gdb.ada/arraydim.exp: Fix directory layout
[deliverable/binutils-gdb.git] / gdb / amd64-tdep.c
1 /* Target-dependent code for AMD64.
2
3 Copyright (C) 2001-2016 Free Software Foundation, Inc.
4
5 Contributed by Jiri Smid, SuSE Labs.
6
7 This file is part of GDB.
8
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 3 of the License, or
12 (at your option) any later version.
13
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
18
19 You should have received a copy of the GNU General Public License
20 along with this program. If not, see <http://www.gnu.org/licenses/>. */
21
22 #include "defs.h"
23 #include "opcode/i386.h"
24 #include "dis-asm.h"
25 #include "arch-utils.h"
26 #include "block.h"
27 #include "dummy-frame.h"
28 #include "frame.h"
29 #include "frame-base.h"
30 #include "frame-unwind.h"
31 #include "inferior.h"
32 #include "infrun.h"
33 #include "gdbcmd.h"
34 #include "gdbcore.h"
35 #include "objfiles.h"
36 #include "regcache.h"
37 #include "regset.h"
38 #include "symfile.h"
39 #include "disasm.h"
40 #include "amd64-tdep.h"
41 #include "i387-tdep.h"
42 #include "x86-xstate.h"
43
44 #include "features/i386/amd64.c"
45 #include "features/i386/amd64-avx.c"
46 #include "features/i386/amd64-mpx.c"
47 #include "features/i386/amd64-avx-mpx.c"
48 #include "features/i386/amd64-avx512.c"
49
50 #include "features/i386/x32.c"
51 #include "features/i386/x32-avx.c"
52 #include "features/i386/x32-avx512.c"
53
54 #include "ax.h"
55 #include "ax-gdb.h"
56
57 /* Note that the AMD64 architecture was previously known as x86-64.
58 The latter is (forever) engraved into the canonical system name as
59 returned by config.guess, and used as the name for the AMD64 port
60 of GNU/Linux. The BSD's have renamed their ports to amd64; they
61 don't like to shout. For GDB we prefer the amd64_-prefix over the
62 x86_64_-prefix since it's so much easier to type. */
63
64 /* Register information. */
65
66 static const char *amd64_register_names[] =
67 {
68 "rax", "rbx", "rcx", "rdx", "rsi", "rdi", "rbp", "rsp",
69
70 /* %r8 is indeed register number 8. */
71 "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15",
72 "rip", "eflags", "cs", "ss", "ds", "es", "fs", "gs",
73
74 /* %st0 is register number 24. */
75 "st0", "st1", "st2", "st3", "st4", "st5", "st6", "st7",
76 "fctrl", "fstat", "ftag", "fiseg", "fioff", "foseg", "fooff", "fop",
77
78 /* %xmm0 is register number 40. */
79 "xmm0", "xmm1", "xmm2", "xmm3", "xmm4", "xmm5", "xmm6", "xmm7",
80 "xmm8", "xmm9", "xmm10", "xmm11", "xmm12", "xmm13", "xmm14", "xmm15",
81 "mxcsr",
82 };
83
84 static const char *amd64_ymm_names[] =
85 {
86 "ymm0", "ymm1", "ymm2", "ymm3",
87 "ymm4", "ymm5", "ymm6", "ymm7",
88 "ymm8", "ymm9", "ymm10", "ymm11",
89 "ymm12", "ymm13", "ymm14", "ymm15"
90 };
91
92 static const char *amd64_ymm_avx512_names[] =
93 {
94 "ymm16", "ymm17", "ymm18", "ymm19",
95 "ymm20", "ymm21", "ymm22", "ymm23",
96 "ymm24", "ymm25", "ymm26", "ymm27",
97 "ymm28", "ymm29", "ymm30", "ymm31"
98 };
99
100 static const char *amd64_ymmh_names[] =
101 {
102 "ymm0h", "ymm1h", "ymm2h", "ymm3h",
103 "ymm4h", "ymm5h", "ymm6h", "ymm7h",
104 "ymm8h", "ymm9h", "ymm10h", "ymm11h",
105 "ymm12h", "ymm13h", "ymm14h", "ymm15h"
106 };
107
108 static const char *amd64_ymmh_avx512_names[] =
109 {
110 "ymm16h", "ymm17h", "ymm18h", "ymm19h",
111 "ymm20h", "ymm21h", "ymm22h", "ymm23h",
112 "ymm24h", "ymm25h", "ymm26h", "ymm27h",
113 "ymm28h", "ymm29h", "ymm30h", "ymm31h"
114 };
115
116 static const char *amd64_mpx_names[] =
117 {
118 "bnd0raw", "bnd1raw", "bnd2raw", "bnd3raw", "bndcfgu", "bndstatus"
119 };
120
121 static const char *amd64_k_names[] =
122 {
123 "k0", "k1", "k2", "k3",
124 "k4", "k5", "k6", "k7"
125 };
126
127 static const char *amd64_zmmh_names[] =
128 {
129 "zmm0h", "zmm1h", "zmm2h", "zmm3h",
130 "zmm4h", "zmm5h", "zmm6h", "zmm7h",
131 "zmm8h", "zmm9h", "zmm10h", "zmm11h",
132 "zmm12h", "zmm13h", "zmm14h", "zmm15h",
133 "zmm16h", "zmm17h", "zmm18h", "zmm19h",
134 "zmm20h", "zmm21h", "zmm22h", "zmm23h",
135 "zmm24h", "zmm25h", "zmm26h", "zmm27h",
136 "zmm28h", "zmm29h", "zmm30h", "zmm31h"
137 };
138
139 static const char *amd64_zmm_names[] =
140 {
141 "zmm0", "zmm1", "zmm2", "zmm3",
142 "zmm4", "zmm5", "zmm6", "zmm7",
143 "zmm8", "zmm9", "zmm10", "zmm11",
144 "zmm12", "zmm13", "zmm14", "zmm15",
145 "zmm16", "zmm17", "zmm18", "zmm19",
146 "zmm20", "zmm21", "zmm22", "zmm23",
147 "zmm24", "zmm25", "zmm26", "zmm27",
148 "zmm28", "zmm29", "zmm30", "zmm31"
149 };
150
151 static const char *amd64_xmm_avx512_names[] = {
152 "xmm16", "xmm17", "xmm18", "xmm19",
153 "xmm20", "xmm21", "xmm22", "xmm23",
154 "xmm24", "xmm25", "xmm26", "xmm27",
155 "xmm28", "xmm29", "xmm30", "xmm31"
156 };
157
158 /* DWARF Register Number Mapping as defined in the System V psABI,
159 section 3.6. */
160
161 static int amd64_dwarf_regmap[] =
162 {
163 /* General Purpose Registers RAX, RDX, RCX, RBX, RSI, RDI. */
164 AMD64_RAX_REGNUM, AMD64_RDX_REGNUM,
165 AMD64_RCX_REGNUM, AMD64_RBX_REGNUM,
166 AMD64_RSI_REGNUM, AMD64_RDI_REGNUM,
167
168 /* Frame Pointer Register RBP. */
169 AMD64_RBP_REGNUM,
170
171 /* Stack Pointer Register RSP. */
172 AMD64_RSP_REGNUM,
173
174 /* Extended Integer Registers 8 - 15. */
175 AMD64_R8_REGNUM, /* %r8 */
176 AMD64_R9_REGNUM, /* %r9 */
177 AMD64_R10_REGNUM, /* %r10 */
178 AMD64_R11_REGNUM, /* %r11 */
179 AMD64_R12_REGNUM, /* %r12 */
180 AMD64_R13_REGNUM, /* %r13 */
181 AMD64_R14_REGNUM, /* %r14 */
182 AMD64_R15_REGNUM, /* %r15 */
183
184 /* Return Address RA. Mapped to RIP. */
185 AMD64_RIP_REGNUM,
186
187 /* SSE Registers 0 - 7. */
188 AMD64_XMM0_REGNUM + 0, AMD64_XMM1_REGNUM,
189 AMD64_XMM0_REGNUM + 2, AMD64_XMM0_REGNUM + 3,
190 AMD64_XMM0_REGNUM + 4, AMD64_XMM0_REGNUM + 5,
191 AMD64_XMM0_REGNUM + 6, AMD64_XMM0_REGNUM + 7,
192
193 /* Extended SSE Registers 8 - 15. */
194 AMD64_XMM0_REGNUM + 8, AMD64_XMM0_REGNUM + 9,
195 AMD64_XMM0_REGNUM + 10, AMD64_XMM0_REGNUM + 11,
196 AMD64_XMM0_REGNUM + 12, AMD64_XMM0_REGNUM + 13,
197 AMD64_XMM0_REGNUM + 14, AMD64_XMM0_REGNUM + 15,
198
199 /* Floating Point Registers 0-7. */
200 AMD64_ST0_REGNUM + 0, AMD64_ST0_REGNUM + 1,
201 AMD64_ST0_REGNUM + 2, AMD64_ST0_REGNUM + 3,
202 AMD64_ST0_REGNUM + 4, AMD64_ST0_REGNUM + 5,
203 AMD64_ST0_REGNUM + 6, AMD64_ST0_REGNUM + 7,
204
205 /* MMX Registers 0 - 7.
206 We have to handle those registers specifically, as their register
207 number within GDB depends on the target (or they may even not be
208 available at all). */
209 -1, -1, -1, -1, -1, -1, -1, -1,
210
211 /* Control and Status Flags Register. */
212 AMD64_EFLAGS_REGNUM,
213
214 /* Selector Registers. */
215 AMD64_ES_REGNUM,
216 AMD64_CS_REGNUM,
217 AMD64_SS_REGNUM,
218 AMD64_DS_REGNUM,
219 AMD64_FS_REGNUM,
220 AMD64_GS_REGNUM,
221 -1,
222 -1,
223
224 /* Segment Base Address Registers. */
225 -1,
226 -1,
227 -1,
228 -1,
229
230 /* Special Selector Registers. */
231 -1,
232 -1,
233
234 /* Floating Point Control Registers. */
235 AMD64_MXCSR_REGNUM,
236 AMD64_FCTRL_REGNUM,
237 AMD64_FSTAT_REGNUM
238 };
239
240 static const int amd64_dwarf_regmap_len =
241 (sizeof (amd64_dwarf_regmap) / sizeof (amd64_dwarf_regmap[0]));
242
243 /* Convert DWARF register number REG to the appropriate register
244 number used by GDB. */
245
246 static int
247 amd64_dwarf_reg_to_regnum (struct gdbarch *gdbarch, int reg)
248 {
249 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
250 int ymm0_regnum = tdep->ymm0_regnum;
251 int regnum = -1;
252
253 if (reg >= 0 && reg < amd64_dwarf_regmap_len)
254 regnum = amd64_dwarf_regmap[reg];
255
256 if (ymm0_regnum >= 0
257 && i386_xmm_regnum_p (gdbarch, regnum))
258 regnum += ymm0_regnum - I387_XMM0_REGNUM (tdep);
259
260 return regnum;
261 }
262
263 /* Map architectural register numbers to gdb register numbers. */
264
265 static const int amd64_arch_regmap[16] =
266 {
267 AMD64_RAX_REGNUM, /* %rax */
268 AMD64_RCX_REGNUM, /* %rcx */
269 AMD64_RDX_REGNUM, /* %rdx */
270 AMD64_RBX_REGNUM, /* %rbx */
271 AMD64_RSP_REGNUM, /* %rsp */
272 AMD64_RBP_REGNUM, /* %rbp */
273 AMD64_RSI_REGNUM, /* %rsi */
274 AMD64_RDI_REGNUM, /* %rdi */
275 AMD64_R8_REGNUM, /* %r8 */
276 AMD64_R9_REGNUM, /* %r9 */
277 AMD64_R10_REGNUM, /* %r10 */
278 AMD64_R11_REGNUM, /* %r11 */
279 AMD64_R12_REGNUM, /* %r12 */
280 AMD64_R13_REGNUM, /* %r13 */
281 AMD64_R14_REGNUM, /* %r14 */
282 AMD64_R15_REGNUM /* %r15 */
283 };
284
285 static const int amd64_arch_regmap_len =
286 (sizeof (amd64_arch_regmap) / sizeof (amd64_arch_regmap[0]));
287
288 /* Convert architectural register number REG to the appropriate register
289 number used by GDB. */
290
291 static int
292 amd64_arch_reg_to_regnum (int reg)
293 {
294 gdb_assert (reg >= 0 && reg < amd64_arch_regmap_len);
295
296 return amd64_arch_regmap[reg];
297 }
298
299 /* Register names for byte pseudo-registers. */
300
301 static const char *amd64_byte_names[] =
302 {
303 "al", "bl", "cl", "dl", "sil", "dil", "bpl", "spl",
304 "r8l", "r9l", "r10l", "r11l", "r12l", "r13l", "r14l", "r15l",
305 "ah", "bh", "ch", "dh"
306 };
307
308 /* Number of lower byte registers. */
309 #define AMD64_NUM_LOWER_BYTE_REGS 16
310
311 /* Register names for word pseudo-registers. */
312
313 static const char *amd64_word_names[] =
314 {
315 "ax", "bx", "cx", "dx", "si", "di", "bp", "",
316 "r8w", "r9w", "r10w", "r11w", "r12w", "r13w", "r14w", "r15w"
317 };
318
319 /* Register names for dword pseudo-registers. */
320
321 static const char *amd64_dword_names[] =
322 {
323 "eax", "ebx", "ecx", "edx", "esi", "edi", "ebp", "esp",
324 "r8d", "r9d", "r10d", "r11d", "r12d", "r13d", "r14d", "r15d",
325 "eip"
326 };
327
328 /* Return the name of register REGNUM. */
329
330 static const char *
331 amd64_pseudo_register_name (struct gdbarch *gdbarch, int regnum)
332 {
333 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
334 if (i386_byte_regnum_p (gdbarch, regnum))
335 return amd64_byte_names[regnum - tdep->al_regnum];
336 else if (i386_zmm_regnum_p (gdbarch, regnum))
337 return amd64_zmm_names[regnum - tdep->zmm0_regnum];
338 else if (i386_ymm_regnum_p (gdbarch, regnum))
339 return amd64_ymm_names[regnum - tdep->ymm0_regnum];
340 else if (i386_ymm_avx512_regnum_p (gdbarch, regnum))
341 return amd64_ymm_avx512_names[regnum - tdep->ymm16_regnum];
342 else if (i386_word_regnum_p (gdbarch, regnum))
343 return amd64_word_names[regnum - tdep->ax_regnum];
344 else if (i386_dword_regnum_p (gdbarch, regnum))
345 return amd64_dword_names[regnum - tdep->eax_regnum];
346 else
347 return i386_pseudo_register_name (gdbarch, regnum);
348 }
349
350 static struct value *
351 amd64_pseudo_register_read_value (struct gdbarch *gdbarch,
352 struct regcache *regcache,
353 int regnum)
354 {
355 gdb_byte raw_buf[MAX_REGISTER_SIZE];
356 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
357 enum register_status status;
358 struct value *result_value;
359 gdb_byte *buf;
360
361 result_value = allocate_value (register_type (gdbarch, regnum));
362 VALUE_LVAL (result_value) = lval_register;
363 VALUE_REGNUM (result_value) = regnum;
364 buf = value_contents_raw (result_value);
365
366 if (i386_byte_regnum_p (gdbarch, regnum))
367 {
368 int gpnum = regnum - tdep->al_regnum;
369
370 /* Extract (always little endian). */
371 if (gpnum >= AMD64_NUM_LOWER_BYTE_REGS)
372 {
373 /* Special handling for AH, BH, CH, DH. */
374 status = regcache_raw_read (regcache,
375 gpnum - AMD64_NUM_LOWER_BYTE_REGS,
376 raw_buf);
377 if (status == REG_VALID)
378 memcpy (buf, raw_buf + 1, 1);
379 else
380 mark_value_bytes_unavailable (result_value, 0,
381 TYPE_LENGTH (value_type (result_value)));
382 }
383 else
384 {
385 status = regcache_raw_read (regcache, gpnum, raw_buf);
386 if (status == REG_VALID)
387 memcpy (buf, raw_buf, 1);
388 else
389 mark_value_bytes_unavailable (result_value, 0,
390 TYPE_LENGTH (value_type (result_value)));
391 }
392 }
393 else if (i386_dword_regnum_p (gdbarch, regnum))
394 {
395 int gpnum = regnum - tdep->eax_regnum;
396 /* Extract (always little endian). */
397 status = regcache_raw_read (regcache, gpnum, raw_buf);
398 if (status == REG_VALID)
399 memcpy (buf, raw_buf, 4);
400 else
401 mark_value_bytes_unavailable (result_value, 0,
402 TYPE_LENGTH (value_type (result_value)));
403 }
404 else
405 i386_pseudo_register_read_into_value (gdbarch, regcache, regnum,
406 result_value);
407
408 return result_value;
409 }
410
411 static void
412 amd64_pseudo_register_write (struct gdbarch *gdbarch,
413 struct regcache *regcache,
414 int regnum, const gdb_byte *buf)
415 {
416 gdb_byte raw_buf[MAX_REGISTER_SIZE];
417 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
418
419 if (i386_byte_regnum_p (gdbarch, regnum))
420 {
421 int gpnum = regnum - tdep->al_regnum;
422
423 if (gpnum >= AMD64_NUM_LOWER_BYTE_REGS)
424 {
425 /* Read ... AH, BH, CH, DH. */
426 regcache_raw_read (regcache,
427 gpnum - AMD64_NUM_LOWER_BYTE_REGS, raw_buf);
428 /* ... Modify ... (always little endian). */
429 memcpy (raw_buf + 1, buf, 1);
430 /* ... Write. */
431 regcache_raw_write (regcache,
432 gpnum - AMD64_NUM_LOWER_BYTE_REGS, raw_buf);
433 }
434 else
435 {
436 /* Read ... */
437 regcache_raw_read (regcache, gpnum, raw_buf);
438 /* ... Modify ... (always little endian). */
439 memcpy (raw_buf, buf, 1);
440 /* ... Write. */
441 regcache_raw_write (regcache, gpnum, raw_buf);
442 }
443 }
444 else if (i386_dword_regnum_p (gdbarch, regnum))
445 {
446 int gpnum = regnum - tdep->eax_regnum;
447
448 /* Read ... */
449 regcache_raw_read (regcache, gpnum, raw_buf);
450 /* ... Modify ... (always little endian). */
451 memcpy (raw_buf, buf, 4);
452 /* ... Write. */
453 regcache_raw_write (regcache, gpnum, raw_buf);
454 }
455 else
456 i386_pseudo_register_write (gdbarch, regcache, regnum, buf);
457 }
458
459 /* Implement the 'ax_pseudo_register_collect' gdbarch method. */
460
461 static int
462 amd64_ax_pseudo_register_collect (struct gdbarch *gdbarch,
463 struct agent_expr *ax, int regnum)
464 {
465 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
466
467 if (i386_byte_regnum_p (gdbarch, regnum))
468 {
469 int gpnum = regnum - tdep->al_regnum;
470
471 if (gpnum >= AMD64_NUM_LOWER_BYTE_REGS)
472 ax_reg_mask (ax, gpnum - AMD64_NUM_LOWER_BYTE_REGS);
473 else
474 ax_reg_mask (ax, gpnum);
475 return 0;
476 }
477 else if (i386_dword_regnum_p (gdbarch, regnum))
478 {
479 int gpnum = regnum - tdep->eax_regnum;
480
481 ax_reg_mask (ax, gpnum);
482 return 0;
483 }
484 else
485 return i386_ax_pseudo_register_collect (gdbarch, ax, regnum);
486 }
487
488 \f
489
490 /* Register classes as defined in the psABI. */
491
492 enum amd64_reg_class
493 {
494 AMD64_INTEGER,
495 AMD64_SSE,
496 AMD64_SSEUP,
497 AMD64_X87,
498 AMD64_X87UP,
499 AMD64_COMPLEX_X87,
500 AMD64_NO_CLASS,
501 AMD64_MEMORY
502 };
503
504 /* Return the union class of CLASS1 and CLASS2. See the psABI for
505 details. */
506
507 static enum amd64_reg_class
508 amd64_merge_classes (enum amd64_reg_class class1, enum amd64_reg_class class2)
509 {
510 /* Rule (a): If both classes are equal, this is the resulting class. */
511 if (class1 == class2)
512 return class1;
513
514 /* Rule (b): If one of the classes is NO_CLASS, the resulting class
515 is the other class. */
516 if (class1 == AMD64_NO_CLASS)
517 return class2;
518 if (class2 == AMD64_NO_CLASS)
519 return class1;
520
521 /* Rule (c): If one of the classes is MEMORY, the result is MEMORY. */
522 if (class1 == AMD64_MEMORY || class2 == AMD64_MEMORY)
523 return AMD64_MEMORY;
524
525 /* Rule (d): If one of the classes is INTEGER, the result is INTEGER. */
526 if (class1 == AMD64_INTEGER || class2 == AMD64_INTEGER)
527 return AMD64_INTEGER;
528
529 /* Rule (e): If one of the classes is X87, X87UP, COMPLEX_X87 class,
530 MEMORY is used as class. */
531 if (class1 == AMD64_X87 || class1 == AMD64_X87UP
532 || class1 == AMD64_COMPLEX_X87 || class2 == AMD64_X87
533 || class2 == AMD64_X87UP || class2 == AMD64_COMPLEX_X87)
534 return AMD64_MEMORY;
535
536 /* Rule (f): Otherwise class SSE is used. */
537 return AMD64_SSE;
538 }
539
540 static void amd64_classify (struct type *type, enum amd64_reg_class theclass[2]);
541
542 /* Return non-zero if TYPE is a non-POD structure or union type. */
543
544 static int
545 amd64_non_pod_p (struct type *type)
546 {
547 /* ??? A class with a base class certainly isn't POD, but does this
548 catch all non-POD structure types? */
549 if (TYPE_CODE (type) == TYPE_CODE_STRUCT && TYPE_N_BASECLASSES (type) > 0)
550 return 1;
551
552 return 0;
553 }
554
555 /* Classify TYPE according to the rules for aggregate (structures and
556 arrays) and union types, and store the result in CLASS. */
557
558 static void
559 amd64_classify_aggregate (struct type *type, enum amd64_reg_class theclass[2])
560 {
561 /* 1. If the size of an object is larger than two eightbytes, or in
562 C++, is a non-POD structure or union type, or contains
563 unaligned fields, it has class memory. */
564 if (TYPE_LENGTH (type) > 16 || amd64_non_pod_p (type))
565 {
566 theclass[0] = theclass[1] = AMD64_MEMORY;
567 return;
568 }
569
570 /* 2. Both eightbytes get initialized to class NO_CLASS. */
571 theclass[0] = theclass[1] = AMD64_NO_CLASS;
572
573 /* 3. Each field of an object is classified recursively so that
574 always two fields are considered. The resulting class is
575 calculated according to the classes of the fields in the
576 eightbyte: */
577
578 if (TYPE_CODE (type) == TYPE_CODE_ARRAY)
579 {
580 struct type *subtype = check_typedef (TYPE_TARGET_TYPE (type));
581
582 /* All fields in an array have the same type. */
583 amd64_classify (subtype, theclass);
584 if (TYPE_LENGTH (type) > 8 && theclass[1] == AMD64_NO_CLASS)
585 theclass[1] = theclass[0];
586 }
587 else
588 {
589 int i;
590
591 /* Structure or union. */
592 gdb_assert (TYPE_CODE (type) == TYPE_CODE_STRUCT
593 || TYPE_CODE (type) == TYPE_CODE_UNION);
594
595 for (i = 0; i < TYPE_NFIELDS (type); i++)
596 {
597 struct type *subtype = check_typedef (TYPE_FIELD_TYPE (type, i));
598 int pos = TYPE_FIELD_BITPOS (type, i) / 64;
599 enum amd64_reg_class subclass[2];
600 int bitsize = TYPE_FIELD_BITSIZE (type, i);
601 int endpos;
602
603 if (bitsize == 0)
604 bitsize = TYPE_LENGTH (subtype) * 8;
605 endpos = (TYPE_FIELD_BITPOS (type, i) + bitsize - 1) / 64;
606
607 /* Ignore static fields. */
608 if (field_is_static (&TYPE_FIELD (type, i)))
609 continue;
610
611 gdb_assert (pos == 0 || pos == 1);
612
613 amd64_classify (subtype, subclass);
614 theclass[pos] = amd64_merge_classes (theclass[pos], subclass[0]);
615 if (bitsize <= 64 && pos == 0 && endpos == 1)
616 /* This is a bit of an odd case: We have a field that would
617 normally fit in one of the two eightbytes, except that
618 it is placed in a way that this field straddles them.
619 This has been seen with a structure containing an array.
620
621 The ABI is a bit unclear in this case, but we assume that
622 this field's class (stored in subclass[0]) must also be merged
623 into class[1]. In other words, our field has a piece stored
624 in the second eight-byte, and thus its class applies to
625 the second eight-byte as well.
626
627 In the case where the field length exceeds 8 bytes,
628 it should not be necessary to merge the field class
629 into class[1]. As LEN > 8, subclass[1] is necessarily
630 different from AMD64_NO_CLASS. If subclass[1] is equal
631 to subclass[0], then the normal class[1]/subclass[1]
632 merging will take care of everything. For subclass[1]
633 to be different from subclass[0], I can only see the case
634 where we have a SSE/SSEUP or X87/X87UP pair, which both
635 use up all 16 bytes of the aggregate, and are already
636 handled just fine (because each portion sits on its own
637 8-byte). */
638 theclass[1] = amd64_merge_classes (theclass[1], subclass[0]);
639 if (pos == 0)
640 theclass[1] = amd64_merge_classes (theclass[1], subclass[1]);
641 }
642 }
643
644 /* 4. Then a post merger cleanup is done: */
645
646 /* Rule (a): If one of the classes is MEMORY, the whole argument is
647 passed in memory. */
648 if (theclass[0] == AMD64_MEMORY || theclass[1] == AMD64_MEMORY)
649 theclass[0] = theclass[1] = AMD64_MEMORY;
650
651 /* Rule (b): If SSEUP is not preceded by SSE, it is converted to
652 SSE. */
653 if (theclass[0] == AMD64_SSEUP)
654 theclass[0] = AMD64_SSE;
655 if (theclass[1] == AMD64_SSEUP && theclass[0] != AMD64_SSE)
656 theclass[1] = AMD64_SSE;
657 }
658
659 /* Classify TYPE, and store the result in CLASS. */
660
661 static void
662 amd64_classify (struct type *type, enum amd64_reg_class theclass[2])
663 {
664 enum type_code code = TYPE_CODE (type);
665 int len = TYPE_LENGTH (type);
666
667 theclass[0] = theclass[1] = AMD64_NO_CLASS;
668
669 /* Arguments of types (signed and unsigned) _Bool, char, short, int,
670 long, long long, and pointers are in the INTEGER class. Similarly,
671 range types, used by languages such as Ada, are also in the INTEGER
672 class. */
673 if ((code == TYPE_CODE_INT || code == TYPE_CODE_ENUM
674 || code == TYPE_CODE_BOOL || code == TYPE_CODE_RANGE
675 || code == TYPE_CODE_CHAR
676 || code == TYPE_CODE_PTR || code == TYPE_CODE_REF)
677 && (len == 1 || len == 2 || len == 4 || len == 8))
678 theclass[0] = AMD64_INTEGER;
679
680 /* Arguments of types float, double, _Decimal32, _Decimal64 and __m64
681 are in class SSE. */
682 else if ((code == TYPE_CODE_FLT || code == TYPE_CODE_DECFLOAT)
683 && (len == 4 || len == 8))
684 /* FIXME: __m64 . */
685 theclass[0] = AMD64_SSE;
686
687 /* Arguments of types __float128, _Decimal128 and __m128 are split into
688 two halves. The least significant ones belong to class SSE, the most
689 significant one to class SSEUP. */
690 else if (code == TYPE_CODE_DECFLOAT && len == 16)
691 /* FIXME: __float128, __m128. */
692 theclass[0] = AMD64_SSE, theclass[1] = AMD64_SSEUP;
693
694 /* The 64-bit mantissa of arguments of type long double belongs to
695 class X87, the 16-bit exponent plus 6 bytes of padding belongs to
696 class X87UP. */
697 else if (code == TYPE_CODE_FLT && len == 16)
698 /* Class X87 and X87UP. */
699 theclass[0] = AMD64_X87, theclass[1] = AMD64_X87UP;
700
701 /* Arguments of complex T where T is one of the types float or
702 double get treated as if they are implemented as:
703
704 struct complexT {
705 T real;
706 T imag;
707 };
708
709 */
710 else if (code == TYPE_CODE_COMPLEX && len == 8)
711 theclass[0] = AMD64_SSE;
712 else if (code == TYPE_CODE_COMPLEX && len == 16)
713 theclass[0] = theclass[1] = AMD64_SSE;
714
715 /* A variable of type complex long double is classified as type
716 COMPLEX_X87. */
717 else if (code == TYPE_CODE_COMPLEX && len == 32)
718 theclass[0] = AMD64_COMPLEX_X87;
719
720 /* Aggregates. */
721 else if (code == TYPE_CODE_ARRAY || code == TYPE_CODE_STRUCT
722 || code == TYPE_CODE_UNION)
723 amd64_classify_aggregate (type, theclass);
724 }
725
726 static enum return_value_convention
727 amd64_return_value (struct gdbarch *gdbarch, struct value *function,
728 struct type *type, struct regcache *regcache,
729 gdb_byte *readbuf, const gdb_byte *writebuf)
730 {
731 enum amd64_reg_class theclass[2];
732 int len = TYPE_LENGTH (type);
733 static int integer_regnum[] = { AMD64_RAX_REGNUM, AMD64_RDX_REGNUM };
734 static int sse_regnum[] = { AMD64_XMM0_REGNUM, AMD64_XMM1_REGNUM };
735 int integer_reg = 0;
736 int sse_reg = 0;
737 int i;
738
739 gdb_assert (!(readbuf && writebuf));
740
741 /* 1. Classify the return type with the classification algorithm. */
742 amd64_classify (type, theclass);
743
744 /* 2. If the type has class MEMORY, then the caller provides space
745 for the return value and passes the address of this storage in
746 %rdi as if it were the first argument to the function. In effect,
747 this address becomes a hidden first argument.
748
749 On return %rax will contain the address that has been passed in
750 by the caller in %rdi. */
751 if (theclass[0] == AMD64_MEMORY)
752 {
753 /* As indicated by the comment above, the ABI guarantees that we
754 can always find the return value just after the function has
755 returned. */
756
757 if (readbuf)
758 {
759 ULONGEST addr;
760
761 regcache_raw_read_unsigned (regcache, AMD64_RAX_REGNUM, &addr);
762 read_memory (addr, readbuf, TYPE_LENGTH (type));
763 }
764
765 return RETURN_VALUE_ABI_RETURNS_ADDRESS;
766 }
767
768 /* 8. If the class is COMPLEX_X87, the real part of the value is
769 returned in %st0 and the imaginary part in %st1. */
770 if (theclass[0] == AMD64_COMPLEX_X87)
771 {
772 if (readbuf)
773 {
774 regcache_raw_read (regcache, AMD64_ST0_REGNUM, readbuf);
775 regcache_raw_read (regcache, AMD64_ST1_REGNUM, readbuf + 16);
776 }
777
778 if (writebuf)
779 {
780 i387_return_value (gdbarch, regcache);
781 regcache_raw_write (regcache, AMD64_ST0_REGNUM, writebuf);
782 regcache_raw_write (regcache, AMD64_ST1_REGNUM, writebuf + 16);
783
784 /* Fix up the tag word such that both %st(0) and %st(1) are
785 marked as valid. */
786 regcache_raw_write_unsigned (regcache, AMD64_FTAG_REGNUM, 0xfff);
787 }
788
789 return RETURN_VALUE_REGISTER_CONVENTION;
790 }
791
792 gdb_assert (theclass[1] != AMD64_MEMORY);
793 gdb_assert (len <= 16);
794
795 for (i = 0; len > 0; i++, len -= 8)
796 {
797 int regnum = -1;
798 int offset = 0;
799
800 switch (theclass[i])
801 {
802 case AMD64_INTEGER:
803 /* 3. If the class is INTEGER, the next available register
804 of the sequence %rax, %rdx is used. */
805 regnum = integer_regnum[integer_reg++];
806 break;
807
808 case AMD64_SSE:
809 /* 4. If the class is SSE, the next available SSE register
810 of the sequence %xmm0, %xmm1 is used. */
811 regnum = sse_regnum[sse_reg++];
812 break;
813
814 case AMD64_SSEUP:
815 /* 5. If the class is SSEUP, the eightbyte is passed in the
816 upper half of the last used SSE register. */
817 gdb_assert (sse_reg > 0);
818 regnum = sse_regnum[sse_reg - 1];
819 offset = 8;
820 break;
821
822 case AMD64_X87:
823 /* 6. If the class is X87, the value is returned on the X87
824 stack in %st0 as 80-bit x87 number. */
825 regnum = AMD64_ST0_REGNUM;
826 if (writebuf)
827 i387_return_value (gdbarch, regcache);
828 break;
829
830 case AMD64_X87UP:
831 /* 7. If the class is X87UP, the value is returned together
832 with the previous X87 value in %st0. */
833 gdb_assert (i > 0 && theclass[0] == AMD64_X87);
834 regnum = AMD64_ST0_REGNUM;
835 offset = 8;
836 len = 2;
837 break;
838
839 case AMD64_NO_CLASS:
840 continue;
841
842 default:
843 gdb_assert (!"Unexpected register class.");
844 }
845
846 gdb_assert (regnum != -1);
847
848 if (readbuf)
849 regcache_raw_read_part (regcache, regnum, offset, min (len, 8),
850 readbuf + i * 8);
851 if (writebuf)
852 regcache_raw_write_part (regcache, regnum, offset, min (len, 8),
853 writebuf + i * 8);
854 }
855
856 return RETURN_VALUE_REGISTER_CONVENTION;
857 }
858 \f
859
860 static CORE_ADDR
861 amd64_push_arguments (struct regcache *regcache, int nargs,
862 struct value **args, CORE_ADDR sp, int struct_return)
863 {
864 static int integer_regnum[] =
865 {
866 AMD64_RDI_REGNUM, /* %rdi */
867 AMD64_RSI_REGNUM, /* %rsi */
868 AMD64_RDX_REGNUM, /* %rdx */
869 AMD64_RCX_REGNUM, /* %rcx */
870 AMD64_R8_REGNUM, /* %r8 */
871 AMD64_R9_REGNUM /* %r9 */
872 };
873 static int sse_regnum[] =
874 {
875 /* %xmm0 ... %xmm7 */
876 AMD64_XMM0_REGNUM + 0, AMD64_XMM1_REGNUM,
877 AMD64_XMM0_REGNUM + 2, AMD64_XMM0_REGNUM + 3,
878 AMD64_XMM0_REGNUM + 4, AMD64_XMM0_REGNUM + 5,
879 AMD64_XMM0_REGNUM + 6, AMD64_XMM0_REGNUM + 7,
880 };
881 struct value **stack_args = XALLOCAVEC (struct value *, nargs);
882 int num_stack_args = 0;
883 int num_elements = 0;
884 int element = 0;
885 int integer_reg = 0;
886 int sse_reg = 0;
887 int i;
888
889 /* Reserve a register for the "hidden" argument. */
890 if (struct_return)
891 integer_reg++;
892
893 for (i = 0; i < nargs; i++)
894 {
895 struct type *type = value_type (args[i]);
896 int len = TYPE_LENGTH (type);
897 enum amd64_reg_class theclass[2];
898 int needed_integer_regs = 0;
899 int needed_sse_regs = 0;
900 int j;
901
902 /* Classify argument. */
903 amd64_classify (type, theclass);
904
905 /* Calculate the number of integer and SSE registers needed for
906 this argument. */
907 for (j = 0; j < 2; j++)
908 {
909 if (theclass[j] == AMD64_INTEGER)
910 needed_integer_regs++;
911 else if (theclass[j] == AMD64_SSE)
912 needed_sse_regs++;
913 }
914
915 /* Check whether enough registers are available, and if the
916 argument should be passed in registers at all. */
917 if (integer_reg + needed_integer_regs > ARRAY_SIZE (integer_regnum)
918 || sse_reg + needed_sse_regs > ARRAY_SIZE (sse_regnum)
919 || (needed_integer_regs == 0 && needed_sse_regs == 0))
920 {
921 /* The argument will be passed on the stack. */
922 num_elements += ((len + 7) / 8);
923 stack_args[num_stack_args++] = args[i];
924 }
925 else
926 {
927 /* The argument will be passed in registers. */
928 const gdb_byte *valbuf = value_contents (args[i]);
929 gdb_byte buf[8];
930
931 gdb_assert (len <= 16);
932
933 for (j = 0; len > 0; j++, len -= 8)
934 {
935 int regnum = -1;
936 int offset = 0;
937
938 switch (theclass[j])
939 {
940 case AMD64_INTEGER:
941 regnum = integer_regnum[integer_reg++];
942 break;
943
944 case AMD64_SSE:
945 regnum = sse_regnum[sse_reg++];
946 break;
947
948 case AMD64_SSEUP:
949 gdb_assert (sse_reg > 0);
950 regnum = sse_regnum[sse_reg - 1];
951 offset = 8;
952 break;
953
954 default:
955 gdb_assert (!"Unexpected register class.");
956 }
957
958 gdb_assert (regnum != -1);
959 memset (buf, 0, sizeof buf);
960 memcpy (buf, valbuf + j * 8, min (len, 8));
961 regcache_raw_write_part (regcache, regnum, offset, 8, buf);
962 }
963 }
964 }
965
966 /* Allocate space for the arguments on the stack. */
967 sp -= num_elements * 8;
968
969 /* The psABI says that "The end of the input argument area shall be
970 aligned on a 16 byte boundary." */
971 sp &= ~0xf;
972
973 /* Write out the arguments to the stack. */
974 for (i = 0; i < num_stack_args; i++)
975 {
976 struct type *type = value_type (stack_args[i]);
977 const gdb_byte *valbuf = value_contents (stack_args[i]);
978 int len = TYPE_LENGTH (type);
979
980 write_memory (sp + element * 8, valbuf, len);
981 element += ((len + 7) / 8);
982 }
983
984 /* The psABI says that "For calls that may call functions that use
985 varargs or stdargs (prototype-less calls or calls to functions
986 containing ellipsis (...) in the declaration) %al is used as
987 hidden argument to specify the number of SSE registers used. */
988 regcache_raw_write_unsigned (regcache, AMD64_RAX_REGNUM, sse_reg);
989 return sp;
990 }
991
992 static CORE_ADDR
993 amd64_push_dummy_call (struct gdbarch *gdbarch, struct value *function,
994 struct regcache *regcache, CORE_ADDR bp_addr,
995 int nargs, struct value **args, CORE_ADDR sp,
996 int struct_return, CORE_ADDR struct_addr)
997 {
998 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
999 gdb_byte buf[8];
1000
1001 /* Pass arguments. */
1002 sp = amd64_push_arguments (regcache, nargs, args, sp, struct_return);
1003
1004 /* Pass "hidden" argument". */
1005 if (struct_return)
1006 {
1007 store_unsigned_integer (buf, 8, byte_order, struct_addr);
1008 regcache_cooked_write (regcache, AMD64_RDI_REGNUM, buf);
1009 }
1010
1011 /* Store return address. */
1012 sp -= 8;
1013 store_unsigned_integer (buf, 8, byte_order, bp_addr);
1014 write_memory (sp, buf, 8);
1015
1016 /* Finally, update the stack pointer... */
1017 store_unsigned_integer (buf, 8, byte_order, sp);
1018 regcache_cooked_write (regcache, AMD64_RSP_REGNUM, buf);
1019
1020 /* ...and fake a frame pointer. */
1021 regcache_cooked_write (regcache, AMD64_RBP_REGNUM, buf);
1022
1023 return sp + 16;
1024 }
1025 \f
1026 /* Displaced instruction handling. */
1027
1028 /* A partially decoded instruction.
1029 This contains enough details for displaced stepping purposes. */
1030
1031 struct amd64_insn
1032 {
1033 /* The number of opcode bytes. */
1034 int opcode_len;
1035 /* The offset of the rex prefix or -1 if not present. */
1036 int rex_offset;
1037 /* The offset to the first opcode byte. */
1038 int opcode_offset;
1039 /* The offset to the modrm byte or -1 if not present. */
1040 int modrm_offset;
1041
1042 /* The raw instruction. */
1043 gdb_byte *raw_insn;
1044 };
1045
1046 struct displaced_step_closure
1047 {
1048 /* For rip-relative insns, saved copy of the reg we use instead of %rip. */
1049 int tmp_used;
1050 int tmp_regno;
1051 ULONGEST tmp_save;
1052
1053 /* Details of the instruction. */
1054 struct amd64_insn insn_details;
1055
1056 /* Amount of space allocated to insn_buf. */
1057 int max_len;
1058
1059 /* The possibly modified insn.
1060 This is a variable-length field. */
1061 gdb_byte insn_buf[1];
1062 };
1063
1064 /* WARNING: Keep onebyte_has_modrm, twobyte_has_modrm in sync with
1065 ../opcodes/i386-dis.c (until libopcodes exports them, or an alternative,
1066 at which point delete these in favor of libopcodes' versions). */
1067
1068 static const unsigned char onebyte_has_modrm[256] = {
1069 /* 0 1 2 3 4 5 6 7 8 9 a b c d e f */
1070 /* ------------------------------- */
1071 /* 00 */ 1,1,1,1,0,0,0,0,1,1,1,1,0,0,0,0, /* 00 */
1072 /* 10 */ 1,1,1,1,0,0,0,0,1,1,1,1,0,0,0,0, /* 10 */
1073 /* 20 */ 1,1,1,1,0,0,0,0,1,1,1,1,0,0,0,0, /* 20 */
1074 /* 30 */ 1,1,1,1,0,0,0,0,1,1,1,1,0,0,0,0, /* 30 */
1075 /* 40 */ 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, /* 40 */
1076 /* 50 */ 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, /* 50 */
1077 /* 60 */ 0,0,1,1,0,0,0,0,0,1,0,1,0,0,0,0, /* 60 */
1078 /* 70 */ 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, /* 70 */
1079 /* 80 */ 1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1, /* 80 */
1080 /* 90 */ 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, /* 90 */
1081 /* a0 */ 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, /* a0 */
1082 /* b0 */ 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, /* b0 */
1083 /* c0 */ 1,1,0,0,1,1,1,1,0,0,0,0,0,0,0,0, /* c0 */
1084 /* d0 */ 1,1,1,1,0,0,0,0,1,1,1,1,1,1,1,1, /* d0 */
1085 /* e0 */ 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, /* e0 */
1086 /* f0 */ 0,0,0,0,0,0,1,1,0,0,0,0,0,0,1,1 /* f0 */
1087 /* ------------------------------- */
1088 /* 0 1 2 3 4 5 6 7 8 9 a b c d e f */
1089 };
1090
1091 static const unsigned char twobyte_has_modrm[256] = {
1092 /* 0 1 2 3 4 5 6 7 8 9 a b c d e f */
1093 /* ------------------------------- */
1094 /* 00 */ 1,1,1,1,0,0,0,0,0,0,0,0,0,1,0,1, /* 0f */
1095 /* 10 */ 1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1, /* 1f */
1096 /* 20 */ 1,1,1,1,1,1,1,0,1,1,1,1,1,1,1,1, /* 2f */
1097 /* 30 */ 0,0,0,0,0,0,0,0,1,0,1,0,0,0,0,0, /* 3f */
1098 /* 40 */ 1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1, /* 4f */
1099 /* 50 */ 1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1, /* 5f */
1100 /* 60 */ 1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1, /* 6f */
1101 /* 70 */ 1,1,1,1,1,1,1,0,1,1,1,1,1,1,1,1, /* 7f */
1102 /* 80 */ 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, /* 8f */
1103 /* 90 */ 1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1, /* 9f */
1104 /* a0 */ 0,0,0,1,1,1,1,1,0,0,0,1,1,1,1,1, /* af */
1105 /* b0 */ 1,1,1,1,1,1,1,1,1,0,1,1,1,1,1,1, /* bf */
1106 /* c0 */ 1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0, /* cf */
1107 /* d0 */ 1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1, /* df */
1108 /* e0 */ 1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1, /* ef */
1109 /* f0 */ 1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,0 /* ff */
1110 /* ------------------------------- */
1111 /* 0 1 2 3 4 5 6 7 8 9 a b c d e f */
1112 };
1113
1114 static int amd64_syscall_p (const struct amd64_insn *insn, int *lengthp);
1115
1116 static int
1117 rex_prefix_p (gdb_byte pfx)
1118 {
1119 return REX_PREFIX_P (pfx);
1120 }
1121
1122 /* Skip the legacy instruction prefixes in INSN.
1123 We assume INSN is properly sentineled so we don't have to worry
1124 about falling off the end of the buffer. */
1125
1126 static gdb_byte *
1127 amd64_skip_prefixes (gdb_byte *insn)
1128 {
1129 while (1)
1130 {
1131 switch (*insn)
1132 {
1133 case DATA_PREFIX_OPCODE:
1134 case ADDR_PREFIX_OPCODE:
1135 case CS_PREFIX_OPCODE:
1136 case DS_PREFIX_OPCODE:
1137 case ES_PREFIX_OPCODE:
1138 case FS_PREFIX_OPCODE:
1139 case GS_PREFIX_OPCODE:
1140 case SS_PREFIX_OPCODE:
1141 case LOCK_PREFIX_OPCODE:
1142 case REPE_PREFIX_OPCODE:
1143 case REPNE_PREFIX_OPCODE:
1144 ++insn;
1145 continue;
1146 default:
1147 break;
1148 }
1149 break;
1150 }
1151
1152 return insn;
1153 }
1154
1155 /* Return an integer register (other than RSP) that is unused as an input
1156 operand in INSN.
1157 In order to not require adding a rex prefix if the insn doesn't already
1158 have one, the result is restricted to RAX ... RDI, sans RSP.
1159 The register numbering of the result follows architecture ordering,
1160 e.g. RDI = 7. */
1161
1162 static int
1163 amd64_get_unused_input_int_reg (const struct amd64_insn *details)
1164 {
1165 /* 1 bit for each reg */
1166 int used_regs_mask = 0;
1167
1168 /* There can be at most 3 int regs used as inputs in an insn, and we have
1169 7 to choose from (RAX ... RDI, sans RSP).
1170 This allows us to take a conservative approach and keep things simple.
1171 E.g. By avoiding RAX, we don't have to specifically watch for opcodes
1172 that implicitly specify RAX. */
1173
1174 /* Avoid RAX. */
1175 used_regs_mask |= 1 << EAX_REG_NUM;
1176 /* Similarily avoid RDX, implicit operand in divides. */
1177 used_regs_mask |= 1 << EDX_REG_NUM;
1178 /* Avoid RSP. */
1179 used_regs_mask |= 1 << ESP_REG_NUM;
1180
1181 /* If the opcode is one byte long and there's no ModRM byte,
1182 assume the opcode specifies a register. */
1183 if (details->opcode_len == 1 && details->modrm_offset == -1)
1184 used_regs_mask |= 1 << (details->raw_insn[details->opcode_offset] & 7);
1185
1186 /* Mark used regs in the modrm/sib bytes. */
1187 if (details->modrm_offset != -1)
1188 {
1189 int modrm = details->raw_insn[details->modrm_offset];
1190 int mod = MODRM_MOD_FIELD (modrm);
1191 int reg = MODRM_REG_FIELD (modrm);
1192 int rm = MODRM_RM_FIELD (modrm);
1193 int have_sib = mod != 3 && rm == 4;
1194
1195 /* Assume the reg field of the modrm byte specifies a register. */
1196 used_regs_mask |= 1 << reg;
1197
1198 if (have_sib)
1199 {
1200 int base = SIB_BASE_FIELD (details->raw_insn[details->modrm_offset + 1]);
1201 int idx = SIB_INDEX_FIELD (details->raw_insn[details->modrm_offset + 1]);
1202 used_regs_mask |= 1 << base;
1203 used_regs_mask |= 1 << idx;
1204 }
1205 else
1206 {
1207 used_regs_mask |= 1 << rm;
1208 }
1209 }
1210
1211 gdb_assert (used_regs_mask < 256);
1212 gdb_assert (used_regs_mask != 255);
1213
1214 /* Finally, find a free reg. */
1215 {
1216 int i;
1217
1218 for (i = 0; i < 8; ++i)
1219 {
1220 if (! (used_regs_mask & (1 << i)))
1221 return i;
1222 }
1223
1224 /* We shouldn't get here. */
1225 internal_error (__FILE__, __LINE__, _("unable to find free reg"));
1226 }
1227 }
1228
1229 /* Extract the details of INSN that we need. */
1230
1231 static void
1232 amd64_get_insn_details (gdb_byte *insn, struct amd64_insn *details)
1233 {
1234 gdb_byte *start = insn;
1235 int need_modrm;
1236
1237 details->raw_insn = insn;
1238
1239 details->opcode_len = -1;
1240 details->rex_offset = -1;
1241 details->opcode_offset = -1;
1242 details->modrm_offset = -1;
1243
1244 /* Skip legacy instruction prefixes. */
1245 insn = amd64_skip_prefixes (insn);
1246
1247 /* Skip REX instruction prefix. */
1248 if (rex_prefix_p (*insn))
1249 {
1250 details->rex_offset = insn - start;
1251 ++insn;
1252 }
1253
1254 details->opcode_offset = insn - start;
1255
1256 if (*insn == TWO_BYTE_OPCODE_ESCAPE)
1257 {
1258 /* Two or three-byte opcode. */
1259 ++insn;
1260 need_modrm = twobyte_has_modrm[*insn];
1261
1262 /* Check for three-byte opcode. */
1263 switch (*insn)
1264 {
1265 case 0x24:
1266 case 0x25:
1267 case 0x38:
1268 case 0x3a:
1269 case 0x7a:
1270 case 0x7b:
1271 ++insn;
1272 details->opcode_len = 3;
1273 break;
1274 default:
1275 details->opcode_len = 2;
1276 break;
1277 }
1278 }
1279 else
1280 {
1281 /* One-byte opcode. */
1282 need_modrm = onebyte_has_modrm[*insn];
1283 details->opcode_len = 1;
1284 }
1285
1286 if (need_modrm)
1287 {
1288 ++insn;
1289 details->modrm_offset = insn - start;
1290 }
1291 }
1292
1293 /* Update %rip-relative addressing in INSN.
1294
1295 %rip-relative addressing only uses a 32-bit displacement.
1296 32 bits is not enough to be guaranteed to cover the distance between where
1297 the real instruction is and where its copy is.
1298 Convert the insn to use base+disp addressing.
1299 We set base = pc + insn_length so we can leave disp unchanged. */
1300
1301 static void
1302 fixup_riprel (struct gdbarch *gdbarch, struct displaced_step_closure *dsc,
1303 CORE_ADDR from, CORE_ADDR to, struct regcache *regs)
1304 {
1305 const struct amd64_insn *insn_details = &dsc->insn_details;
1306 int modrm_offset = insn_details->modrm_offset;
1307 gdb_byte *insn = insn_details->raw_insn + modrm_offset;
1308 CORE_ADDR rip_base;
1309 int insn_length;
1310 int arch_tmp_regno, tmp_regno;
1311 ULONGEST orig_value;
1312
1313 /* %rip+disp32 addressing mode, displacement follows ModRM byte. */
1314 ++insn;
1315
1316 /* Compute the rip-relative address. */
1317 insn_length = gdb_buffered_insn_length (gdbarch, dsc->insn_buf,
1318 dsc->max_len, from);
1319 rip_base = from + insn_length;
1320
1321 /* We need a register to hold the address.
1322 Pick one not used in the insn.
1323 NOTE: arch_tmp_regno uses architecture ordering, e.g. RDI = 7. */
1324 arch_tmp_regno = amd64_get_unused_input_int_reg (insn_details);
1325 tmp_regno = amd64_arch_reg_to_regnum (arch_tmp_regno);
1326
1327 /* REX.B should be unset as we were using rip-relative addressing,
1328 but ensure it's unset anyway, tmp_regno is not r8-r15. */
1329 if (insn_details->rex_offset != -1)
1330 dsc->insn_buf[insn_details->rex_offset] &= ~REX_B;
1331
1332 regcache_cooked_read_unsigned (regs, tmp_regno, &orig_value);
1333 dsc->tmp_regno = tmp_regno;
1334 dsc->tmp_save = orig_value;
1335 dsc->tmp_used = 1;
1336
1337 /* Convert the ModRM field to be base+disp. */
1338 dsc->insn_buf[modrm_offset] &= ~0xc7;
1339 dsc->insn_buf[modrm_offset] |= 0x80 + arch_tmp_regno;
1340
1341 regcache_cooked_write_unsigned (regs, tmp_regno, rip_base);
1342
1343 if (debug_displaced)
1344 fprintf_unfiltered (gdb_stdlog, "displaced: %%rip-relative addressing used.\n"
1345 "displaced: using temp reg %d, old value %s, new value %s\n",
1346 dsc->tmp_regno, paddress (gdbarch, dsc->tmp_save),
1347 paddress (gdbarch, rip_base));
1348 }
1349
1350 static void
1351 fixup_displaced_copy (struct gdbarch *gdbarch,
1352 struct displaced_step_closure *dsc,
1353 CORE_ADDR from, CORE_ADDR to, struct regcache *regs)
1354 {
1355 const struct amd64_insn *details = &dsc->insn_details;
1356
1357 if (details->modrm_offset != -1)
1358 {
1359 gdb_byte modrm = details->raw_insn[details->modrm_offset];
1360
1361 if ((modrm & 0xc7) == 0x05)
1362 {
1363 /* The insn uses rip-relative addressing.
1364 Deal with it. */
1365 fixup_riprel (gdbarch, dsc, from, to, regs);
1366 }
1367 }
1368 }
1369
1370 struct displaced_step_closure *
1371 amd64_displaced_step_copy_insn (struct gdbarch *gdbarch,
1372 CORE_ADDR from, CORE_ADDR to,
1373 struct regcache *regs)
1374 {
1375 int len = gdbarch_max_insn_length (gdbarch);
1376 /* Extra space for sentinels so fixup_{riprel,displaced_copy} don't have to
1377 continually watch for running off the end of the buffer. */
1378 int fixup_sentinel_space = len;
1379 struct displaced_step_closure *dsc
1380 = ((struct displaced_step_closure *)
1381 xmalloc (sizeof (*dsc) + len + fixup_sentinel_space));
1382 gdb_byte *buf = &dsc->insn_buf[0];
1383 struct amd64_insn *details = &dsc->insn_details;
1384
1385 dsc->tmp_used = 0;
1386 dsc->max_len = len + fixup_sentinel_space;
1387
1388 read_memory (from, buf, len);
1389
1390 /* Set up the sentinel space so we don't have to worry about running
1391 off the end of the buffer. An excessive number of leading prefixes
1392 could otherwise cause this. */
1393 memset (buf + len, 0, fixup_sentinel_space);
1394
1395 amd64_get_insn_details (buf, details);
1396
1397 /* GDB may get control back after the insn after the syscall.
1398 Presumably this is a kernel bug.
1399 If this is a syscall, make sure there's a nop afterwards. */
1400 {
1401 int syscall_length;
1402
1403 if (amd64_syscall_p (details, &syscall_length))
1404 buf[details->opcode_offset + syscall_length] = NOP_OPCODE;
1405 }
1406
1407 /* Modify the insn to cope with the address where it will be executed from.
1408 In particular, handle any rip-relative addressing. */
1409 fixup_displaced_copy (gdbarch, dsc, from, to, regs);
1410
1411 write_memory (to, buf, len);
1412
1413 if (debug_displaced)
1414 {
1415 fprintf_unfiltered (gdb_stdlog, "displaced: copy %s->%s: ",
1416 paddress (gdbarch, from), paddress (gdbarch, to));
1417 displaced_step_dump_bytes (gdb_stdlog, buf, len);
1418 }
1419
1420 return dsc;
1421 }
1422
1423 static int
1424 amd64_absolute_jmp_p (const struct amd64_insn *details)
1425 {
1426 const gdb_byte *insn = &details->raw_insn[details->opcode_offset];
1427
1428 if (insn[0] == 0xff)
1429 {
1430 /* jump near, absolute indirect (/4) */
1431 if ((insn[1] & 0x38) == 0x20)
1432 return 1;
1433
1434 /* jump far, absolute indirect (/5) */
1435 if ((insn[1] & 0x38) == 0x28)
1436 return 1;
1437 }
1438
1439 return 0;
1440 }
1441
1442 /* Return non-zero if the instruction DETAILS is a jump, zero otherwise. */
1443
1444 static int
1445 amd64_jmp_p (const struct amd64_insn *details)
1446 {
1447 const gdb_byte *insn = &details->raw_insn[details->opcode_offset];
1448
1449 /* jump short, relative. */
1450 if (insn[0] == 0xeb)
1451 return 1;
1452
1453 /* jump near, relative. */
1454 if (insn[0] == 0xe9)
1455 return 1;
1456
1457 return amd64_absolute_jmp_p (details);
1458 }
1459
1460 static int
1461 amd64_absolute_call_p (const struct amd64_insn *details)
1462 {
1463 const gdb_byte *insn = &details->raw_insn[details->opcode_offset];
1464
1465 if (insn[0] == 0xff)
1466 {
1467 /* Call near, absolute indirect (/2) */
1468 if ((insn[1] & 0x38) == 0x10)
1469 return 1;
1470
1471 /* Call far, absolute indirect (/3) */
1472 if ((insn[1] & 0x38) == 0x18)
1473 return 1;
1474 }
1475
1476 return 0;
1477 }
1478
1479 static int
1480 amd64_ret_p (const struct amd64_insn *details)
1481 {
1482 /* NOTE: gcc can emit "repz ; ret". */
1483 const gdb_byte *insn = &details->raw_insn[details->opcode_offset];
1484
1485 switch (insn[0])
1486 {
1487 case 0xc2: /* ret near, pop N bytes */
1488 case 0xc3: /* ret near */
1489 case 0xca: /* ret far, pop N bytes */
1490 case 0xcb: /* ret far */
1491 case 0xcf: /* iret */
1492 return 1;
1493
1494 default:
1495 return 0;
1496 }
1497 }
1498
1499 static int
1500 amd64_call_p (const struct amd64_insn *details)
1501 {
1502 const gdb_byte *insn = &details->raw_insn[details->opcode_offset];
1503
1504 if (amd64_absolute_call_p (details))
1505 return 1;
1506
1507 /* call near, relative */
1508 if (insn[0] == 0xe8)
1509 return 1;
1510
1511 return 0;
1512 }
1513
1514 /* Return non-zero if INSN is a system call, and set *LENGTHP to its
1515 length in bytes. Otherwise, return zero. */
1516
1517 static int
1518 amd64_syscall_p (const struct amd64_insn *details, int *lengthp)
1519 {
1520 const gdb_byte *insn = &details->raw_insn[details->opcode_offset];
1521
1522 if (insn[0] == 0x0f && insn[1] == 0x05)
1523 {
1524 *lengthp = 2;
1525 return 1;
1526 }
1527
1528 return 0;
1529 }
1530
1531 /* Classify the instruction at ADDR using PRED.
1532 Throw an error if the memory can't be read. */
1533
1534 static int
1535 amd64_classify_insn_at (struct gdbarch *gdbarch, CORE_ADDR addr,
1536 int (*pred) (const struct amd64_insn *))
1537 {
1538 struct amd64_insn details;
1539 gdb_byte *buf;
1540 int len, classification;
1541
1542 len = gdbarch_max_insn_length (gdbarch);
1543 buf = (gdb_byte *) alloca (len);
1544
1545 read_code (addr, buf, len);
1546 amd64_get_insn_details (buf, &details);
1547
1548 classification = pred (&details);
1549
1550 return classification;
1551 }
1552
1553 /* The gdbarch insn_is_call method. */
1554
1555 static int
1556 amd64_insn_is_call (struct gdbarch *gdbarch, CORE_ADDR addr)
1557 {
1558 return amd64_classify_insn_at (gdbarch, addr, amd64_call_p);
1559 }
1560
1561 /* The gdbarch insn_is_ret method. */
1562
1563 static int
1564 amd64_insn_is_ret (struct gdbarch *gdbarch, CORE_ADDR addr)
1565 {
1566 return amd64_classify_insn_at (gdbarch, addr, amd64_ret_p);
1567 }
1568
1569 /* The gdbarch insn_is_jump method. */
1570
1571 static int
1572 amd64_insn_is_jump (struct gdbarch *gdbarch, CORE_ADDR addr)
1573 {
1574 return amd64_classify_insn_at (gdbarch, addr, amd64_jmp_p);
1575 }
1576
1577 /* Fix up the state of registers and memory after having single-stepped
1578 a displaced instruction. */
1579
1580 void
1581 amd64_displaced_step_fixup (struct gdbarch *gdbarch,
1582 struct displaced_step_closure *dsc,
1583 CORE_ADDR from, CORE_ADDR to,
1584 struct regcache *regs)
1585 {
1586 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1587 /* The offset we applied to the instruction's address. */
1588 ULONGEST insn_offset = to - from;
1589 gdb_byte *insn = dsc->insn_buf;
1590 const struct amd64_insn *insn_details = &dsc->insn_details;
1591
1592 if (debug_displaced)
1593 fprintf_unfiltered (gdb_stdlog,
1594 "displaced: fixup (%s, %s), "
1595 "insn = 0x%02x 0x%02x ...\n",
1596 paddress (gdbarch, from), paddress (gdbarch, to),
1597 insn[0], insn[1]);
1598
1599 /* If we used a tmp reg, restore it. */
1600
1601 if (dsc->tmp_used)
1602 {
1603 if (debug_displaced)
1604 fprintf_unfiltered (gdb_stdlog, "displaced: restoring reg %d to %s\n",
1605 dsc->tmp_regno, paddress (gdbarch, dsc->tmp_save));
1606 regcache_cooked_write_unsigned (regs, dsc->tmp_regno, dsc->tmp_save);
1607 }
1608
1609 /* The list of issues to contend with here is taken from
1610 resume_execution in arch/x86/kernel/kprobes.c, Linux 2.6.28.
1611 Yay for Free Software! */
1612
1613 /* Relocate the %rip back to the program's instruction stream,
1614 if necessary. */
1615
1616 /* Except in the case of absolute or indirect jump or call
1617 instructions, or a return instruction, the new rip is relative to
1618 the displaced instruction; make it relative to the original insn.
1619 Well, signal handler returns don't need relocation either, but we use the
1620 value of %rip to recognize those; see below. */
1621 if (! amd64_absolute_jmp_p (insn_details)
1622 && ! amd64_absolute_call_p (insn_details)
1623 && ! amd64_ret_p (insn_details))
1624 {
1625 ULONGEST orig_rip;
1626 int insn_len;
1627
1628 regcache_cooked_read_unsigned (regs, AMD64_RIP_REGNUM, &orig_rip);
1629
1630 /* A signal trampoline system call changes the %rip, resuming
1631 execution of the main program after the signal handler has
1632 returned. That makes them like 'return' instructions; we
1633 shouldn't relocate %rip.
1634
1635 But most system calls don't, and we do need to relocate %rip.
1636
1637 Our heuristic for distinguishing these cases: if stepping
1638 over the system call instruction left control directly after
1639 the instruction, the we relocate --- control almost certainly
1640 doesn't belong in the displaced copy. Otherwise, we assume
1641 the instruction has put control where it belongs, and leave
1642 it unrelocated. Goodness help us if there are PC-relative
1643 system calls. */
1644 if (amd64_syscall_p (insn_details, &insn_len)
1645 && orig_rip != to + insn_len
1646 /* GDB can get control back after the insn after the syscall.
1647 Presumably this is a kernel bug.
1648 Fixup ensures its a nop, we add one to the length for it. */
1649 && orig_rip != to + insn_len + 1)
1650 {
1651 if (debug_displaced)
1652 fprintf_unfiltered (gdb_stdlog,
1653 "displaced: syscall changed %%rip; "
1654 "not relocating\n");
1655 }
1656 else
1657 {
1658 ULONGEST rip = orig_rip - insn_offset;
1659
1660 /* If we just stepped over a breakpoint insn, we don't backup
1661 the pc on purpose; this is to match behaviour without
1662 stepping. */
1663
1664 regcache_cooked_write_unsigned (regs, AMD64_RIP_REGNUM, rip);
1665
1666 if (debug_displaced)
1667 fprintf_unfiltered (gdb_stdlog,
1668 "displaced: "
1669 "relocated %%rip from %s to %s\n",
1670 paddress (gdbarch, orig_rip),
1671 paddress (gdbarch, rip));
1672 }
1673 }
1674
1675 /* If the instruction was PUSHFL, then the TF bit will be set in the
1676 pushed value, and should be cleared. We'll leave this for later,
1677 since GDB already messes up the TF flag when stepping over a
1678 pushfl. */
1679
1680 /* If the instruction was a call, the return address now atop the
1681 stack is the address following the copied instruction. We need
1682 to make it the address following the original instruction. */
1683 if (amd64_call_p (insn_details))
1684 {
1685 ULONGEST rsp;
1686 ULONGEST retaddr;
1687 const ULONGEST retaddr_len = 8;
1688
1689 regcache_cooked_read_unsigned (regs, AMD64_RSP_REGNUM, &rsp);
1690 retaddr = read_memory_unsigned_integer (rsp, retaddr_len, byte_order);
1691 retaddr = (retaddr - insn_offset) & 0xffffffffffffffffULL;
1692 write_memory_unsigned_integer (rsp, retaddr_len, byte_order, retaddr);
1693
1694 if (debug_displaced)
1695 fprintf_unfiltered (gdb_stdlog,
1696 "displaced: relocated return addr at %s "
1697 "to %s\n",
1698 paddress (gdbarch, rsp),
1699 paddress (gdbarch, retaddr));
1700 }
1701 }
1702
1703 /* If the instruction INSN uses RIP-relative addressing, return the
1704 offset into the raw INSN where the displacement to be adjusted is
1705 found. Returns 0 if the instruction doesn't use RIP-relative
1706 addressing. */
1707
1708 static int
1709 rip_relative_offset (struct amd64_insn *insn)
1710 {
1711 if (insn->modrm_offset != -1)
1712 {
1713 gdb_byte modrm = insn->raw_insn[insn->modrm_offset];
1714
1715 if ((modrm & 0xc7) == 0x05)
1716 {
1717 /* The displacement is found right after the ModRM byte. */
1718 return insn->modrm_offset + 1;
1719 }
1720 }
1721
1722 return 0;
1723 }
1724
1725 static void
1726 append_insns (CORE_ADDR *to, ULONGEST len, const gdb_byte *buf)
1727 {
1728 target_write_memory (*to, buf, len);
1729 *to += len;
1730 }
1731
1732 static void
1733 amd64_relocate_instruction (struct gdbarch *gdbarch,
1734 CORE_ADDR *to, CORE_ADDR oldloc)
1735 {
1736 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1737 int len = gdbarch_max_insn_length (gdbarch);
1738 /* Extra space for sentinels. */
1739 int fixup_sentinel_space = len;
1740 gdb_byte *buf = (gdb_byte *) xmalloc (len + fixup_sentinel_space);
1741 struct amd64_insn insn_details;
1742 int offset = 0;
1743 LONGEST rel32, newrel;
1744 gdb_byte *insn;
1745 int insn_length;
1746
1747 read_memory (oldloc, buf, len);
1748
1749 /* Set up the sentinel space so we don't have to worry about running
1750 off the end of the buffer. An excessive number of leading prefixes
1751 could otherwise cause this. */
1752 memset (buf + len, 0, fixup_sentinel_space);
1753
1754 insn = buf;
1755 amd64_get_insn_details (insn, &insn_details);
1756
1757 insn_length = gdb_buffered_insn_length (gdbarch, insn, len, oldloc);
1758
1759 /* Skip legacy instruction prefixes. */
1760 insn = amd64_skip_prefixes (insn);
1761
1762 /* Adjust calls with 32-bit relative addresses as push/jump, with
1763 the address pushed being the location where the original call in
1764 the user program would return to. */
1765 if (insn[0] == 0xe8)
1766 {
1767 gdb_byte push_buf[16];
1768 unsigned int ret_addr;
1769
1770 /* Where "ret" in the original code will return to. */
1771 ret_addr = oldloc + insn_length;
1772 push_buf[0] = 0x68; /* pushq $... */
1773 store_unsigned_integer (&push_buf[1], 4, byte_order, ret_addr);
1774 /* Push the push. */
1775 append_insns (to, 5, push_buf);
1776
1777 /* Convert the relative call to a relative jump. */
1778 insn[0] = 0xe9;
1779
1780 /* Adjust the destination offset. */
1781 rel32 = extract_signed_integer (insn + 1, 4, byte_order);
1782 newrel = (oldloc - *to) + rel32;
1783 store_signed_integer (insn + 1, 4, byte_order, newrel);
1784
1785 if (debug_displaced)
1786 fprintf_unfiltered (gdb_stdlog,
1787 "Adjusted insn rel32=%s at %s to"
1788 " rel32=%s at %s\n",
1789 hex_string (rel32), paddress (gdbarch, oldloc),
1790 hex_string (newrel), paddress (gdbarch, *to));
1791
1792 /* Write the adjusted jump into its displaced location. */
1793 append_insns (to, 5, insn);
1794 return;
1795 }
1796
1797 offset = rip_relative_offset (&insn_details);
1798 if (!offset)
1799 {
1800 /* Adjust jumps with 32-bit relative addresses. Calls are
1801 already handled above. */
1802 if (insn[0] == 0xe9)
1803 offset = 1;
1804 /* Adjust conditional jumps. */
1805 else if (insn[0] == 0x0f && (insn[1] & 0xf0) == 0x80)
1806 offset = 2;
1807 }
1808
1809 if (offset)
1810 {
1811 rel32 = extract_signed_integer (insn + offset, 4, byte_order);
1812 newrel = (oldloc - *to) + rel32;
1813 store_signed_integer (insn + offset, 4, byte_order, newrel);
1814 if (debug_displaced)
1815 fprintf_unfiltered (gdb_stdlog,
1816 "Adjusted insn rel32=%s at %s to"
1817 " rel32=%s at %s\n",
1818 hex_string (rel32), paddress (gdbarch, oldloc),
1819 hex_string (newrel), paddress (gdbarch, *to));
1820 }
1821
1822 /* Write the adjusted instruction into its displaced location. */
1823 append_insns (to, insn_length, buf);
1824 }
1825
1826 \f
1827 /* The maximum number of saved registers. This should include %rip. */
1828 #define AMD64_NUM_SAVED_REGS AMD64_NUM_GREGS
1829
1830 struct amd64_frame_cache
1831 {
1832 /* Base address. */
1833 CORE_ADDR base;
1834 int base_p;
1835 CORE_ADDR sp_offset;
1836 CORE_ADDR pc;
1837
1838 /* Saved registers. */
1839 CORE_ADDR saved_regs[AMD64_NUM_SAVED_REGS];
1840 CORE_ADDR saved_sp;
1841 int saved_sp_reg;
1842
1843 /* Do we have a frame? */
1844 int frameless_p;
1845 };
1846
1847 /* Initialize a frame cache. */
1848
1849 static void
1850 amd64_init_frame_cache (struct amd64_frame_cache *cache)
1851 {
1852 int i;
1853
1854 /* Base address. */
1855 cache->base = 0;
1856 cache->base_p = 0;
1857 cache->sp_offset = -8;
1858 cache->pc = 0;
1859
1860 /* Saved registers. We initialize these to -1 since zero is a valid
1861 offset (that's where %rbp is supposed to be stored).
1862 The values start out as being offsets, and are later converted to
1863 addresses (at which point -1 is interpreted as an address, still meaning
1864 "invalid"). */
1865 for (i = 0; i < AMD64_NUM_SAVED_REGS; i++)
1866 cache->saved_regs[i] = -1;
1867 cache->saved_sp = 0;
1868 cache->saved_sp_reg = -1;
1869
1870 /* Frameless until proven otherwise. */
1871 cache->frameless_p = 1;
1872 }
1873
1874 /* Allocate and initialize a frame cache. */
1875
1876 static struct amd64_frame_cache *
1877 amd64_alloc_frame_cache (void)
1878 {
1879 struct amd64_frame_cache *cache;
1880
1881 cache = FRAME_OBSTACK_ZALLOC (struct amd64_frame_cache);
1882 amd64_init_frame_cache (cache);
1883 return cache;
1884 }
1885
1886 /* GCC 4.4 and later, can put code in the prologue to realign the
1887 stack pointer. Check whether PC points to such code, and update
1888 CACHE accordingly. Return the first instruction after the code
1889 sequence or CURRENT_PC, whichever is smaller. If we don't
1890 recognize the code, return PC. */
1891
1892 static CORE_ADDR
1893 amd64_analyze_stack_align (CORE_ADDR pc, CORE_ADDR current_pc,
1894 struct amd64_frame_cache *cache)
1895 {
1896 /* There are 2 code sequences to re-align stack before the frame
1897 gets set up:
1898
1899 1. Use a caller-saved saved register:
1900
1901 leaq 8(%rsp), %reg
1902 andq $-XXX, %rsp
1903 pushq -8(%reg)
1904
1905 2. Use a callee-saved saved register:
1906
1907 pushq %reg
1908 leaq 16(%rsp), %reg
1909 andq $-XXX, %rsp
1910 pushq -8(%reg)
1911
1912 "andq $-XXX, %rsp" can be either 4 bytes or 7 bytes:
1913
1914 0x48 0x83 0xe4 0xf0 andq $-16, %rsp
1915 0x48 0x81 0xe4 0x00 0xff 0xff 0xff andq $-256, %rsp
1916 */
1917
1918 gdb_byte buf[18];
1919 int reg, r;
1920 int offset, offset_and;
1921
1922 if (target_read_code (pc, buf, sizeof buf))
1923 return pc;
1924
1925 /* Check caller-saved saved register. The first instruction has
1926 to be "leaq 8(%rsp), %reg". */
1927 if ((buf[0] & 0xfb) == 0x48
1928 && buf[1] == 0x8d
1929 && buf[3] == 0x24
1930 && buf[4] == 0x8)
1931 {
1932 /* MOD must be binary 10 and R/M must be binary 100. */
1933 if ((buf[2] & 0xc7) != 0x44)
1934 return pc;
1935
1936 /* REG has register number. */
1937 reg = (buf[2] >> 3) & 7;
1938
1939 /* Check the REX.R bit. */
1940 if (buf[0] == 0x4c)
1941 reg += 8;
1942
1943 offset = 5;
1944 }
1945 else
1946 {
1947 /* Check callee-saved saved register. The first instruction
1948 has to be "pushq %reg". */
1949 reg = 0;
1950 if ((buf[0] & 0xf8) == 0x50)
1951 offset = 0;
1952 else if ((buf[0] & 0xf6) == 0x40
1953 && (buf[1] & 0xf8) == 0x50)
1954 {
1955 /* Check the REX.B bit. */
1956 if ((buf[0] & 1) != 0)
1957 reg = 8;
1958
1959 offset = 1;
1960 }
1961 else
1962 return pc;
1963
1964 /* Get register. */
1965 reg += buf[offset] & 0x7;
1966
1967 offset++;
1968
1969 /* The next instruction has to be "leaq 16(%rsp), %reg". */
1970 if ((buf[offset] & 0xfb) != 0x48
1971 || buf[offset + 1] != 0x8d
1972 || buf[offset + 3] != 0x24
1973 || buf[offset + 4] != 0x10)
1974 return pc;
1975
1976 /* MOD must be binary 10 and R/M must be binary 100. */
1977 if ((buf[offset + 2] & 0xc7) != 0x44)
1978 return pc;
1979
1980 /* REG has register number. */
1981 r = (buf[offset + 2] >> 3) & 7;
1982
1983 /* Check the REX.R bit. */
1984 if (buf[offset] == 0x4c)
1985 r += 8;
1986
1987 /* Registers in pushq and leaq have to be the same. */
1988 if (reg != r)
1989 return pc;
1990
1991 offset += 5;
1992 }
1993
1994 /* Rigister can't be %rsp nor %rbp. */
1995 if (reg == 4 || reg == 5)
1996 return pc;
1997
1998 /* The next instruction has to be "andq $-XXX, %rsp". */
1999 if (buf[offset] != 0x48
2000 || buf[offset + 2] != 0xe4
2001 || (buf[offset + 1] != 0x81 && buf[offset + 1] != 0x83))
2002 return pc;
2003
2004 offset_and = offset;
2005 offset += buf[offset + 1] == 0x81 ? 7 : 4;
2006
2007 /* The next instruction has to be "pushq -8(%reg)". */
2008 r = 0;
2009 if (buf[offset] == 0xff)
2010 offset++;
2011 else if ((buf[offset] & 0xf6) == 0x40
2012 && buf[offset + 1] == 0xff)
2013 {
2014 /* Check the REX.B bit. */
2015 if ((buf[offset] & 0x1) != 0)
2016 r = 8;
2017 offset += 2;
2018 }
2019 else
2020 return pc;
2021
2022 /* 8bit -8 is 0xf8. REG must be binary 110 and MOD must be binary
2023 01. */
2024 if (buf[offset + 1] != 0xf8
2025 || (buf[offset] & 0xf8) != 0x70)
2026 return pc;
2027
2028 /* R/M has register. */
2029 r += buf[offset] & 7;
2030
2031 /* Registers in leaq and pushq have to be the same. */
2032 if (reg != r)
2033 return pc;
2034
2035 if (current_pc > pc + offset_and)
2036 cache->saved_sp_reg = amd64_arch_reg_to_regnum (reg);
2037
2038 return min (pc + offset + 2, current_pc);
2039 }
2040
2041 /* Similar to amd64_analyze_stack_align for x32. */
2042
2043 static CORE_ADDR
2044 amd64_x32_analyze_stack_align (CORE_ADDR pc, CORE_ADDR current_pc,
2045 struct amd64_frame_cache *cache)
2046 {
2047 /* There are 2 code sequences to re-align stack before the frame
2048 gets set up:
2049
2050 1. Use a caller-saved saved register:
2051
2052 leaq 8(%rsp), %reg
2053 andq $-XXX, %rsp
2054 pushq -8(%reg)
2055
2056 or
2057
2058 [addr32] leal 8(%rsp), %reg
2059 andl $-XXX, %esp
2060 [addr32] pushq -8(%reg)
2061
2062 2. Use a callee-saved saved register:
2063
2064 pushq %reg
2065 leaq 16(%rsp), %reg
2066 andq $-XXX, %rsp
2067 pushq -8(%reg)
2068
2069 or
2070
2071 pushq %reg
2072 [addr32] leal 16(%rsp), %reg
2073 andl $-XXX, %esp
2074 [addr32] pushq -8(%reg)
2075
2076 "andq $-XXX, %rsp" can be either 4 bytes or 7 bytes:
2077
2078 0x48 0x83 0xe4 0xf0 andq $-16, %rsp
2079 0x48 0x81 0xe4 0x00 0xff 0xff 0xff andq $-256, %rsp
2080
2081 "andl $-XXX, %esp" can be either 3 bytes or 6 bytes:
2082
2083 0x83 0xe4 0xf0 andl $-16, %esp
2084 0x81 0xe4 0x00 0xff 0xff 0xff andl $-256, %esp
2085 */
2086
2087 gdb_byte buf[19];
2088 int reg, r;
2089 int offset, offset_and;
2090
2091 if (target_read_memory (pc, buf, sizeof buf))
2092 return pc;
2093
2094 /* Skip optional addr32 prefix. */
2095 offset = buf[0] == 0x67 ? 1 : 0;
2096
2097 /* Check caller-saved saved register. The first instruction has
2098 to be "leaq 8(%rsp), %reg" or "leal 8(%rsp), %reg". */
2099 if (((buf[offset] & 0xfb) == 0x48 || (buf[offset] & 0xfb) == 0x40)
2100 && buf[offset + 1] == 0x8d
2101 && buf[offset + 3] == 0x24
2102 && buf[offset + 4] == 0x8)
2103 {
2104 /* MOD must be binary 10 and R/M must be binary 100. */
2105 if ((buf[offset + 2] & 0xc7) != 0x44)
2106 return pc;
2107
2108 /* REG has register number. */
2109 reg = (buf[offset + 2] >> 3) & 7;
2110
2111 /* Check the REX.R bit. */
2112 if ((buf[offset] & 0x4) != 0)
2113 reg += 8;
2114
2115 offset += 5;
2116 }
2117 else
2118 {
2119 /* Check callee-saved saved register. The first instruction
2120 has to be "pushq %reg". */
2121 reg = 0;
2122 if ((buf[offset] & 0xf6) == 0x40
2123 && (buf[offset + 1] & 0xf8) == 0x50)
2124 {
2125 /* Check the REX.B bit. */
2126 if ((buf[offset] & 1) != 0)
2127 reg = 8;
2128
2129 offset += 1;
2130 }
2131 else if ((buf[offset] & 0xf8) != 0x50)
2132 return pc;
2133
2134 /* Get register. */
2135 reg += buf[offset] & 0x7;
2136
2137 offset++;
2138
2139 /* Skip optional addr32 prefix. */
2140 if (buf[offset] == 0x67)
2141 offset++;
2142
2143 /* The next instruction has to be "leaq 16(%rsp), %reg" or
2144 "leal 16(%rsp), %reg". */
2145 if (((buf[offset] & 0xfb) != 0x48 && (buf[offset] & 0xfb) != 0x40)
2146 || buf[offset + 1] != 0x8d
2147 || buf[offset + 3] != 0x24
2148 || buf[offset + 4] != 0x10)
2149 return pc;
2150
2151 /* MOD must be binary 10 and R/M must be binary 100. */
2152 if ((buf[offset + 2] & 0xc7) != 0x44)
2153 return pc;
2154
2155 /* REG has register number. */
2156 r = (buf[offset + 2] >> 3) & 7;
2157
2158 /* Check the REX.R bit. */
2159 if ((buf[offset] & 0x4) != 0)
2160 r += 8;
2161
2162 /* Registers in pushq and leaq have to be the same. */
2163 if (reg != r)
2164 return pc;
2165
2166 offset += 5;
2167 }
2168
2169 /* Rigister can't be %rsp nor %rbp. */
2170 if (reg == 4 || reg == 5)
2171 return pc;
2172
2173 /* The next instruction may be "andq $-XXX, %rsp" or
2174 "andl $-XXX, %esp". */
2175 if (buf[offset] != 0x48)
2176 offset--;
2177
2178 if (buf[offset + 2] != 0xe4
2179 || (buf[offset + 1] != 0x81 && buf[offset + 1] != 0x83))
2180 return pc;
2181
2182 offset_and = offset;
2183 offset += buf[offset + 1] == 0x81 ? 7 : 4;
2184
2185 /* Skip optional addr32 prefix. */
2186 if (buf[offset] == 0x67)
2187 offset++;
2188
2189 /* The next instruction has to be "pushq -8(%reg)". */
2190 r = 0;
2191 if (buf[offset] == 0xff)
2192 offset++;
2193 else if ((buf[offset] & 0xf6) == 0x40
2194 && buf[offset + 1] == 0xff)
2195 {
2196 /* Check the REX.B bit. */
2197 if ((buf[offset] & 0x1) != 0)
2198 r = 8;
2199 offset += 2;
2200 }
2201 else
2202 return pc;
2203
2204 /* 8bit -8 is 0xf8. REG must be binary 110 and MOD must be binary
2205 01. */
2206 if (buf[offset + 1] != 0xf8
2207 || (buf[offset] & 0xf8) != 0x70)
2208 return pc;
2209
2210 /* R/M has register. */
2211 r += buf[offset] & 7;
2212
2213 /* Registers in leaq and pushq have to be the same. */
2214 if (reg != r)
2215 return pc;
2216
2217 if (current_pc > pc + offset_and)
2218 cache->saved_sp_reg = amd64_arch_reg_to_regnum (reg);
2219
2220 return min (pc + offset + 2, current_pc);
2221 }
2222
2223 /* Do a limited analysis of the prologue at PC and update CACHE
2224 accordingly. Bail out early if CURRENT_PC is reached. Return the
2225 address where the analysis stopped.
2226
2227 We will handle only functions beginning with:
2228
2229 pushq %rbp 0x55
2230 movq %rsp, %rbp 0x48 0x89 0xe5 (or 0x48 0x8b 0xec)
2231
2232 or (for the X32 ABI):
2233
2234 pushq %rbp 0x55
2235 movl %esp, %ebp 0x89 0xe5 (or 0x8b 0xec)
2236
2237 Any function that doesn't start with one of these sequences will be
2238 assumed to have no prologue and thus no valid frame pointer in
2239 %rbp. */
2240
2241 static CORE_ADDR
2242 amd64_analyze_prologue (struct gdbarch *gdbarch,
2243 CORE_ADDR pc, CORE_ADDR current_pc,
2244 struct amd64_frame_cache *cache)
2245 {
2246 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
2247 /* There are two variations of movq %rsp, %rbp. */
2248 static const gdb_byte mov_rsp_rbp_1[3] = { 0x48, 0x89, 0xe5 };
2249 static const gdb_byte mov_rsp_rbp_2[3] = { 0x48, 0x8b, 0xec };
2250 /* Ditto for movl %esp, %ebp. */
2251 static const gdb_byte mov_esp_ebp_1[2] = { 0x89, 0xe5 };
2252 static const gdb_byte mov_esp_ebp_2[2] = { 0x8b, 0xec };
2253
2254 gdb_byte buf[3];
2255 gdb_byte op;
2256
2257 if (current_pc <= pc)
2258 return current_pc;
2259
2260 if (gdbarch_ptr_bit (gdbarch) == 32)
2261 pc = amd64_x32_analyze_stack_align (pc, current_pc, cache);
2262 else
2263 pc = amd64_analyze_stack_align (pc, current_pc, cache);
2264
2265 op = read_code_unsigned_integer (pc, 1, byte_order);
2266
2267 if (op == 0x55) /* pushq %rbp */
2268 {
2269 /* Take into account that we've executed the `pushq %rbp' that
2270 starts this instruction sequence. */
2271 cache->saved_regs[AMD64_RBP_REGNUM] = 0;
2272 cache->sp_offset += 8;
2273
2274 /* If that's all, return now. */
2275 if (current_pc <= pc + 1)
2276 return current_pc;
2277
2278 read_code (pc + 1, buf, 3);
2279
2280 /* Check for `movq %rsp, %rbp'. */
2281 if (memcmp (buf, mov_rsp_rbp_1, 3) == 0
2282 || memcmp (buf, mov_rsp_rbp_2, 3) == 0)
2283 {
2284 /* OK, we actually have a frame. */
2285 cache->frameless_p = 0;
2286 return pc + 4;
2287 }
2288
2289 /* For X32, also check for `movq %esp, %ebp'. */
2290 if (gdbarch_ptr_bit (gdbarch) == 32)
2291 {
2292 if (memcmp (buf, mov_esp_ebp_1, 2) == 0
2293 || memcmp (buf, mov_esp_ebp_2, 2) == 0)
2294 {
2295 /* OK, we actually have a frame. */
2296 cache->frameless_p = 0;
2297 return pc + 3;
2298 }
2299 }
2300
2301 return pc + 1;
2302 }
2303
2304 return pc;
2305 }
2306
2307 /* Work around false termination of prologue - GCC PR debug/48827.
2308
2309 START_PC is the first instruction of a function, PC is its minimal already
2310 determined advanced address. Function returns PC if it has nothing to do.
2311
2312 84 c0 test %al,%al
2313 74 23 je after
2314 <-- here is 0 lines advance - the false prologue end marker.
2315 0f 29 85 70 ff ff ff movaps %xmm0,-0x90(%rbp)
2316 0f 29 4d 80 movaps %xmm1,-0x80(%rbp)
2317 0f 29 55 90 movaps %xmm2,-0x70(%rbp)
2318 0f 29 5d a0 movaps %xmm3,-0x60(%rbp)
2319 0f 29 65 b0 movaps %xmm4,-0x50(%rbp)
2320 0f 29 6d c0 movaps %xmm5,-0x40(%rbp)
2321 0f 29 75 d0 movaps %xmm6,-0x30(%rbp)
2322 0f 29 7d e0 movaps %xmm7,-0x20(%rbp)
2323 after: */
2324
2325 static CORE_ADDR
2326 amd64_skip_xmm_prologue (CORE_ADDR pc, CORE_ADDR start_pc)
2327 {
2328 struct symtab_and_line start_pc_sal, next_sal;
2329 gdb_byte buf[4 + 8 * 7];
2330 int offset, xmmreg;
2331
2332 if (pc == start_pc)
2333 return pc;
2334
2335 start_pc_sal = find_pc_sect_line (start_pc, NULL, 0);
2336 if (start_pc_sal.symtab == NULL
2337 || producer_is_gcc_ge_4 (COMPUNIT_PRODUCER
2338 (SYMTAB_COMPUNIT (start_pc_sal.symtab))) < 6
2339 || start_pc_sal.pc != start_pc || pc >= start_pc_sal.end)
2340 return pc;
2341
2342 next_sal = find_pc_sect_line (start_pc_sal.end, NULL, 0);
2343 if (next_sal.line != start_pc_sal.line)
2344 return pc;
2345
2346 /* START_PC can be from overlayed memory, ignored here. */
2347 if (target_read_code (next_sal.pc - 4, buf, sizeof (buf)) != 0)
2348 return pc;
2349
2350 /* test %al,%al */
2351 if (buf[0] != 0x84 || buf[1] != 0xc0)
2352 return pc;
2353 /* je AFTER */
2354 if (buf[2] != 0x74)
2355 return pc;
2356
2357 offset = 4;
2358 for (xmmreg = 0; xmmreg < 8; xmmreg++)
2359 {
2360 /* 0x0f 0x29 0b??000101 movaps %xmmreg?,-0x??(%rbp) */
2361 if (buf[offset] != 0x0f || buf[offset + 1] != 0x29
2362 || (buf[offset + 2] & 0x3f) != (xmmreg << 3 | 0x5))
2363 return pc;
2364
2365 /* 0b01?????? */
2366 if ((buf[offset + 2] & 0xc0) == 0x40)
2367 {
2368 /* 8-bit displacement. */
2369 offset += 4;
2370 }
2371 /* 0b10?????? */
2372 else if ((buf[offset + 2] & 0xc0) == 0x80)
2373 {
2374 /* 32-bit displacement. */
2375 offset += 7;
2376 }
2377 else
2378 return pc;
2379 }
2380
2381 /* je AFTER */
2382 if (offset - 4 != buf[3])
2383 return pc;
2384
2385 return next_sal.end;
2386 }
2387
2388 /* Return PC of first real instruction. */
2389
2390 static CORE_ADDR
2391 amd64_skip_prologue (struct gdbarch *gdbarch, CORE_ADDR start_pc)
2392 {
2393 struct amd64_frame_cache cache;
2394 CORE_ADDR pc;
2395 CORE_ADDR func_addr;
2396
2397 if (find_pc_partial_function (start_pc, NULL, &func_addr, NULL))
2398 {
2399 CORE_ADDR post_prologue_pc
2400 = skip_prologue_using_sal (gdbarch, func_addr);
2401 struct compunit_symtab *cust = find_pc_compunit_symtab (func_addr);
2402
2403 /* Clang always emits a line note before the prologue and another
2404 one after. We trust clang to emit usable line notes. */
2405 if (post_prologue_pc
2406 && (cust != NULL
2407 && COMPUNIT_PRODUCER (cust) != NULL
2408 && startswith (COMPUNIT_PRODUCER (cust), "clang ")))
2409 return max (start_pc, post_prologue_pc);
2410 }
2411
2412 amd64_init_frame_cache (&cache);
2413 pc = amd64_analyze_prologue (gdbarch, start_pc, 0xffffffffffffffffLL,
2414 &cache);
2415 if (cache.frameless_p)
2416 return start_pc;
2417
2418 return amd64_skip_xmm_prologue (pc, start_pc);
2419 }
2420 \f
2421
2422 /* Normal frames. */
2423
2424 static void
2425 amd64_frame_cache_1 (struct frame_info *this_frame,
2426 struct amd64_frame_cache *cache)
2427 {
2428 struct gdbarch *gdbarch = get_frame_arch (this_frame);
2429 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
2430 gdb_byte buf[8];
2431 int i;
2432
2433 cache->pc = get_frame_func (this_frame);
2434 if (cache->pc != 0)
2435 amd64_analyze_prologue (gdbarch, cache->pc, get_frame_pc (this_frame),
2436 cache);
2437
2438 if (cache->frameless_p)
2439 {
2440 /* We didn't find a valid frame. If we're at the start of a
2441 function, or somewhere half-way its prologue, the function's
2442 frame probably hasn't been fully setup yet. Try to
2443 reconstruct the base address for the stack frame by looking
2444 at the stack pointer. For truly "frameless" functions this
2445 might work too. */
2446
2447 if (cache->saved_sp_reg != -1)
2448 {
2449 /* Stack pointer has been saved. */
2450 get_frame_register (this_frame, cache->saved_sp_reg, buf);
2451 cache->saved_sp = extract_unsigned_integer (buf, 8, byte_order);
2452
2453 /* We're halfway aligning the stack. */
2454 cache->base = ((cache->saved_sp - 8) & 0xfffffffffffffff0LL) - 8;
2455 cache->saved_regs[AMD64_RIP_REGNUM] = cache->saved_sp - 8;
2456
2457 /* This will be added back below. */
2458 cache->saved_regs[AMD64_RIP_REGNUM] -= cache->base;
2459 }
2460 else
2461 {
2462 get_frame_register (this_frame, AMD64_RSP_REGNUM, buf);
2463 cache->base = extract_unsigned_integer (buf, 8, byte_order)
2464 + cache->sp_offset;
2465 }
2466 }
2467 else
2468 {
2469 get_frame_register (this_frame, AMD64_RBP_REGNUM, buf);
2470 cache->base = extract_unsigned_integer (buf, 8, byte_order);
2471 }
2472
2473 /* Now that we have the base address for the stack frame we can
2474 calculate the value of %rsp in the calling frame. */
2475 cache->saved_sp = cache->base + 16;
2476
2477 /* For normal frames, %rip is stored at 8(%rbp). If we don't have a
2478 frame we find it at the same offset from the reconstructed base
2479 address. If we're halfway aligning the stack, %rip is handled
2480 differently (see above). */
2481 if (!cache->frameless_p || cache->saved_sp_reg == -1)
2482 cache->saved_regs[AMD64_RIP_REGNUM] = 8;
2483
2484 /* Adjust all the saved registers such that they contain addresses
2485 instead of offsets. */
2486 for (i = 0; i < AMD64_NUM_SAVED_REGS; i++)
2487 if (cache->saved_regs[i] != -1)
2488 cache->saved_regs[i] += cache->base;
2489
2490 cache->base_p = 1;
2491 }
2492
2493 static struct amd64_frame_cache *
2494 amd64_frame_cache (struct frame_info *this_frame, void **this_cache)
2495 {
2496 struct amd64_frame_cache *cache;
2497
2498 if (*this_cache)
2499 return (struct amd64_frame_cache *) *this_cache;
2500
2501 cache = amd64_alloc_frame_cache ();
2502 *this_cache = cache;
2503
2504 TRY
2505 {
2506 amd64_frame_cache_1 (this_frame, cache);
2507 }
2508 CATCH (ex, RETURN_MASK_ERROR)
2509 {
2510 if (ex.error != NOT_AVAILABLE_ERROR)
2511 throw_exception (ex);
2512 }
2513 END_CATCH
2514
2515 return cache;
2516 }
2517
2518 static enum unwind_stop_reason
2519 amd64_frame_unwind_stop_reason (struct frame_info *this_frame,
2520 void **this_cache)
2521 {
2522 struct amd64_frame_cache *cache =
2523 amd64_frame_cache (this_frame, this_cache);
2524
2525 if (!cache->base_p)
2526 return UNWIND_UNAVAILABLE;
2527
2528 /* This marks the outermost frame. */
2529 if (cache->base == 0)
2530 return UNWIND_OUTERMOST;
2531
2532 return UNWIND_NO_REASON;
2533 }
2534
2535 static void
2536 amd64_frame_this_id (struct frame_info *this_frame, void **this_cache,
2537 struct frame_id *this_id)
2538 {
2539 struct amd64_frame_cache *cache =
2540 amd64_frame_cache (this_frame, this_cache);
2541
2542 if (!cache->base_p)
2543 (*this_id) = frame_id_build_unavailable_stack (cache->pc);
2544 else if (cache->base == 0)
2545 {
2546 /* This marks the outermost frame. */
2547 return;
2548 }
2549 else
2550 (*this_id) = frame_id_build (cache->base + 16, cache->pc);
2551 }
2552
2553 static struct value *
2554 amd64_frame_prev_register (struct frame_info *this_frame, void **this_cache,
2555 int regnum)
2556 {
2557 struct gdbarch *gdbarch = get_frame_arch (this_frame);
2558 struct amd64_frame_cache *cache =
2559 amd64_frame_cache (this_frame, this_cache);
2560
2561 gdb_assert (regnum >= 0);
2562
2563 if (regnum == gdbarch_sp_regnum (gdbarch) && cache->saved_sp)
2564 return frame_unwind_got_constant (this_frame, regnum, cache->saved_sp);
2565
2566 if (regnum < AMD64_NUM_SAVED_REGS && cache->saved_regs[regnum] != -1)
2567 return frame_unwind_got_memory (this_frame, regnum,
2568 cache->saved_regs[regnum]);
2569
2570 return frame_unwind_got_register (this_frame, regnum, regnum);
2571 }
2572
2573 static const struct frame_unwind amd64_frame_unwind =
2574 {
2575 NORMAL_FRAME,
2576 amd64_frame_unwind_stop_reason,
2577 amd64_frame_this_id,
2578 amd64_frame_prev_register,
2579 NULL,
2580 default_frame_sniffer
2581 };
2582 \f
2583 /* Generate a bytecode expression to get the value of the saved PC. */
2584
2585 static void
2586 amd64_gen_return_address (struct gdbarch *gdbarch,
2587 struct agent_expr *ax, struct axs_value *value,
2588 CORE_ADDR scope)
2589 {
2590 /* The following sequence assumes the traditional use of the base
2591 register. */
2592 ax_reg (ax, AMD64_RBP_REGNUM);
2593 ax_const_l (ax, 8);
2594 ax_simple (ax, aop_add);
2595 value->type = register_type (gdbarch, AMD64_RIP_REGNUM);
2596 value->kind = axs_lvalue_memory;
2597 }
2598 \f
2599
2600 /* Signal trampolines. */
2601
2602 /* FIXME: kettenis/20030419: Perhaps, we can unify the 32-bit and
2603 64-bit variants. This would require using identical frame caches
2604 on both platforms. */
2605
2606 static struct amd64_frame_cache *
2607 amd64_sigtramp_frame_cache (struct frame_info *this_frame, void **this_cache)
2608 {
2609 struct gdbarch *gdbarch = get_frame_arch (this_frame);
2610 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2611 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
2612 struct amd64_frame_cache *cache;
2613 CORE_ADDR addr;
2614 gdb_byte buf[8];
2615 int i;
2616
2617 if (*this_cache)
2618 return (struct amd64_frame_cache *) *this_cache;
2619
2620 cache = amd64_alloc_frame_cache ();
2621
2622 TRY
2623 {
2624 get_frame_register (this_frame, AMD64_RSP_REGNUM, buf);
2625 cache->base = extract_unsigned_integer (buf, 8, byte_order) - 8;
2626
2627 addr = tdep->sigcontext_addr (this_frame);
2628 gdb_assert (tdep->sc_reg_offset);
2629 gdb_assert (tdep->sc_num_regs <= AMD64_NUM_SAVED_REGS);
2630 for (i = 0; i < tdep->sc_num_regs; i++)
2631 if (tdep->sc_reg_offset[i] != -1)
2632 cache->saved_regs[i] = addr + tdep->sc_reg_offset[i];
2633
2634 cache->base_p = 1;
2635 }
2636 CATCH (ex, RETURN_MASK_ERROR)
2637 {
2638 if (ex.error != NOT_AVAILABLE_ERROR)
2639 throw_exception (ex);
2640 }
2641 END_CATCH
2642
2643 *this_cache = cache;
2644 return cache;
2645 }
2646
2647 static enum unwind_stop_reason
2648 amd64_sigtramp_frame_unwind_stop_reason (struct frame_info *this_frame,
2649 void **this_cache)
2650 {
2651 struct amd64_frame_cache *cache =
2652 amd64_sigtramp_frame_cache (this_frame, this_cache);
2653
2654 if (!cache->base_p)
2655 return UNWIND_UNAVAILABLE;
2656
2657 return UNWIND_NO_REASON;
2658 }
2659
2660 static void
2661 amd64_sigtramp_frame_this_id (struct frame_info *this_frame,
2662 void **this_cache, struct frame_id *this_id)
2663 {
2664 struct amd64_frame_cache *cache =
2665 amd64_sigtramp_frame_cache (this_frame, this_cache);
2666
2667 if (!cache->base_p)
2668 (*this_id) = frame_id_build_unavailable_stack (get_frame_pc (this_frame));
2669 else if (cache->base == 0)
2670 {
2671 /* This marks the outermost frame. */
2672 return;
2673 }
2674 else
2675 (*this_id) = frame_id_build (cache->base + 16, get_frame_pc (this_frame));
2676 }
2677
2678 static struct value *
2679 amd64_sigtramp_frame_prev_register (struct frame_info *this_frame,
2680 void **this_cache, int regnum)
2681 {
2682 /* Make sure we've initialized the cache. */
2683 amd64_sigtramp_frame_cache (this_frame, this_cache);
2684
2685 return amd64_frame_prev_register (this_frame, this_cache, regnum);
2686 }
2687
2688 static int
2689 amd64_sigtramp_frame_sniffer (const struct frame_unwind *self,
2690 struct frame_info *this_frame,
2691 void **this_cache)
2692 {
2693 struct gdbarch_tdep *tdep = gdbarch_tdep (get_frame_arch (this_frame));
2694
2695 /* We shouldn't even bother if we don't have a sigcontext_addr
2696 handler. */
2697 if (tdep->sigcontext_addr == NULL)
2698 return 0;
2699
2700 if (tdep->sigtramp_p != NULL)
2701 {
2702 if (tdep->sigtramp_p (this_frame))
2703 return 1;
2704 }
2705
2706 if (tdep->sigtramp_start != 0)
2707 {
2708 CORE_ADDR pc = get_frame_pc (this_frame);
2709
2710 gdb_assert (tdep->sigtramp_end != 0);
2711 if (pc >= tdep->sigtramp_start && pc < tdep->sigtramp_end)
2712 return 1;
2713 }
2714
2715 return 0;
2716 }
2717
2718 static const struct frame_unwind amd64_sigtramp_frame_unwind =
2719 {
2720 SIGTRAMP_FRAME,
2721 amd64_sigtramp_frame_unwind_stop_reason,
2722 amd64_sigtramp_frame_this_id,
2723 amd64_sigtramp_frame_prev_register,
2724 NULL,
2725 amd64_sigtramp_frame_sniffer
2726 };
2727 \f
2728
2729 static CORE_ADDR
2730 amd64_frame_base_address (struct frame_info *this_frame, void **this_cache)
2731 {
2732 struct amd64_frame_cache *cache =
2733 amd64_frame_cache (this_frame, this_cache);
2734
2735 return cache->base;
2736 }
2737
2738 static const struct frame_base amd64_frame_base =
2739 {
2740 &amd64_frame_unwind,
2741 amd64_frame_base_address,
2742 amd64_frame_base_address,
2743 amd64_frame_base_address
2744 };
2745
2746 /* Normal frames, but in a function epilogue. */
2747
2748 /* Implement the stack_frame_destroyed_p gdbarch method.
2749
2750 The epilogue is defined here as the 'ret' instruction, which will
2751 follow any instruction such as 'leave' or 'pop %ebp' that destroys
2752 the function's stack frame. */
2753
2754 static int
2755 amd64_stack_frame_destroyed_p (struct gdbarch *gdbarch, CORE_ADDR pc)
2756 {
2757 gdb_byte insn;
2758 struct compunit_symtab *cust;
2759
2760 cust = find_pc_compunit_symtab (pc);
2761 if (cust != NULL && COMPUNIT_EPILOGUE_UNWIND_VALID (cust))
2762 return 0;
2763
2764 if (target_read_memory (pc, &insn, 1))
2765 return 0; /* Can't read memory at pc. */
2766
2767 if (insn != 0xc3) /* 'ret' instruction. */
2768 return 0;
2769
2770 return 1;
2771 }
2772
2773 static int
2774 amd64_epilogue_frame_sniffer (const struct frame_unwind *self,
2775 struct frame_info *this_frame,
2776 void **this_prologue_cache)
2777 {
2778 if (frame_relative_level (this_frame) == 0)
2779 return amd64_stack_frame_destroyed_p (get_frame_arch (this_frame),
2780 get_frame_pc (this_frame));
2781 else
2782 return 0;
2783 }
2784
2785 static struct amd64_frame_cache *
2786 amd64_epilogue_frame_cache (struct frame_info *this_frame, void **this_cache)
2787 {
2788 struct gdbarch *gdbarch = get_frame_arch (this_frame);
2789 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
2790 struct amd64_frame_cache *cache;
2791 gdb_byte buf[8];
2792
2793 if (*this_cache)
2794 return (struct amd64_frame_cache *) *this_cache;
2795
2796 cache = amd64_alloc_frame_cache ();
2797 *this_cache = cache;
2798
2799 TRY
2800 {
2801 /* Cache base will be %esp plus cache->sp_offset (-8). */
2802 get_frame_register (this_frame, AMD64_RSP_REGNUM, buf);
2803 cache->base = extract_unsigned_integer (buf, 8,
2804 byte_order) + cache->sp_offset;
2805
2806 /* Cache pc will be the frame func. */
2807 cache->pc = get_frame_pc (this_frame);
2808
2809 /* The saved %esp will be at cache->base plus 16. */
2810 cache->saved_sp = cache->base + 16;
2811
2812 /* The saved %eip will be at cache->base plus 8. */
2813 cache->saved_regs[AMD64_RIP_REGNUM] = cache->base + 8;
2814
2815 cache->base_p = 1;
2816 }
2817 CATCH (ex, RETURN_MASK_ERROR)
2818 {
2819 if (ex.error != NOT_AVAILABLE_ERROR)
2820 throw_exception (ex);
2821 }
2822 END_CATCH
2823
2824 return cache;
2825 }
2826
2827 static enum unwind_stop_reason
2828 amd64_epilogue_frame_unwind_stop_reason (struct frame_info *this_frame,
2829 void **this_cache)
2830 {
2831 struct amd64_frame_cache *cache
2832 = amd64_epilogue_frame_cache (this_frame, this_cache);
2833
2834 if (!cache->base_p)
2835 return UNWIND_UNAVAILABLE;
2836
2837 return UNWIND_NO_REASON;
2838 }
2839
2840 static void
2841 amd64_epilogue_frame_this_id (struct frame_info *this_frame,
2842 void **this_cache,
2843 struct frame_id *this_id)
2844 {
2845 struct amd64_frame_cache *cache = amd64_epilogue_frame_cache (this_frame,
2846 this_cache);
2847
2848 if (!cache->base_p)
2849 (*this_id) = frame_id_build_unavailable_stack (cache->pc);
2850 else
2851 (*this_id) = frame_id_build (cache->base + 8, cache->pc);
2852 }
2853
2854 static const struct frame_unwind amd64_epilogue_frame_unwind =
2855 {
2856 NORMAL_FRAME,
2857 amd64_epilogue_frame_unwind_stop_reason,
2858 amd64_epilogue_frame_this_id,
2859 amd64_frame_prev_register,
2860 NULL,
2861 amd64_epilogue_frame_sniffer
2862 };
2863
2864 static struct frame_id
2865 amd64_dummy_id (struct gdbarch *gdbarch, struct frame_info *this_frame)
2866 {
2867 CORE_ADDR fp;
2868
2869 fp = get_frame_register_unsigned (this_frame, AMD64_RBP_REGNUM);
2870
2871 return frame_id_build (fp + 16, get_frame_pc (this_frame));
2872 }
2873
2874 /* 16 byte align the SP per frame requirements. */
2875
2876 static CORE_ADDR
2877 amd64_frame_align (struct gdbarch *gdbarch, CORE_ADDR sp)
2878 {
2879 return sp & -(CORE_ADDR)16;
2880 }
2881 \f
2882
2883 /* Supply register REGNUM from the buffer specified by FPREGS and LEN
2884 in the floating-point register set REGSET to register cache
2885 REGCACHE. If REGNUM is -1, do this for all registers in REGSET. */
2886
2887 static void
2888 amd64_supply_fpregset (const struct regset *regset, struct regcache *regcache,
2889 int regnum, const void *fpregs, size_t len)
2890 {
2891 struct gdbarch *gdbarch = get_regcache_arch (regcache);
2892 const struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2893
2894 gdb_assert (len >= tdep->sizeof_fpregset);
2895 amd64_supply_fxsave (regcache, regnum, fpregs);
2896 }
2897
2898 /* Collect register REGNUM from the register cache REGCACHE and store
2899 it in the buffer specified by FPREGS and LEN as described by the
2900 floating-point register set REGSET. If REGNUM is -1, do this for
2901 all registers in REGSET. */
2902
2903 static void
2904 amd64_collect_fpregset (const struct regset *regset,
2905 const struct regcache *regcache,
2906 int regnum, void *fpregs, size_t len)
2907 {
2908 struct gdbarch *gdbarch = get_regcache_arch (regcache);
2909 const struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2910
2911 gdb_assert (len >= tdep->sizeof_fpregset);
2912 amd64_collect_fxsave (regcache, regnum, fpregs);
2913 }
2914
2915 const struct regset amd64_fpregset =
2916 {
2917 NULL, amd64_supply_fpregset, amd64_collect_fpregset
2918 };
2919 \f
2920
2921 /* Figure out where the longjmp will land. Slurp the jmp_buf out of
2922 %rdi. We expect its value to be a pointer to the jmp_buf structure
2923 from which we extract the address that we will land at. This
2924 address is copied into PC. This routine returns non-zero on
2925 success. */
2926
2927 static int
2928 amd64_get_longjmp_target (struct frame_info *frame, CORE_ADDR *pc)
2929 {
2930 gdb_byte buf[8];
2931 CORE_ADDR jb_addr;
2932 struct gdbarch *gdbarch = get_frame_arch (frame);
2933 int jb_pc_offset = gdbarch_tdep (gdbarch)->jb_pc_offset;
2934 int len = TYPE_LENGTH (builtin_type (gdbarch)->builtin_func_ptr);
2935
2936 /* If JB_PC_OFFSET is -1, we have no way to find out where the
2937 longjmp will land. */
2938 if (jb_pc_offset == -1)
2939 return 0;
2940
2941 get_frame_register (frame, AMD64_RDI_REGNUM, buf);
2942 jb_addr= extract_typed_address
2943 (buf, builtin_type (gdbarch)->builtin_data_ptr);
2944 if (target_read_memory (jb_addr + jb_pc_offset, buf, len))
2945 return 0;
2946
2947 *pc = extract_typed_address (buf, builtin_type (gdbarch)->builtin_func_ptr);
2948
2949 return 1;
2950 }
2951
2952 static const int amd64_record_regmap[] =
2953 {
2954 AMD64_RAX_REGNUM, AMD64_RCX_REGNUM, AMD64_RDX_REGNUM, AMD64_RBX_REGNUM,
2955 AMD64_RSP_REGNUM, AMD64_RBP_REGNUM, AMD64_RSI_REGNUM, AMD64_RDI_REGNUM,
2956 AMD64_R8_REGNUM, AMD64_R9_REGNUM, AMD64_R10_REGNUM, AMD64_R11_REGNUM,
2957 AMD64_R12_REGNUM, AMD64_R13_REGNUM, AMD64_R14_REGNUM, AMD64_R15_REGNUM,
2958 AMD64_RIP_REGNUM, AMD64_EFLAGS_REGNUM, AMD64_CS_REGNUM, AMD64_SS_REGNUM,
2959 AMD64_DS_REGNUM, AMD64_ES_REGNUM, AMD64_FS_REGNUM, AMD64_GS_REGNUM
2960 };
2961
2962 void
2963 amd64_init_abi (struct gdbarch_info info, struct gdbarch *gdbarch)
2964 {
2965 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2966 const struct target_desc *tdesc = info.target_desc;
2967 static const char *const stap_integer_prefixes[] = { "$", NULL };
2968 static const char *const stap_register_prefixes[] = { "%", NULL };
2969 static const char *const stap_register_indirection_prefixes[] = { "(",
2970 NULL };
2971 static const char *const stap_register_indirection_suffixes[] = { ")",
2972 NULL };
2973
2974 /* AMD64 generally uses `fxsave' instead of `fsave' for saving its
2975 floating-point registers. */
2976 tdep->sizeof_fpregset = I387_SIZEOF_FXSAVE;
2977 tdep->fpregset = &amd64_fpregset;
2978
2979 if (! tdesc_has_registers (tdesc))
2980 tdesc = tdesc_amd64;
2981 tdep->tdesc = tdesc;
2982
2983 tdep->num_core_regs = AMD64_NUM_GREGS + I387_NUM_REGS;
2984 tdep->register_names = amd64_register_names;
2985
2986 if (tdesc_find_feature (tdesc, "org.gnu.gdb.i386.avx512") != NULL)
2987 {
2988 tdep->zmmh_register_names = amd64_zmmh_names;
2989 tdep->k_register_names = amd64_k_names;
2990 tdep->xmm_avx512_register_names = amd64_xmm_avx512_names;
2991 tdep->ymm16h_register_names = amd64_ymmh_avx512_names;
2992
2993 tdep->num_zmm_regs = 32;
2994 tdep->num_xmm_avx512_regs = 16;
2995 tdep->num_ymm_avx512_regs = 16;
2996
2997 tdep->zmm0h_regnum = AMD64_ZMM0H_REGNUM;
2998 tdep->k0_regnum = AMD64_K0_REGNUM;
2999 tdep->xmm16_regnum = AMD64_XMM16_REGNUM;
3000 tdep->ymm16h_regnum = AMD64_YMM16H_REGNUM;
3001 }
3002
3003 if (tdesc_find_feature (tdesc, "org.gnu.gdb.i386.avx") != NULL)
3004 {
3005 tdep->ymmh_register_names = amd64_ymmh_names;
3006 tdep->num_ymm_regs = 16;
3007 tdep->ymm0h_regnum = AMD64_YMM0H_REGNUM;
3008 }
3009
3010 if (tdesc_find_feature (tdesc, "org.gnu.gdb.i386.mpx") != NULL)
3011 {
3012 tdep->mpx_register_names = amd64_mpx_names;
3013 tdep->bndcfgu_regnum = AMD64_BNDCFGU_REGNUM;
3014 tdep->bnd0r_regnum = AMD64_BND0R_REGNUM;
3015 }
3016
3017 tdep->num_byte_regs = 20;
3018 tdep->num_word_regs = 16;
3019 tdep->num_dword_regs = 16;
3020 /* Avoid wiring in the MMX registers for now. */
3021 tdep->num_mmx_regs = 0;
3022
3023 set_gdbarch_pseudo_register_read_value (gdbarch,
3024 amd64_pseudo_register_read_value);
3025 set_gdbarch_pseudo_register_write (gdbarch,
3026 amd64_pseudo_register_write);
3027 set_gdbarch_ax_pseudo_register_collect (gdbarch,
3028 amd64_ax_pseudo_register_collect);
3029
3030 set_tdesc_pseudo_register_name (gdbarch, amd64_pseudo_register_name);
3031
3032 /* AMD64 has an FPU and 16 SSE registers. */
3033 tdep->st0_regnum = AMD64_ST0_REGNUM;
3034 tdep->num_xmm_regs = 16;
3035
3036 /* This is what all the fuss is about. */
3037 set_gdbarch_long_bit (gdbarch, 64);
3038 set_gdbarch_long_long_bit (gdbarch, 64);
3039 set_gdbarch_ptr_bit (gdbarch, 64);
3040
3041 /* In contrast to the i386, on AMD64 a `long double' actually takes
3042 up 128 bits, even though it's still based on the i387 extended
3043 floating-point format which has only 80 significant bits. */
3044 set_gdbarch_long_double_bit (gdbarch, 128);
3045
3046 set_gdbarch_num_regs (gdbarch, AMD64_NUM_REGS);
3047
3048 /* Register numbers of various important registers. */
3049 set_gdbarch_sp_regnum (gdbarch, AMD64_RSP_REGNUM); /* %rsp */
3050 set_gdbarch_pc_regnum (gdbarch, AMD64_RIP_REGNUM); /* %rip */
3051 set_gdbarch_ps_regnum (gdbarch, AMD64_EFLAGS_REGNUM); /* %eflags */
3052 set_gdbarch_fp0_regnum (gdbarch, AMD64_ST0_REGNUM); /* %st(0) */
3053
3054 /* The "default" register numbering scheme for AMD64 is referred to
3055 as the "DWARF Register Number Mapping" in the System V psABI.
3056 The preferred debugging format for all known AMD64 targets is
3057 actually DWARF2, and GCC doesn't seem to support DWARF (that is
3058 DWARF-1), but we provide the same mapping just in case. This
3059 mapping is also used for stabs, which GCC does support. */
3060 set_gdbarch_stab_reg_to_regnum (gdbarch, amd64_dwarf_reg_to_regnum);
3061 set_gdbarch_dwarf2_reg_to_regnum (gdbarch, amd64_dwarf_reg_to_regnum);
3062
3063 /* We don't override SDB_REG_RO_REGNUM, since COFF doesn't seem to
3064 be in use on any of the supported AMD64 targets. */
3065
3066 /* Call dummy code. */
3067 set_gdbarch_push_dummy_call (gdbarch, amd64_push_dummy_call);
3068 set_gdbarch_frame_align (gdbarch, amd64_frame_align);
3069 set_gdbarch_frame_red_zone_size (gdbarch, 128);
3070
3071 set_gdbarch_convert_register_p (gdbarch, i387_convert_register_p);
3072 set_gdbarch_register_to_value (gdbarch, i387_register_to_value);
3073 set_gdbarch_value_to_register (gdbarch, i387_value_to_register);
3074
3075 set_gdbarch_return_value (gdbarch, amd64_return_value);
3076
3077 set_gdbarch_skip_prologue (gdbarch, amd64_skip_prologue);
3078
3079 tdep->record_regmap = amd64_record_regmap;
3080
3081 set_gdbarch_dummy_id (gdbarch, amd64_dummy_id);
3082
3083 /* Hook the function epilogue frame unwinder. This unwinder is
3084 appended to the list first, so that it supercedes the other
3085 unwinders in function epilogues. */
3086 frame_unwind_prepend_unwinder (gdbarch, &amd64_epilogue_frame_unwind);
3087
3088 /* Hook the prologue-based frame unwinders. */
3089 frame_unwind_append_unwinder (gdbarch, &amd64_sigtramp_frame_unwind);
3090 frame_unwind_append_unwinder (gdbarch, &amd64_frame_unwind);
3091 frame_base_set_default (gdbarch, &amd64_frame_base);
3092
3093 set_gdbarch_get_longjmp_target (gdbarch, amd64_get_longjmp_target);
3094
3095 set_gdbarch_relocate_instruction (gdbarch, amd64_relocate_instruction);
3096
3097 set_gdbarch_gen_return_address (gdbarch, amd64_gen_return_address);
3098
3099 /* SystemTap variables and functions. */
3100 set_gdbarch_stap_integer_prefixes (gdbarch, stap_integer_prefixes);
3101 set_gdbarch_stap_register_prefixes (gdbarch, stap_register_prefixes);
3102 set_gdbarch_stap_register_indirection_prefixes (gdbarch,
3103 stap_register_indirection_prefixes);
3104 set_gdbarch_stap_register_indirection_suffixes (gdbarch,
3105 stap_register_indirection_suffixes);
3106 set_gdbarch_stap_is_single_operand (gdbarch,
3107 i386_stap_is_single_operand);
3108 set_gdbarch_stap_parse_special_token (gdbarch,
3109 i386_stap_parse_special_token);
3110 set_gdbarch_insn_is_call (gdbarch, amd64_insn_is_call);
3111 set_gdbarch_insn_is_ret (gdbarch, amd64_insn_is_ret);
3112 set_gdbarch_insn_is_jump (gdbarch, amd64_insn_is_jump);
3113 }
3114 \f
3115
3116 static struct type *
3117 amd64_x32_pseudo_register_type (struct gdbarch *gdbarch, int regnum)
3118 {
3119 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3120
3121 switch (regnum - tdep->eax_regnum)
3122 {
3123 case AMD64_RBP_REGNUM: /* %ebp */
3124 case AMD64_RSP_REGNUM: /* %esp */
3125 return builtin_type (gdbarch)->builtin_data_ptr;
3126 case AMD64_RIP_REGNUM: /* %eip */
3127 return builtin_type (gdbarch)->builtin_func_ptr;
3128 }
3129
3130 return i386_pseudo_register_type (gdbarch, regnum);
3131 }
3132
3133 void
3134 amd64_x32_init_abi (struct gdbarch_info info, struct gdbarch *gdbarch)
3135 {
3136 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3137 const struct target_desc *tdesc = info.target_desc;
3138
3139 amd64_init_abi (info, gdbarch);
3140
3141 if (! tdesc_has_registers (tdesc))
3142 tdesc = tdesc_x32;
3143 tdep->tdesc = tdesc;
3144
3145 tdep->num_dword_regs = 17;
3146 set_tdesc_pseudo_register_type (gdbarch, amd64_x32_pseudo_register_type);
3147
3148 set_gdbarch_long_bit (gdbarch, 32);
3149 set_gdbarch_ptr_bit (gdbarch, 32);
3150 }
3151
3152 /* Return the target description for a specified XSAVE feature mask. */
3153
3154 const struct target_desc *
3155 amd64_target_description (uint64_t xcr0)
3156 {
3157 switch (xcr0 & X86_XSTATE_ALL_MASK)
3158 {
3159 case X86_XSTATE_MPX_AVX512_MASK:
3160 case X86_XSTATE_AVX512_MASK:
3161 return tdesc_amd64_avx512;
3162 case X86_XSTATE_MPX_MASK:
3163 return tdesc_amd64_mpx;
3164 case X86_XSTATE_AVX_MPX_MASK:
3165 return tdesc_amd64_avx_mpx;
3166 case X86_XSTATE_AVX_MASK:
3167 return tdesc_amd64_avx;
3168 default:
3169 return tdesc_amd64;
3170 }
3171 }
3172
3173 /* Provide a prototype to silence -Wmissing-prototypes. */
3174 void _initialize_amd64_tdep (void);
3175
3176 void
3177 _initialize_amd64_tdep (void)
3178 {
3179 initialize_tdesc_amd64 ();
3180 initialize_tdesc_amd64_avx ();
3181 initialize_tdesc_amd64_mpx ();
3182 initialize_tdesc_amd64_avx_mpx ();
3183 initialize_tdesc_amd64_avx512 ();
3184
3185 initialize_tdesc_x32 ();
3186 initialize_tdesc_x32_avx ();
3187 initialize_tdesc_x32_avx512 ();
3188 }
3189 \f
3190
3191 /* The 64-bit FXSAVE format differs from the 32-bit format in the
3192 sense that the instruction pointer and data pointer are simply
3193 64-bit offsets into the code segment and the data segment instead
3194 of a selector offset pair. The functions below store the upper 32
3195 bits of these pointers (instead of just the 16-bits of the segment
3196 selector). */
3197
3198 /* Fill register REGNUM in REGCACHE with the appropriate
3199 floating-point or SSE register value from *FXSAVE. If REGNUM is
3200 -1, do this for all registers. This function masks off any of the
3201 reserved bits in *FXSAVE. */
3202
3203 void
3204 amd64_supply_fxsave (struct regcache *regcache, int regnum,
3205 const void *fxsave)
3206 {
3207 struct gdbarch *gdbarch = get_regcache_arch (regcache);
3208 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3209
3210 i387_supply_fxsave (regcache, regnum, fxsave);
3211
3212 if (fxsave
3213 && gdbarch_bfd_arch_info (gdbarch)->bits_per_word == 64)
3214 {
3215 const gdb_byte *regs = (const gdb_byte *) fxsave;
3216
3217 if (regnum == -1 || regnum == I387_FISEG_REGNUM (tdep))
3218 regcache_raw_supply (regcache, I387_FISEG_REGNUM (tdep), regs + 12);
3219 if (regnum == -1 || regnum == I387_FOSEG_REGNUM (tdep))
3220 regcache_raw_supply (regcache, I387_FOSEG_REGNUM (tdep), regs + 20);
3221 }
3222 }
3223
3224 /* Similar to amd64_supply_fxsave, but use XSAVE extended state. */
3225
3226 void
3227 amd64_supply_xsave (struct regcache *regcache, int regnum,
3228 const void *xsave)
3229 {
3230 struct gdbarch *gdbarch = get_regcache_arch (regcache);
3231 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3232
3233 i387_supply_xsave (regcache, regnum, xsave);
3234
3235 if (xsave
3236 && gdbarch_bfd_arch_info (gdbarch)->bits_per_word == 64)
3237 {
3238 const gdb_byte *regs = (const gdb_byte *) xsave;
3239
3240 if (regnum == -1 || regnum == I387_FISEG_REGNUM (tdep))
3241 regcache_raw_supply (regcache, I387_FISEG_REGNUM (tdep),
3242 regs + 12);
3243 if (regnum == -1 || regnum == I387_FOSEG_REGNUM (tdep))
3244 regcache_raw_supply (regcache, I387_FOSEG_REGNUM (tdep),
3245 regs + 20);
3246 }
3247 }
3248
3249 /* Fill register REGNUM (if it is a floating-point or SSE register) in
3250 *FXSAVE with the value from REGCACHE. If REGNUM is -1, do this for
3251 all registers. This function doesn't touch any of the reserved
3252 bits in *FXSAVE. */
3253
3254 void
3255 amd64_collect_fxsave (const struct regcache *regcache, int regnum,
3256 void *fxsave)
3257 {
3258 struct gdbarch *gdbarch = get_regcache_arch (regcache);
3259 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3260 gdb_byte *regs = (gdb_byte *) fxsave;
3261
3262 i387_collect_fxsave (regcache, regnum, fxsave);
3263
3264 if (gdbarch_bfd_arch_info (gdbarch)->bits_per_word == 64)
3265 {
3266 if (regnum == -1 || regnum == I387_FISEG_REGNUM (tdep))
3267 regcache_raw_collect (regcache, I387_FISEG_REGNUM (tdep), regs + 12);
3268 if (regnum == -1 || regnum == I387_FOSEG_REGNUM (tdep))
3269 regcache_raw_collect (regcache, I387_FOSEG_REGNUM (tdep), regs + 20);
3270 }
3271 }
3272
3273 /* Similar to amd64_collect_fxsave, but use XSAVE extended state. */
3274
3275 void
3276 amd64_collect_xsave (const struct regcache *regcache, int regnum,
3277 void *xsave, int gcore)
3278 {
3279 struct gdbarch *gdbarch = get_regcache_arch (regcache);
3280 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3281 gdb_byte *regs = (gdb_byte *) xsave;
3282
3283 i387_collect_xsave (regcache, regnum, xsave, gcore);
3284
3285 if (gdbarch_bfd_arch_info (gdbarch)->bits_per_word == 64)
3286 {
3287 if (regnum == -1 || regnum == I387_FISEG_REGNUM (tdep))
3288 regcache_raw_collect (regcache, I387_FISEG_REGNUM (tdep),
3289 regs + 12);
3290 if (regnum == -1 || regnum == I387_FOSEG_REGNUM (tdep))
3291 regcache_raw_collect (regcache, I387_FOSEG_REGNUM (tdep),
3292 regs + 20);
3293 }
3294 }
This page took 0.143391 seconds and 4 git commands to generate.