gdb/
[deliverable/binutils-gdb.git] / gdb / amd64-tdep.c
1 /* Target-dependent code for AMD64.
2
3 Copyright (C) 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009, 2010,
4 2011 Free Software Foundation, Inc.
5
6 Contributed by Jiri Smid, SuSE Labs.
7
8 This file is part of GDB.
9
10 This program is free software; you can redistribute it and/or modify
11 it under the terms of the GNU General Public License as published by
12 the Free Software Foundation; either version 3 of the License, or
13 (at your option) any later version.
14
15 This program is distributed in the hope that it will be useful,
16 but WITHOUT ANY WARRANTY; without even the implied warranty of
17 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
18 GNU General Public License for more details.
19
20 You should have received a copy of the GNU General Public License
21 along with this program. If not, see <http://www.gnu.org/licenses/>. */
22
23 #include "defs.h"
24 #include "opcode/i386.h"
25 #include "dis-asm.h"
26 #include "arch-utils.h"
27 #include "block.h"
28 #include "dummy-frame.h"
29 #include "frame.h"
30 #include "frame-base.h"
31 #include "frame-unwind.h"
32 #include "inferior.h"
33 #include "gdbcmd.h"
34 #include "gdbcore.h"
35 #include "objfiles.h"
36 #include "regcache.h"
37 #include "regset.h"
38 #include "symfile.h"
39 #include "disasm.h"
40 #include "gdb_assert.h"
41
42 #include "amd64-tdep.h"
43 #include "i387-tdep.h"
44
45 #include "features/i386/amd64.c"
46 #include "features/i386/amd64-avx.c"
47
48 /* Note that the AMD64 architecture was previously known as x86-64.
49 The latter is (forever) engraved into the canonical system name as
50 returned by config.guess, and used as the name for the AMD64 port
51 of GNU/Linux. The BSD's have renamed their ports to amd64; they
52 don't like to shout. For GDB we prefer the amd64_-prefix over the
53 x86_64_-prefix since it's so much easier to type. */
54
55 /* Register information. */
56
57 static const char *amd64_register_names[] =
58 {
59 "rax", "rbx", "rcx", "rdx", "rsi", "rdi", "rbp", "rsp",
60
61 /* %r8 is indeed register number 8. */
62 "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15",
63 "rip", "eflags", "cs", "ss", "ds", "es", "fs", "gs",
64
65 /* %st0 is register number 24. */
66 "st0", "st1", "st2", "st3", "st4", "st5", "st6", "st7",
67 "fctrl", "fstat", "ftag", "fiseg", "fioff", "foseg", "fooff", "fop",
68
69 /* %xmm0 is register number 40. */
70 "xmm0", "xmm1", "xmm2", "xmm3", "xmm4", "xmm5", "xmm6", "xmm7",
71 "xmm8", "xmm9", "xmm10", "xmm11", "xmm12", "xmm13", "xmm14", "xmm15",
72 "mxcsr",
73 };
74
75 static const char *amd64_ymm_names[] =
76 {
77 "ymm0", "ymm1", "ymm2", "ymm3",
78 "ymm4", "ymm5", "ymm6", "ymm7",
79 "ymm8", "ymm9", "ymm10", "ymm11",
80 "ymm12", "ymm13", "ymm14", "ymm15"
81 };
82
83 static const char *amd64_ymmh_names[] =
84 {
85 "ymm0h", "ymm1h", "ymm2h", "ymm3h",
86 "ymm4h", "ymm5h", "ymm6h", "ymm7h",
87 "ymm8h", "ymm9h", "ymm10h", "ymm11h",
88 "ymm12h", "ymm13h", "ymm14h", "ymm15h"
89 };
90
91 /* The registers used to pass integer arguments during a function call. */
92 static int amd64_dummy_call_integer_regs[] =
93 {
94 AMD64_RDI_REGNUM, /* %rdi */
95 AMD64_RSI_REGNUM, /* %rsi */
96 AMD64_RDX_REGNUM, /* %rdx */
97 AMD64_RCX_REGNUM, /* %rcx */
98 8, /* %r8 */
99 9 /* %r9 */
100 };
101
102 /* DWARF Register Number Mapping as defined in the System V psABI,
103 section 3.6. */
104
105 static int amd64_dwarf_regmap[] =
106 {
107 /* General Purpose Registers RAX, RDX, RCX, RBX, RSI, RDI. */
108 AMD64_RAX_REGNUM, AMD64_RDX_REGNUM,
109 AMD64_RCX_REGNUM, AMD64_RBX_REGNUM,
110 AMD64_RSI_REGNUM, AMD64_RDI_REGNUM,
111
112 /* Frame Pointer Register RBP. */
113 AMD64_RBP_REGNUM,
114
115 /* Stack Pointer Register RSP. */
116 AMD64_RSP_REGNUM,
117
118 /* Extended Integer Registers 8 - 15. */
119 8, 9, 10, 11, 12, 13, 14, 15,
120
121 /* Return Address RA. Mapped to RIP. */
122 AMD64_RIP_REGNUM,
123
124 /* SSE Registers 0 - 7. */
125 AMD64_XMM0_REGNUM + 0, AMD64_XMM1_REGNUM,
126 AMD64_XMM0_REGNUM + 2, AMD64_XMM0_REGNUM + 3,
127 AMD64_XMM0_REGNUM + 4, AMD64_XMM0_REGNUM + 5,
128 AMD64_XMM0_REGNUM + 6, AMD64_XMM0_REGNUM + 7,
129
130 /* Extended SSE Registers 8 - 15. */
131 AMD64_XMM0_REGNUM + 8, AMD64_XMM0_REGNUM + 9,
132 AMD64_XMM0_REGNUM + 10, AMD64_XMM0_REGNUM + 11,
133 AMD64_XMM0_REGNUM + 12, AMD64_XMM0_REGNUM + 13,
134 AMD64_XMM0_REGNUM + 14, AMD64_XMM0_REGNUM + 15,
135
136 /* Floating Point Registers 0-7. */
137 AMD64_ST0_REGNUM + 0, AMD64_ST0_REGNUM + 1,
138 AMD64_ST0_REGNUM + 2, AMD64_ST0_REGNUM + 3,
139 AMD64_ST0_REGNUM + 4, AMD64_ST0_REGNUM + 5,
140 AMD64_ST0_REGNUM + 6, AMD64_ST0_REGNUM + 7,
141
142 /* Control and Status Flags Register. */
143 AMD64_EFLAGS_REGNUM,
144
145 /* Selector Registers. */
146 AMD64_ES_REGNUM,
147 AMD64_CS_REGNUM,
148 AMD64_SS_REGNUM,
149 AMD64_DS_REGNUM,
150 AMD64_FS_REGNUM,
151 AMD64_GS_REGNUM,
152 -1,
153 -1,
154
155 /* Segment Base Address Registers. */
156 -1,
157 -1,
158 -1,
159 -1,
160
161 /* Special Selector Registers. */
162 -1,
163 -1,
164
165 /* Floating Point Control Registers. */
166 AMD64_MXCSR_REGNUM,
167 AMD64_FCTRL_REGNUM,
168 AMD64_FSTAT_REGNUM
169 };
170
171 static const int amd64_dwarf_regmap_len =
172 (sizeof (amd64_dwarf_regmap) / sizeof (amd64_dwarf_regmap[0]));
173
174 /* Convert DWARF register number REG to the appropriate register
175 number used by GDB. */
176
177 static int
178 amd64_dwarf_reg_to_regnum (struct gdbarch *gdbarch, int reg)
179 {
180 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
181 int ymm0_regnum = tdep->ymm0_regnum;
182 int regnum = -1;
183
184 if (reg >= 0 && reg < amd64_dwarf_regmap_len)
185 regnum = amd64_dwarf_regmap[reg];
186
187 if (regnum == -1)
188 warning (_("Unmapped DWARF Register #%d encountered."), reg);
189 else if (ymm0_regnum >= 0
190 && i386_xmm_regnum_p (gdbarch, regnum))
191 regnum += ymm0_regnum - I387_XMM0_REGNUM (tdep);
192
193 return regnum;
194 }
195
196 /* Map architectural register numbers to gdb register numbers. */
197
198 static const int amd64_arch_regmap[16] =
199 {
200 AMD64_RAX_REGNUM, /* %rax */
201 AMD64_RCX_REGNUM, /* %rcx */
202 AMD64_RDX_REGNUM, /* %rdx */
203 AMD64_RBX_REGNUM, /* %rbx */
204 AMD64_RSP_REGNUM, /* %rsp */
205 AMD64_RBP_REGNUM, /* %rbp */
206 AMD64_RSI_REGNUM, /* %rsi */
207 AMD64_RDI_REGNUM, /* %rdi */
208 AMD64_R8_REGNUM, /* %r8 */
209 AMD64_R9_REGNUM, /* %r9 */
210 AMD64_R10_REGNUM, /* %r10 */
211 AMD64_R11_REGNUM, /* %r11 */
212 AMD64_R12_REGNUM, /* %r12 */
213 AMD64_R13_REGNUM, /* %r13 */
214 AMD64_R14_REGNUM, /* %r14 */
215 AMD64_R15_REGNUM /* %r15 */
216 };
217
218 static const int amd64_arch_regmap_len =
219 (sizeof (amd64_arch_regmap) / sizeof (amd64_arch_regmap[0]));
220
221 /* Convert architectural register number REG to the appropriate register
222 number used by GDB. */
223
224 static int
225 amd64_arch_reg_to_regnum (int reg)
226 {
227 gdb_assert (reg >= 0 && reg < amd64_arch_regmap_len);
228
229 return amd64_arch_regmap[reg];
230 }
231
232 /* Register names for byte pseudo-registers. */
233
234 static const char *amd64_byte_names[] =
235 {
236 "al", "bl", "cl", "dl", "sil", "dil", "bpl", "spl",
237 "r8l", "r9l", "r10l", "r11l", "r12l", "r13l", "r14l", "r15l",
238 "ah", "bh", "ch", "dh"
239 };
240
241 /* Number of lower byte registers. */
242 #define AMD64_NUM_LOWER_BYTE_REGS 16
243
244 /* Register names for word pseudo-registers. */
245
246 static const char *amd64_word_names[] =
247 {
248 "ax", "bx", "cx", "dx", "si", "di", "bp", "",
249 "r8w", "r9w", "r10w", "r11w", "r12w", "r13w", "r14w", "r15w"
250 };
251
252 /* Register names for dword pseudo-registers. */
253
254 static const char *amd64_dword_names[] =
255 {
256 "eax", "ebx", "ecx", "edx", "esi", "edi", "ebp", "esp",
257 "r8d", "r9d", "r10d", "r11d", "r12d", "r13d", "r14d", "r15d"
258 };
259
260 /* Return the name of register REGNUM. */
261
262 static const char *
263 amd64_pseudo_register_name (struct gdbarch *gdbarch, int regnum)
264 {
265 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
266 if (i386_byte_regnum_p (gdbarch, regnum))
267 return amd64_byte_names[regnum - tdep->al_regnum];
268 else if (i386_ymm_regnum_p (gdbarch, regnum))
269 return amd64_ymm_names[regnum - tdep->ymm0_regnum];
270 else if (i386_word_regnum_p (gdbarch, regnum))
271 return amd64_word_names[regnum - tdep->ax_regnum];
272 else if (i386_dword_regnum_p (gdbarch, regnum))
273 return amd64_dword_names[regnum - tdep->eax_regnum];
274 else
275 return i386_pseudo_register_name (gdbarch, regnum);
276 }
277
278 static enum register_status
279 amd64_pseudo_register_read (struct gdbarch *gdbarch,
280 struct regcache *regcache,
281 int regnum, gdb_byte *buf)
282 {
283 gdb_byte raw_buf[MAX_REGISTER_SIZE];
284 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
285 enum register_status status;
286
287 if (i386_byte_regnum_p (gdbarch, regnum))
288 {
289 int gpnum = regnum - tdep->al_regnum;
290
291 /* Extract (always little endian). */
292 if (gpnum >= AMD64_NUM_LOWER_BYTE_REGS)
293 {
294 /* Special handling for AH, BH, CH, DH. */
295 status = regcache_raw_read (regcache,
296 gpnum - AMD64_NUM_LOWER_BYTE_REGS,
297 raw_buf);
298 if (status == REG_VALID)
299 memcpy (buf, raw_buf + 1, 1);
300 }
301 else
302 {
303 status = regcache_raw_read (regcache, gpnum, raw_buf);
304 if (status == REG_VALID)
305 memcpy (buf, raw_buf, 1);
306 }
307
308 return status;
309 }
310 else if (i386_dword_regnum_p (gdbarch, regnum))
311 {
312 int gpnum = regnum - tdep->eax_regnum;
313 /* Extract (always little endian). */
314 status = regcache_raw_read (regcache, gpnum, raw_buf);
315 if (status == REG_VALID)
316 memcpy (buf, raw_buf, 4);
317
318 return status;
319 }
320 else
321 return i386_pseudo_register_read (gdbarch, regcache, regnum, buf);
322 }
323
324 static void
325 amd64_pseudo_register_write (struct gdbarch *gdbarch,
326 struct regcache *regcache,
327 int regnum, const gdb_byte *buf)
328 {
329 gdb_byte raw_buf[MAX_REGISTER_SIZE];
330 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
331
332 if (i386_byte_regnum_p (gdbarch, regnum))
333 {
334 int gpnum = regnum - tdep->al_regnum;
335
336 if (gpnum >= AMD64_NUM_LOWER_BYTE_REGS)
337 {
338 /* Read ... AH, BH, CH, DH. */
339 regcache_raw_read (regcache,
340 gpnum - AMD64_NUM_LOWER_BYTE_REGS, raw_buf);
341 /* ... Modify ... (always little endian). */
342 memcpy (raw_buf + 1, buf, 1);
343 /* ... Write. */
344 regcache_raw_write (regcache,
345 gpnum - AMD64_NUM_LOWER_BYTE_REGS, raw_buf);
346 }
347 else
348 {
349 /* Read ... */
350 regcache_raw_read (regcache, gpnum, raw_buf);
351 /* ... Modify ... (always little endian). */
352 memcpy (raw_buf, buf, 1);
353 /* ... Write. */
354 regcache_raw_write (regcache, gpnum, raw_buf);
355 }
356 }
357 else if (i386_dword_regnum_p (gdbarch, regnum))
358 {
359 int gpnum = regnum - tdep->eax_regnum;
360
361 /* Read ... */
362 regcache_raw_read (regcache, gpnum, raw_buf);
363 /* ... Modify ... (always little endian). */
364 memcpy (raw_buf, buf, 4);
365 /* ... Write. */
366 regcache_raw_write (regcache, gpnum, raw_buf);
367 }
368 else
369 i386_pseudo_register_write (gdbarch, regcache, regnum, buf);
370 }
371
372 \f
373
374 /* Return the union class of CLASS1 and CLASS2. See the psABI for
375 details. */
376
377 static enum amd64_reg_class
378 amd64_merge_classes (enum amd64_reg_class class1, enum amd64_reg_class class2)
379 {
380 /* Rule (a): If both classes are equal, this is the resulting class. */
381 if (class1 == class2)
382 return class1;
383
384 /* Rule (b): If one of the classes is NO_CLASS, the resulting class
385 is the other class. */
386 if (class1 == AMD64_NO_CLASS)
387 return class2;
388 if (class2 == AMD64_NO_CLASS)
389 return class1;
390
391 /* Rule (c): If one of the classes is MEMORY, the result is MEMORY. */
392 if (class1 == AMD64_MEMORY || class2 == AMD64_MEMORY)
393 return AMD64_MEMORY;
394
395 /* Rule (d): If one of the classes is INTEGER, the result is INTEGER. */
396 if (class1 == AMD64_INTEGER || class2 == AMD64_INTEGER)
397 return AMD64_INTEGER;
398
399 /* Rule (e): If one of the classes is X87, X87UP, COMPLEX_X87 class,
400 MEMORY is used as class. */
401 if (class1 == AMD64_X87 || class1 == AMD64_X87UP
402 || class1 == AMD64_COMPLEX_X87 || class2 == AMD64_X87
403 || class2 == AMD64_X87UP || class2 == AMD64_COMPLEX_X87)
404 return AMD64_MEMORY;
405
406 /* Rule (f): Otherwise class SSE is used. */
407 return AMD64_SSE;
408 }
409
410 /* Return non-zero if TYPE is a non-POD structure or union type. */
411
412 static int
413 amd64_non_pod_p (struct type *type)
414 {
415 /* ??? A class with a base class certainly isn't POD, but does this
416 catch all non-POD structure types? */
417 if (TYPE_CODE (type) == TYPE_CODE_STRUCT && TYPE_N_BASECLASSES (type) > 0)
418 return 1;
419
420 return 0;
421 }
422
423 /* Classify TYPE according to the rules for aggregate (structures and
424 arrays) and union types, and store the result in CLASS. */
425
426 static void
427 amd64_classify_aggregate (struct type *type, enum amd64_reg_class class[2])
428 {
429 int len = TYPE_LENGTH (type);
430
431 /* 1. If the size of an object is larger than two eightbytes, or in
432 C++, is a non-POD structure or union type, or contains
433 unaligned fields, it has class memory. */
434 if (len > 16 || amd64_non_pod_p (type))
435 {
436 class[0] = class[1] = AMD64_MEMORY;
437 return;
438 }
439
440 /* 2. Both eightbytes get initialized to class NO_CLASS. */
441 class[0] = class[1] = AMD64_NO_CLASS;
442
443 /* 3. Each field of an object is classified recursively so that
444 always two fields are considered. The resulting class is
445 calculated according to the classes of the fields in the
446 eightbyte: */
447
448 if (TYPE_CODE (type) == TYPE_CODE_ARRAY)
449 {
450 struct type *subtype = check_typedef (TYPE_TARGET_TYPE (type));
451
452 /* All fields in an array have the same type. */
453 amd64_classify (subtype, class);
454 if (len > 8 && class[1] == AMD64_NO_CLASS)
455 class[1] = class[0];
456 }
457 else
458 {
459 int i;
460
461 /* Structure or union. */
462 gdb_assert (TYPE_CODE (type) == TYPE_CODE_STRUCT
463 || TYPE_CODE (type) == TYPE_CODE_UNION);
464
465 for (i = 0; i < TYPE_NFIELDS (type); i++)
466 {
467 struct type *subtype = check_typedef (TYPE_FIELD_TYPE (type, i));
468 int pos = TYPE_FIELD_BITPOS (type, i) / 64;
469 enum amd64_reg_class subclass[2];
470 int bitsize = TYPE_FIELD_BITSIZE (type, i);
471 int endpos;
472
473 if (bitsize == 0)
474 bitsize = TYPE_LENGTH (subtype) * 8;
475 endpos = (TYPE_FIELD_BITPOS (type, i) + bitsize - 1) / 64;
476
477 /* Ignore static fields. */
478 if (field_is_static (&TYPE_FIELD (type, i)))
479 continue;
480
481 gdb_assert (pos == 0 || pos == 1);
482
483 amd64_classify (subtype, subclass);
484 class[pos] = amd64_merge_classes (class[pos], subclass[0]);
485 if (bitsize <= 64 && pos == 0 && endpos == 1)
486 /* This is a bit of an odd case: We have a field that would
487 normally fit in one of the two eightbytes, except that
488 it is placed in a way that this field straddles them.
489 This has been seen with a structure containing an array.
490
491 The ABI is a bit unclear in this case, but we assume that
492 this field's class (stored in subclass[0]) must also be merged
493 into class[1]. In other words, our field has a piece stored
494 in the second eight-byte, and thus its class applies to
495 the second eight-byte as well.
496
497 In the case where the field length exceeds 8 bytes,
498 it should not be necessary to merge the field class
499 into class[1]. As LEN > 8, subclass[1] is necessarily
500 different from AMD64_NO_CLASS. If subclass[1] is equal
501 to subclass[0], then the normal class[1]/subclass[1]
502 merging will take care of everything. For subclass[1]
503 to be different from subclass[0], I can only see the case
504 where we have a SSE/SSEUP or X87/X87UP pair, which both
505 use up all 16 bytes of the aggregate, and are already
506 handled just fine (because each portion sits on its own
507 8-byte). */
508 class[1] = amd64_merge_classes (class[1], subclass[0]);
509 if (pos == 0)
510 class[1] = amd64_merge_classes (class[1], subclass[1]);
511 }
512 }
513
514 /* 4. Then a post merger cleanup is done: */
515
516 /* Rule (a): If one of the classes is MEMORY, the whole argument is
517 passed in memory. */
518 if (class[0] == AMD64_MEMORY || class[1] == AMD64_MEMORY)
519 class[0] = class[1] = AMD64_MEMORY;
520
521 /* Rule (b): If SSEUP is not preceeded by SSE, it is converted to
522 SSE. */
523 if (class[0] == AMD64_SSEUP)
524 class[0] = AMD64_SSE;
525 if (class[1] == AMD64_SSEUP && class[0] != AMD64_SSE)
526 class[1] = AMD64_SSE;
527 }
528
529 /* Classify TYPE, and store the result in CLASS. */
530
531 void
532 amd64_classify (struct type *type, enum amd64_reg_class class[2])
533 {
534 enum type_code code = TYPE_CODE (type);
535 int len = TYPE_LENGTH (type);
536
537 class[0] = class[1] = AMD64_NO_CLASS;
538
539 /* Arguments of types (signed and unsigned) _Bool, char, short, int,
540 long, long long, and pointers are in the INTEGER class. Similarly,
541 range types, used by languages such as Ada, are also in the INTEGER
542 class. */
543 if ((code == TYPE_CODE_INT || code == TYPE_CODE_ENUM
544 || code == TYPE_CODE_BOOL || code == TYPE_CODE_RANGE
545 || code == TYPE_CODE_CHAR
546 || code == TYPE_CODE_PTR || code == TYPE_CODE_REF)
547 && (len == 1 || len == 2 || len == 4 || len == 8))
548 class[0] = AMD64_INTEGER;
549
550 /* Arguments of types float, double, _Decimal32, _Decimal64 and __m64
551 are in class SSE. */
552 else if ((code == TYPE_CODE_FLT || code == TYPE_CODE_DECFLOAT)
553 && (len == 4 || len == 8))
554 /* FIXME: __m64 . */
555 class[0] = AMD64_SSE;
556
557 /* Arguments of types __float128, _Decimal128 and __m128 are split into
558 two halves. The least significant ones belong to class SSE, the most
559 significant one to class SSEUP. */
560 else if (code == TYPE_CODE_DECFLOAT && len == 16)
561 /* FIXME: __float128, __m128. */
562 class[0] = AMD64_SSE, class[1] = AMD64_SSEUP;
563
564 /* The 64-bit mantissa of arguments of type long double belongs to
565 class X87, the 16-bit exponent plus 6 bytes of padding belongs to
566 class X87UP. */
567 else if (code == TYPE_CODE_FLT && len == 16)
568 /* Class X87 and X87UP. */
569 class[0] = AMD64_X87, class[1] = AMD64_X87UP;
570
571 /* Aggregates. */
572 else if (code == TYPE_CODE_ARRAY || code == TYPE_CODE_STRUCT
573 || code == TYPE_CODE_UNION)
574 amd64_classify_aggregate (type, class);
575 }
576
577 static enum return_value_convention
578 amd64_return_value (struct gdbarch *gdbarch, struct type *func_type,
579 struct type *type, struct regcache *regcache,
580 gdb_byte *readbuf, const gdb_byte *writebuf)
581 {
582 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
583 enum amd64_reg_class class[2];
584 int len = TYPE_LENGTH (type);
585 static int integer_regnum[] = { AMD64_RAX_REGNUM, AMD64_RDX_REGNUM };
586 static int sse_regnum[] = { AMD64_XMM0_REGNUM, AMD64_XMM1_REGNUM };
587 int integer_reg = 0;
588 int sse_reg = 0;
589 int i;
590
591 gdb_assert (!(readbuf && writebuf));
592 gdb_assert (tdep->classify);
593
594 /* 1. Classify the return type with the classification algorithm. */
595 tdep->classify (type, class);
596
597 /* 2. If the type has class MEMORY, then the caller provides space
598 for the return value and passes the address of this storage in
599 %rdi as if it were the first argument to the function. In effect,
600 this address becomes a hidden first argument.
601
602 On return %rax will contain the address that has been passed in
603 by the caller in %rdi. */
604 if (class[0] == AMD64_MEMORY)
605 {
606 /* As indicated by the comment above, the ABI guarantees that we
607 can always find the return value just after the function has
608 returned. */
609
610 if (readbuf)
611 {
612 ULONGEST addr;
613
614 regcache_raw_read_unsigned (regcache, AMD64_RAX_REGNUM, &addr);
615 read_memory (addr, readbuf, TYPE_LENGTH (type));
616 }
617
618 return RETURN_VALUE_ABI_RETURNS_ADDRESS;
619 }
620
621 gdb_assert (class[1] != AMD64_MEMORY);
622 gdb_assert (len <= 16);
623
624 for (i = 0; len > 0; i++, len -= 8)
625 {
626 int regnum = -1;
627 int offset = 0;
628
629 switch (class[i])
630 {
631 case AMD64_INTEGER:
632 /* 3. If the class is INTEGER, the next available register
633 of the sequence %rax, %rdx is used. */
634 regnum = integer_regnum[integer_reg++];
635 break;
636
637 case AMD64_SSE:
638 /* 4. If the class is SSE, the next available SSE register
639 of the sequence %xmm0, %xmm1 is used. */
640 regnum = sse_regnum[sse_reg++];
641 break;
642
643 case AMD64_SSEUP:
644 /* 5. If the class is SSEUP, the eightbyte is passed in the
645 upper half of the last used SSE register. */
646 gdb_assert (sse_reg > 0);
647 regnum = sse_regnum[sse_reg - 1];
648 offset = 8;
649 break;
650
651 case AMD64_X87:
652 /* 6. If the class is X87, the value is returned on the X87
653 stack in %st0 as 80-bit x87 number. */
654 regnum = AMD64_ST0_REGNUM;
655 if (writebuf)
656 i387_return_value (gdbarch, regcache);
657 break;
658
659 case AMD64_X87UP:
660 /* 7. If the class is X87UP, the value is returned together
661 with the previous X87 value in %st0. */
662 gdb_assert (i > 0 && class[0] == AMD64_X87);
663 regnum = AMD64_ST0_REGNUM;
664 offset = 8;
665 len = 2;
666 break;
667
668 case AMD64_NO_CLASS:
669 continue;
670
671 default:
672 gdb_assert (!"Unexpected register class.");
673 }
674
675 gdb_assert (regnum != -1);
676
677 if (readbuf)
678 regcache_raw_read_part (regcache, regnum, offset, min (len, 8),
679 readbuf + i * 8);
680 if (writebuf)
681 regcache_raw_write_part (regcache, regnum, offset, min (len, 8),
682 writebuf + i * 8);
683 }
684
685 return RETURN_VALUE_REGISTER_CONVENTION;
686 }
687 \f
688
689 static CORE_ADDR
690 amd64_push_arguments (struct regcache *regcache, int nargs,
691 struct value **args, CORE_ADDR sp, int struct_return)
692 {
693 struct gdbarch *gdbarch = get_regcache_arch (regcache);
694 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
695 int *integer_regs = tdep->call_dummy_integer_regs;
696 int num_integer_regs = tdep->call_dummy_num_integer_regs;
697
698 static int sse_regnum[] =
699 {
700 /* %xmm0 ... %xmm7 */
701 AMD64_XMM0_REGNUM + 0, AMD64_XMM1_REGNUM,
702 AMD64_XMM0_REGNUM + 2, AMD64_XMM0_REGNUM + 3,
703 AMD64_XMM0_REGNUM + 4, AMD64_XMM0_REGNUM + 5,
704 AMD64_XMM0_REGNUM + 6, AMD64_XMM0_REGNUM + 7,
705 };
706 struct value **stack_args = alloca (nargs * sizeof (struct value *));
707 /* An array that mirrors the stack_args array. For all arguments
708 that are passed by MEMORY, if that argument's address also needs
709 to be stored in a register, the ARG_ADDR_REGNO array will contain
710 that register number (or a negative value otherwise). */
711 int *arg_addr_regno = alloca (nargs * sizeof (int));
712 int num_stack_args = 0;
713 int num_elements = 0;
714 int element = 0;
715 int integer_reg = 0;
716 int sse_reg = 0;
717 int i;
718
719 gdb_assert (tdep->classify);
720
721 /* Reserve a register for the "hidden" argument. */
722 if (struct_return)
723 integer_reg++;
724
725 for (i = 0; i < nargs; i++)
726 {
727 struct type *type = value_type (args[i]);
728 int len = TYPE_LENGTH (type);
729 enum amd64_reg_class class[2];
730 int needed_integer_regs = 0;
731 int needed_sse_regs = 0;
732 int j;
733
734 /* Classify argument. */
735 tdep->classify (type, class);
736
737 /* Calculate the number of integer and SSE registers needed for
738 this argument. */
739 for (j = 0; j < 2; j++)
740 {
741 if (class[j] == AMD64_INTEGER)
742 needed_integer_regs++;
743 else if (class[j] == AMD64_SSE)
744 needed_sse_regs++;
745 }
746
747 /* Check whether enough registers are available, and if the
748 argument should be passed in registers at all. */
749 if (integer_reg + needed_integer_regs > num_integer_regs
750 || sse_reg + needed_sse_regs > ARRAY_SIZE (sse_regnum)
751 || (needed_integer_regs == 0 && needed_sse_regs == 0))
752 {
753 /* The argument will be passed on the stack. */
754 num_elements += ((len + 7) / 8);
755 stack_args[num_stack_args] = args[i];
756 /* If this is an AMD64_MEMORY argument whose address must also
757 be passed in one of the integer registers, reserve that
758 register and associate this value to that register so that
759 we can store the argument address as soon as we know it. */
760 if (class[0] == AMD64_MEMORY
761 && tdep->memory_args_by_pointer
762 && integer_reg < tdep->call_dummy_num_integer_regs)
763 arg_addr_regno[num_stack_args] =
764 tdep->call_dummy_integer_regs[integer_reg++];
765 else
766 arg_addr_regno[num_stack_args] = -1;
767 num_stack_args++;
768 }
769 else
770 {
771 /* The argument will be passed in registers. */
772 const gdb_byte *valbuf = value_contents (args[i]);
773 gdb_byte buf[8];
774
775 gdb_assert (len <= 16);
776
777 for (j = 0; len > 0; j++, len -= 8)
778 {
779 int regnum = -1;
780 int offset = 0;
781
782 switch (class[j])
783 {
784 case AMD64_INTEGER:
785 regnum = integer_regs[integer_reg++];
786 break;
787
788 case AMD64_SSE:
789 regnum = sse_regnum[sse_reg++];
790 break;
791
792 case AMD64_SSEUP:
793 gdb_assert (sse_reg > 0);
794 regnum = sse_regnum[sse_reg - 1];
795 offset = 8;
796 break;
797
798 default:
799 gdb_assert (!"Unexpected register class.");
800 }
801
802 gdb_assert (regnum != -1);
803 memset (buf, 0, sizeof buf);
804 memcpy (buf, valbuf + j * 8, min (len, 8));
805 regcache_raw_write_part (regcache, regnum, offset, 8, buf);
806 }
807 }
808 }
809
810 /* Allocate space for the arguments on the stack. */
811 sp -= num_elements * 8;
812
813 /* The psABI says that "The end of the input argument area shall be
814 aligned on a 16 byte boundary." */
815 sp &= ~0xf;
816
817 /* Write out the arguments to the stack. */
818 for (i = 0; i < num_stack_args; i++)
819 {
820 struct type *type = value_type (stack_args[i]);
821 const gdb_byte *valbuf = value_contents (stack_args[i]);
822 int len = TYPE_LENGTH (type);
823 CORE_ADDR arg_addr = sp + element * 8;
824
825 write_memory (arg_addr, valbuf, len);
826 if (arg_addr_regno[i] >= 0)
827 {
828 /* We also need to store the address of that argument in
829 the given register. */
830 gdb_byte buf[8];
831 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
832
833 store_unsigned_integer (buf, 8, byte_order, arg_addr);
834 regcache_cooked_write (regcache, arg_addr_regno[i], buf);
835 }
836 element += ((len + 7) / 8);
837 }
838
839 /* The psABI says that "For calls that may call functions that use
840 varargs or stdargs (prototype-less calls or calls to functions
841 containing ellipsis (...) in the declaration) %al is used as
842 hidden argument to specify the number of SSE registers used. */
843 regcache_raw_write_unsigned (regcache, AMD64_RAX_REGNUM, sse_reg);
844 return sp;
845 }
846
847 static CORE_ADDR
848 amd64_push_dummy_call (struct gdbarch *gdbarch, struct value *function,
849 struct regcache *regcache, CORE_ADDR bp_addr,
850 int nargs, struct value **args, CORE_ADDR sp,
851 int struct_return, CORE_ADDR struct_addr)
852 {
853 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
854 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
855 gdb_byte buf[8];
856
857 /* Pass arguments. */
858 sp = amd64_push_arguments (regcache, nargs, args, sp, struct_return);
859
860 /* Pass "hidden" argument". */
861 if (struct_return)
862 {
863 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
864 /* The "hidden" argument is passed throught the first argument
865 register. */
866 const int arg_regnum = tdep->call_dummy_integer_regs[0];
867
868 store_unsigned_integer (buf, 8, byte_order, struct_addr);
869 regcache_cooked_write (regcache, arg_regnum, buf);
870 }
871
872 /* Reserve some memory on the stack for the integer-parameter registers,
873 if required by the ABI. */
874 if (tdep->integer_param_regs_saved_in_caller_frame)
875 sp -= tdep->call_dummy_num_integer_regs * 8;
876
877 /* Store return address. */
878 sp -= 8;
879 store_unsigned_integer (buf, 8, byte_order, bp_addr);
880 write_memory (sp, buf, 8);
881
882 /* Finally, update the stack pointer... */
883 store_unsigned_integer (buf, 8, byte_order, sp);
884 regcache_cooked_write (regcache, AMD64_RSP_REGNUM, buf);
885
886 /* ...and fake a frame pointer. */
887 regcache_cooked_write (regcache, AMD64_RBP_REGNUM, buf);
888
889 return sp + 16;
890 }
891 \f
892 /* Displaced instruction handling. */
893
894 /* A partially decoded instruction.
895 This contains enough details for displaced stepping purposes. */
896
897 struct amd64_insn
898 {
899 /* The number of opcode bytes. */
900 int opcode_len;
901 /* The offset of the rex prefix or -1 if not present. */
902 int rex_offset;
903 /* The offset to the first opcode byte. */
904 int opcode_offset;
905 /* The offset to the modrm byte or -1 if not present. */
906 int modrm_offset;
907
908 /* The raw instruction. */
909 gdb_byte *raw_insn;
910 };
911
912 struct displaced_step_closure
913 {
914 /* For rip-relative insns, saved copy of the reg we use instead of %rip. */
915 int tmp_used;
916 int tmp_regno;
917 ULONGEST tmp_save;
918
919 /* Details of the instruction. */
920 struct amd64_insn insn_details;
921
922 /* Amount of space allocated to insn_buf. */
923 int max_len;
924
925 /* The possibly modified insn.
926 This is a variable-length field. */
927 gdb_byte insn_buf[1];
928 };
929
930 /* WARNING: Keep onebyte_has_modrm, twobyte_has_modrm in sync with
931 ../opcodes/i386-dis.c (until libopcodes exports them, or an alternative,
932 at which point delete these in favor of libopcodes' versions). */
933
934 static const unsigned char onebyte_has_modrm[256] = {
935 /* 0 1 2 3 4 5 6 7 8 9 a b c d e f */
936 /* ------------------------------- */
937 /* 00 */ 1,1,1,1,0,0,0,0,1,1,1,1,0,0,0,0, /* 00 */
938 /* 10 */ 1,1,1,1,0,0,0,0,1,1,1,1,0,0,0,0, /* 10 */
939 /* 20 */ 1,1,1,1,0,0,0,0,1,1,1,1,0,0,0,0, /* 20 */
940 /* 30 */ 1,1,1,1,0,0,0,0,1,1,1,1,0,0,0,0, /* 30 */
941 /* 40 */ 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, /* 40 */
942 /* 50 */ 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, /* 50 */
943 /* 60 */ 0,0,1,1,0,0,0,0,0,1,0,1,0,0,0,0, /* 60 */
944 /* 70 */ 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, /* 70 */
945 /* 80 */ 1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1, /* 80 */
946 /* 90 */ 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, /* 90 */
947 /* a0 */ 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, /* a0 */
948 /* b0 */ 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, /* b0 */
949 /* c0 */ 1,1,0,0,1,1,1,1,0,0,0,0,0,0,0,0, /* c0 */
950 /* d0 */ 1,1,1,1,0,0,0,0,1,1,1,1,1,1,1,1, /* d0 */
951 /* e0 */ 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, /* e0 */
952 /* f0 */ 0,0,0,0,0,0,1,1,0,0,0,0,0,0,1,1 /* f0 */
953 /* ------------------------------- */
954 /* 0 1 2 3 4 5 6 7 8 9 a b c d e f */
955 };
956
957 static const unsigned char twobyte_has_modrm[256] = {
958 /* 0 1 2 3 4 5 6 7 8 9 a b c d e f */
959 /* ------------------------------- */
960 /* 00 */ 1,1,1,1,0,0,0,0,0,0,0,0,0,1,0,1, /* 0f */
961 /* 10 */ 1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1, /* 1f */
962 /* 20 */ 1,1,1,1,1,1,1,0,1,1,1,1,1,1,1,1, /* 2f */
963 /* 30 */ 0,0,0,0,0,0,0,0,1,0,1,0,0,0,0,0, /* 3f */
964 /* 40 */ 1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1, /* 4f */
965 /* 50 */ 1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1, /* 5f */
966 /* 60 */ 1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1, /* 6f */
967 /* 70 */ 1,1,1,1,1,1,1,0,1,1,1,1,1,1,1,1, /* 7f */
968 /* 80 */ 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, /* 8f */
969 /* 90 */ 1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1, /* 9f */
970 /* a0 */ 0,0,0,1,1,1,1,1,0,0,0,1,1,1,1,1, /* af */
971 /* b0 */ 1,1,1,1,1,1,1,1,1,0,1,1,1,1,1,1, /* bf */
972 /* c0 */ 1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0, /* cf */
973 /* d0 */ 1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1, /* df */
974 /* e0 */ 1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1, /* ef */
975 /* f0 */ 1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,0 /* ff */
976 /* ------------------------------- */
977 /* 0 1 2 3 4 5 6 7 8 9 a b c d e f */
978 };
979
980 static int amd64_syscall_p (const struct amd64_insn *insn, int *lengthp);
981
982 static int
983 rex_prefix_p (gdb_byte pfx)
984 {
985 return REX_PREFIX_P (pfx);
986 }
987
988 /* Skip the legacy instruction prefixes in INSN.
989 We assume INSN is properly sentineled so we don't have to worry
990 about falling off the end of the buffer. */
991
992 static gdb_byte *
993 amd64_skip_prefixes (gdb_byte *insn)
994 {
995 while (1)
996 {
997 switch (*insn)
998 {
999 case DATA_PREFIX_OPCODE:
1000 case ADDR_PREFIX_OPCODE:
1001 case CS_PREFIX_OPCODE:
1002 case DS_PREFIX_OPCODE:
1003 case ES_PREFIX_OPCODE:
1004 case FS_PREFIX_OPCODE:
1005 case GS_PREFIX_OPCODE:
1006 case SS_PREFIX_OPCODE:
1007 case LOCK_PREFIX_OPCODE:
1008 case REPE_PREFIX_OPCODE:
1009 case REPNE_PREFIX_OPCODE:
1010 ++insn;
1011 continue;
1012 default:
1013 break;
1014 }
1015 break;
1016 }
1017
1018 return insn;
1019 }
1020
1021 /* Return an integer register (other than RSP) that is unused as an input
1022 operand in INSN.
1023 In order to not require adding a rex prefix if the insn doesn't already
1024 have one, the result is restricted to RAX ... RDI, sans RSP.
1025 The register numbering of the result follows architecture ordering,
1026 e.g. RDI = 7. */
1027
1028 static int
1029 amd64_get_unused_input_int_reg (const struct amd64_insn *details)
1030 {
1031 /* 1 bit for each reg */
1032 int used_regs_mask = 0;
1033
1034 /* There can be at most 3 int regs used as inputs in an insn, and we have
1035 7 to choose from (RAX ... RDI, sans RSP).
1036 This allows us to take a conservative approach and keep things simple.
1037 E.g. By avoiding RAX, we don't have to specifically watch for opcodes
1038 that implicitly specify RAX. */
1039
1040 /* Avoid RAX. */
1041 used_regs_mask |= 1 << EAX_REG_NUM;
1042 /* Similarily avoid RDX, implicit operand in divides. */
1043 used_regs_mask |= 1 << EDX_REG_NUM;
1044 /* Avoid RSP. */
1045 used_regs_mask |= 1 << ESP_REG_NUM;
1046
1047 /* If the opcode is one byte long and there's no ModRM byte,
1048 assume the opcode specifies a register. */
1049 if (details->opcode_len == 1 && details->modrm_offset == -1)
1050 used_regs_mask |= 1 << (details->raw_insn[details->opcode_offset] & 7);
1051
1052 /* Mark used regs in the modrm/sib bytes. */
1053 if (details->modrm_offset != -1)
1054 {
1055 int modrm = details->raw_insn[details->modrm_offset];
1056 int mod = MODRM_MOD_FIELD (modrm);
1057 int reg = MODRM_REG_FIELD (modrm);
1058 int rm = MODRM_RM_FIELD (modrm);
1059 int have_sib = mod != 3 && rm == 4;
1060
1061 /* Assume the reg field of the modrm byte specifies a register. */
1062 used_regs_mask |= 1 << reg;
1063
1064 if (have_sib)
1065 {
1066 int base = SIB_BASE_FIELD (details->raw_insn[details->modrm_offset + 1]);
1067 int index = SIB_INDEX_FIELD (details->raw_insn[details->modrm_offset + 1]);
1068 used_regs_mask |= 1 << base;
1069 used_regs_mask |= 1 << index;
1070 }
1071 else
1072 {
1073 used_regs_mask |= 1 << rm;
1074 }
1075 }
1076
1077 gdb_assert (used_regs_mask < 256);
1078 gdb_assert (used_regs_mask != 255);
1079
1080 /* Finally, find a free reg. */
1081 {
1082 int i;
1083
1084 for (i = 0; i < 8; ++i)
1085 {
1086 if (! (used_regs_mask & (1 << i)))
1087 return i;
1088 }
1089
1090 /* We shouldn't get here. */
1091 internal_error (__FILE__, __LINE__, _("unable to find free reg"));
1092 }
1093 }
1094
1095 /* Extract the details of INSN that we need. */
1096
1097 static void
1098 amd64_get_insn_details (gdb_byte *insn, struct amd64_insn *details)
1099 {
1100 gdb_byte *start = insn;
1101 int need_modrm;
1102
1103 details->raw_insn = insn;
1104
1105 details->opcode_len = -1;
1106 details->rex_offset = -1;
1107 details->opcode_offset = -1;
1108 details->modrm_offset = -1;
1109
1110 /* Skip legacy instruction prefixes. */
1111 insn = amd64_skip_prefixes (insn);
1112
1113 /* Skip REX instruction prefix. */
1114 if (rex_prefix_p (*insn))
1115 {
1116 details->rex_offset = insn - start;
1117 ++insn;
1118 }
1119
1120 details->opcode_offset = insn - start;
1121
1122 if (*insn == TWO_BYTE_OPCODE_ESCAPE)
1123 {
1124 /* Two or three-byte opcode. */
1125 ++insn;
1126 need_modrm = twobyte_has_modrm[*insn];
1127
1128 /* Check for three-byte opcode. */
1129 switch (*insn)
1130 {
1131 case 0x24:
1132 case 0x25:
1133 case 0x38:
1134 case 0x3a:
1135 case 0x7a:
1136 case 0x7b:
1137 ++insn;
1138 details->opcode_len = 3;
1139 break;
1140 default:
1141 details->opcode_len = 2;
1142 break;
1143 }
1144 }
1145 else
1146 {
1147 /* One-byte opcode. */
1148 need_modrm = onebyte_has_modrm[*insn];
1149 details->opcode_len = 1;
1150 }
1151
1152 if (need_modrm)
1153 {
1154 ++insn;
1155 details->modrm_offset = insn - start;
1156 }
1157 }
1158
1159 /* Update %rip-relative addressing in INSN.
1160
1161 %rip-relative addressing only uses a 32-bit displacement.
1162 32 bits is not enough to be guaranteed to cover the distance between where
1163 the real instruction is and where its copy is.
1164 Convert the insn to use base+disp addressing.
1165 We set base = pc + insn_length so we can leave disp unchanged. */
1166
1167 static void
1168 fixup_riprel (struct gdbarch *gdbarch, struct displaced_step_closure *dsc,
1169 CORE_ADDR from, CORE_ADDR to, struct regcache *regs)
1170 {
1171 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1172 const struct amd64_insn *insn_details = &dsc->insn_details;
1173 int modrm_offset = insn_details->modrm_offset;
1174 gdb_byte *insn = insn_details->raw_insn + modrm_offset;
1175 CORE_ADDR rip_base;
1176 int32_t disp;
1177 int insn_length;
1178 int arch_tmp_regno, tmp_regno;
1179 ULONGEST orig_value;
1180
1181 /* %rip+disp32 addressing mode, displacement follows ModRM byte. */
1182 ++insn;
1183
1184 /* Compute the rip-relative address. */
1185 disp = extract_signed_integer (insn, sizeof (int32_t), byte_order);
1186 insn_length = gdb_buffered_insn_length (gdbarch, dsc->insn_buf,
1187 dsc->max_len, from);
1188 rip_base = from + insn_length;
1189
1190 /* We need a register to hold the address.
1191 Pick one not used in the insn.
1192 NOTE: arch_tmp_regno uses architecture ordering, e.g. RDI = 7. */
1193 arch_tmp_regno = amd64_get_unused_input_int_reg (insn_details);
1194 tmp_regno = amd64_arch_reg_to_regnum (arch_tmp_regno);
1195
1196 /* REX.B should be unset as we were using rip-relative addressing,
1197 but ensure it's unset anyway, tmp_regno is not r8-r15. */
1198 if (insn_details->rex_offset != -1)
1199 dsc->insn_buf[insn_details->rex_offset] &= ~REX_B;
1200
1201 regcache_cooked_read_unsigned (regs, tmp_regno, &orig_value);
1202 dsc->tmp_regno = tmp_regno;
1203 dsc->tmp_save = orig_value;
1204 dsc->tmp_used = 1;
1205
1206 /* Convert the ModRM field to be base+disp. */
1207 dsc->insn_buf[modrm_offset] &= ~0xc7;
1208 dsc->insn_buf[modrm_offset] |= 0x80 + arch_tmp_regno;
1209
1210 regcache_cooked_write_unsigned (regs, tmp_regno, rip_base);
1211
1212 if (debug_displaced)
1213 fprintf_unfiltered (gdb_stdlog, "displaced: %%rip-relative addressing used.\n"
1214 "displaced: using temp reg %d, old value %s, new value %s\n",
1215 dsc->tmp_regno, paddress (gdbarch, dsc->tmp_save),
1216 paddress (gdbarch, rip_base));
1217 }
1218
1219 static void
1220 fixup_displaced_copy (struct gdbarch *gdbarch,
1221 struct displaced_step_closure *dsc,
1222 CORE_ADDR from, CORE_ADDR to, struct regcache *regs)
1223 {
1224 const struct amd64_insn *details = &dsc->insn_details;
1225
1226 if (details->modrm_offset != -1)
1227 {
1228 gdb_byte modrm = details->raw_insn[details->modrm_offset];
1229
1230 if ((modrm & 0xc7) == 0x05)
1231 {
1232 /* The insn uses rip-relative addressing.
1233 Deal with it. */
1234 fixup_riprel (gdbarch, dsc, from, to, regs);
1235 }
1236 }
1237 }
1238
1239 struct displaced_step_closure *
1240 amd64_displaced_step_copy_insn (struct gdbarch *gdbarch,
1241 CORE_ADDR from, CORE_ADDR to,
1242 struct regcache *regs)
1243 {
1244 int len = gdbarch_max_insn_length (gdbarch);
1245 /* Extra space for sentinels so fixup_{riprel,displaced_copy don't have to
1246 continually watch for running off the end of the buffer. */
1247 int fixup_sentinel_space = len;
1248 struct displaced_step_closure *dsc =
1249 xmalloc (sizeof (*dsc) + len + fixup_sentinel_space);
1250 gdb_byte *buf = &dsc->insn_buf[0];
1251 struct amd64_insn *details = &dsc->insn_details;
1252
1253 dsc->tmp_used = 0;
1254 dsc->max_len = len + fixup_sentinel_space;
1255
1256 read_memory (from, buf, len);
1257
1258 /* Set up the sentinel space so we don't have to worry about running
1259 off the end of the buffer. An excessive number of leading prefixes
1260 could otherwise cause this. */
1261 memset (buf + len, 0, fixup_sentinel_space);
1262
1263 amd64_get_insn_details (buf, details);
1264
1265 /* GDB may get control back after the insn after the syscall.
1266 Presumably this is a kernel bug.
1267 If this is a syscall, make sure there's a nop afterwards. */
1268 {
1269 int syscall_length;
1270
1271 if (amd64_syscall_p (details, &syscall_length))
1272 buf[details->opcode_offset + syscall_length] = NOP_OPCODE;
1273 }
1274
1275 /* Modify the insn to cope with the address where it will be executed from.
1276 In particular, handle any rip-relative addressing. */
1277 fixup_displaced_copy (gdbarch, dsc, from, to, regs);
1278
1279 write_memory (to, buf, len);
1280
1281 if (debug_displaced)
1282 {
1283 fprintf_unfiltered (gdb_stdlog, "displaced: copy %s->%s: ",
1284 paddress (gdbarch, from), paddress (gdbarch, to));
1285 displaced_step_dump_bytes (gdb_stdlog, buf, len);
1286 }
1287
1288 return dsc;
1289 }
1290
1291 static int
1292 amd64_absolute_jmp_p (const struct amd64_insn *details)
1293 {
1294 const gdb_byte *insn = &details->raw_insn[details->opcode_offset];
1295
1296 if (insn[0] == 0xff)
1297 {
1298 /* jump near, absolute indirect (/4) */
1299 if ((insn[1] & 0x38) == 0x20)
1300 return 1;
1301
1302 /* jump far, absolute indirect (/5) */
1303 if ((insn[1] & 0x38) == 0x28)
1304 return 1;
1305 }
1306
1307 return 0;
1308 }
1309
1310 static int
1311 amd64_absolute_call_p (const struct amd64_insn *details)
1312 {
1313 const gdb_byte *insn = &details->raw_insn[details->opcode_offset];
1314
1315 if (insn[0] == 0xff)
1316 {
1317 /* Call near, absolute indirect (/2) */
1318 if ((insn[1] & 0x38) == 0x10)
1319 return 1;
1320
1321 /* Call far, absolute indirect (/3) */
1322 if ((insn[1] & 0x38) == 0x18)
1323 return 1;
1324 }
1325
1326 return 0;
1327 }
1328
1329 static int
1330 amd64_ret_p (const struct amd64_insn *details)
1331 {
1332 /* NOTE: gcc can emit "repz ; ret". */
1333 const gdb_byte *insn = &details->raw_insn[details->opcode_offset];
1334
1335 switch (insn[0])
1336 {
1337 case 0xc2: /* ret near, pop N bytes */
1338 case 0xc3: /* ret near */
1339 case 0xca: /* ret far, pop N bytes */
1340 case 0xcb: /* ret far */
1341 case 0xcf: /* iret */
1342 return 1;
1343
1344 default:
1345 return 0;
1346 }
1347 }
1348
1349 static int
1350 amd64_call_p (const struct amd64_insn *details)
1351 {
1352 const gdb_byte *insn = &details->raw_insn[details->opcode_offset];
1353
1354 if (amd64_absolute_call_p (details))
1355 return 1;
1356
1357 /* call near, relative */
1358 if (insn[0] == 0xe8)
1359 return 1;
1360
1361 return 0;
1362 }
1363
1364 /* Return non-zero if INSN is a system call, and set *LENGTHP to its
1365 length in bytes. Otherwise, return zero. */
1366
1367 static int
1368 amd64_syscall_p (const struct amd64_insn *details, int *lengthp)
1369 {
1370 const gdb_byte *insn = &details->raw_insn[details->opcode_offset];
1371
1372 if (insn[0] == 0x0f && insn[1] == 0x05)
1373 {
1374 *lengthp = 2;
1375 return 1;
1376 }
1377
1378 return 0;
1379 }
1380
1381 /* Fix up the state of registers and memory after having single-stepped
1382 a displaced instruction. */
1383
1384 void
1385 amd64_displaced_step_fixup (struct gdbarch *gdbarch,
1386 struct displaced_step_closure *dsc,
1387 CORE_ADDR from, CORE_ADDR to,
1388 struct regcache *regs)
1389 {
1390 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1391 /* The offset we applied to the instruction's address. */
1392 ULONGEST insn_offset = to - from;
1393 gdb_byte *insn = dsc->insn_buf;
1394 const struct amd64_insn *insn_details = &dsc->insn_details;
1395
1396 if (debug_displaced)
1397 fprintf_unfiltered (gdb_stdlog,
1398 "displaced: fixup (%s, %s), "
1399 "insn = 0x%02x 0x%02x ...\n",
1400 paddress (gdbarch, from), paddress (gdbarch, to),
1401 insn[0], insn[1]);
1402
1403 /* If we used a tmp reg, restore it. */
1404
1405 if (dsc->tmp_used)
1406 {
1407 if (debug_displaced)
1408 fprintf_unfiltered (gdb_stdlog, "displaced: restoring reg %d to %s\n",
1409 dsc->tmp_regno, paddress (gdbarch, dsc->tmp_save));
1410 regcache_cooked_write_unsigned (regs, dsc->tmp_regno, dsc->tmp_save);
1411 }
1412
1413 /* The list of issues to contend with here is taken from
1414 resume_execution in arch/x86/kernel/kprobes.c, Linux 2.6.28.
1415 Yay for Free Software! */
1416
1417 /* Relocate the %rip back to the program's instruction stream,
1418 if necessary. */
1419
1420 /* Except in the case of absolute or indirect jump or call
1421 instructions, or a return instruction, the new rip is relative to
1422 the displaced instruction; make it relative to the original insn.
1423 Well, signal handler returns don't need relocation either, but we use the
1424 value of %rip to recognize those; see below. */
1425 if (! amd64_absolute_jmp_p (insn_details)
1426 && ! amd64_absolute_call_p (insn_details)
1427 && ! amd64_ret_p (insn_details))
1428 {
1429 ULONGEST orig_rip;
1430 int insn_len;
1431
1432 regcache_cooked_read_unsigned (regs, AMD64_RIP_REGNUM, &orig_rip);
1433
1434 /* A signal trampoline system call changes the %rip, resuming
1435 execution of the main program after the signal handler has
1436 returned. That makes them like 'return' instructions; we
1437 shouldn't relocate %rip.
1438
1439 But most system calls don't, and we do need to relocate %rip.
1440
1441 Our heuristic for distinguishing these cases: if stepping
1442 over the system call instruction left control directly after
1443 the instruction, the we relocate --- control almost certainly
1444 doesn't belong in the displaced copy. Otherwise, we assume
1445 the instruction has put control where it belongs, and leave
1446 it unrelocated. Goodness help us if there are PC-relative
1447 system calls. */
1448 if (amd64_syscall_p (insn_details, &insn_len)
1449 && orig_rip != to + insn_len
1450 /* GDB can get control back after the insn after the syscall.
1451 Presumably this is a kernel bug.
1452 Fixup ensures its a nop, we add one to the length for it. */
1453 && orig_rip != to + insn_len + 1)
1454 {
1455 if (debug_displaced)
1456 fprintf_unfiltered (gdb_stdlog,
1457 "displaced: syscall changed %%rip; "
1458 "not relocating\n");
1459 }
1460 else
1461 {
1462 ULONGEST rip = orig_rip - insn_offset;
1463
1464 /* If we just stepped over a breakpoint insn, we don't backup
1465 the pc on purpose; this is to match behaviour without
1466 stepping. */
1467
1468 regcache_cooked_write_unsigned (regs, AMD64_RIP_REGNUM, rip);
1469
1470 if (debug_displaced)
1471 fprintf_unfiltered (gdb_stdlog,
1472 "displaced: "
1473 "relocated %%rip from %s to %s\n",
1474 paddress (gdbarch, orig_rip),
1475 paddress (gdbarch, rip));
1476 }
1477 }
1478
1479 /* If the instruction was PUSHFL, then the TF bit will be set in the
1480 pushed value, and should be cleared. We'll leave this for later,
1481 since GDB already messes up the TF flag when stepping over a
1482 pushfl. */
1483
1484 /* If the instruction was a call, the return address now atop the
1485 stack is the address following the copied instruction. We need
1486 to make it the address following the original instruction. */
1487 if (amd64_call_p (insn_details))
1488 {
1489 ULONGEST rsp;
1490 ULONGEST retaddr;
1491 const ULONGEST retaddr_len = 8;
1492
1493 regcache_cooked_read_unsigned (regs, AMD64_RSP_REGNUM, &rsp);
1494 retaddr = read_memory_unsigned_integer (rsp, retaddr_len, byte_order);
1495 retaddr = (retaddr - insn_offset) & 0xffffffffUL;
1496 write_memory_unsigned_integer (rsp, retaddr_len, byte_order, retaddr);
1497
1498 if (debug_displaced)
1499 fprintf_unfiltered (gdb_stdlog,
1500 "displaced: relocated return addr at %s "
1501 "to %s\n",
1502 paddress (gdbarch, rsp),
1503 paddress (gdbarch, retaddr));
1504 }
1505 }
1506
1507 /* If the instruction INSN uses RIP-relative addressing, return the
1508 offset into the raw INSN where the displacement to be adjusted is
1509 found. Returns 0 if the instruction doesn't use RIP-relative
1510 addressing. */
1511
1512 static int
1513 rip_relative_offset (struct amd64_insn *insn)
1514 {
1515 if (insn->modrm_offset != -1)
1516 {
1517 gdb_byte modrm = insn->raw_insn[insn->modrm_offset];
1518
1519 if ((modrm & 0xc7) == 0x05)
1520 {
1521 /* The displacement is found right after the ModRM byte. */
1522 return insn->modrm_offset + 1;
1523 }
1524 }
1525
1526 return 0;
1527 }
1528
1529 static void
1530 append_insns (CORE_ADDR *to, ULONGEST len, const gdb_byte *buf)
1531 {
1532 target_write_memory (*to, buf, len);
1533 *to += len;
1534 }
1535
1536 void
1537 amd64_relocate_instruction (struct gdbarch *gdbarch,
1538 CORE_ADDR *to, CORE_ADDR oldloc)
1539 {
1540 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1541 int len = gdbarch_max_insn_length (gdbarch);
1542 /* Extra space for sentinels. */
1543 int fixup_sentinel_space = len;
1544 gdb_byte *buf = xmalloc (len + fixup_sentinel_space);
1545 struct amd64_insn insn_details;
1546 int offset = 0;
1547 LONGEST rel32, newrel;
1548 gdb_byte *insn;
1549 int insn_length;
1550
1551 read_memory (oldloc, buf, len);
1552
1553 /* Set up the sentinel space so we don't have to worry about running
1554 off the end of the buffer. An excessive number of leading prefixes
1555 could otherwise cause this. */
1556 memset (buf + len, 0, fixup_sentinel_space);
1557
1558 insn = buf;
1559 amd64_get_insn_details (insn, &insn_details);
1560
1561 insn_length = gdb_buffered_insn_length (gdbarch, insn, len, oldloc);
1562
1563 /* Skip legacy instruction prefixes. */
1564 insn = amd64_skip_prefixes (insn);
1565
1566 /* Adjust calls with 32-bit relative addresses as push/jump, with
1567 the address pushed being the location where the original call in
1568 the user program would return to. */
1569 if (insn[0] == 0xe8)
1570 {
1571 gdb_byte push_buf[16];
1572 unsigned int ret_addr;
1573
1574 /* Where "ret" in the original code will return to. */
1575 ret_addr = oldloc + insn_length;
1576 push_buf[0] = 0x68; /* pushq $... */
1577 memcpy (&push_buf[1], &ret_addr, 4);
1578 /* Push the push. */
1579 append_insns (to, 5, push_buf);
1580
1581 /* Convert the relative call to a relative jump. */
1582 insn[0] = 0xe9;
1583
1584 /* Adjust the destination offset. */
1585 rel32 = extract_signed_integer (insn + 1, 4, byte_order);
1586 newrel = (oldloc - *to) + rel32;
1587 store_signed_integer (insn + 1, 4, byte_order, newrel);
1588
1589 if (debug_displaced)
1590 fprintf_unfiltered (gdb_stdlog,
1591 "Adjusted insn rel32=%s at %s to"
1592 " rel32=%s at %s\n",
1593 hex_string (rel32), paddress (gdbarch, oldloc),
1594 hex_string (newrel), paddress (gdbarch, *to));
1595
1596 /* Write the adjusted jump into its displaced location. */
1597 append_insns (to, 5, insn);
1598 return;
1599 }
1600
1601 offset = rip_relative_offset (&insn_details);
1602 if (!offset)
1603 {
1604 /* Adjust jumps with 32-bit relative addresses. Calls are
1605 already handled above. */
1606 if (insn[0] == 0xe9)
1607 offset = 1;
1608 /* Adjust conditional jumps. */
1609 else if (insn[0] == 0x0f && (insn[1] & 0xf0) == 0x80)
1610 offset = 2;
1611 }
1612
1613 if (offset)
1614 {
1615 rel32 = extract_signed_integer (insn + offset, 4, byte_order);
1616 newrel = (oldloc - *to) + rel32;
1617 store_signed_integer (insn + offset, 4, byte_order, newrel);
1618 if (debug_displaced)
1619 fprintf_unfiltered (gdb_stdlog,
1620 "Adjusted insn rel32=%s at %s to"
1621 " rel32=%s at %s\n",
1622 hex_string (rel32), paddress (gdbarch, oldloc),
1623 hex_string (newrel), paddress (gdbarch, *to));
1624 }
1625
1626 /* Write the adjusted instruction into its displaced location. */
1627 append_insns (to, insn_length, buf);
1628 }
1629
1630 \f
1631 /* The maximum number of saved registers. This should include %rip. */
1632 #define AMD64_NUM_SAVED_REGS AMD64_NUM_GREGS
1633
1634 struct amd64_frame_cache
1635 {
1636 /* Base address. */
1637 CORE_ADDR base;
1638 CORE_ADDR sp_offset;
1639 CORE_ADDR pc;
1640
1641 /* Saved registers. */
1642 CORE_ADDR saved_regs[AMD64_NUM_SAVED_REGS];
1643 CORE_ADDR saved_sp;
1644 int saved_sp_reg;
1645
1646 /* Do we have a frame? */
1647 int frameless_p;
1648 };
1649
1650 /* Initialize a frame cache. */
1651
1652 static void
1653 amd64_init_frame_cache (struct amd64_frame_cache *cache)
1654 {
1655 int i;
1656
1657 /* Base address. */
1658 cache->base = 0;
1659 cache->sp_offset = -8;
1660 cache->pc = 0;
1661
1662 /* Saved registers. We initialize these to -1 since zero is a valid
1663 offset (that's where %rbp is supposed to be stored).
1664 The values start out as being offsets, and are later converted to
1665 addresses (at which point -1 is interpreted as an address, still meaning
1666 "invalid"). */
1667 for (i = 0; i < AMD64_NUM_SAVED_REGS; i++)
1668 cache->saved_regs[i] = -1;
1669 cache->saved_sp = 0;
1670 cache->saved_sp_reg = -1;
1671
1672 /* Frameless until proven otherwise. */
1673 cache->frameless_p = 1;
1674 }
1675
1676 /* Allocate and initialize a frame cache. */
1677
1678 static struct amd64_frame_cache *
1679 amd64_alloc_frame_cache (void)
1680 {
1681 struct amd64_frame_cache *cache;
1682
1683 cache = FRAME_OBSTACK_ZALLOC (struct amd64_frame_cache);
1684 amd64_init_frame_cache (cache);
1685 return cache;
1686 }
1687
1688 /* GCC 4.4 and later, can put code in the prologue to realign the
1689 stack pointer. Check whether PC points to such code, and update
1690 CACHE accordingly. Return the first instruction after the code
1691 sequence or CURRENT_PC, whichever is smaller. If we don't
1692 recognize the code, return PC. */
1693
1694 static CORE_ADDR
1695 amd64_analyze_stack_align (CORE_ADDR pc, CORE_ADDR current_pc,
1696 struct amd64_frame_cache *cache)
1697 {
1698 /* There are 2 code sequences to re-align stack before the frame
1699 gets set up:
1700
1701 1. Use a caller-saved saved register:
1702
1703 leaq 8(%rsp), %reg
1704 andq $-XXX, %rsp
1705 pushq -8(%reg)
1706
1707 2. Use a callee-saved saved register:
1708
1709 pushq %reg
1710 leaq 16(%rsp), %reg
1711 andq $-XXX, %rsp
1712 pushq -8(%reg)
1713
1714 "andq $-XXX, %rsp" can be either 4 bytes or 7 bytes:
1715
1716 0x48 0x83 0xe4 0xf0 andq $-16, %rsp
1717 0x48 0x81 0xe4 0x00 0xff 0xff 0xff andq $-256, %rsp
1718 */
1719
1720 gdb_byte buf[18];
1721 int reg, r;
1722 int offset, offset_and;
1723
1724 if (target_read_memory (pc, buf, sizeof buf))
1725 return pc;
1726
1727 /* Check caller-saved saved register. The first instruction has
1728 to be "leaq 8(%rsp), %reg". */
1729 if ((buf[0] & 0xfb) == 0x48
1730 && buf[1] == 0x8d
1731 && buf[3] == 0x24
1732 && buf[4] == 0x8)
1733 {
1734 /* MOD must be binary 10 and R/M must be binary 100. */
1735 if ((buf[2] & 0xc7) != 0x44)
1736 return pc;
1737
1738 /* REG has register number. */
1739 reg = (buf[2] >> 3) & 7;
1740
1741 /* Check the REX.R bit. */
1742 if (buf[0] == 0x4c)
1743 reg += 8;
1744
1745 offset = 5;
1746 }
1747 else
1748 {
1749 /* Check callee-saved saved register. The first instruction
1750 has to be "pushq %reg". */
1751 reg = 0;
1752 if ((buf[0] & 0xf8) == 0x50)
1753 offset = 0;
1754 else if ((buf[0] & 0xf6) == 0x40
1755 && (buf[1] & 0xf8) == 0x50)
1756 {
1757 /* Check the REX.B bit. */
1758 if ((buf[0] & 1) != 0)
1759 reg = 8;
1760
1761 offset = 1;
1762 }
1763 else
1764 return pc;
1765
1766 /* Get register. */
1767 reg += buf[offset] & 0x7;
1768
1769 offset++;
1770
1771 /* The next instruction has to be "leaq 16(%rsp), %reg". */
1772 if ((buf[offset] & 0xfb) != 0x48
1773 || buf[offset + 1] != 0x8d
1774 || buf[offset + 3] != 0x24
1775 || buf[offset + 4] != 0x10)
1776 return pc;
1777
1778 /* MOD must be binary 10 and R/M must be binary 100. */
1779 if ((buf[offset + 2] & 0xc7) != 0x44)
1780 return pc;
1781
1782 /* REG has register number. */
1783 r = (buf[offset + 2] >> 3) & 7;
1784
1785 /* Check the REX.R bit. */
1786 if (buf[offset] == 0x4c)
1787 r += 8;
1788
1789 /* Registers in pushq and leaq have to be the same. */
1790 if (reg != r)
1791 return pc;
1792
1793 offset += 5;
1794 }
1795
1796 /* Rigister can't be %rsp nor %rbp. */
1797 if (reg == 4 || reg == 5)
1798 return pc;
1799
1800 /* The next instruction has to be "andq $-XXX, %rsp". */
1801 if (buf[offset] != 0x48
1802 || buf[offset + 2] != 0xe4
1803 || (buf[offset + 1] != 0x81 && buf[offset + 1] != 0x83))
1804 return pc;
1805
1806 offset_and = offset;
1807 offset += buf[offset + 1] == 0x81 ? 7 : 4;
1808
1809 /* The next instruction has to be "pushq -8(%reg)". */
1810 r = 0;
1811 if (buf[offset] == 0xff)
1812 offset++;
1813 else if ((buf[offset] & 0xf6) == 0x40
1814 && buf[offset + 1] == 0xff)
1815 {
1816 /* Check the REX.B bit. */
1817 if ((buf[offset] & 0x1) != 0)
1818 r = 8;
1819 offset += 2;
1820 }
1821 else
1822 return pc;
1823
1824 /* 8bit -8 is 0xf8. REG must be binary 110 and MOD must be binary
1825 01. */
1826 if (buf[offset + 1] != 0xf8
1827 || (buf[offset] & 0xf8) != 0x70)
1828 return pc;
1829
1830 /* R/M has register. */
1831 r += buf[offset] & 7;
1832
1833 /* Registers in leaq and pushq have to be the same. */
1834 if (reg != r)
1835 return pc;
1836
1837 if (current_pc > pc + offset_and)
1838 cache->saved_sp_reg = amd64_arch_reg_to_regnum (reg);
1839
1840 return min (pc + offset + 2, current_pc);
1841 }
1842
1843 /* Do a limited analysis of the prologue at PC and update CACHE
1844 accordingly. Bail out early if CURRENT_PC is reached. Return the
1845 address where the analysis stopped.
1846
1847 We will handle only functions beginning with:
1848
1849 pushq %rbp 0x55
1850 movq %rsp, %rbp 0x48 0x89 0xe5
1851
1852 Any function that doesn't start with this sequence will be assumed
1853 to have no prologue and thus no valid frame pointer in %rbp. */
1854
1855 static CORE_ADDR
1856 amd64_analyze_prologue (struct gdbarch *gdbarch,
1857 CORE_ADDR pc, CORE_ADDR current_pc,
1858 struct amd64_frame_cache *cache)
1859 {
1860 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1861 static gdb_byte proto[3] = { 0x48, 0x89, 0xe5 }; /* movq %rsp, %rbp */
1862 gdb_byte buf[3];
1863 gdb_byte op;
1864
1865 if (current_pc <= pc)
1866 return current_pc;
1867
1868 pc = amd64_analyze_stack_align (pc, current_pc, cache);
1869
1870 op = read_memory_unsigned_integer (pc, 1, byte_order);
1871
1872 if (op == 0x55) /* pushq %rbp */
1873 {
1874 /* Take into account that we've executed the `pushq %rbp' that
1875 starts this instruction sequence. */
1876 cache->saved_regs[AMD64_RBP_REGNUM] = 0;
1877 cache->sp_offset += 8;
1878
1879 /* If that's all, return now. */
1880 if (current_pc <= pc + 1)
1881 return current_pc;
1882
1883 /* Check for `movq %rsp, %rbp'. */
1884 read_memory (pc + 1, buf, 3);
1885 if (memcmp (buf, proto, 3) != 0)
1886 return pc + 1;
1887
1888 /* OK, we actually have a frame. */
1889 cache->frameless_p = 0;
1890 return pc + 4;
1891 }
1892
1893 return pc;
1894 }
1895
1896 /* Return PC of first real instruction. */
1897
1898 static CORE_ADDR
1899 amd64_skip_prologue (struct gdbarch *gdbarch, CORE_ADDR start_pc)
1900 {
1901 struct amd64_frame_cache cache;
1902 CORE_ADDR pc;
1903
1904 amd64_init_frame_cache (&cache);
1905 pc = amd64_analyze_prologue (gdbarch, start_pc, 0xffffffffffffffffLL,
1906 &cache);
1907 if (cache.frameless_p)
1908 return start_pc;
1909
1910 return pc;
1911 }
1912 \f
1913
1914 /* Normal frames. */
1915
1916 static struct amd64_frame_cache *
1917 amd64_frame_cache (struct frame_info *this_frame, void **this_cache)
1918 {
1919 struct gdbarch *gdbarch = get_frame_arch (this_frame);
1920 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1921 struct amd64_frame_cache *cache;
1922 gdb_byte buf[8];
1923 int i;
1924
1925 if (*this_cache)
1926 return *this_cache;
1927
1928 cache = amd64_alloc_frame_cache ();
1929 *this_cache = cache;
1930
1931 cache->pc = get_frame_func (this_frame);
1932 if (cache->pc != 0)
1933 amd64_analyze_prologue (gdbarch, cache->pc, get_frame_pc (this_frame),
1934 cache);
1935
1936 if (cache->saved_sp_reg != -1)
1937 {
1938 /* Stack pointer has been saved. */
1939 get_frame_register (this_frame, cache->saved_sp_reg, buf);
1940 cache->saved_sp = extract_unsigned_integer(buf, 8, byte_order);
1941 }
1942
1943 if (cache->frameless_p)
1944 {
1945 /* We didn't find a valid frame. If we're at the start of a
1946 function, or somewhere half-way its prologue, the function's
1947 frame probably hasn't been fully setup yet. Try to
1948 reconstruct the base address for the stack frame by looking
1949 at the stack pointer. For truly "frameless" functions this
1950 might work too. */
1951
1952 if (cache->saved_sp_reg != -1)
1953 {
1954 /* We're halfway aligning the stack. */
1955 cache->base = ((cache->saved_sp - 8) & 0xfffffffffffffff0LL) - 8;
1956 cache->saved_regs[AMD64_RIP_REGNUM] = cache->saved_sp - 8;
1957
1958 /* This will be added back below. */
1959 cache->saved_regs[AMD64_RIP_REGNUM] -= cache->base;
1960 }
1961 else
1962 {
1963 get_frame_register (this_frame, AMD64_RSP_REGNUM, buf);
1964 cache->base = extract_unsigned_integer (buf, 8, byte_order)
1965 + cache->sp_offset;
1966 }
1967 }
1968 else
1969 {
1970 get_frame_register (this_frame, AMD64_RBP_REGNUM, buf);
1971 cache->base = extract_unsigned_integer (buf, 8, byte_order);
1972 }
1973
1974 /* Now that we have the base address for the stack frame we can
1975 calculate the value of %rsp in the calling frame. */
1976 cache->saved_sp = cache->base + 16;
1977
1978 /* For normal frames, %rip is stored at 8(%rbp). If we don't have a
1979 frame we find it at the same offset from the reconstructed base
1980 address. If we're halfway aligning the stack, %rip is handled
1981 differently (see above). */
1982 if (!cache->frameless_p || cache->saved_sp_reg == -1)
1983 cache->saved_regs[AMD64_RIP_REGNUM] = 8;
1984
1985 /* Adjust all the saved registers such that they contain addresses
1986 instead of offsets. */
1987 for (i = 0; i < AMD64_NUM_SAVED_REGS; i++)
1988 if (cache->saved_regs[i] != -1)
1989 cache->saved_regs[i] += cache->base;
1990
1991 return cache;
1992 }
1993
1994 static void
1995 amd64_frame_this_id (struct frame_info *this_frame, void **this_cache,
1996 struct frame_id *this_id)
1997 {
1998 struct amd64_frame_cache *cache =
1999 amd64_frame_cache (this_frame, this_cache);
2000
2001 /* This marks the outermost frame. */
2002 if (cache->base == 0)
2003 return;
2004
2005 (*this_id) = frame_id_build (cache->base + 16, cache->pc);
2006 }
2007
2008 static struct value *
2009 amd64_frame_prev_register (struct frame_info *this_frame, void **this_cache,
2010 int regnum)
2011 {
2012 struct gdbarch *gdbarch = get_frame_arch (this_frame);
2013 struct amd64_frame_cache *cache =
2014 amd64_frame_cache (this_frame, this_cache);
2015
2016 gdb_assert (regnum >= 0);
2017
2018 if (regnum == gdbarch_sp_regnum (gdbarch) && cache->saved_sp)
2019 return frame_unwind_got_constant (this_frame, regnum, cache->saved_sp);
2020
2021 if (regnum < AMD64_NUM_SAVED_REGS && cache->saved_regs[regnum] != -1)
2022 return frame_unwind_got_memory (this_frame, regnum,
2023 cache->saved_regs[regnum]);
2024
2025 return frame_unwind_got_register (this_frame, regnum, regnum);
2026 }
2027
2028 static const struct frame_unwind amd64_frame_unwind =
2029 {
2030 NORMAL_FRAME,
2031 amd64_frame_this_id,
2032 amd64_frame_prev_register,
2033 NULL,
2034 default_frame_sniffer
2035 };
2036 \f
2037
2038 /* Signal trampolines. */
2039
2040 /* FIXME: kettenis/20030419: Perhaps, we can unify the 32-bit and
2041 64-bit variants. This would require using identical frame caches
2042 on both platforms. */
2043
2044 static struct amd64_frame_cache *
2045 amd64_sigtramp_frame_cache (struct frame_info *this_frame, void **this_cache)
2046 {
2047 struct gdbarch *gdbarch = get_frame_arch (this_frame);
2048 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2049 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
2050 struct amd64_frame_cache *cache;
2051 CORE_ADDR addr;
2052 gdb_byte buf[8];
2053 int i;
2054
2055 if (*this_cache)
2056 return *this_cache;
2057
2058 cache = amd64_alloc_frame_cache ();
2059
2060 get_frame_register (this_frame, AMD64_RSP_REGNUM, buf);
2061 cache->base = extract_unsigned_integer (buf, 8, byte_order) - 8;
2062
2063 addr = tdep->sigcontext_addr (this_frame);
2064 gdb_assert (tdep->sc_reg_offset);
2065 gdb_assert (tdep->sc_num_regs <= AMD64_NUM_SAVED_REGS);
2066 for (i = 0; i < tdep->sc_num_regs; i++)
2067 if (tdep->sc_reg_offset[i] != -1)
2068 cache->saved_regs[i] = addr + tdep->sc_reg_offset[i];
2069
2070 *this_cache = cache;
2071 return cache;
2072 }
2073
2074 static void
2075 amd64_sigtramp_frame_this_id (struct frame_info *this_frame,
2076 void **this_cache, struct frame_id *this_id)
2077 {
2078 struct amd64_frame_cache *cache =
2079 amd64_sigtramp_frame_cache (this_frame, this_cache);
2080
2081 (*this_id) = frame_id_build (cache->base + 16, get_frame_pc (this_frame));
2082 }
2083
2084 static struct value *
2085 amd64_sigtramp_frame_prev_register (struct frame_info *this_frame,
2086 void **this_cache, int regnum)
2087 {
2088 /* Make sure we've initialized the cache. */
2089 amd64_sigtramp_frame_cache (this_frame, this_cache);
2090
2091 return amd64_frame_prev_register (this_frame, this_cache, regnum);
2092 }
2093
2094 static int
2095 amd64_sigtramp_frame_sniffer (const struct frame_unwind *self,
2096 struct frame_info *this_frame,
2097 void **this_cache)
2098 {
2099 struct gdbarch_tdep *tdep = gdbarch_tdep (get_frame_arch (this_frame));
2100
2101 /* We shouldn't even bother if we don't have a sigcontext_addr
2102 handler. */
2103 if (tdep->sigcontext_addr == NULL)
2104 return 0;
2105
2106 if (tdep->sigtramp_p != NULL)
2107 {
2108 if (tdep->sigtramp_p (this_frame))
2109 return 1;
2110 }
2111
2112 if (tdep->sigtramp_start != 0)
2113 {
2114 CORE_ADDR pc = get_frame_pc (this_frame);
2115
2116 gdb_assert (tdep->sigtramp_end != 0);
2117 if (pc >= tdep->sigtramp_start && pc < tdep->sigtramp_end)
2118 return 1;
2119 }
2120
2121 return 0;
2122 }
2123
2124 static const struct frame_unwind amd64_sigtramp_frame_unwind =
2125 {
2126 SIGTRAMP_FRAME,
2127 amd64_sigtramp_frame_this_id,
2128 amd64_sigtramp_frame_prev_register,
2129 NULL,
2130 amd64_sigtramp_frame_sniffer
2131 };
2132 \f
2133
2134 static CORE_ADDR
2135 amd64_frame_base_address (struct frame_info *this_frame, void **this_cache)
2136 {
2137 struct amd64_frame_cache *cache =
2138 amd64_frame_cache (this_frame, this_cache);
2139
2140 return cache->base;
2141 }
2142
2143 static const struct frame_base amd64_frame_base =
2144 {
2145 &amd64_frame_unwind,
2146 amd64_frame_base_address,
2147 amd64_frame_base_address,
2148 amd64_frame_base_address
2149 };
2150
2151 /* Normal frames, but in a function epilogue. */
2152
2153 /* The epilogue is defined here as the 'ret' instruction, which will
2154 follow any instruction such as 'leave' or 'pop %ebp' that destroys
2155 the function's stack frame. */
2156
2157 static int
2158 amd64_in_function_epilogue_p (struct gdbarch *gdbarch, CORE_ADDR pc)
2159 {
2160 gdb_byte insn;
2161
2162 if (target_read_memory (pc, &insn, 1))
2163 return 0; /* Can't read memory at pc. */
2164
2165 if (insn != 0xc3) /* 'ret' instruction. */
2166 return 0;
2167
2168 return 1;
2169 }
2170
2171 static int
2172 amd64_epilogue_frame_sniffer (const struct frame_unwind *self,
2173 struct frame_info *this_frame,
2174 void **this_prologue_cache)
2175 {
2176 if (frame_relative_level (this_frame) == 0)
2177 return amd64_in_function_epilogue_p (get_frame_arch (this_frame),
2178 get_frame_pc (this_frame));
2179 else
2180 return 0;
2181 }
2182
2183 static struct amd64_frame_cache *
2184 amd64_epilogue_frame_cache (struct frame_info *this_frame, void **this_cache)
2185 {
2186 struct gdbarch *gdbarch = get_frame_arch (this_frame);
2187 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
2188 struct amd64_frame_cache *cache;
2189 gdb_byte buf[8];
2190
2191 if (*this_cache)
2192 return *this_cache;
2193
2194 cache = amd64_alloc_frame_cache ();
2195 *this_cache = cache;
2196
2197 /* Cache base will be %esp plus cache->sp_offset (-8). */
2198 get_frame_register (this_frame, AMD64_RSP_REGNUM, buf);
2199 cache->base = extract_unsigned_integer (buf, 8,
2200 byte_order) + cache->sp_offset;
2201
2202 /* Cache pc will be the frame func. */
2203 cache->pc = get_frame_pc (this_frame);
2204
2205 /* The saved %esp will be at cache->base plus 16. */
2206 cache->saved_sp = cache->base + 16;
2207
2208 /* The saved %eip will be at cache->base plus 8. */
2209 cache->saved_regs[AMD64_RIP_REGNUM] = cache->base + 8;
2210
2211 return cache;
2212 }
2213
2214 static void
2215 amd64_epilogue_frame_this_id (struct frame_info *this_frame,
2216 void **this_cache,
2217 struct frame_id *this_id)
2218 {
2219 struct amd64_frame_cache *cache = amd64_epilogue_frame_cache (this_frame,
2220 this_cache);
2221
2222 (*this_id) = frame_id_build (cache->base + 8, cache->pc);
2223 }
2224
2225 static const struct frame_unwind amd64_epilogue_frame_unwind =
2226 {
2227 NORMAL_FRAME,
2228 amd64_epilogue_frame_this_id,
2229 amd64_frame_prev_register,
2230 NULL,
2231 amd64_epilogue_frame_sniffer
2232 };
2233
2234 static struct frame_id
2235 amd64_dummy_id (struct gdbarch *gdbarch, struct frame_info *this_frame)
2236 {
2237 CORE_ADDR fp;
2238
2239 fp = get_frame_register_unsigned (this_frame, AMD64_RBP_REGNUM);
2240
2241 return frame_id_build (fp + 16, get_frame_pc (this_frame));
2242 }
2243
2244 /* 16 byte align the SP per frame requirements. */
2245
2246 static CORE_ADDR
2247 amd64_frame_align (struct gdbarch *gdbarch, CORE_ADDR sp)
2248 {
2249 return sp & -(CORE_ADDR)16;
2250 }
2251 \f
2252
2253 /* Supply register REGNUM from the buffer specified by FPREGS and LEN
2254 in the floating-point register set REGSET to register cache
2255 REGCACHE. If REGNUM is -1, do this for all registers in REGSET. */
2256
2257 static void
2258 amd64_supply_fpregset (const struct regset *regset, struct regcache *regcache,
2259 int regnum, const void *fpregs, size_t len)
2260 {
2261 const struct gdbarch_tdep *tdep = gdbarch_tdep (regset->arch);
2262
2263 gdb_assert (len == tdep->sizeof_fpregset);
2264 amd64_supply_fxsave (regcache, regnum, fpregs);
2265 }
2266
2267 /* Collect register REGNUM from the register cache REGCACHE and store
2268 it in the buffer specified by FPREGS and LEN as described by the
2269 floating-point register set REGSET. If REGNUM is -1, do this for
2270 all registers in REGSET. */
2271
2272 static void
2273 amd64_collect_fpregset (const struct regset *regset,
2274 const struct regcache *regcache,
2275 int regnum, void *fpregs, size_t len)
2276 {
2277 const struct gdbarch_tdep *tdep = gdbarch_tdep (regset->arch);
2278
2279 gdb_assert (len == tdep->sizeof_fpregset);
2280 amd64_collect_fxsave (regcache, regnum, fpregs);
2281 }
2282
2283 /* Similar to amd64_supply_fpregset, but use XSAVE extended state. */
2284
2285 static void
2286 amd64_supply_xstateregset (const struct regset *regset,
2287 struct regcache *regcache, int regnum,
2288 const void *xstateregs, size_t len)
2289 {
2290 amd64_supply_xsave (regcache, regnum, xstateregs);
2291 }
2292
2293 /* Similar to amd64_collect_fpregset, but use XSAVE extended state. */
2294
2295 static void
2296 amd64_collect_xstateregset (const struct regset *regset,
2297 const struct regcache *regcache,
2298 int regnum, void *xstateregs, size_t len)
2299 {
2300 amd64_collect_xsave (regcache, regnum, xstateregs, 1);
2301 }
2302
2303 /* Return the appropriate register set for the core section identified
2304 by SECT_NAME and SECT_SIZE. */
2305
2306 static const struct regset *
2307 amd64_regset_from_core_section (struct gdbarch *gdbarch,
2308 const char *sect_name, size_t sect_size)
2309 {
2310 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2311
2312 if (strcmp (sect_name, ".reg2") == 0 && sect_size == tdep->sizeof_fpregset)
2313 {
2314 if (tdep->fpregset == NULL)
2315 tdep->fpregset = regset_alloc (gdbarch, amd64_supply_fpregset,
2316 amd64_collect_fpregset);
2317
2318 return tdep->fpregset;
2319 }
2320
2321 if (strcmp (sect_name, ".reg-xstate") == 0)
2322 {
2323 if (tdep->xstateregset == NULL)
2324 tdep->xstateregset = regset_alloc (gdbarch,
2325 amd64_supply_xstateregset,
2326 amd64_collect_xstateregset);
2327
2328 return tdep->xstateregset;
2329 }
2330
2331 return i386_regset_from_core_section (gdbarch, sect_name, sect_size);
2332 }
2333 \f
2334
2335 /* Figure out where the longjmp will land. Slurp the jmp_buf out of
2336 %rdi. We expect its value to be a pointer to the jmp_buf structure
2337 from which we extract the address that we will land at. This
2338 address is copied into PC. This routine returns non-zero on
2339 success. */
2340
2341 static int
2342 amd64_get_longjmp_target (struct frame_info *frame, CORE_ADDR *pc)
2343 {
2344 gdb_byte buf[8];
2345 CORE_ADDR jb_addr;
2346 struct gdbarch *gdbarch = get_frame_arch (frame);
2347 int jb_pc_offset = gdbarch_tdep (gdbarch)->jb_pc_offset;
2348 int len = TYPE_LENGTH (builtin_type (gdbarch)->builtin_func_ptr);
2349
2350 /* If JB_PC_OFFSET is -1, we have no way to find out where the
2351 longjmp will land. */
2352 if (jb_pc_offset == -1)
2353 return 0;
2354
2355 get_frame_register (frame, AMD64_RDI_REGNUM, buf);
2356 jb_addr= extract_typed_address
2357 (buf, builtin_type (gdbarch)->builtin_data_ptr);
2358 if (target_read_memory (jb_addr + jb_pc_offset, buf, len))
2359 return 0;
2360
2361 *pc = extract_typed_address (buf, builtin_type (gdbarch)->builtin_func_ptr);
2362
2363 return 1;
2364 }
2365
2366 static const int amd64_record_regmap[] =
2367 {
2368 AMD64_RAX_REGNUM, AMD64_RCX_REGNUM, AMD64_RDX_REGNUM, AMD64_RBX_REGNUM,
2369 AMD64_RSP_REGNUM, AMD64_RBP_REGNUM, AMD64_RSI_REGNUM, AMD64_RDI_REGNUM,
2370 AMD64_R8_REGNUM, AMD64_R9_REGNUM, AMD64_R10_REGNUM, AMD64_R11_REGNUM,
2371 AMD64_R12_REGNUM, AMD64_R13_REGNUM, AMD64_R14_REGNUM, AMD64_R15_REGNUM,
2372 AMD64_RIP_REGNUM, AMD64_EFLAGS_REGNUM, AMD64_CS_REGNUM, AMD64_SS_REGNUM,
2373 AMD64_DS_REGNUM, AMD64_ES_REGNUM, AMD64_FS_REGNUM, AMD64_GS_REGNUM
2374 };
2375
2376 void
2377 amd64_init_abi (struct gdbarch_info info, struct gdbarch *gdbarch)
2378 {
2379 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2380 const struct target_desc *tdesc = info.target_desc;
2381
2382 /* AMD64 generally uses `fxsave' instead of `fsave' for saving its
2383 floating-point registers. */
2384 tdep->sizeof_fpregset = I387_SIZEOF_FXSAVE;
2385
2386 if (! tdesc_has_registers (tdesc))
2387 tdesc = tdesc_amd64;
2388 tdep->tdesc = tdesc;
2389
2390 tdep->num_core_regs = AMD64_NUM_GREGS + I387_NUM_REGS;
2391 tdep->register_names = amd64_register_names;
2392
2393 if (tdesc_find_feature (tdesc, "org.gnu.gdb.i386.avx") != NULL)
2394 {
2395 tdep->ymmh_register_names = amd64_ymmh_names;
2396 tdep->num_ymm_regs = 16;
2397 tdep->ymm0h_regnum = AMD64_YMM0H_REGNUM;
2398 }
2399
2400 tdep->num_byte_regs = 20;
2401 tdep->num_word_regs = 16;
2402 tdep->num_dword_regs = 16;
2403 /* Avoid wiring in the MMX registers for now. */
2404 tdep->num_mmx_regs = 0;
2405
2406 set_gdbarch_pseudo_register_read (gdbarch,
2407 amd64_pseudo_register_read);
2408 set_gdbarch_pseudo_register_write (gdbarch,
2409 amd64_pseudo_register_write);
2410
2411 set_tdesc_pseudo_register_name (gdbarch, amd64_pseudo_register_name);
2412
2413 /* AMD64 has an FPU and 16 SSE registers. */
2414 tdep->st0_regnum = AMD64_ST0_REGNUM;
2415 tdep->num_xmm_regs = 16;
2416
2417 /* This is what all the fuss is about. */
2418 set_gdbarch_long_bit (gdbarch, 64);
2419 set_gdbarch_long_long_bit (gdbarch, 64);
2420 set_gdbarch_ptr_bit (gdbarch, 64);
2421
2422 /* In contrast to the i386, on AMD64 a `long double' actually takes
2423 up 128 bits, even though it's still based on the i387 extended
2424 floating-point format which has only 80 significant bits. */
2425 set_gdbarch_long_double_bit (gdbarch, 128);
2426
2427 set_gdbarch_num_regs (gdbarch, AMD64_NUM_REGS);
2428
2429 /* Register numbers of various important registers. */
2430 set_gdbarch_sp_regnum (gdbarch, AMD64_RSP_REGNUM); /* %rsp */
2431 set_gdbarch_pc_regnum (gdbarch, AMD64_RIP_REGNUM); /* %rip */
2432 set_gdbarch_ps_regnum (gdbarch, AMD64_EFLAGS_REGNUM); /* %eflags */
2433 set_gdbarch_fp0_regnum (gdbarch, AMD64_ST0_REGNUM); /* %st(0) */
2434
2435 /* The "default" register numbering scheme for AMD64 is referred to
2436 as the "DWARF Register Number Mapping" in the System V psABI.
2437 The preferred debugging format for all known AMD64 targets is
2438 actually DWARF2, and GCC doesn't seem to support DWARF (that is
2439 DWARF-1), but we provide the same mapping just in case. This
2440 mapping is also used for stabs, which GCC does support. */
2441 set_gdbarch_stab_reg_to_regnum (gdbarch, amd64_dwarf_reg_to_regnum);
2442 set_gdbarch_dwarf2_reg_to_regnum (gdbarch, amd64_dwarf_reg_to_regnum);
2443
2444 /* We don't override SDB_REG_RO_REGNUM, since COFF doesn't seem to
2445 be in use on any of the supported AMD64 targets. */
2446
2447 /* Call dummy code. */
2448 set_gdbarch_push_dummy_call (gdbarch, amd64_push_dummy_call);
2449 set_gdbarch_frame_align (gdbarch, amd64_frame_align);
2450 set_gdbarch_frame_red_zone_size (gdbarch, 128);
2451 tdep->call_dummy_num_integer_regs =
2452 ARRAY_SIZE (amd64_dummy_call_integer_regs);
2453 tdep->call_dummy_integer_regs = amd64_dummy_call_integer_regs;
2454 tdep->classify = amd64_classify;
2455
2456 set_gdbarch_convert_register_p (gdbarch, i387_convert_register_p);
2457 set_gdbarch_register_to_value (gdbarch, i387_register_to_value);
2458 set_gdbarch_value_to_register (gdbarch, i387_value_to_register);
2459
2460 set_gdbarch_return_value (gdbarch, amd64_return_value);
2461
2462 set_gdbarch_skip_prologue (gdbarch, amd64_skip_prologue);
2463
2464 tdep->record_regmap = amd64_record_regmap;
2465
2466 set_gdbarch_dummy_id (gdbarch, amd64_dummy_id);
2467
2468 /* Hook the function epilogue frame unwinder. This unwinder is
2469 appended to the list first, so that it supercedes the other
2470 unwinders in function epilogues. */
2471 frame_unwind_prepend_unwinder (gdbarch, &amd64_epilogue_frame_unwind);
2472
2473 /* Hook the prologue-based frame unwinders. */
2474 frame_unwind_append_unwinder (gdbarch, &amd64_sigtramp_frame_unwind);
2475 frame_unwind_append_unwinder (gdbarch, &amd64_frame_unwind);
2476 frame_base_set_default (gdbarch, &amd64_frame_base);
2477
2478 /* If we have a register mapping, enable the generic core file support. */
2479 if (tdep->gregset_reg_offset)
2480 set_gdbarch_regset_from_core_section (gdbarch,
2481 amd64_regset_from_core_section);
2482
2483 set_gdbarch_get_longjmp_target (gdbarch, amd64_get_longjmp_target);
2484
2485 set_gdbarch_relocate_instruction (gdbarch, amd64_relocate_instruction);
2486 }
2487
2488 /* Provide a prototype to silence -Wmissing-prototypes. */
2489 void _initialize_amd64_tdep (void);
2490
2491 void
2492 _initialize_amd64_tdep (void)
2493 {
2494 initialize_tdesc_amd64 ();
2495 initialize_tdesc_amd64_avx ();
2496 }
2497 \f
2498
2499 /* The 64-bit FXSAVE format differs from the 32-bit format in the
2500 sense that the instruction pointer and data pointer are simply
2501 64-bit offsets into the code segment and the data segment instead
2502 of a selector offset pair. The functions below store the upper 32
2503 bits of these pointers (instead of just the 16-bits of the segment
2504 selector). */
2505
2506 /* Fill register REGNUM in REGCACHE with the appropriate
2507 floating-point or SSE register value from *FXSAVE. If REGNUM is
2508 -1, do this for all registers. This function masks off any of the
2509 reserved bits in *FXSAVE. */
2510
2511 void
2512 amd64_supply_fxsave (struct regcache *regcache, int regnum,
2513 const void *fxsave)
2514 {
2515 struct gdbarch *gdbarch = get_regcache_arch (regcache);
2516 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2517
2518 i387_supply_fxsave (regcache, regnum, fxsave);
2519
2520 if (fxsave && gdbarch_ptr_bit (gdbarch) == 64)
2521 {
2522 const gdb_byte *regs = fxsave;
2523
2524 if (regnum == -1 || regnum == I387_FISEG_REGNUM (tdep))
2525 regcache_raw_supply (regcache, I387_FISEG_REGNUM (tdep), regs + 12);
2526 if (regnum == -1 || regnum == I387_FOSEG_REGNUM (tdep))
2527 regcache_raw_supply (regcache, I387_FOSEG_REGNUM (tdep), regs + 20);
2528 }
2529 }
2530
2531 /* Similar to amd64_supply_fxsave, but use XSAVE extended state. */
2532
2533 void
2534 amd64_supply_xsave (struct regcache *regcache, int regnum,
2535 const void *xsave)
2536 {
2537 struct gdbarch *gdbarch = get_regcache_arch (regcache);
2538 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2539
2540 i387_supply_xsave (regcache, regnum, xsave);
2541
2542 if (xsave && gdbarch_ptr_bit (gdbarch) == 64)
2543 {
2544 const gdb_byte *regs = xsave;
2545
2546 if (regnum == -1 || regnum == I387_FISEG_REGNUM (tdep))
2547 regcache_raw_supply (regcache, I387_FISEG_REGNUM (tdep),
2548 regs + 12);
2549 if (regnum == -1 || regnum == I387_FOSEG_REGNUM (tdep))
2550 regcache_raw_supply (regcache, I387_FOSEG_REGNUM (tdep),
2551 regs + 20);
2552 }
2553 }
2554
2555 /* Fill register REGNUM (if it is a floating-point or SSE register) in
2556 *FXSAVE with the value from REGCACHE. If REGNUM is -1, do this for
2557 all registers. This function doesn't touch any of the reserved
2558 bits in *FXSAVE. */
2559
2560 void
2561 amd64_collect_fxsave (const struct regcache *regcache, int regnum,
2562 void *fxsave)
2563 {
2564 struct gdbarch *gdbarch = get_regcache_arch (regcache);
2565 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2566 gdb_byte *regs = fxsave;
2567
2568 i387_collect_fxsave (regcache, regnum, fxsave);
2569
2570 if (gdbarch_ptr_bit (gdbarch) == 64)
2571 {
2572 if (regnum == -1 || regnum == I387_FISEG_REGNUM (tdep))
2573 regcache_raw_collect (regcache, I387_FISEG_REGNUM (tdep), regs + 12);
2574 if (regnum == -1 || regnum == I387_FOSEG_REGNUM (tdep))
2575 regcache_raw_collect (regcache, I387_FOSEG_REGNUM (tdep), regs + 20);
2576 }
2577 }
2578
2579 /* Similar to amd64_collect_fxsave, but but use XSAVE extended state. */
2580
2581 void
2582 amd64_collect_xsave (const struct regcache *regcache, int regnum,
2583 void *xsave, int gcore)
2584 {
2585 struct gdbarch *gdbarch = get_regcache_arch (regcache);
2586 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2587 gdb_byte *regs = xsave;
2588
2589 i387_collect_xsave (regcache, regnum, xsave, gcore);
2590
2591 if (gdbarch_ptr_bit (gdbarch) == 64)
2592 {
2593 if (regnum == -1 || regnum == I387_FISEG_REGNUM (tdep))
2594 regcache_raw_collect (regcache, I387_FISEG_REGNUM (tdep),
2595 regs + 12);
2596 if (regnum == -1 || regnum == I387_FOSEG_REGNUM (tdep))
2597 regcache_raw_collect (regcache, I387_FOSEG_REGNUM (tdep),
2598 regs + 20);
2599 }
2600 }
This page took 0.088374 seconds and 4 git commands to generate.