[1] & 0xf0) == 0x80)
1629 offset = 2;
1630 }
1631
1632 if (offset)
1633 {
1634 rel32 = extract_signed_integer (insn + offset, 4, byte_order);
1635 newrel = (oldloc - *to) + rel32;
1636 store_signed_integer (insn + offset, 4, byte_order, newrel);
1637 if (debug_displaced)
1638 fprintf_unfiltered (gdb_stdlog,
1639 "Adjusted insn rel32=%s at %s to"
1640 " rel32=%s at %s\n",
1641 hex_string (rel32), paddress (gdbarch, oldloc),
1642 hex_string (newrel), paddress (gdbarch, *to));
1643 }
1644
1645 /* Write the adjusted instruction into its displaced location. */
1646 append_insns (to, insn_length, buf);
1647 }
1648
1649 \f
1650 /* The maximum number of saved registers. This should include %rip. */
1651 #define AMD64_NUM_SAVED_REGS AMD64_NUM_GREGS
1652
1653 struct amd64_frame_cache
1654 {
1655 /* Base address. */
1656 CORE_ADDR base;
1657 int base_p;
1658 CORE_ADDR sp_offset;
1659 CORE_ADDR pc;
1660
1661 /* Saved registers. */
1662 CORE_ADDR saved_regs[AMD64_NUM_SAVED_REGS];
1663 CORE_ADDR saved_sp;
1664 int saved_sp_reg;
1665
1666 /* Do we have a frame? */
1667 int frameless_p;
1668 };
1669
1670 /* Initialize a frame cache. */
1671
1672 static void
1673 amd64_init_frame_cache (struct amd64_frame_cache *cache)
1674 {
1675 int i;
1676
1677 /* Base address. */
1678 cache->base = 0;
1679 cache->base_p = 0;
1680 cache->sp_offset = -8;
1681 cache->pc = 0;
1682
1683 /* Saved registers. We initialize these to -1 since zero is a valid
1684 offset (that's where %rbp is supposed to be stored).
1685 The values start out as being offsets, and are later converted to
1686 addresses (at which point -1 is interpreted as an address, still meaning
1687 "invalid"). */
1688 for (i = 0; i < AMD64_NUM_SAVED_REGS; i++)
1689 cache->saved_regs[i] = -1;
1690 cache->saved_sp = 0;
1691 cache->saved_sp_reg = -1;
1692
1693 /* Frameless until proven otherwise. */
1694 cache->frameless_p = 1;
1695 }
1696
1697 /* Allocate and initialize a frame cache. */
1698
1699 static struct amd64_frame_cache *
1700 amd64_alloc_frame_cache (void)
1701 {
1702 struct amd64_frame_cache *cache;
1703
1704 cache = FRAME_OBSTACK_ZALLOC (struct amd64_frame_cache);
1705 amd64_init_frame_cache (cache);
1706 return cache;
1707 }
1708
1709 /* GCC 4.4 and later, can put code in the prologue to realign the
1710 stack pointer. Check whether PC points to such code, and update
1711 CACHE accordingly. Return the first instruction after the code
1712 sequence or CURRENT_PC, whichever is smaller. If we don't
1713 recognize the code, return PC. */
1714
1715 static CORE_ADDR
1716 amd64_analyze_stack_align (CORE_ADDR pc, CORE_ADDR current_pc,
1717 struct amd64_frame_cache *cache)
1718 {
1719 /* There are 2 code sequences to re-align stack before the frame
1720 gets set up:
1721
1722 1. Use a caller-saved saved register:
1723
1724 leaq 8(%rsp), %reg
1725 andq $-XXX, %rsp
1726 pushq -8(%reg)
1727
1728 2. Use a callee-saved saved register:
1729
1730 pushq %reg
1731 leaq 16(%rsp), %reg
1732 andq $-XXX, %rsp
1733 pushq -8(%reg)
1734
1735 "andq $-XXX, %rsp" can be either 4 bytes or 7 bytes:
1736
1737 0x48 0x83 0xe4 0xf0 andq $-16, %rsp
1738 0x48 0x81 0xe4 0x00 0xff 0xff 0xff andq $-256, %rsp
1739 */
1740
1741 gdb_byte buf[18];
1742 int reg, r;
1743 int offset, offset_and;
1744
1745 if (target_read_memory (pc, buf, sizeof buf))
1746 return pc;
1747
1748 /* Check caller-saved saved register. The first instruction has
1749 to be "leaq 8(%rsp), %reg". */
1750 if ((buf[0] & 0xfb) == 0x48
1751 && buf[1] == 0x8d
1752 && buf[3] == 0x24
1753 && buf[4] == 0x8)
1754 {
1755 /* MOD must be binary 10 and R/M must be binary 100. */
1756 if ((buf[2] & 0xc7) != 0x44)
1757 return pc;
1758
1759 /* REG has register number. */
1760 reg = (buf[2] >> 3) & 7;
1761
1762 /* Check the REX.R bit. */
1763 if (buf[0] == 0x4c)
1764 reg += 8;
1765
1766 offset = 5;
1767 }
1768 else
1769 {
1770 /* Check callee-saved saved register. The first instruction
1771 has to be "pushq %reg". */
1772 reg = 0;
1773 if ((buf[0] & 0xf8) == 0x50)
1774 offset = 0;
1775 else if ((buf[0] & 0xf6) == 0x40
1776 && (buf[1] & 0xf8) == 0x50)
1777 {
1778 /* Check the REX.B bit. */
1779 if ((buf[0] & 1) != 0)
1780 reg = 8;
1781
1782 offset = 1;
1783 }
1784 else
1785 return pc;
1786
1787 /* Get register. */
1788 reg += buf[offset] & 0x7;
1789
1790 offset++;
1791
1792 /* The next instruction has to be "leaq 16(%rsp), %reg". */
1793 if ((buf[offset] & 0xfb) != 0x48
1794 || buf[offset + 1] != 0x8d
1795 || buf[offset + 3] != 0x24
1796 || buf[offset + 4] != 0x10)
1797 return pc;
1798
1799 /* MOD must be binary 10 and R/M must be binary 100. */
1800 if ((buf[offset + 2] & 0xc7) != 0x44)
1801 return pc;
1802
1803 /* REG has register number. */
1804 r = (buf[offset + 2] >> 3) & 7;
1805
1806 /* Check the REX.R bit. */
1807 if (buf[offset] == 0x4c)
1808 r += 8;
1809
1810 /* Registers in pushq and leaq have to be the same. */
1811 if (reg != r)
1812 return pc;
1813
1814 offset += 5;
1815 }
1816
1817 /* Rigister can't be %rsp nor %rbp. */
1818 if (reg == 4 || reg == 5)
1819 return pc;
1820
1821 /* The next instruction has to be "andq $-XXX, %rsp". */
1822 if (buf[offset] != 0x48
1823 || buf[offset + 2] != 0xe4
1824 || (buf[offset + 1] != 0x81 && buf[offset + 1] != 0x83))
1825 return pc;
1826
1827 offset_and = offset;
1828 offset += buf[offset + 1] == 0x81 ? 7 : 4;
1829
1830 /* The next instruction has to be "pushq -8(%reg)". */
1831 r = 0;
1832 if (buf[offset] == 0xff)
1833 offset++;
1834 else if ((buf[offset] & 0xf6) == 0x40
1835 && buf[offset + 1] == 0xff)
1836 {
1837 /* Check the REX.B bit. */
1838 if ((buf[offset] & 0x1) != 0)
1839 r = 8;
1840 offset += 2;
1841 }
1842 else
1843 return pc;
1844
1845 /* 8bit -8 is 0xf8. REG must be binary 110 and MOD must be binary
1846 01. */
1847 if (buf[offset + 1] != 0xf8
1848 || (buf[offset] & 0xf8) != 0x70)
1849 return pc;
1850
1851 /* R/M has register. */
1852 r += buf[offset] & 7;
1853
1854 /* Registers in leaq and pushq have to be the same. */
1855 if (reg != r)
1856 return pc;
1857
1858 if (current_pc > pc + offset_and)
1859 cache->saved_sp_reg = amd64_arch_reg_to_regnum (reg);
1860
1861 return min (pc + offset + 2, current_pc);
1862 }
1863
1864 /* Similar to amd64_analyze_stack_align for x32. */
1865
1866 static CORE_ADDR
1867 amd64_x32_analyze_stack_align (CORE_ADDR pc, CORE_ADDR current_pc,
1868 struct amd64_frame_cache *cache)
1869 {
1870 /* There are 2 code sequences to re-align stack before the frame
1871 gets set up:
1872
1873 1. Use a caller-saved saved register:
1874
1875 leaq 8(%rsp), %reg
1876 andq $-XXX, %rsp
1877 pushq -8(%reg)
1878
1879 or
1880
1881 [addr32] leal 8(%rsp), %reg
1882 andl $-XXX, %esp
1883 [addr32] pushq -8(%reg)
1884
1885 2. Use a callee-saved saved register:
1886
1887 pushq %reg
1888 leaq 16(%rsp), %reg
1889 andq $-XXX, %rsp
1890 pushq -8(%reg)
1891
1892 or
1893
1894 pushq %reg
1895 [addr32] leal 16(%rsp), %reg
1896 andl $-XXX, %esp
1897 [addr32] pushq -8(%reg)
1898
1899 "andq $-XXX, %rsp" can be either 4 bytes or 7 bytes:
1900
1901 0x48 0x83 0xe4 0xf0 andq $-16, %rsp
1902 0x48 0x81 0xe4 0x00 0xff 0xff 0xff andq $-256, %rsp
1903
1904 "andl $-XXX, %esp" can be either 3 bytes or 6 bytes:
1905
1906 0x83 0xe4 0xf0 andl $-16, %esp
1907 0x81 0xe4 0x00 0xff 0xff 0xff andl $-256, %esp
1908 */
1909
1910 gdb_byte buf[19];
1911 int reg, r;
1912 int offset, offset_and;
1913
1914 if (target_read_memory (pc, buf, sizeof buf))
1915 return pc;
1916
1917 /* Skip optional addr32 prefix. */
1918 offset = buf[0] == 0x67 ? 1 : 0;
1919
1920 /* Check caller-saved saved register. The first instruction has
1921 to be "leaq 8(%rsp), %reg" or "leal 8(%rsp), %reg". */
1922 if (((buf[offset] & 0xfb) == 0x48 || (buf[offset] & 0xfb) == 0x40)
1923 && buf[offset + 1] == 0x8d
1924 && buf[offset + 3] == 0x24
1925 && buf[offset + 4] == 0x8)
1926 {
1927 /* MOD must be binary 10 and R/M must be binary 100. */
1928 if ((buf[offset + 2] & 0xc7) != 0x44)
1929 return pc;
1930
1931 /* REG has register number. */
1932 reg = (buf[offset + 2] >> 3) & 7;
1933
1934 /* Check the REX.R bit. */
1935 if ((buf[offset] & 0x4) != 0)
1936 reg += 8;
1937
1938 offset += 5;
1939 }
1940 else
1941 {
1942 /* Check callee-saved saved register. The first instruction
1943 has to be "pushq %reg". */
1944 reg = 0;
1945 if ((buf[offset] & 0xf6) == 0x40
1946 && (buf[offset + 1] & 0xf8) == 0x50)
1947 {
1948 /* Check the REX.B bit. */
1949 if ((buf[offset] & 1) != 0)
1950 reg = 8;
1951
1952 offset += 1;
1953 }
1954 else if ((buf[offset] & 0xf8) != 0x50)
1955 return pc;
1956
1957 /* Get register. */
1958 reg += buf[offset] & 0x7;
1959
1960 offset++;
1961
1962 /* Skip optional addr32 prefix. */
1963 if (buf[offset] == 0x67)
1964 offset++;
1965
1966 /* The next instruction has to be "leaq 16(%rsp), %reg" or
1967 "leal 16(%rsp), %reg". */
1968 if (((buf[offset] & 0xfb) != 0x48 && (buf[offset] & 0xfb) != 0x40)
1969 || buf[offset + 1] != 0x8d
1970 || buf[offset + 3] != 0x24
1971 || buf[offset + 4] != 0x10)
1972 return pc;
1973
1974 /* MOD must be binary 10 and R/M must be binary 100. */
1975 if ((buf[offset + 2] & 0xc7) != 0x44)
1976 return pc;
1977
1978 /* REG has register number. */
1979 r = (buf[offset + 2] >> 3) & 7;
1980
1981 /* Check the REX.R bit. */
1982 if ((buf[offset] & 0x4) != 0)
1983 r += 8;
1984
1985 /* Registers in pushq and leaq have to be the same. */
1986 if (reg != r)
1987 return pc;
1988
1989 offset += 5;
1990 }
1991
1992 /* Rigister can't be %rsp nor %rbp. */
1993 if (reg == 4 || reg == 5)
1994 return pc;
1995
1996 /* The next instruction may be "andq $-XXX, %rsp" or
1997 "andl $-XXX, %esp". */
1998 if (buf[offset] != 0x48)
1999 offset--;
2000
2001 if (buf[offset + 2] != 0xe4
2002 || (buf[offset + 1] != 0x81 && buf[offset + 1] != 0x83))
2003 return pc;
2004
2005 offset_and = offset;
2006 offset += buf[offset + 1] == 0x81 ? 7 : 4;
2007
2008 /* Skip optional addr32 prefix. */
2009 if (buf[offset] == 0x67)
2010 offset++;
2011
2012 /* The next instruction has to be "pushq -8(%reg)". */
2013 r = 0;
2014 if (buf[offset] == 0xff)
2015 offset++;
2016 else if ((buf[offset] & 0xf6) == 0x40
2017 && buf[offset + 1] == 0xff)
2018 {
2019 /* Check the REX.B bit. */
2020 if ((buf[offset] & 0x1) != 0)
2021 r = 8;
2022 offset += 2;
2023 }
2024 else
2025 return pc;
2026
2027 /* 8bit -8 is 0xf8. REG must be binary 110 and MOD must be binary
2028 01. */
2029 if (buf[offset + 1] != 0xf8
2030 || (buf[offset] & 0xf8) != 0x70)
2031 return pc;
2032
2033 /* R/M has register. */
2034 r += buf[offset] & 7;
2035
2036 /* Registers in leaq and pushq have to be the same. */
2037 if (reg != r)
2038 return pc;
2039
2040 if (current_pc > pc + offset_and)
2041 cache->saved_sp_reg = amd64_arch_reg_to_regnum (reg);
2042
2043 return min (pc + offset + 2, current_pc);
2044 }
2045
2046 /* Do a limited analysis of the prologue at PC and update CACHE
2047 accordingly. Bail out early if CURRENT_PC is reached. Return the
2048 address where the analysis stopped.
2049
2050 We will handle only functions beginning with:
2051
2052 pushq %rbp 0x55
2053 movq %rsp, %rbp 0x48 0x89 0xe5 (or 0x48 0x8b 0xec)
2054
2055 or (for the X32 ABI):
2056
2057 pushq %rbp 0x55
2058 movl %esp, %ebp 0x89 0xe5 (or 0x8b 0xec)
2059
2060 Any function that doesn't start with one of these sequences will be
2061 assumed to have no prologue and thus no valid frame pointer in
2062 %rbp. */
2063
2064 static CORE_ADDR
2065 amd64_analyze_prologue (struct gdbarch *gdbarch,
2066 CORE_ADDR pc, CORE_ADDR current_pc,
2067 struct amd64_frame_cache *cache)
2068 {
2069 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
2070 /* There are two variations of movq %rsp, %rbp. */
2071 static const gdb_byte mov_rsp_rbp_1[3] = { 0x48, 0x89, 0xe5 };
2072 static const gdb_byte mov_rsp_rbp_2[3] = { 0x48, 0x8b, 0xec };
2073 /* Ditto for movl %esp, %ebp. */
2074 static const gdb_byte mov_esp_ebp_1[2] = { 0x89, 0xe5 };
2075 static const gdb_byte mov_esp_ebp_2[2] = { 0x8b, 0xec };
2076
2077 gdb_byte buf[3];
2078 gdb_byte op;
2079
2080 if (current_pc <= pc)
2081 return current_pc;
2082
2083 if (gdbarch_ptr_bit (gdbarch) == 32)
2084 pc = amd64_x32_analyze_stack_align (pc, current_pc, cache);
2085 else
2086 pc = amd64_analyze_stack_align (pc, current_pc, cache);
2087
2088 op = read_memory_unsigned_integer (pc, 1, byte_order);
2089
2090 if (op == 0x55) /* pushq %rbp */
2091 {
2092 /* Take into account that we've executed the `pushq %rbp' that
2093 starts this instruction sequence. */
2094 cache->saved_regs[AMD64_RBP_REGNUM] = 0;
2095 cache->sp_offset += 8;
2096
2097 /* If that's all, return now. */
2098 if (current_pc <= pc + 1)
2099 return current_pc;
2100
2101 read_memory (pc + 1, buf, 3);
2102
2103 /* Check for `movq %rsp, %rbp'. */
2104 if (memcmp (buf, mov_rsp_rbp_1, 3) == 0
2105 || memcmp (buf, mov_rsp_rbp_2, 3) == 0)
2106 {
2107 /* OK, we actually have a frame. */
2108 cache->frameless_p = 0;
2109 return pc + 4;
2110 }
2111
2112 /* For X32, also check for `movq %esp, %ebp'. */
2113 if (gdbarch_ptr_bit (gdbarch) == 32)
2114 {
2115 if (memcmp (buf, mov_esp_ebp_1, 2) == 0
2116 || memcmp (buf, mov_esp_ebp_2, 2) == 0)
2117 {
2118 /* OK, we actually have a frame. */
2119 cache->frameless_p = 0;
2120 return pc + 3;
2121 }
2122 }
2123
2124 return pc + 1;
2125 }
2126
2127 return pc;
2128 }
2129
2130 /* Work around false termination of prologue - GCC PR debug/48827.
2131
2132 START_PC is the first instruction of a function, PC is its minimal already
2133 determined advanced address. Function returns PC if it has nothing to do.
2134
2135 84 c0 test %al,%al
2136 74 23 je after
2137 <-- here is 0 lines advance - the false prologue end marker.
2138 0f 29 85 70 ff ff ff movaps %xmm0,-0x90(%rbp)
2139 0f 29 4d 80 movaps %xmm1,-0x80(%rbp)
2140 0f 29 55 90 movaps %xmm2,-0x70(%rbp)
2141 0f 29 5d a0 movaps %xmm3,-0x60(%rbp)
2142 0f 29 65 b0 movaps %xmm4,-0x50(%rbp)
2143 0f 29 6d c0 movaps %xmm5,-0x40(%rbp)
2144 0f 29 75 d0 movaps %xmm6,-0x30(%rbp)
2145 0f 29 7d e0 movaps %xmm7,-0x20(%rbp)
2146 after: */
2147
2148 static CORE_ADDR
2149 amd64_skip_xmm_prologue (CORE_ADDR pc, CORE_ADDR start_pc)
2150 {
2151 struct symtab_and_line start_pc_sal, next_sal;
2152 gdb_byte buf[4 + 8 * 7];
2153 int offset, xmmreg;
2154
2155 if (pc == start_pc)
2156 return pc;
2157
2158 start_pc_sal = find_pc_sect_line (start_pc, NULL, 0);
2159 if (start_pc_sal.symtab == NULL
2160 || producer_is_gcc_ge_4 (start_pc_sal.symtab->producer) < 6
2161 || start_pc_sal.pc != start_pc || pc >= start_pc_sal.end)
2162 return pc;
2163
2164 next_sal = find_pc_sect_line (start_pc_sal.end, NULL, 0);
2165 if (next_sal.line != start_pc_sal.line)
2166 return pc;
2167
2168 /* START_PC can be from overlayed memory, ignored here. */
2169 if (target_read_memory (next_sal.pc - 4, buf, sizeof (buf)) != 0)
2170 return pc;
2171
2172 /* test %al,%al */
2173 if (buf[0] != 0x84 || buf[1] != 0xc0)
2174 return pc;
2175 /* je AFTER */
2176 if (buf[2] != 0x74)
2177 return pc;
2178
2179 offset = 4;
2180 for (xmmreg = 0; xmmreg < 8; xmmreg++)
2181 {
2182 /* 0x0f 0x29 0b??000101 movaps %xmmreg?,-0x??(%rbp) */
2183 if (buf[offset] != 0x0f || buf[offset + 1] != 0x29
2184 || (buf[offset + 2] & 0x3f) != (xmmreg << 3 | 0x5))
2185 return pc;
2186
2187 /* 0b01?????? */
2188 if ((buf[offset + 2] & 0xc0) == 0x40)
2189 {
2190 /* 8-bit displacement. */
2191 offset += 4;
2192 }
2193 /* 0b10?????? */
2194 else if ((buf[offset + 2] & 0xc0) == 0x80)
2195 {
2196 /* 32-bit displacement. */
2197 offset += 7;
2198 }
2199 else
2200 return pc;
2201 }
2202
2203 /* je AFTER */
2204 if (offset - 4 != buf[3])
2205 return pc;
2206
2207 return next_sal.end;
2208 }
2209
2210 /* Return PC of first real instruction. */
2211
2212 static CORE_ADDR
2213 amd64_skip_prologue (struct gdbarch *gdbarch, CORE_ADDR start_pc)
2214 {
2215 struct amd64_frame_cache cache;
2216 CORE_ADDR pc;
2217
2218 amd64_init_frame_cache (&cache);
2219 pc = amd64_analyze_prologue (gdbarch, start_pc, 0xffffffffffffffffLL,
2220 &cache);
2221 if (cache.frameless_p)
2222 return start_pc;
2223
2224 return amd64_skip_xmm_prologue (pc, start_pc);
2225 }
2226 \f
2227
2228 /* Normal frames. */
2229
2230 static void
2231 amd64_frame_cache_1 (struct frame_info *this_frame,
2232 struct amd64_frame_cache *cache)
2233 {
2234 struct gdbarch *gdbarch = get_frame_arch (this_frame);
2235 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
2236 gdb_byte buf[8];
2237 int i;
2238
2239 cache->pc = get_frame_func (this_frame);
2240 if (cache->pc != 0)
2241 amd64_analyze_prologue (gdbarch, cache->pc, get_frame_pc (this_frame),
2242 cache);
2243
2244 if (cache->frameless_p)
2245 {
2246 /* We didn't find a valid frame. If we're at the start of a
2247 function, or somewhere half-way its prologue, the function's
2248 frame probably hasn't been fully setup yet. Try to
2249 reconstruct the base address for the stack frame by looking
2250 at the stack pointer. For truly "frameless" functions this
2251 might work too. */
2252
2253 if (cache->saved_sp_reg != -1)
2254 {
2255 /* Stack pointer has been saved. */
2256 get_frame_register (this_frame, cache->saved_sp_reg, buf);
2257 cache->saved_sp = extract_unsigned_integer (buf, 8, byte_order);
2258
2259 /* We're halfway aligning the stack. */
2260 cache->base = ((cache->saved_sp - 8) & 0xfffffffffffffff0LL) - 8;
2261 cache->saved_regs[AMD64_RIP_REGNUM] = cache->saved_sp - 8;
2262
2263 /* This will be added back below. */
2264 cache->saved_regs[AMD64_RIP_REGNUM] -= cache->base;
2265 }
2266 else
2267 {
2268 get_frame_register (this_frame, AMD64_RSP_REGNUM, buf);
2269 cache->base = extract_unsigned_integer (buf, 8, byte_order)
2270 + cache->sp_offset;
2271 }
2272 }
2273 else
2274 {
2275 get_frame_register (this_frame, AMD64_RBP_REGNUM, buf);
2276 cache->base = extract_unsigned_integer (buf, 8, byte_order);
2277 }
2278
2279 /* Now that we have the base address for the stack frame we can
2280 calculate the value of %rsp in the calling frame. */
2281 cache->saved_sp = cache->base + 16;
2282
2283 /* For normal frames, %rip is stored at 8(%rbp). If we don't have a
2284 frame we find it at the same offset from the reconstructed base
2285 address. If we're halfway aligning the stack, %rip is handled
2286 differently (see above). */
2287 if (!cache->frameless_p || cache->saved_sp_reg == -1)
2288 cache->saved_regs[AMD64_RIP_REGNUM] = 8;
2289
2290 /* Adjust all the saved registers such that they contain addresses
2291 instead of offsets. */
2292 for (i = 0; i < AMD64_NUM_SAVED_REGS; i++)
2293 if (cache->saved_regs[i] != -1)
2294 cache->saved_regs[i] += cache->base;
2295
2296 cache->base_p = 1;
2297 }
2298
2299 static struct amd64_frame_cache *
2300 amd64_frame_cache (struct frame_info *this_frame, void **this_cache)
2301 {
2302 volatile struct gdb_exception ex;
2303 struct amd64_frame_cache *cache;
2304
2305 if (*this_cache)
2306 return *this_cache;
2307
2308 cache = amd64_alloc_frame_cache ();
2309 *this_cache = cache;
2310
2311 TRY_CATCH (ex, RETURN_MASK_ERROR)
2312 {
2313 amd64_frame_cache_1 (this_frame, cache);
2314 }
2315 if (ex.reason < 0 && ex.error != NOT_AVAILABLE_ERROR)
2316 throw_exception (ex);
2317
2318 return cache;
2319 }
2320
2321 static enum unwind_stop_reason
2322 amd64_frame_unwind_stop_reason (struct frame_info *this_frame,
2323 void **this_cache)
2324 {
2325 struct amd64_frame_cache *cache =
2326 amd64_frame_cache (this_frame, this_cache);
2327
2328 if (!cache->base_p)
2329 return UNWIND_UNAVAILABLE;
2330
2331 /* This marks the outermost frame. */
2332 if (cache->base == 0)
2333 return UNWIND_OUTERMOST;
2334
2335 return UNWIND_NO_REASON;
2336 }
2337
2338 static void
2339 amd64_frame_this_id (struct frame_info *this_frame, void **this_cache,
2340 struct frame_id *this_id)
2341 {
2342 struct amd64_frame_cache *cache =
2343 amd64_frame_cache (this_frame, this_cache);
2344
2345 if (!cache->base_p)
2346 return;
2347
2348 /* This marks the outermost frame. */
2349 if (cache->base == 0)
2350 return;
2351
2352 (*this_id) = frame_id_build (cache->base + 16, cache->pc);
2353 }
2354
2355 static struct value *
2356 amd64_frame_prev_register (struct frame_info *this_frame, void **this_cache,
2357 int regnum)
2358 {
2359 struct gdbarch *gdbarch = get_frame_arch (this_frame);
2360 struct amd64_frame_cache *cache =
2361 amd64_frame_cache (this_frame, this_cache);
2362
2363 gdb_assert (regnum >= 0);
2364
2365 if (regnum == gdbarch_sp_regnum (gdbarch) && cache->saved_sp)
2366 return frame_unwind_got_constant (this_frame, regnum, cache->saved_sp);
2367
2368 if (regnum < AMD64_NUM_SAVED_REGS && cache->saved_regs[regnum] != -1)
2369 return frame_unwind_got_memory (this_frame, regnum,
2370 cache->saved_regs[regnum]);
2371
2372 return frame_unwind_got_register (this_frame, regnum, regnum);
2373 }
2374
2375 static const struct frame_unwind amd64_frame_unwind =
2376 {
2377 NORMAL_FRAME,
2378 amd64_frame_unwind_stop_reason,
2379 amd64_frame_this_id,
2380 amd64_frame_prev_register,
2381 NULL,
2382 default_frame_sniffer
2383 };
2384 \f
2385 /* Generate a bytecode expression to get the value of the saved PC. */
2386
2387 static void
2388 amd64_gen_return_address (struct gdbarch *gdbarch,
2389 struct agent_expr *ax, struct axs_value *value,
2390 CORE_ADDR scope)
2391 {
2392 /* The following sequence assumes the traditional use of the base
2393 register. */
2394 ax_reg (ax, AMD64_RBP_REGNUM);
2395 ax_const_l (ax, 8);
2396 ax_simple (ax, aop_add);
2397 value->type = register_type (gdbarch, AMD64_RIP_REGNUM);
2398 value->kind = axs_lvalue_memory;
2399 }
2400 \f
2401
2402 /* Signal trampolines. */
2403
2404 /* FIXME: kettenis/20030419: Perhaps, we can unify the 32-bit and
2405 64-bit variants. This would require using identical frame caches
2406 on both platforms. */
2407
2408 static struct amd64_frame_cache *
2409 amd64_sigtramp_frame_cache (struct frame_info *this_frame, void **this_cache)
2410 {
2411 struct gdbarch *gdbarch = get_frame_arch (this_frame);
2412 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2413 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
2414 volatile struct gdb_exception ex;
2415 struct amd64_frame_cache *cache;
2416 CORE_ADDR addr;
2417 gdb_byte buf[8];
2418 int i;
2419
2420 if (*this_cache)
2421 return *this_cache;
2422
2423 cache = amd64_alloc_frame_cache ();
2424
2425 TRY_CATCH (ex, RETURN_MASK_ERROR)
2426 {
2427 get_frame_register (this_frame, AMD64_RSP_REGNUM, buf);
2428 cache->base = extract_unsigned_integer (buf, 8, byte_order) - 8;
2429
2430 addr = tdep->sigcontext_addr (this_frame);
2431 gdb_assert (tdep->sc_reg_offset);
2432 gdb_assert (tdep->sc_num_regs <= AMD64_NUM_SAVED_REGS);
2433 for (i = 0; i < tdep->sc_num_regs; i++)
2434 if (tdep->sc_reg_offset[i] != -1)
2435 cache->saved_regs[i] = addr + tdep->sc_reg_offset[i];
2436
2437 cache->base_p = 1;
2438 }
2439 if (ex.reason < 0 && ex.error != NOT_AVAILABLE_ERROR)
2440 throw_exception (ex);
2441
2442 *this_cache = cache;
2443 return cache;
2444 }
2445
2446 static enum unwind_stop_reason
2447 amd64_sigtramp_frame_unwind_stop_reason (struct frame_info *this_frame,
2448 void **this_cache)
2449 {
2450 struct amd64_frame_cache *cache =
2451 amd64_sigtramp_frame_cache (this_frame, this_cache);
2452
2453 if (!cache->base_p)
2454 return UNWIND_UNAVAILABLE;
2455
2456 return UNWIND_NO_REASON;
2457 }
2458
2459 static void
2460 amd64_sigtramp_frame_this_id (struct frame_info *this_frame,
2461 void **this_cache, struct frame_id *this_id)
2462 {
2463 struct amd64_frame_cache *cache =
2464 amd64_sigtramp_frame_cache (this_frame, this_cache);
2465
2466 if (!cache->base_p)
2467 return;
2468
2469 (*this_id) = frame_id_build (cache->base + 16, get_frame_pc (this_frame));
2470 }
2471
2472 static struct value *
2473 amd64_sigtramp_frame_prev_register (struct frame_info *this_frame,
2474 void **this_cache, int regnum)
2475 {
2476 /* Make sure we've initialized the cache. */
2477 amd64_sigtramp_frame_cache (this_frame, this_cache);
2478
2479 return amd64_frame_prev_register (this_frame, this_cache, regnum);
2480 }
2481
2482 static int
2483 amd64_sigtramp_frame_sniffer (const struct frame_unwind *self,
2484 struct frame_info *this_frame,
2485 void **this_cache)
2486 {
2487 struct gdbarch_tdep *tdep = gdbarch_tdep (get_frame_arch (this_frame));
2488
2489 /* We shouldn't even bother if we don't have a sigcontext_addr
2490 handler. */
2491 if (tdep->sigcontext_addr == NULL)
2492 return 0;
2493
2494 if (tdep->sigtramp_p != NULL)
2495 {
2496 if (tdep->sigtramp_p (this_frame))
2497 return 1;
2498 }
2499
2500 if (tdep->sigtramp_start != 0)
2501 {
2502 CORE_ADDR pc = get_frame_pc (this_frame);
2503
2504 gdb_assert (tdep->sigtramp_end != 0);
2505 if (pc >= tdep->sigtramp_start && pc < tdep->sigtramp_end)
2506 return 1;
2507 }
2508
2509 return 0;
2510 }
2511
2512 static const struct frame_unwind amd64_sigtramp_frame_unwind =
2513 {
2514 SIGTRAMP_FRAME,
2515 amd64_sigtramp_frame_unwind_stop_reason,
2516 amd64_sigtramp_frame_this_id,
2517 amd64_sigtramp_frame_prev_register,
2518 NULL,
2519 amd64_sigtramp_frame_sniffer
2520 };
2521 \f
2522
2523 static CORE_ADDR
2524 amd64_frame_base_address (struct frame_info *this_frame, void **this_cache)
2525 {
2526 struct amd64_frame_cache *cache =
2527 amd64_frame_cache (this_frame, this_cache);
2528
2529 return cache->base;
2530 }
2531
2532 static const struct frame_base amd64_frame_base =
2533 {
2534 &amd64_frame_unwind,
2535 amd64_frame_base_address,
2536 amd64_frame_base_address,
2537 amd64_frame_base_address
2538 };
2539
2540 /* Normal frames, but in a function epilogue. */
2541
2542 /* The epilogue is defined here as the 'ret' instruction, which will
2543 follow any instruction such as 'leave' or 'pop %ebp' that destroys
2544 the function's stack frame. */
2545
2546 static int
2547 amd64_in_function_epilogue_p (struct gdbarch *gdbarch, CORE_ADDR pc)
2548 {
2549 gdb_byte insn;
2550 struct symtab *symtab;
2551
2552 symtab = find_pc_symtab (pc);
2553 if (symtab && symtab->epilogue_unwind_valid)
2554 return 0;
2555
2556 if (target_read_memory (pc, &insn, 1))
2557 return 0; /* Can't read memory at pc. */
2558
2559 if (insn != 0xc3) /* 'ret' instruction. */
2560 return 0;
2561
2562 return 1;
2563 }
2564
2565 static int
2566 amd64_epilogue_frame_sniffer (const struct frame_unwind *self,
2567 struct frame_info *this_frame,
2568 void **this_prologue_cache)
2569 {
2570 if (frame_relative_level (this_frame) == 0)
2571 return amd64_in_function_epilogue_p (get_frame_arch (this_frame),
2572 get_frame_pc (this_frame));
2573 else
2574 return 0;
2575 }
2576
2577 static struct amd64_frame_cache *
2578 amd64_epilogue_frame_cache (struct frame_info *this_frame, void **this_cache)
2579 {
2580 struct gdbarch *gdbarch = get_frame_arch (this_frame);
2581 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
2582 volatile struct gdb_exception ex;
2583 struct amd64_frame_cache *cache;
2584 gdb_byte buf[8];
2585
2586 if (*this_cache)
2587 return *this_cache;
2588
2589 cache = amd64_alloc_frame_cache ();
2590 *this_cache = cache;
2591
2592 TRY_CATCH (ex, RETURN_MASK_ERROR)
2593 {
2594 /* Cache base will be %esp plus cache->sp_offset (-8). */
2595 get_frame_register (this_frame, AMD64_RSP_REGNUM, buf);
2596 cache->base = extract_unsigned_integer (buf, 8,
2597 byte_order) + cache->sp_offset;
2598
2599 /* Cache pc will be the frame func. */
2600 cache->pc = get_frame_pc (this_frame);
2601
2602 /* The saved %esp will be at cache->base plus 16. */
2603 cache->saved_sp = cache->base + 16;
2604
2605 /* The saved %eip will be at cache->base plus 8. */
2606 cache->saved_regs[AMD64_RIP_REGNUM] = cache->base + 8;
2607
2608 cache->base_p = 1;
2609 }
2610 if (ex.reason < 0 && ex.error != NOT_AVAILABLE_ERROR)
2611 throw_exception (ex);
2612
2613 return cache;
2614 }
2615
2616 static enum unwind_stop_reason
2617 amd64_epilogue_frame_unwind_stop_reason (struct frame_info *this_frame,
2618 void **this_cache)
2619 {
2620 struct amd64_frame_cache *cache
2621 = amd64_epilogue_frame_cache (this_frame, this_cache);
2622
2623 if (!cache->base_p)
2624 return UNWIND_UNAVAILABLE;
2625
2626 return UNWIND_NO_REASON;
2627 }
2628
2629 static void
2630 amd64_epilogue_frame_this_id (struct frame_info *this_frame,
2631 void **this_cache,
2632 struct frame_id *this_id)
2633 {
2634 struct amd64_frame_cache *cache = amd64_epilogue_frame_cache (this_frame,
2635 this_cache);
2636
2637 if (!cache->base_p)
2638 return;
2639
2640 (*this_id) = frame_id_build (cache->base + 8, cache->pc);
2641 }
2642
2643 static const struct frame_unwind amd64_epilogue_frame_unwind =
2644 {
2645 NORMAL_FRAME,
2646 amd64_epilogue_frame_unwind_stop_reason,
2647 amd64_epilogue_frame_this_id,
2648 amd64_frame_prev_register,
2649 NULL,
2650 amd64_epilogue_frame_sniffer
2651 };
2652
2653 static struct frame_id
2654 amd64_dummy_id (struct gdbarch *gdbarch, struct frame_info *this_frame)
2655 {
2656 CORE_ADDR fp;
2657
2658 fp = get_frame_register_unsigned (this_frame, AMD64_RBP_REGNUM);
2659
2660 return frame_id_build (fp + 16, get_frame_pc (this_frame));
2661 }
2662
2663 /* 16 byte align the SP per frame requirements. */
2664
2665 static CORE_ADDR
2666 amd64_frame_align (struct gdbarch *gdbarch, CORE_ADDR sp)
2667 {
2668 return sp & -(CORE_ADDR)16;
2669 }
2670 \f
2671
2672 /* Supply register REGNUM from the buffer specified by FPREGS and LEN
2673 in the floating-point register set REGSET to register cache
2674 REGCACHE. If REGNUM is -1, do this for all registers in REGSET. */
2675
2676 static void
2677 amd64_supply_fpregset (const struct regset *regset, struct regcache *regcache,
2678 int regnum, const void *fpregs, size_t len)
2679 {
2680 const struct gdbarch_tdep *tdep = gdbarch_tdep (regset->arch);
2681
2682 gdb_assert (len == tdep->sizeof_fpregset);
2683 amd64_supply_fxsave (regcache, regnum, fpregs);
2684 }
2685
2686 /* Collect register REGNUM from the register cache REGCACHE and store
2687 it in the buffer specified by FPREGS and LEN as described by the
2688 floating-point register set REGSET. If REGNUM is -1, do this for
2689 all registers in REGSET. */
2690
2691 static void
2692 amd64_collect_fpregset (const struct regset *regset,
2693 const struct regcache *regcache,
2694 int regnum, void *fpregs, size_t len)
2695 {
2696 const struct gdbarch_tdep *tdep = gdbarch_tdep (regset->arch);
2697
2698 gdb_assert (len == tdep->sizeof_fpregset);
2699 amd64_collect_fxsave (regcache, regnum, fpregs);
2700 }
2701
2702 /* Similar to amd64_supply_fpregset, but use XSAVE extended state. */
2703
2704 static void
2705 amd64_supply_xstateregset (const struct regset *regset,
2706 struct regcache *regcache, int regnum,
2707 const void *xstateregs, size_t len)
2708 {
2709 amd64_supply_xsave (regcache, regnum, xstateregs);
2710 }
2711
2712 /* Similar to amd64_collect_fpregset, but use XSAVE extended state. */
2713
2714 static void
2715 amd64_collect_xstateregset (const struct regset *regset,
2716 const struct regcache *regcache,
2717 int regnum, void *xstateregs, size_t len)
2718 {
2719 amd64_collect_xsave (regcache, regnum, xstateregs, 1);
2720 }
2721
2722 /* Return the appropriate register set for the core section identified
2723 by SECT_NAME and SECT_SIZE. */
2724
2725 static const struct regset *
2726 amd64_regset_from_core_section (struct gdbarch *gdbarch,
2727 const char *sect_name, size_t sect_size)
2728 {
2729 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2730
2731 if (strcmp (sect_name, ".reg2") == 0 && sect_size == tdep->sizeof_fpregset)
2732 {
2733 if (tdep->fpregset == NULL)
2734 tdep->fpregset = regset_alloc (gdbarch, amd64_supply_fpregset,
2735 amd64_collect_fpregset);
2736
2737 return tdep->fpregset;
2738 }
2739
2740 if (strcmp (sect_name, ".reg-xstate") == 0)
2741 {
2742 if (tdep->xstateregset == NULL)
2743 tdep->xstateregset = regset_alloc (gdbarch,
2744 amd64_supply_xstateregset,
2745 amd64_collect_xstateregset);
2746
2747 return tdep->xstateregset;
2748 }
2749
2750 return i386_regset_from_core_section (gdbarch, sect_name, sect_size);
2751 }
2752 \f
2753
2754 /* Figure out where the longjmp will land. Slurp the jmp_buf out of
2755 %rdi. We expect its value to be a pointer to the jmp_buf structure
2756 from which we extract the address that we will land at. This
2757 address is copied into PC. This routine returns non-zero on
2758 success. */
2759
2760 static int
2761 amd64_get_longjmp_target (struct frame_info *frame, CORE_ADDR *pc)
2762 {
2763 gdb_byte buf[8];
2764 CORE_ADDR jb_addr;
2765 struct gdbarch *gdbarch = get_frame_arch (frame);
2766 int jb_pc_offset = gdbarch_tdep (gdbarch)->jb_pc_offset;
2767 int len = TYPE_LENGTH (builtin_type (gdbarch)->builtin_func_ptr);
2768
2769 /* If JB_PC_OFFSET is -1, we have no way to find out where the
2770 longjmp will land. */
2771 if (jb_pc_offset == -1)
2772 return 0;
2773
2774 get_frame_register (frame, AMD64_RDI_REGNUM, buf);
2775 jb_addr= extract_typed_address
2776 (buf, builtin_type (gdbarch)->builtin_data_ptr);
2777 if (target_read_memory (jb_addr + jb_pc_offset, buf, len))
2778 return 0;
2779
2780 *pc = extract_typed_address (buf, builtin_type (gdbarch)->builtin_func_ptr);
2781
2782 return 1;
2783 }
2784
2785 static const int amd64_record_regmap[] =
2786 {
2787 AMD64_RAX_REGNUM, AMD64_RCX_REGNUM, AMD64_RDX_REGNUM, AMD64_RBX_REGNUM,
2788 AMD64_RSP_REGNUM, AMD64_RBP_REGNUM, AMD64_RSI_REGNUM, AMD64_RDI_REGNUM,
2789 AMD64_R8_REGNUM, AMD64_R9_REGNUM, AMD64_R10_REGNUM, AMD64_R11_REGNUM,
2790 AMD64_R12_REGNUM, AMD64_R13_REGNUM, AMD64_R14_REGNUM, AMD64_R15_REGNUM,
2791 AMD64_RIP_REGNUM, AMD64_EFLAGS_REGNUM, AMD64_CS_REGNUM, AMD64_SS_REGNUM,
2792 AMD64_DS_REGNUM, AMD64_ES_REGNUM, AMD64_FS_REGNUM, AMD64_GS_REGNUM
2793 };
2794
2795 void
2796 amd64_init_abi (struct gdbarch_info info, struct gdbarch *gdbarch)
2797 {
2798 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2799 const struct target_desc *tdesc = info.target_desc;
2800
2801 /* AMD64 generally uses `fxsave' instead of `fsave' for saving its
2802 floating-point registers. */
2803 tdep->sizeof_fpregset = I387_SIZEOF_FXSAVE;
2804
2805 if (! tdesc_has_registers (tdesc))
2806 tdesc = tdesc_amd64;
2807 tdep->tdesc = tdesc;
2808
2809 tdep->num_core_regs = AMD64_NUM_GREGS + I387_NUM_REGS;
2810 tdep->register_names = amd64_register_names;
2811
2812 if (tdesc_find_feature (tdesc, "org.gnu.gdb.i386.avx") != NULL)
2813 {
2814 tdep->ymmh_register_names = amd64_ymmh_names;
2815 tdep->num_ymm_regs = 16;
2816 tdep->ymm0h_regnum = AMD64_YMM0H_REGNUM;
2817 }
2818
2819 tdep->num_byte_regs = 20;
2820 tdep->num_word_regs = 16;
2821 tdep->num_dword_regs = 16;
2822 /* Avoid wiring in the MMX registers for now. */
2823 tdep->num_mmx_regs = 0;
2824
2825 set_gdbarch_pseudo_register_read_value (gdbarch,
2826 amd64_pseudo_register_read_value);
2827 set_gdbarch_pseudo_register_write (gdbarch,
2828 amd64_pseudo_register_write);
2829
2830 set_tdesc_pseudo_register_name (gdbarch, amd64_pseudo_register_name);
2831
2832 /* AMD64 has an FPU and 16 SSE registers. */
2833 tdep->st0_regnum = AMD64_ST0_REGNUM;
2834 tdep->num_xmm_regs = 16;
2835
2836 /* This is what all the fuss is about. */
2837 set_gdbarch_long_bit (gdbarch, 64);
2838 set_gdbarch_long_long_bit (gdbarch, 64);
2839 set_gdbarch_ptr_bit (gdbarch, 64);
2840
2841 /* In contrast to the i386, on AMD64 a `long double' actually takes
2842 up 128 bits, even though it's still based on the i387 extended
2843 floating-point format which has only 80 significant bits. */
2844 set_gdbarch_long_double_bit (gdbarch, 128);
2845
2846 set_gdbarch_num_regs (gdbarch, AMD64_NUM_REGS);
2847
2848 /* Register numbers of various important registers. */
2849 set_gdbarch_sp_regnum (gdbarch, AMD64_RSP_REGNUM); /* %rsp */
2850 set_gdbarch_pc_regnum (gdbarch, AMD64_RIP_REGNUM); /* %rip */
2851 set_gdbarch_ps_regnum (gdbarch, AMD64_EFLAGS_REGNUM); /* %eflags */
2852 set_gdbarch_fp0_regnum (gdbarch, AMD64_ST0_REGNUM); /* %st(0) */
2853
2854 /* The "default" register numbering scheme for AMD64 is referred to
2855 as the "DWARF Register Number Mapping" in the System V psABI.
2856 The preferred debugging format for all known AMD64 targets is
2857 actually DWARF2, and GCC doesn't seem to support DWARF (that is
2858 DWARF-1), but we provide the same mapping just in case. This
2859 mapping is also used for stabs, which GCC does support. */
2860 set_gdbarch_stab_reg_to_regnum (gdbarch, amd64_dwarf_reg_to_regnum);
2861 set_gdbarch_dwarf2_reg_to_regnum (gdbarch, amd64_dwarf_reg_to_regnum);
2862
2863 /* We don't override SDB_REG_RO_REGNUM, since COFF doesn't seem to
2864 be in use on any of the supported AMD64 targets. */
2865
2866 /* Call dummy code. */
2867 set_gdbarch_push_dummy_call (gdbarch, amd64_push_dummy_call);
2868 set_gdbarch_frame_align (gdbarch, amd64_frame_align);
2869 set_gdbarch_frame_red_zone_size (gdbarch, 128);
2870 tdep->call_dummy_num_integer_regs =
2871 ARRAY_SIZE (amd64_dummy_call_integer_regs);
2872 tdep->call_dummy_integer_regs = amd64_dummy_call_integer_regs;
2873 tdep->classify = amd64_classify;
2874
2875 set_gdbarch_convert_register_p (gdbarch, i387_convert_register_p);
2876 set_gdbarch_register_to_value (gdbarch, i387_register_to_value);
2877 set_gdbarch_value_to_register (gdbarch, i387_value_to_register);
2878
2879 set_gdbarch_return_value (gdbarch, amd64_return_value);
2880
2881 set_gdbarch_skip_prologue (gdbarch, amd64_skip_prologue);
2882
2883 tdep->record_regmap = amd64_record_regmap;
2884
2885 set_gdbarch_dummy_id (gdbarch, amd64_dummy_id);
2886
2887 /* Hook the function epilogue frame unwinder. This unwinder is
2888 appended to the list first, so that it supercedes the other
2889 unwinders in function epilogues. */
2890 frame_unwind_prepend_unwinder (gdbarch, &amd64_epilogue_frame_unwind);
2891
2892 /* Hook the prologue-based frame unwinders. */
2893 frame_unwind_append_unwinder (gdbarch, &amd64_sigtramp_frame_unwind);
2894 frame_unwind_append_unwinder (gdbarch, &amd64_frame_unwind);
2895 frame_base_set_default (gdbarch, &amd64_frame_base);
2896
2897 /* If we have a register mapping, enable the generic core file support. */
2898 if (tdep->gregset_reg_offset)
2899 set_gdbarch_regset_from_core_section (gdbarch,
2900 amd64_regset_from_core_section);
2901
2902 set_gdbarch_get_longjmp_target (gdbarch, amd64_get_longjmp_target);
2903
2904 set_gdbarch_relocate_instruction (gdbarch, amd64_relocate_instruction);
2905
2906 set_gdbarch_gen_return_address (gdbarch, amd64_gen_return_address);
2907
2908 /* SystemTap variables and functions. */
2909 set_gdbarch_stap_integer_prefix (gdbarch, "$");
2910 set_gdbarch_stap_register_prefix (gdbarch, "%");
2911 set_gdbarch_stap_register_indirection_prefix (gdbarch, "(");
2912 set_gdbarch_stap_register_indirection_suffix (gdbarch, ")");
2913 set_gdbarch_stap_is_single_operand (gdbarch,
2914 i386_stap_is_single_operand);
2915 set_gdbarch_stap_parse_special_token (gdbarch,
2916 i386_stap_parse_special_token);
2917 }
2918 \f
2919
2920 static struct type *
2921 amd64_x32_pseudo_register_type (struct gdbarch *gdbarch, int regnum)
2922 {
2923 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2924
2925 switch (regnum - tdep->eax_regnum)
2926 {
2927 case AMD64_RBP_REGNUM: /* %ebp */
2928 case AMD64_RSP_REGNUM: /* %esp */
2929 return builtin_type (gdbarch)->builtin_data_ptr;
2930 case AMD64_RIP_REGNUM: /* %eip */
2931 return builtin_type (gdbarch)->builtin_func_ptr;
2932 }
2933
2934 return i386_pseudo_register_type (gdbarch, regnum);
2935 }
2936
2937 void
2938 amd64_x32_init_abi (struct gdbarch_info info, struct gdbarch *gdbarch)
2939 {
2940 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2941 const struct target_desc *tdesc = info.target_desc;
2942
2943 amd64_init_abi (info, gdbarch);
2944
2945 if (! tdesc_has_registers (tdesc))
2946 tdesc = tdesc_x32;
2947 tdep->tdesc = tdesc;
2948
2949 tdep->sp_regnum_from_eax = AMD64_RSP_REGNUM;
2950 tdep->pc_regnum_from_eax = AMD64_RIP_REGNUM;
2951
2952 tdep->num_dword_regs = 17;
2953 set_tdesc_pseudo_register_type (gdbarch, amd64_x32_pseudo_register_type);
2954
2955 set_gdbarch_long_bit (gdbarch, 32);
2956 set_gdbarch_ptr_bit (gdbarch, 32);
2957 }
2958
2959 /* Provide a prototype to silence -Wmissing-prototypes. */
2960 void _initialize_amd64_tdep (void);
2961
2962 void
2963 _initialize_amd64_tdep (void)
2964 {
2965 initialize_tdesc_amd64 ();
2966 initialize_tdesc_amd64_avx ();
2967 initialize_tdesc_x32 ();
2968 initialize_tdesc_x32_avx ();
2969 }
2970 \f
2971
2972 /* The 64-bit FXSAVE format differs from the 32-bit format in the
2973 sense that the instruction pointer and data pointer are simply
2974 64-bit offsets into the code segment and the data segment instead
2975 of a selector offset pair. The functions below store the upper 32
2976 bits of these pointers (instead of just the 16-bits of the segment
2977 selector). */
2978
2979 /* Fill register REGNUM in REGCACHE with the appropriate
2980 floating-point or SSE register value from *FXSAVE. If REGNUM is
2981 -1, do this for all registers. This function masks off any of the
2982 reserved bits in *FXSAVE. */
2983
2984 void
2985 amd64_supply_fxsave (struct regcache *regcache, int regnum,
2986 const void *fxsave)
2987 {
2988 struct gdbarch *gdbarch = get_regcache_arch (regcache);
2989 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2990
2991 i387_supply_fxsave (regcache, regnum, fxsave);
2992
2993 if (fxsave
2994 && gdbarch_bfd_arch_info (gdbarch)->bits_per_word == 64)
2995 {
2996 const gdb_byte *regs = fxsave;
2997
2998 if (regnum == -1 || regnum == I387_FISEG_REGNUM (tdep))
2999 regcache_raw_supply (regcache, I387_FISEG_REGNUM (tdep), regs + 12);
3000 if (regnum == -1 || regnum == I387_FOSEG_REGNUM (tdep))
3001 regcache_raw_supply (regcache, I387_FOSEG_REGNUM (tdep), regs + 20);
3002 }
3003 }
3004
3005 /* Similar to amd64_supply_fxsave, but use XSAVE extended state. */
3006
3007 void
3008 amd64_supply_xsave (struct regcache *regcache, int regnum,
3009 const void *xsave)
3010 {
3011 struct gdbarch *gdbarch = get_regcache_arch (regcache);
3012 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3013
3014 i387_supply_xsave (regcache, regnum, xsave);
3015
3016 if (xsave
3017 && gdbarch_bfd_arch_info (gdbarch)->bits_per_word == 64)
3018 {
3019 const gdb_byte *regs = xsave;
3020
3021 if (regnum == -1 || regnum == I387_FISEG_REGNUM (tdep))
3022 regcache_raw_supply (regcache, I387_FISEG_REGNUM (tdep),
3023 regs + 12);
3024 if (regnum == -1 || regnum == I387_FOSEG_REGNUM (tdep))
3025 regcache_raw_supply (regcache, I387_FOSEG_REGNUM (tdep),
3026 regs + 20);
3027 }
3028 }
3029
3030 /* Fill register REGNUM (if it is a floating-point or SSE register) in
3031 *FXSAVE with the value from REGCACHE. If REGNUM is -1, do this for
3032 all registers. This function doesn't touch any of the reserved
3033 bits in *FXSAVE. */
3034
3035 void
3036 amd64_collect_fxsave (const struct regcache *regcache, int regnum,
3037 void *fxsave)
3038 {
3039 struct gdbarch *gdbarch = get_regcache_arch (regcache);
3040 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3041 gdb_byte *regs = fxsave;
3042
3043 i387_collect_fxsave (regcache, regnum, fxsave);
3044
3045 if (gdbarch_bfd_arch_info (gdbarch)->bits_per_word == 64)
3046 {
3047 if (regnum == -1 || regnum == I387_FISEG_REGNUM (tdep))
3048 regcache_raw_collect (regcache, I387_FISEG_REGNUM (tdep), regs + 12);
3049 if (regnum == -1 || regnum == I387_FOSEG_REGNUM (tdep))
3050 regcache_raw_collect (regcache, I387_FOSEG_REGNUM (tdep), regs + 20);
3051 }
3052 }
3053
3054 /* Similar to amd64_collect_fxsave, but use XSAVE extended state. */
3055
3056 void
3057 amd64_collect_xsave (const struct regcache *regcache, int regnum,
3058 void *xsave, int gcore)
3059 {
3060 struct gdbarch *gdbarch = get_regcache_arch (regcache);
3061 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3062 gdb_byte *regs = xsave;
3063
3064 i387_collect_xsave (regcache, regnum, xsave, gcore);
3065
3066 if (gdbarch_bfd_arch_info (gdbarch)->bits_per_word == 64)
3067 {
3068 if (regnum == -1 || regnum == I387_FISEG_REGNUM (tdep))
3069 regcache_raw_collect (regcache, I387_FISEG_REGNUM (tdep),
3070 regs + 12);
3071 if (regnum == -1 || regnum == I387_FOSEG_REGNUM (tdep))
3072 regcache_raw_collect (regcache, I387_FOSEG_REGNUM (tdep),
3073 regs + 20);
3074 }
3075 }
This page took 0.092793 seconds and 4 git commands to generate.