Update i386 and amd64 ports for unwinder changes.
[deliverable/binutils-gdb.git] / gdb / amd64-tdep.c
1 /* Target-dependent code for AMD64.
2
3 Copyright (C) 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008
4 Free Software Foundation, Inc.
5
6 Contributed by Jiri Smid, SuSE Labs.
7
8 This file is part of GDB.
9
10 This program is free software; you can redistribute it and/or modify
11 it under the terms of the GNU General Public License as published by
12 the Free Software Foundation; either version 3 of the License, or
13 (at your option) any later version.
14
15 This program is distributed in the hope that it will be useful,
16 but WITHOUT ANY WARRANTY; without even the implied warranty of
17 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
18 GNU General Public License for more details.
19
20 You should have received a copy of the GNU General Public License
21 along with this program. If not, see <http://www.gnu.org/licenses/>. */
22
23 #include "defs.h"
24 #include "arch-utils.h"
25 #include "block.h"
26 #include "dummy-frame.h"
27 #include "frame.h"
28 #include "frame-base.h"
29 #include "frame-unwind.h"
30 #include "inferior.h"
31 #include "gdbcmd.h"
32 #include "gdbcore.h"
33 #include "objfiles.h"
34 #include "regcache.h"
35 #include "regset.h"
36 #include "symfile.h"
37
38 #include "gdb_assert.h"
39
40 #include "amd64-tdep.h"
41 #include "i387-tdep.h"
42
43 /* Note that the AMD64 architecture was previously known as x86-64.
44 The latter is (forever) engraved into the canonical system name as
45 returned by config.guess, and used as the name for the AMD64 port
46 of GNU/Linux. The BSD's have renamed their ports to amd64; they
47 don't like to shout. For GDB we prefer the amd64_-prefix over the
48 x86_64_-prefix since it's so much easier to type. */
49
50 /* Register information. */
51
52 static const char *amd64_register_names[] =
53 {
54 "rax", "rbx", "rcx", "rdx", "rsi", "rdi", "rbp", "rsp",
55
56 /* %r8 is indeed register number 8. */
57 "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15",
58 "rip", "eflags", "cs", "ss", "ds", "es", "fs", "gs",
59
60 /* %st0 is register number 24. */
61 "st0", "st1", "st2", "st3", "st4", "st5", "st6", "st7",
62 "fctrl", "fstat", "ftag", "fiseg", "fioff", "foseg", "fooff", "fop",
63
64 /* %xmm0 is register number 40. */
65 "xmm0", "xmm1", "xmm2", "xmm3", "xmm4", "xmm5", "xmm6", "xmm7",
66 "xmm8", "xmm9", "xmm10", "xmm11", "xmm12", "xmm13", "xmm14", "xmm15",
67 "mxcsr",
68 };
69
70 /* Total number of registers. */
71 #define AMD64_NUM_REGS ARRAY_SIZE (amd64_register_names)
72
73 /* Return the name of register REGNUM. */
74
75 const char *
76 amd64_register_name (struct gdbarch *gdbarch, int regnum)
77 {
78 if (regnum >= 0 && regnum < AMD64_NUM_REGS)
79 return amd64_register_names[regnum];
80
81 return NULL;
82 }
83
84 /* Return the GDB type object for the "standard" data type of data in
85 register REGNUM. */
86
87 struct type *
88 amd64_register_type (struct gdbarch *gdbarch, int regnum)
89 {
90 if (regnum >= AMD64_RAX_REGNUM && regnum <= AMD64_RDI_REGNUM)
91 return builtin_type_int64;
92 if (regnum == AMD64_RBP_REGNUM || regnum == AMD64_RSP_REGNUM)
93 return builtin_type_void_data_ptr;
94 if (regnum >= AMD64_R8_REGNUM && regnum <= AMD64_R15_REGNUM)
95 return builtin_type_int64;
96 if (regnum == AMD64_RIP_REGNUM)
97 return builtin_type_void_func_ptr;
98 if (regnum == AMD64_EFLAGS_REGNUM)
99 return i386_eflags_type;
100 if (regnum >= AMD64_CS_REGNUM && regnum <= AMD64_GS_REGNUM)
101 return builtin_type_int32;
102 if (regnum >= AMD64_ST0_REGNUM && regnum <= AMD64_ST0_REGNUM + 7)
103 return builtin_type_i387_ext;
104 if (regnum >= AMD64_FCTRL_REGNUM && regnum <= AMD64_FCTRL_REGNUM + 7)
105 return builtin_type_int32;
106 if (regnum >= AMD64_XMM0_REGNUM && regnum <= AMD64_XMM0_REGNUM + 15)
107 return i386_sse_type (gdbarch);
108 if (regnum == AMD64_MXCSR_REGNUM)
109 return i386_mxcsr_type;
110
111 internal_error (__FILE__, __LINE__, _("invalid regnum"));
112 }
113
114 /* DWARF Register Number Mapping as defined in the System V psABI,
115 section 3.6. */
116
117 static int amd64_dwarf_regmap[] =
118 {
119 /* General Purpose Registers RAX, RDX, RCX, RBX, RSI, RDI. */
120 AMD64_RAX_REGNUM, AMD64_RDX_REGNUM,
121 AMD64_RCX_REGNUM, AMD64_RBX_REGNUM,
122 AMD64_RSI_REGNUM, AMD64_RDI_REGNUM,
123
124 /* Frame Pointer Register RBP. */
125 AMD64_RBP_REGNUM,
126
127 /* Stack Pointer Register RSP. */
128 AMD64_RSP_REGNUM,
129
130 /* Extended Integer Registers 8 - 15. */
131 8, 9, 10, 11, 12, 13, 14, 15,
132
133 /* Return Address RA. Mapped to RIP. */
134 AMD64_RIP_REGNUM,
135
136 /* SSE Registers 0 - 7. */
137 AMD64_XMM0_REGNUM + 0, AMD64_XMM1_REGNUM,
138 AMD64_XMM0_REGNUM + 2, AMD64_XMM0_REGNUM + 3,
139 AMD64_XMM0_REGNUM + 4, AMD64_XMM0_REGNUM + 5,
140 AMD64_XMM0_REGNUM + 6, AMD64_XMM0_REGNUM + 7,
141
142 /* Extended SSE Registers 8 - 15. */
143 AMD64_XMM0_REGNUM + 8, AMD64_XMM0_REGNUM + 9,
144 AMD64_XMM0_REGNUM + 10, AMD64_XMM0_REGNUM + 11,
145 AMD64_XMM0_REGNUM + 12, AMD64_XMM0_REGNUM + 13,
146 AMD64_XMM0_REGNUM + 14, AMD64_XMM0_REGNUM + 15,
147
148 /* Floating Point Registers 0-7. */
149 AMD64_ST0_REGNUM + 0, AMD64_ST0_REGNUM + 1,
150 AMD64_ST0_REGNUM + 2, AMD64_ST0_REGNUM + 3,
151 AMD64_ST0_REGNUM + 4, AMD64_ST0_REGNUM + 5,
152 AMD64_ST0_REGNUM + 6, AMD64_ST0_REGNUM + 7,
153
154 /* Control and Status Flags Register. */
155 AMD64_EFLAGS_REGNUM,
156
157 /* Selector Registers. */
158 AMD64_ES_REGNUM,
159 AMD64_CS_REGNUM,
160 AMD64_SS_REGNUM,
161 AMD64_DS_REGNUM,
162 AMD64_FS_REGNUM,
163 AMD64_GS_REGNUM,
164 -1,
165 -1,
166
167 /* Segment Base Address Registers. */
168 -1,
169 -1,
170 -1,
171 -1,
172
173 /* Special Selector Registers. */
174 -1,
175 -1,
176
177 /* Floating Point Control Registers. */
178 AMD64_MXCSR_REGNUM,
179 AMD64_FCTRL_REGNUM,
180 AMD64_FSTAT_REGNUM
181 };
182
183 static const int amd64_dwarf_regmap_len =
184 (sizeof (amd64_dwarf_regmap) / sizeof (amd64_dwarf_regmap[0]));
185
186 /* Convert DWARF register number REG to the appropriate register
187 number used by GDB. */
188
189 static int
190 amd64_dwarf_reg_to_regnum (struct gdbarch *gdbarch, int reg)
191 {
192 int regnum = -1;
193
194 if (reg >= 0 && reg < amd64_dwarf_regmap_len)
195 regnum = amd64_dwarf_regmap[reg];
196
197 if (regnum == -1)
198 warning (_("Unmapped DWARF Register #%d encountered."), reg);
199
200 return regnum;
201 }
202
203 \f
204
205 /* Register classes as defined in the psABI. */
206
207 enum amd64_reg_class
208 {
209 AMD64_INTEGER,
210 AMD64_SSE,
211 AMD64_SSEUP,
212 AMD64_X87,
213 AMD64_X87UP,
214 AMD64_COMPLEX_X87,
215 AMD64_NO_CLASS,
216 AMD64_MEMORY
217 };
218
219 /* Return the union class of CLASS1 and CLASS2. See the psABI for
220 details. */
221
222 static enum amd64_reg_class
223 amd64_merge_classes (enum amd64_reg_class class1, enum amd64_reg_class class2)
224 {
225 /* Rule (a): If both classes are equal, this is the resulting class. */
226 if (class1 == class2)
227 return class1;
228
229 /* Rule (b): If one of the classes is NO_CLASS, the resulting class
230 is the other class. */
231 if (class1 == AMD64_NO_CLASS)
232 return class2;
233 if (class2 == AMD64_NO_CLASS)
234 return class1;
235
236 /* Rule (c): If one of the classes is MEMORY, the result is MEMORY. */
237 if (class1 == AMD64_MEMORY || class2 == AMD64_MEMORY)
238 return AMD64_MEMORY;
239
240 /* Rule (d): If one of the classes is INTEGER, the result is INTEGER. */
241 if (class1 == AMD64_INTEGER || class2 == AMD64_INTEGER)
242 return AMD64_INTEGER;
243
244 /* Rule (e): If one of the classes is X87, X87UP, COMPLEX_X87 class,
245 MEMORY is used as class. */
246 if (class1 == AMD64_X87 || class1 == AMD64_X87UP
247 || class1 == AMD64_COMPLEX_X87 || class2 == AMD64_X87
248 || class2 == AMD64_X87UP || class2 == AMD64_COMPLEX_X87)
249 return AMD64_MEMORY;
250
251 /* Rule (f): Otherwise class SSE is used. */
252 return AMD64_SSE;
253 }
254
255 static void amd64_classify (struct type *type, enum amd64_reg_class class[2]);
256
257 /* Return non-zero if TYPE is a non-POD structure or union type. */
258
259 static int
260 amd64_non_pod_p (struct type *type)
261 {
262 /* ??? A class with a base class certainly isn't POD, but does this
263 catch all non-POD structure types? */
264 if (TYPE_CODE (type) == TYPE_CODE_STRUCT && TYPE_N_BASECLASSES (type) > 0)
265 return 1;
266
267 return 0;
268 }
269
270 /* Classify TYPE according to the rules for aggregate (structures and
271 arrays) and union types, and store the result in CLASS. */
272
273 static void
274 amd64_classify_aggregate (struct type *type, enum amd64_reg_class class[2])
275 {
276 int len = TYPE_LENGTH (type);
277
278 /* 1. If the size of an object is larger than two eightbytes, or in
279 C++, is a non-POD structure or union type, or contains
280 unaligned fields, it has class memory. */
281 if (len > 16 || amd64_non_pod_p (type))
282 {
283 class[0] = class[1] = AMD64_MEMORY;
284 return;
285 }
286
287 /* 2. Both eightbytes get initialized to class NO_CLASS. */
288 class[0] = class[1] = AMD64_NO_CLASS;
289
290 /* 3. Each field of an object is classified recursively so that
291 always two fields are considered. The resulting class is
292 calculated according to the classes of the fields in the
293 eightbyte: */
294
295 if (TYPE_CODE (type) == TYPE_CODE_ARRAY)
296 {
297 struct type *subtype = check_typedef (TYPE_TARGET_TYPE (type));
298
299 /* All fields in an array have the same type. */
300 amd64_classify (subtype, class);
301 if (len > 8 && class[1] == AMD64_NO_CLASS)
302 class[1] = class[0];
303 }
304 else
305 {
306 int i;
307
308 /* Structure or union. */
309 gdb_assert (TYPE_CODE (type) == TYPE_CODE_STRUCT
310 || TYPE_CODE (type) == TYPE_CODE_UNION);
311
312 for (i = 0; i < TYPE_NFIELDS (type); i++)
313 {
314 struct type *subtype = check_typedef (TYPE_FIELD_TYPE (type, i));
315 int pos = TYPE_FIELD_BITPOS (type, i) / 64;
316 enum amd64_reg_class subclass[2];
317
318 /* Ignore static fields. */
319 if (TYPE_FIELD_STATIC (type, i))
320 continue;
321
322 gdb_assert (pos == 0 || pos == 1);
323
324 amd64_classify (subtype, subclass);
325 class[pos] = amd64_merge_classes (class[pos], subclass[0]);
326 if (pos == 0)
327 class[1] = amd64_merge_classes (class[1], subclass[1]);
328 }
329 }
330
331 /* 4. Then a post merger cleanup is done: */
332
333 /* Rule (a): If one of the classes is MEMORY, the whole argument is
334 passed in memory. */
335 if (class[0] == AMD64_MEMORY || class[1] == AMD64_MEMORY)
336 class[0] = class[1] = AMD64_MEMORY;
337
338 /* Rule (b): If SSEUP is not preceeded by SSE, it is converted to
339 SSE. */
340 if (class[0] == AMD64_SSEUP)
341 class[0] = AMD64_SSE;
342 if (class[1] == AMD64_SSEUP && class[0] != AMD64_SSE)
343 class[1] = AMD64_SSE;
344 }
345
346 /* Classify TYPE, and store the result in CLASS. */
347
348 static void
349 amd64_classify (struct type *type, enum amd64_reg_class class[2])
350 {
351 enum type_code code = TYPE_CODE (type);
352 int len = TYPE_LENGTH (type);
353
354 class[0] = class[1] = AMD64_NO_CLASS;
355
356 /* Arguments of types (signed and unsigned) _Bool, char, short, int,
357 long, long long, and pointers are in the INTEGER class. Similarly,
358 range types, used by languages such as Ada, are also in the INTEGER
359 class. */
360 if ((code == TYPE_CODE_INT || code == TYPE_CODE_ENUM
361 || code == TYPE_CODE_BOOL || code == TYPE_CODE_RANGE
362 || code == TYPE_CODE_CHAR
363 || code == TYPE_CODE_PTR || code == TYPE_CODE_REF)
364 && (len == 1 || len == 2 || len == 4 || len == 8))
365 class[0] = AMD64_INTEGER;
366
367 /* Arguments of types float, double, _Decimal32, _Decimal64 and __m64
368 are in class SSE. */
369 else if ((code == TYPE_CODE_FLT || code == TYPE_CODE_DECFLOAT)
370 && (len == 4 || len == 8))
371 /* FIXME: __m64 . */
372 class[0] = AMD64_SSE;
373
374 /* Arguments of types __float128, _Decimal128 and __m128 are split into
375 two halves. The least significant ones belong to class SSE, the most
376 significant one to class SSEUP. */
377 else if (code == TYPE_CODE_DECFLOAT && len == 16)
378 /* FIXME: __float128, __m128. */
379 class[0] = AMD64_SSE, class[1] = AMD64_SSEUP;
380
381 /* The 64-bit mantissa of arguments of type long double belongs to
382 class X87, the 16-bit exponent plus 6 bytes of padding belongs to
383 class X87UP. */
384 else if (code == TYPE_CODE_FLT && len == 16)
385 /* Class X87 and X87UP. */
386 class[0] = AMD64_X87, class[1] = AMD64_X87UP;
387
388 /* Aggregates. */
389 else if (code == TYPE_CODE_ARRAY || code == TYPE_CODE_STRUCT
390 || code == TYPE_CODE_UNION)
391 amd64_classify_aggregate (type, class);
392 }
393
394 static enum return_value_convention
395 amd64_return_value (struct gdbarch *gdbarch, struct type *func_type,
396 struct type *type, struct regcache *regcache,
397 gdb_byte *readbuf, const gdb_byte *writebuf)
398 {
399 enum amd64_reg_class class[2];
400 int len = TYPE_LENGTH (type);
401 static int integer_regnum[] = { AMD64_RAX_REGNUM, AMD64_RDX_REGNUM };
402 static int sse_regnum[] = { AMD64_XMM0_REGNUM, AMD64_XMM1_REGNUM };
403 int integer_reg = 0;
404 int sse_reg = 0;
405 int i;
406
407 gdb_assert (!(readbuf && writebuf));
408
409 /* 1. Classify the return type with the classification algorithm. */
410 amd64_classify (type, class);
411
412 /* 2. If the type has class MEMORY, then the caller provides space
413 for the return value and passes the address of this storage in
414 %rdi as if it were the first argument to the function. In effect,
415 this address becomes a hidden first argument.
416
417 On return %rax will contain the address that has been passed in
418 by the caller in %rdi. */
419 if (class[0] == AMD64_MEMORY)
420 {
421 /* As indicated by the comment above, the ABI guarantees that we
422 can always find the return value just after the function has
423 returned. */
424
425 if (readbuf)
426 {
427 ULONGEST addr;
428
429 regcache_raw_read_unsigned (regcache, AMD64_RAX_REGNUM, &addr);
430 read_memory (addr, readbuf, TYPE_LENGTH (type));
431 }
432
433 return RETURN_VALUE_ABI_RETURNS_ADDRESS;
434 }
435
436 gdb_assert (class[1] != AMD64_MEMORY);
437 gdb_assert (len <= 16);
438
439 for (i = 0; len > 0; i++, len -= 8)
440 {
441 int regnum = -1;
442 int offset = 0;
443
444 switch (class[i])
445 {
446 case AMD64_INTEGER:
447 /* 3. If the class is INTEGER, the next available register
448 of the sequence %rax, %rdx is used. */
449 regnum = integer_regnum[integer_reg++];
450 break;
451
452 case AMD64_SSE:
453 /* 4. If the class is SSE, the next available SSE register
454 of the sequence %xmm0, %xmm1 is used. */
455 regnum = sse_regnum[sse_reg++];
456 break;
457
458 case AMD64_SSEUP:
459 /* 5. If the class is SSEUP, the eightbyte is passed in the
460 upper half of the last used SSE register. */
461 gdb_assert (sse_reg > 0);
462 regnum = sse_regnum[sse_reg - 1];
463 offset = 8;
464 break;
465
466 case AMD64_X87:
467 /* 6. If the class is X87, the value is returned on the X87
468 stack in %st0 as 80-bit x87 number. */
469 regnum = AMD64_ST0_REGNUM;
470 if (writebuf)
471 i387_return_value (gdbarch, regcache);
472 break;
473
474 case AMD64_X87UP:
475 /* 7. If the class is X87UP, the value is returned together
476 with the previous X87 value in %st0. */
477 gdb_assert (i > 0 && class[0] == AMD64_X87);
478 regnum = AMD64_ST0_REGNUM;
479 offset = 8;
480 len = 2;
481 break;
482
483 case AMD64_NO_CLASS:
484 continue;
485
486 default:
487 gdb_assert (!"Unexpected register class.");
488 }
489
490 gdb_assert (regnum != -1);
491
492 if (readbuf)
493 regcache_raw_read_part (regcache, regnum, offset, min (len, 8),
494 readbuf + i * 8);
495 if (writebuf)
496 regcache_raw_write_part (regcache, regnum, offset, min (len, 8),
497 writebuf + i * 8);
498 }
499
500 return RETURN_VALUE_REGISTER_CONVENTION;
501 }
502 \f
503
504 static CORE_ADDR
505 amd64_push_arguments (struct regcache *regcache, int nargs,
506 struct value **args, CORE_ADDR sp, int struct_return)
507 {
508 static int integer_regnum[] =
509 {
510 AMD64_RDI_REGNUM, /* %rdi */
511 AMD64_RSI_REGNUM, /* %rsi */
512 AMD64_RDX_REGNUM, /* %rdx */
513 AMD64_RCX_REGNUM, /* %rcx */
514 8, /* %r8 */
515 9 /* %r9 */
516 };
517 static int sse_regnum[] =
518 {
519 /* %xmm0 ... %xmm7 */
520 AMD64_XMM0_REGNUM + 0, AMD64_XMM1_REGNUM,
521 AMD64_XMM0_REGNUM + 2, AMD64_XMM0_REGNUM + 3,
522 AMD64_XMM0_REGNUM + 4, AMD64_XMM0_REGNUM + 5,
523 AMD64_XMM0_REGNUM + 6, AMD64_XMM0_REGNUM + 7,
524 };
525 struct value **stack_args = alloca (nargs * sizeof (struct value *));
526 int num_stack_args = 0;
527 int num_elements = 0;
528 int element = 0;
529 int integer_reg = 0;
530 int sse_reg = 0;
531 int i;
532
533 /* Reserve a register for the "hidden" argument. */
534 if (struct_return)
535 integer_reg++;
536
537 for (i = 0; i < nargs; i++)
538 {
539 struct type *type = value_type (args[i]);
540 int len = TYPE_LENGTH (type);
541 enum amd64_reg_class class[2];
542 int needed_integer_regs = 0;
543 int needed_sse_regs = 0;
544 int j;
545
546 /* Classify argument. */
547 amd64_classify (type, class);
548
549 /* Calculate the number of integer and SSE registers needed for
550 this argument. */
551 for (j = 0; j < 2; j++)
552 {
553 if (class[j] == AMD64_INTEGER)
554 needed_integer_regs++;
555 else if (class[j] == AMD64_SSE)
556 needed_sse_regs++;
557 }
558
559 /* Check whether enough registers are available, and if the
560 argument should be passed in registers at all. */
561 if (integer_reg + needed_integer_regs > ARRAY_SIZE (integer_regnum)
562 || sse_reg + needed_sse_regs > ARRAY_SIZE (sse_regnum)
563 || (needed_integer_regs == 0 && needed_sse_regs == 0))
564 {
565 /* The argument will be passed on the stack. */
566 num_elements += ((len + 7) / 8);
567 stack_args[num_stack_args++] = args[i];
568 }
569 else
570 {
571 /* The argument will be passed in registers. */
572 const gdb_byte *valbuf = value_contents (args[i]);
573 gdb_byte buf[8];
574
575 gdb_assert (len <= 16);
576
577 for (j = 0; len > 0; j++, len -= 8)
578 {
579 int regnum = -1;
580 int offset = 0;
581
582 switch (class[j])
583 {
584 case AMD64_INTEGER:
585 regnum = integer_regnum[integer_reg++];
586 break;
587
588 case AMD64_SSE:
589 regnum = sse_regnum[sse_reg++];
590 break;
591
592 case AMD64_SSEUP:
593 gdb_assert (sse_reg > 0);
594 regnum = sse_regnum[sse_reg - 1];
595 offset = 8;
596 break;
597
598 default:
599 gdb_assert (!"Unexpected register class.");
600 }
601
602 gdb_assert (regnum != -1);
603 memset (buf, 0, sizeof buf);
604 memcpy (buf, valbuf + j * 8, min (len, 8));
605 regcache_raw_write_part (regcache, regnum, offset, 8, buf);
606 }
607 }
608 }
609
610 /* Allocate space for the arguments on the stack. */
611 sp -= num_elements * 8;
612
613 /* The psABI says that "The end of the input argument area shall be
614 aligned on a 16 byte boundary." */
615 sp &= ~0xf;
616
617 /* Write out the arguments to the stack. */
618 for (i = 0; i < num_stack_args; i++)
619 {
620 struct type *type = value_type (stack_args[i]);
621 const gdb_byte *valbuf = value_contents (stack_args[i]);
622 int len = TYPE_LENGTH (type);
623
624 write_memory (sp + element * 8, valbuf, len);
625 element += ((len + 7) / 8);
626 }
627
628 /* The psABI says that "For calls that may call functions that use
629 varargs or stdargs (prototype-less calls or calls to functions
630 containing ellipsis (...) in the declaration) %al is used as
631 hidden argument to specify the number of SSE registers used. */
632 regcache_raw_write_unsigned (regcache, AMD64_RAX_REGNUM, sse_reg);
633 return sp;
634 }
635
636 static CORE_ADDR
637 amd64_push_dummy_call (struct gdbarch *gdbarch, struct value *function,
638 struct regcache *regcache, CORE_ADDR bp_addr,
639 int nargs, struct value **args, CORE_ADDR sp,
640 int struct_return, CORE_ADDR struct_addr)
641 {
642 gdb_byte buf[8];
643
644 /* Pass arguments. */
645 sp = amd64_push_arguments (regcache, nargs, args, sp, struct_return);
646
647 /* Pass "hidden" argument". */
648 if (struct_return)
649 {
650 store_unsigned_integer (buf, 8, struct_addr);
651 regcache_cooked_write (regcache, AMD64_RDI_REGNUM, buf);
652 }
653
654 /* Store return address. */
655 sp -= 8;
656 store_unsigned_integer (buf, 8, bp_addr);
657 write_memory (sp, buf, 8);
658
659 /* Finally, update the stack pointer... */
660 store_unsigned_integer (buf, 8, sp);
661 regcache_cooked_write (regcache, AMD64_RSP_REGNUM, buf);
662
663 /* ...and fake a frame pointer. */
664 regcache_cooked_write (regcache, AMD64_RBP_REGNUM, buf);
665
666 return sp + 16;
667 }
668 \f
669
670 /* The maximum number of saved registers. This should include %rip. */
671 #define AMD64_NUM_SAVED_REGS AMD64_NUM_GREGS
672
673 struct amd64_frame_cache
674 {
675 /* Base address. */
676 CORE_ADDR base;
677 CORE_ADDR sp_offset;
678 CORE_ADDR pc;
679
680 /* Saved registers. */
681 CORE_ADDR saved_regs[AMD64_NUM_SAVED_REGS];
682 CORE_ADDR saved_sp;
683
684 /* Do we have a frame? */
685 int frameless_p;
686 };
687
688 /* Initialize a frame cache. */
689
690 static void
691 amd64_init_frame_cache (struct amd64_frame_cache *cache)
692 {
693 int i;
694
695 /* Base address. */
696 cache->base = 0;
697 cache->sp_offset = -8;
698 cache->pc = 0;
699
700 /* Saved registers. We initialize these to -1 since zero is a valid
701 offset (that's where %rbp is supposed to be stored). */
702 for (i = 0; i < AMD64_NUM_SAVED_REGS; i++)
703 cache->saved_regs[i] = -1;
704 cache->saved_sp = 0;
705
706 /* Frameless until proven otherwise. */
707 cache->frameless_p = 1;
708 }
709
710 /* Allocate and initialize a frame cache. */
711
712 static struct amd64_frame_cache *
713 amd64_alloc_frame_cache (void)
714 {
715 struct amd64_frame_cache *cache;
716
717 cache = FRAME_OBSTACK_ZALLOC (struct amd64_frame_cache);
718 amd64_init_frame_cache (cache);
719 return cache;
720 }
721
722 /* Do a limited analysis of the prologue at PC and update CACHE
723 accordingly. Bail out early if CURRENT_PC is reached. Return the
724 address where the analysis stopped.
725
726 We will handle only functions beginning with:
727
728 pushq %rbp 0x55
729 movq %rsp, %rbp 0x48 0x89 0xe5
730
731 Any function that doesn't start with this sequence will be assumed
732 to have no prologue and thus no valid frame pointer in %rbp. */
733
734 static CORE_ADDR
735 amd64_analyze_prologue (CORE_ADDR pc, CORE_ADDR current_pc,
736 struct amd64_frame_cache *cache)
737 {
738 static gdb_byte proto[3] = { 0x48, 0x89, 0xe5 }; /* movq %rsp, %rbp */
739 gdb_byte buf[3];
740 gdb_byte op;
741
742 if (current_pc <= pc)
743 return current_pc;
744
745 op = read_memory_unsigned_integer (pc, 1);
746
747 if (op == 0x55) /* pushq %rbp */
748 {
749 /* Take into account that we've executed the `pushq %rbp' that
750 starts this instruction sequence. */
751 cache->saved_regs[AMD64_RBP_REGNUM] = 0;
752 cache->sp_offset += 8;
753
754 /* If that's all, return now. */
755 if (current_pc <= pc + 1)
756 return current_pc;
757
758 /* Check for `movq %rsp, %rbp'. */
759 read_memory (pc + 1, buf, 3);
760 if (memcmp (buf, proto, 3) != 0)
761 return pc + 1;
762
763 /* OK, we actually have a frame. */
764 cache->frameless_p = 0;
765 return pc + 4;
766 }
767
768 return pc;
769 }
770
771 /* Return PC of first real instruction. */
772
773 static CORE_ADDR
774 amd64_skip_prologue (struct gdbarch *gdbarch, CORE_ADDR start_pc)
775 {
776 struct amd64_frame_cache cache;
777 CORE_ADDR pc;
778
779 amd64_init_frame_cache (&cache);
780 pc = amd64_analyze_prologue (start_pc, 0xffffffffffffffffLL, &cache);
781 if (cache.frameless_p)
782 return start_pc;
783
784 return pc;
785 }
786 \f
787
788 /* Normal frames. */
789
790 static struct amd64_frame_cache *
791 amd64_frame_cache (struct frame_info *this_frame, void **this_cache)
792 {
793 struct amd64_frame_cache *cache;
794 gdb_byte buf[8];
795 int i;
796
797 if (*this_cache)
798 return *this_cache;
799
800 cache = amd64_alloc_frame_cache ();
801 *this_cache = cache;
802
803 cache->pc = get_frame_func (this_frame);
804 if (cache->pc != 0)
805 amd64_analyze_prologue (cache->pc, get_frame_pc (this_frame), cache);
806
807 if (cache->frameless_p)
808 {
809 /* We didn't find a valid frame. If we're at the start of a
810 function, or somewhere half-way its prologue, the function's
811 frame probably hasn't been fully setup yet. Try to
812 reconstruct the base address for the stack frame by looking
813 at the stack pointer. For truly "frameless" functions this
814 might work too. */
815
816 get_frame_register (this_frame, AMD64_RSP_REGNUM, buf);
817 cache->base = extract_unsigned_integer (buf, 8) + cache->sp_offset;
818 }
819 else
820 {
821 get_frame_register (this_frame, AMD64_RBP_REGNUM, buf);
822 cache->base = extract_unsigned_integer (buf, 8);
823 }
824
825 /* Now that we have the base address for the stack frame we can
826 calculate the value of %rsp in the calling frame. */
827 cache->saved_sp = cache->base + 16;
828
829 /* For normal frames, %rip is stored at 8(%rbp). If we don't have a
830 frame we find it at the same offset from the reconstructed base
831 address. */
832 cache->saved_regs[AMD64_RIP_REGNUM] = 8;
833
834 /* Adjust all the saved registers such that they contain addresses
835 instead of offsets. */
836 for (i = 0; i < AMD64_NUM_SAVED_REGS; i++)
837 if (cache->saved_regs[i] != -1)
838 cache->saved_regs[i] += cache->base;
839
840 return cache;
841 }
842
843 static void
844 amd64_frame_this_id (struct frame_info *this_frame, void **this_cache,
845 struct frame_id *this_id)
846 {
847 struct amd64_frame_cache *cache =
848 amd64_frame_cache (this_frame, this_cache);
849
850 /* This marks the outermost frame. */
851 if (cache->base == 0)
852 return;
853
854 (*this_id) = frame_id_build (cache->base + 16, cache->pc);
855 }
856
857 static struct value *
858 amd64_frame_prev_register (struct frame_info *this_frame, void **this_cache,
859 int regnum)
860 {
861 struct gdbarch *gdbarch = get_frame_arch (this_frame);
862 struct amd64_frame_cache *cache =
863 amd64_frame_cache (this_frame, this_cache);
864
865 gdb_assert (regnum >= 0);
866
867 if (regnum == gdbarch_sp_regnum (gdbarch) && cache->saved_sp)
868 return frame_unwind_got_constant (this_frame, regnum, cache->saved_sp);
869
870 if (regnum < AMD64_NUM_SAVED_REGS && cache->saved_regs[regnum] != -1)
871 return frame_unwind_got_memory (this_frame, regnum,
872 cache->saved_regs[regnum]);
873
874 return frame_unwind_got_register (this_frame, regnum, regnum);
875 }
876
877 static const struct frame_unwind amd64_frame_unwind =
878 {
879 NORMAL_FRAME,
880 amd64_frame_this_id,
881 amd64_frame_prev_register,
882 NULL,
883 default_frame_sniffer
884 };
885 \f
886
887 /* Signal trampolines. */
888
889 /* FIXME: kettenis/20030419: Perhaps, we can unify the 32-bit and
890 64-bit variants. This would require using identical frame caches
891 on both platforms. */
892
893 static struct amd64_frame_cache *
894 amd64_sigtramp_frame_cache (struct frame_info *this_frame, void **this_cache)
895 {
896 struct amd64_frame_cache *cache;
897 struct gdbarch_tdep *tdep = gdbarch_tdep (get_frame_arch (this_frame));
898 CORE_ADDR addr;
899 gdb_byte buf[8];
900 int i;
901
902 if (*this_cache)
903 return *this_cache;
904
905 cache = amd64_alloc_frame_cache ();
906
907 get_frame_register (this_frame, AMD64_RSP_REGNUM, buf);
908 cache->base = extract_unsigned_integer (buf, 8) - 8;
909
910 addr = tdep->sigcontext_addr (this_frame);
911 gdb_assert (tdep->sc_reg_offset);
912 gdb_assert (tdep->sc_num_regs <= AMD64_NUM_SAVED_REGS);
913 for (i = 0; i < tdep->sc_num_regs; i++)
914 if (tdep->sc_reg_offset[i] != -1)
915 cache->saved_regs[i] = addr + tdep->sc_reg_offset[i];
916
917 *this_cache = cache;
918 return cache;
919 }
920
921 static void
922 amd64_sigtramp_frame_this_id (struct frame_info *this_frame,
923 void **this_cache, struct frame_id *this_id)
924 {
925 struct amd64_frame_cache *cache =
926 amd64_sigtramp_frame_cache (this_frame, this_cache);
927
928 (*this_id) = frame_id_build (cache->base + 16, get_frame_pc (this_frame));
929 }
930
931 static struct value *
932 amd64_sigtramp_frame_prev_register (struct frame_info *this_frame,
933 void **this_cache, int regnum)
934 {
935 /* Make sure we've initialized the cache. */
936 amd64_sigtramp_frame_cache (this_frame, this_cache);
937
938 return amd64_frame_prev_register (this_frame, this_cache, regnum);
939 }
940
941 static int
942 amd64_sigtramp_frame_sniffer (const struct frame_unwind *self,
943 struct frame_info *this_frame,
944 void **this_cache)
945 {
946 struct gdbarch_tdep *tdep = gdbarch_tdep (get_frame_arch (this_frame));
947
948 /* We shouldn't even bother if we don't have a sigcontext_addr
949 handler. */
950 if (tdep->sigcontext_addr == NULL)
951 return 0;
952
953 if (tdep->sigtramp_p != NULL)
954 {
955 if (tdep->sigtramp_p (this_frame))
956 return 1;
957 }
958
959 if (tdep->sigtramp_start != 0)
960 {
961 CORE_ADDR pc = get_frame_pc (this_frame);
962
963 gdb_assert (tdep->sigtramp_end != 0);
964 if (pc >= tdep->sigtramp_start && pc < tdep->sigtramp_end)
965 return 1;
966 }
967
968 return 0;
969 }
970
971 static const struct frame_unwind amd64_sigtramp_frame_unwind =
972 {
973 SIGTRAMP_FRAME,
974 amd64_sigtramp_frame_this_id,
975 amd64_sigtramp_frame_prev_register,
976 NULL,
977 amd64_sigtramp_frame_sniffer
978 };
979 \f
980
981 static CORE_ADDR
982 amd64_frame_base_address (struct frame_info *this_frame, void **this_cache)
983 {
984 struct amd64_frame_cache *cache =
985 amd64_frame_cache (this_frame, this_cache);
986
987 return cache->base;
988 }
989
990 static const struct frame_base amd64_frame_base =
991 {
992 &amd64_frame_unwind,
993 amd64_frame_base_address,
994 amd64_frame_base_address,
995 amd64_frame_base_address
996 };
997
998 static struct frame_id
999 amd64_dummy_id (struct gdbarch *gdbarch, struct frame_info *this_frame)
1000 {
1001 CORE_ADDR fp;
1002
1003 fp = get_frame_register_unsigned (this_frame, AMD64_RBP_REGNUM);
1004
1005 return frame_id_build (fp + 16, get_frame_pc (this_frame));
1006 }
1007
1008 /* 16 byte align the SP per frame requirements. */
1009
1010 static CORE_ADDR
1011 amd64_frame_align (struct gdbarch *gdbarch, CORE_ADDR sp)
1012 {
1013 return sp & -(CORE_ADDR)16;
1014 }
1015 \f
1016
1017 /* Supply register REGNUM from the buffer specified by FPREGS and LEN
1018 in the floating-point register set REGSET to register cache
1019 REGCACHE. If REGNUM is -1, do this for all registers in REGSET. */
1020
1021 static void
1022 amd64_supply_fpregset (const struct regset *regset, struct regcache *regcache,
1023 int regnum, const void *fpregs, size_t len)
1024 {
1025 const struct gdbarch_tdep *tdep = gdbarch_tdep (regset->arch);
1026
1027 gdb_assert (len == tdep->sizeof_fpregset);
1028 amd64_supply_fxsave (regcache, regnum, fpregs);
1029 }
1030
1031 /* Collect register REGNUM from the register cache REGCACHE and store
1032 it in the buffer specified by FPREGS and LEN as described by the
1033 floating-point register set REGSET. If REGNUM is -1, do this for
1034 all registers in REGSET. */
1035
1036 static void
1037 amd64_collect_fpregset (const struct regset *regset,
1038 const struct regcache *regcache,
1039 int regnum, void *fpregs, size_t len)
1040 {
1041 const struct gdbarch_tdep *tdep = gdbarch_tdep (regset->arch);
1042
1043 gdb_assert (len == tdep->sizeof_fpregset);
1044 amd64_collect_fxsave (regcache, regnum, fpregs);
1045 }
1046
1047 /* Return the appropriate register set for the core section identified
1048 by SECT_NAME and SECT_SIZE. */
1049
1050 static const struct regset *
1051 amd64_regset_from_core_section (struct gdbarch *gdbarch,
1052 const char *sect_name, size_t sect_size)
1053 {
1054 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
1055
1056 if (strcmp (sect_name, ".reg2") == 0 && sect_size == tdep->sizeof_fpregset)
1057 {
1058 if (tdep->fpregset == NULL)
1059 tdep->fpregset = regset_alloc (gdbarch, amd64_supply_fpregset,
1060 amd64_collect_fpregset);
1061
1062 return tdep->fpregset;
1063 }
1064
1065 return i386_regset_from_core_section (gdbarch, sect_name, sect_size);
1066 }
1067 \f
1068
1069 /* Figure out where the longjmp will land. Slurp the jmp_buf out of
1070 %rdi. We expect its value to be a pointer to the jmp_buf structure
1071 from which we extract the address that we will land at. This
1072 address is copied into PC. This routine returns non-zero on
1073 success. */
1074
1075 static int
1076 amd64_get_longjmp_target (struct frame_info *frame, CORE_ADDR *pc)
1077 {
1078 gdb_byte buf[8];
1079 CORE_ADDR jb_addr;
1080 struct gdbarch *gdbarch = get_frame_arch (frame);
1081 int jb_pc_offset = gdbarch_tdep (gdbarch)->jb_pc_offset;
1082 int len = TYPE_LENGTH (builtin_type_void_func_ptr);
1083
1084 /* If JB_PC_OFFSET is -1, we have no way to find out where the
1085 longjmp will land. */
1086 if (jb_pc_offset == -1)
1087 return 0;
1088
1089 get_frame_register (frame, AMD64_RDI_REGNUM, buf);
1090 jb_addr = extract_typed_address (buf, builtin_type_void_data_ptr);
1091 if (target_read_memory (jb_addr + jb_pc_offset, buf, len))
1092 return 0;
1093
1094 *pc = extract_typed_address (buf, builtin_type_void_func_ptr);
1095
1096 return 1;
1097 }
1098
1099 void
1100 amd64_init_abi (struct gdbarch_info info, struct gdbarch *gdbarch)
1101 {
1102 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
1103
1104 /* AMD64 generally uses `fxsave' instead of `fsave' for saving its
1105 floating-point registers. */
1106 tdep->sizeof_fpregset = I387_SIZEOF_FXSAVE;
1107
1108 /* AMD64 has an FPU and 16 SSE registers. */
1109 tdep->st0_regnum = AMD64_ST0_REGNUM;
1110 tdep->num_xmm_regs = 16;
1111
1112 /* This is what all the fuss is about. */
1113 set_gdbarch_long_bit (gdbarch, 64);
1114 set_gdbarch_long_long_bit (gdbarch, 64);
1115 set_gdbarch_ptr_bit (gdbarch, 64);
1116
1117 /* In contrast to the i386, on AMD64 a `long double' actually takes
1118 up 128 bits, even though it's still based on the i387 extended
1119 floating-point format which has only 80 significant bits. */
1120 set_gdbarch_long_double_bit (gdbarch, 128);
1121
1122 set_gdbarch_num_regs (gdbarch, AMD64_NUM_REGS);
1123 set_gdbarch_register_name (gdbarch, amd64_register_name);
1124 set_gdbarch_register_type (gdbarch, amd64_register_type);
1125
1126 /* Register numbers of various important registers. */
1127 set_gdbarch_sp_regnum (gdbarch, AMD64_RSP_REGNUM); /* %rsp */
1128 set_gdbarch_pc_regnum (gdbarch, AMD64_RIP_REGNUM); /* %rip */
1129 set_gdbarch_ps_regnum (gdbarch, AMD64_EFLAGS_REGNUM); /* %eflags */
1130 set_gdbarch_fp0_regnum (gdbarch, AMD64_ST0_REGNUM); /* %st(0) */
1131
1132 /* The "default" register numbering scheme for AMD64 is referred to
1133 as the "DWARF Register Number Mapping" in the System V psABI.
1134 The preferred debugging format for all known AMD64 targets is
1135 actually DWARF2, and GCC doesn't seem to support DWARF (that is
1136 DWARF-1), but we provide the same mapping just in case. This
1137 mapping is also used for stabs, which GCC does support. */
1138 set_gdbarch_stab_reg_to_regnum (gdbarch, amd64_dwarf_reg_to_regnum);
1139 set_gdbarch_dwarf_reg_to_regnum (gdbarch, amd64_dwarf_reg_to_regnum);
1140 set_gdbarch_dwarf2_reg_to_regnum (gdbarch, amd64_dwarf_reg_to_regnum);
1141
1142 /* We don't override SDB_REG_RO_REGNUM, since COFF doesn't seem to
1143 be in use on any of the supported AMD64 targets. */
1144
1145 /* Call dummy code. */
1146 set_gdbarch_push_dummy_call (gdbarch, amd64_push_dummy_call);
1147 set_gdbarch_frame_align (gdbarch, amd64_frame_align);
1148 set_gdbarch_frame_red_zone_size (gdbarch, 128);
1149
1150 set_gdbarch_convert_register_p (gdbarch, i387_convert_register_p);
1151 set_gdbarch_register_to_value (gdbarch, i387_register_to_value);
1152 set_gdbarch_value_to_register (gdbarch, i387_value_to_register);
1153
1154 set_gdbarch_return_value (gdbarch, amd64_return_value);
1155
1156 set_gdbarch_skip_prologue (gdbarch, amd64_skip_prologue);
1157
1158 /* Avoid wiring in the MMX registers for now. */
1159 set_gdbarch_num_pseudo_regs (gdbarch, 0);
1160 tdep->mm0_regnum = -1;
1161
1162 set_gdbarch_dummy_id (gdbarch, amd64_dummy_id);
1163
1164 frame_unwind_append_unwinder (gdbarch, &amd64_sigtramp_frame_unwind);
1165 frame_unwind_append_unwinder (gdbarch, &amd64_frame_unwind);
1166 frame_base_set_default (gdbarch, &amd64_frame_base);
1167
1168 /* If we have a register mapping, enable the generic core file support. */
1169 if (tdep->gregset_reg_offset)
1170 set_gdbarch_regset_from_core_section (gdbarch,
1171 amd64_regset_from_core_section);
1172
1173 set_gdbarch_get_longjmp_target (gdbarch, amd64_get_longjmp_target);
1174 }
1175 \f
1176
1177 /* The 64-bit FXSAVE format differs from the 32-bit format in the
1178 sense that the instruction pointer and data pointer are simply
1179 64-bit offsets into the code segment and the data segment instead
1180 of a selector offset pair. The functions below store the upper 32
1181 bits of these pointers (instead of just the 16-bits of the segment
1182 selector). */
1183
1184 /* Fill register REGNUM in REGCACHE with the appropriate
1185 floating-point or SSE register value from *FXSAVE. If REGNUM is
1186 -1, do this for all registers. This function masks off any of the
1187 reserved bits in *FXSAVE. */
1188
1189 void
1190 amd64_supply_fxsave (struct regcache *regcache, int regnum,
1191 const void *fxsave)
1192 {
1193 struct gdbarch *gdbarch = get_regcache_arch (regcache);
1194 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
1195
1196 i387_supply_fxsave (regcache, regnum, fxsave);
1197
1198 if (fxsave && gdbarch_ptr_bit (gdbarch) == 64)
1199 {
1200 const gdb_byte *regs = fxsave;
1201
1202 if (regnum == -1 || regnum == I387_FISEG_REGNUM (tdep))
1203 regcache_raw_supply (regcache, I387_FISEG_REGNUM (tdep), regs + 12);
1204 if (regnum == -1 || regnum == I387_FOSEG_REGNUM (tdep))
1205 regcache_raw_supply (regcache, I387_FOSEG_REGNUM (tdep), regs + 20);
1206 }
1207 }
1208
1209 /* Fill register REGNUM (if it is a floating-point or SSE register) in
1210 *FXSAVE with the value from REGCACHE. If REGNUM is -1, do this for
1211 all registers. This function doesn't touch any of the reserved
1212 bits in *FXSAVE. */
1213
1214 void
1215 amd64_collect_fxsave (const struct regcache *regcache, int regnum,
1216 void *fxsave)
1217 {
1218 struct gdbarch *gdbarch = get_regcache_arch (regcache);
1219 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
1220 gdb_byte *regs = fxsave;
1221
1222 i387_collect_fxsave (regcache, regnum, fxsave);
1223
1224 if (gdbarch_ptr_bit (gdbarch) == 64)
1225 {
1226 if (regnum == -1 || regnum == I387_FISEG_REGNUM (tdep))
1227 regcache_raw_collect (regcache, I387_FISEG_REGNUM (tdep), regs + 12);
1228 if (regnum == -1 || regnum == I387_FOSEG_REGNUM (tdep))
1229 regcache_raw_collect (regcache, I387_FOSEG_REGNUM (tdep), regs + 20);
1230 }
1231 }
This page took 0.240224 seconds and 4 git commands to generate.