2008-08-09 Xuepeng Guo <xuepeng.guo@intel.com>
[deliverable/binutils-gdb.git] / gdb / amd64-tdep.c
1 /* Target-dependent code for AMD64.
2
3 Copyright (C) 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008
4 Free Software Foundation, Inc.
5
6 Contributed by Jiri Smid, SuSE Labs.
7
8 This file is part of GDB.
9
10 This program is free software; you can redistribute it and/or modify
11 it under the terms of the GNU General Public License as published by
12 the Free Software Foundation; either version 3 of the License, or
13 (at your option) any later version.
14
15 This program is distributed in the hope that it will be useful,
16 but WITHOUT ANY WARRANTY; without even the implied warranty of
17 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
18 GNU General Public License for more details.
19
20 You should have received a copy of the GNU General Public License
21 along with this program. If not, see <http://www.gnu.org/licenses/>. */
22
23 #include "defs.h"
24 #include "arch-utils.h"
25 #include "block.h"
26 #include "dummy-frame.h"
27 #include "frame.h"
28 #include "frame-base.h"
29 #include "frame-unwind.h"
30 #include "inferior.h"
31 #include "gdbcmd.h"
32 #include "gdbcore.h"
33 #include "objfiles.h"
34 #include "regcache.h"
35 #include "regset.h"
36 #include "symfile.h"
37
38 #include "gdb_assert.h"
39
40 #include "amd64-tdep.h"
41 #include "i387-tdep.h"
42
43 /* Note that the AMD64 architecture was previously known as x86-64.
44 The latter is (forever) engraved into the canonical system name as
45 returned by config.guess, and used as the name for the AMD64 port
46 of GNU/Linux. The BSD's have renamed their ports to amd64; they
47 don't like to shout. For GDB we prefer the amd64_-prefix over the
48 x86_64_-prefix since it's so much easier to type. */
49
50 /* Register information. */
51
52 static const char *amd64_register_names[] =
53 {
54 "rax", "rbx", "rcx", "rdx", "rsi", "rdi", "rbp", "rsp",
55
56 /* %r8 is indeed register number 8. */
57 "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15",
58 "rip", "eflags", "cs", "ss", "ds", "es", "fs", "gs",
59
60 /* %st0 is register number 24. */
61 "st0", "st1", "st2", "st3", "st4", "st5", "st6", "st7",
62 "fctrl", "fstat", "ftag", "fiseg", "fioff", "foseg", "fooff", "fop",
63
64 /* %xmm0 is register number 40. */
65 "xmm0", "xmm1", "xmm2", "xmm3", "xmm4", "xmm5", "xmm6", "xmm7",
66 "xmm8", "xmm9", "xmm10", "xmm11", "xmm12", "xmm13", "xmm14", "xmm15",
67 "mxcsr",
68 };
69
70 /* Total number of registers. */
71 #define AMD64_NUM_REGS ARRAY_SIZE (amd64_register_names)
72
73 /* Return the name of register REGNUM. */
74
75 const char *
76 amd64_register_name (struct gdbarch *gdbarch, int regnum)
77 {
78 if (regnum >= 0 && regnum < AMD64_NUM_REGS)
79 return amd64_register_names[regnum];
80
81 return NULL;
82 }
83
84 /* Return the GDB type object for the "standard" data type of data in
85 register REGNUM. */
86
87 struct type *
88 amd64_register_type (struct gdbarch *gdbarch, int regnum)
89 {
90 if (regnum >= AMD64_RAX_REGNUM && regnum <= AMD64_RDI_REGNUM)
91 return builtin_type_int64;
92 if (regnum == AMD64_RBP_REGNUM || regnum == AMD64_RSP_REGNUM)
93 return builtin_type_void_data_ptr;
94 if (regnum >= AMD64_R8_REGNUM && regnum <= AMD64_R15_REGNUM)
95 return builtin_type_int64;
96 if (regnum == AMD64_RIP_REGNUM)
97 return builtin_type_void_func_ptr;
98 if (regnum == AMD64_EFLAGS_REGNUM)
99 return i386_eflags_type;
100 if (regnum >= AMD64_CS_REGNUM && regnum <= AMD64_GS_REGNUM)
101 return builtin_type_int32;
102 if (regnum >= AMD64_ST0_REGNUM && regnum <= AMD64_ST0_REGNUM + 7)
103 return builtin_type_i387_ext;
104 if (regnum >= AMD64_FCTRL_REGNUM && regnum <= AMD64_FCTRL_REGNUM + 7)
105 return builtin_type_int32;
106 if (regnum >= AMD64_XMM0_REGNUM && regnum <= AMD64_XMM0_REGNUM + 15)
107 return i386_sse_type (gdbarch);
108 if (regnum == AMD64_MXCSR_REGNUM)
109 return i386_mxcsr_type;
110
111 internal_error (__FILE__, __LINE__, _("invalid regnum"));
112 }
113
114 /* DWARF Register Number Mapping as defined in the System V psABI,
115 section 3.6. */
116
117 static int amd64_dwarf_regmap[] =
118 {
119 /* General Purpose Registers RAX, RDX, RCX, RBX, RSI, RDI. */
120 AMD64_RAX_REGNUM, AMD64_RDX_REGNUM,
121 AMD64_RCX_REGNUM, AMD64_RBX_REGNUM,
122 AMD64_RSI_REGNUM, AMD64_RDI_REGNUM,
123
124 /* Frame Pointer Register RBP. */
125 AMD64_RBP_REGNUM,
126
127 /* Stack Pointer Register RSP. */
128 AMD64_RSP_REGNUM,
129
130 /* Extended Integer Registers 8 - 15. */
131 8, 9, 10, 11, 12, 13, 14, 15,
132
133 /* Return Address RA. Mapped to RIP. */
134 AMD64_RIP_REGNUM,
135
136 /* SSE Registers 0 - 7. */
137 AMD64_XMM0_REGNUM + 0, AMD64_XMM1_REGNUM,
138 AMD64_XMM0_REGNUM + 2, AMD64_XMM0_REGNUM + 3,
139 AMD64_XMM0_REGNUM + 4, AMD64_XMM0_REGNUM + 5,
140 AMD64_XMM0_REGNUM + 6, AMD64_XMM0_REGNUM + 7,
141
142 /* Extended SSE Registers 8 - 15. */
143 AMD64_XMM0_REGNUM + 8, AMD64_XMM0_REGNUM + 9,
144 AMD64_XMM0_REGNUM + 10, AMD64_XMM0_REGNUM + 11,
145 AMD64_XMM0_REGNUM + 12, AMD64_XMM0_REGNUM + 13,
146 AMD64_XMM0_REGNUM + 14, AMD64_XMM0_REGNUM + 15,
147
148 /* Floating Point Registers 0-7. */
149 AMD64_ST0_REGNUM + 0, AMD64_ST0_REGNUM + 1,
150 AMD64_ST0_REGNUM + 2, AMD64_ST0_REGNUM + 3,
151 AMD64_ST0_REGNUM + 4, AMD64_ST0_REGNUM + 5,
152 AMD64_ST0_REGNUM + 6, AMD64_ST0_REGNUM + 7,
153
154 /* Control and Status Flags Register. */
155 AMD64_EFLAGS_REGNUM,
156
157 /* Selector Registers. */
158 AMD64_ES_REGNUM,
159 AMD64_CS_REGNUM,
160 AMD64_SS_REGNUM,
161 AMD64_DS_REGNUM,
162 AMD64_FS_REGNUM,
163 AMD64_GS_REGNUM,
164 -1,
165 -1,
166
167 /* Segment Base Address Registers. */
168 -1,
169 -1,
170 -1,
171 -1,
172
173 /* Special Selector Registers. */
174 -1,
175 -1,
176
177 /* Floating Point Control Registers. */
178 AMD64_MXCSR_REGNUM,
179 AMD64_FCTRL_REGNUM,
180 AMD64_FSTAT_REGNUM
181 };
182
183 static const int amd64_dwarf_regmap_len =
184 (sizeof (amd64_dwarf_regmap) / sizeof (amd64_dwarf_regmap[0]));
185
186 /* Convert DWARF register number REG to the appropriate register
187 number used by GDB. */
188
189 static int
190 amd64_dwarf_reg_to_regnum (struct gdbarch *gdbarch, int reg)
191 {
192 int regnum = -1;
193
194 if (reg >= 0 && reg < amd64_dwarf_regmap_len)
195 regnum = amd64_dwarf_regmap[reg];
196
197 if (regnum == -1)
198 warning (_("Unmapped DWARF Register #%d encountered."), reg);
199
200 return regnum;
201 }
202
203 \f
204
205 /* Register classes as defined in the psABI. */
206
207 enum amd64_reg_class
208 {
209 AMD64_INTEGER,
210 AMD64_SSE,
211 AMD64_SSEUP,
212 AMD64_X87,
213 AMD64_X87UP,
214 AMD64_COMPLEX_X87,
215 AMD64_NO_CLASS,
216 AMD64_MEMORY
217 };
218
219 /* Return the union class of CLASS1 and CLASS2. See the psABI for
220 details. */
221
222 static enum amd64_reg_class
223 amd64_merge_classes (enum amd64_reg_class class1, enum amd64_reg_class class2)
224 {
225 /* Rule (a): If both classes are equal, this is the resulting class. */
226 if (class1 == class2)
227 return class1;
228
229 /* Rule (b): If one of the classes is NO_CLASS, the resulting class
230 is the other class. */
231 if (class1 == AMD64_NO_CLASS)
232 return class2;
233 if (class2 == AMD64_NO_CLASS)
234 return class1;
235
236 /* Rule (c): If one of the classes is MEMORY, the result is MEMORY. */
237 if (class1 == AMD64_MEMORY || class2 == AMD64_MEMORY)
238 return AMD64_MEMORY;
239
240 /* Rule (d): If one of the classes is INTEGER, the result is INTEGER. */
241 if (class1 == AMD64_INTEGER || class2 == AMD64_INTEGER)
242 return AMD64_INTEGER;
243
244 /* Rule (e): If one of the classes is X87, X87UP, COMPLEX_X87 class,
245 MEMORY is used as class. */
246 if (class1 == AMD64_X87 || class1 == AMD64_X87UP
247 || class1 == AMD64_COMPLEX_X87 || class2 == AMD64_X87
248 || class2 == AMD64_X87UP || class2 == AMD64_COMPLEX_X87)
249 return AMD64_MEMORY;
250
251 /* Rule (f): Otherwise class SSE is used. */
252 return AMD64_SSE;
253 }
254
255 static void amd64_classify (struct type *type, enum amd64_reg_class class[2]);
256
257 /* Return non-zero if TYPE is a non-POD structure or union type. */
258
259 static int
260 amd64_non_pod_p (struct type *type)
261 {
262 /* ??? A class with a base class certainly isn't POD, but does this
263 catch all non-POD structure types? */
264 if (TYPE_CODE (type) == TYPE_CODE_STRUCT && TYPE_N_BASECLASSES (type) > 0)
265 return 1;
266
267 return 0;
268 }
269
270 /* Classify TYPE according to the rules for aggregate (structures and
271 arrays) and union types, and store the result in CLASS. */
272
273 static void
274 amd64_classify_aggregate (struct type *type, enum amd64_reg_class class[2])
275 {
276 int len = TYPE_LENGTH (type);
277
278 /* 1. If the size of an object is larger than two eightbytes, or in
279 C++, is a non-POD structure or union type, or contains
280 unaligned fields, it has class memory. */
281 if (len > 16 || amd64_non_pod_p (type))
282 {
283 class[0] = class[1] = AMD64_MEMORY;
284 return;
285 }
286
287 /* 2. Both eightbytes get initialized to class NO_CLASS. */
288 class[0] = class[1] = AMD64_NO_CLASS;
289
290 /* 3. Each field of an object is classified recursively so that
291 always two fields are considered. The resulting class is
292 calculated according to the classes of the fields in the
293 eightbyte: */
294
295 if (TYPE_CODE (type) == TYPE_CODE_ARRAY)
296 {
297 struct type *subtype = check_typedef (TYPE_TARGET_TYPE (type));
298
299 /* All fields in an array have the same type. */
300 amd64_classify (subtype, class);
301 if (len > 8 && class[1] == AMD64_NO_CLASS)
302 class[1] = class[0];
303 }
304 else
305 {
306 int i;
307
308 /* Structure or union. */
309 gdb_assert (TYPE_CODE (type) == TYPE_CODE_STRUCT
310 || TYPE_CODE (type) == TYPE_CODE_UNION);
311
312 for (i = 0; i < TYPE_NFIELDS (type); i++)
313 {
314 struct type *subtype = check_typedef (TYPE_FIELD_TYPE (type, i));
315 int pos = TYPE_FIELD_BITPOS (type, i) / 64;
316 enum amd64_reg_class subclass[2];
317
318 /* Ignore static fields. */
319 if (TYPE_FIELD_STATIC (type, i))
320 continue;
321
322 gdb_assert (pos == 0 || pos == 1);
323
324 amd64_classify (subtype, subclass);
325 class[pos] = amd64_merge_classes (class[pos], subclass[0]);
326 if (pos == 0)
327 class[1] = amd64_merge_classes (class[1], subclass[1]);
328 }
329 }
330
331 /* 4. Then a post merger cleanup is done: */
332
333 /* Rule (a): If one of the classes is MEMORY, the whole argument is
334 passed in memory. */
335 if (class[0] == AMD64_MEMORY || class[1] == AMD64_MEMORY)
336 class[0] = class[1] = AMD64_MEMORY;
337
338 /* Rule (b): If SSEUP is not preceeded by SSE, it is converted to
339 SSE. */
340 if (class[0] == AMD64_SSEUP)
341 class[0] = AMD64_SSE;
342 if (class[1] == AMD64_SSEUP && class[0] != AMD64_SSE)
343 class[1] = AMD64_SSE;
344 }
345
346 /* Classify TYPE, and store the result in CLASS. */
347
348 static void
349 amd64_classify (struct type *type, enum amd64_reg_class class[2])
350 {
351 enum type_code code = TYPE_CODE (type);
352 int len = TYPE_LENGTH (type);
353
354 class[0] = class[1] = AMD64_NO_CLASS;
355
356 /* Arguments of types (signed and unsigned) _Bool, char, short, int,
357 long, long long, and pointers are in the INTEGER class. Similarly,
358 range types, used by languages such as Ada, are also in the INTEGER
359 class. */
360 if ((code == TYPE_CODE_INT || code == TYPE_CODE_ENUM
361 || code == TYPE_CODE_BOOL || code == TYPE_CODE_RANGE
362 || code == TYPE_CODE_CHAR
363 || code == TYPE_CODE_PTR || code == TYPE_CODE_REF)
364 && (len == 1 || len == 2 || len == 4 || len == 8))
365 class[0] = AMD64_INTEGER;
366
367 /* Arguments of types float, double, _Decimal32, _Decimal64 and __m64
368 are in class SSE. */
369 else if ((code == TYPE_CODE_FLT || code == TYPE_CODE_DECFLOAT)
370 && (len == 4 || len == 8))
371 /* FIXME: __m64 . */
372 class[0] = AMD64_SSE;
373
374 /* Arguments of types __float128, _Decimal128 and __m128 are split into
375 two halves. The least significant ones belong to class SSE, the most
376 significant one to class SSEUP. */
377 else if (code == TYPE_CODE_DECFLOAT && len == 16)
378 /* FIXME: __float128, __m128. */
379 class[0] = AMD64_SSE, class[1] = AMD64_SSEUP;
380
381 /* The 64-bit mantissa of arguments of type long double belongs to
382 class X87, the 16-bit exponent plus 6 bytes of padding belongs to
383 class X87UP. */
384 else if (code == TYPE_CODE_FLT && len == 16)
385 /* Class X87 and X87UP. */
386 class[0] = AMD64_X87, class[1] = AMD64_X87UP;
387
388 /* Aggregates. */
389 else if (code == TYPE_CODE_ARRAY || code == TYPE_CODE_STRUCT
390 || code == TYPE_CODE_UNION)
391 amd64_classify_aggregate (type, class);
392 }
393
394 static enum return_value_convention
395 amd64_return_value (struct gdbarch *gdbarch, struct type *func_type,
396 struct type *type, struct regcache *regcache,
397 gdb_byte *readbuf, const gdb_byte *writebuf)
398 {
399 enum amd64_reg_class class[2];
400 int len = TYPE_LENGTH (type);
401 static int integer_regnum[] = { AMD64_RAX_REGNUM, AMD64_RDX_REGNUM };
402 static int sse_regnum[] = { AMD64_XMM0_REGNUM, AMD64_XMM1_REGNUM };
403 int integer_reg = 0;
404 int sse_reg = 0;
405 int i;
406
407 gdb_assert (!(readbuf && writebuf));
408
409 /* 1. Classify the return type with the classification algorithm. */
410 amd64_classify (type, class);
411
412 /* 2. If the type has class MEMORY, then the caller provides space
413 for the return value and passes the address of this storage in
414 %rdi as if it were the first argument to the function. In effect,
415 this address becomes a hidden first argument.
416
417 On return %rax will contain the address that has been passed in
418 by the caller in %rdi. */
419 if (class[0] == AMD64_MEMORY)
420 {
421 /* As indicated by the comment above, the ABI guarantees that we
422 can always find the return value just after the function has
423 returned. */
424
425 if (readbuf)
426 {
427 ULONGEST addr;
428
429 regcache_raw_read_unsigned (regcache, AMD64_RAX_REGNUM, &addr);
430 read_memory (addr, readbuf, TYPE_LENGTH (type));
431 }
432
433 return RETURN_VALUE_ABI_RETURNS_ADDRESS;
434 }
435
436 gdb_assert (class[1] != AMD64_MEMORY);
437 gdb_assert (len <= 16);
438
439 for (i = 0; len > 0; i++, len -= 8)
440 {
441 int regnum = -1;
442 int offset = 0;
443
444 switch (class[i])
445 {
446 case AMD64_INTEGER:
447 /* 3. If the class is INTEGER, the next available register
448 of the sequence %rax, %rdx is used. */
449 regnum = integer_regnum[integer_reg++];
450 break;
451
452 case AMD64_SSE:
453 /* 4. If the class is SSE, the next available SSE register
454 of the sequence %xmm0, %xmm1 is used. */
455 regnum = sse_regnum[sse_reg++];
456 break;
457
458 case AMD64_SSEUP:
459 /* 5. If the class is SSEUP, the eightbyte is passed in the
460 upper half of the last used SSE register. */
461 gdb_assert (sse_reg > 0);
462 regnum = sse_regnum[sse_reg - 1];
463 offset = 8;
464 break;
465
466 case AMD64_X87:
467 /* 6. If the class is X87, the value is returned on the X87
468 stack in %st0 as 80-bit x87 number. */
469 regnum = AMD64_ST0_REGNUM;
470 if (writebuf)
471 i387_return_value (gdbarch, regcache);
472 break;
473
474 case AMD64_X87UP:
475 /* 7. If the class is X87UP, the value is returned together
476 with the previous X87 value in %st0. */
477 gdb_assert (i > 0 && class[0] == AMD64_X87);
478 regnum = AMD64_ST0_REGNUM;
479 offset = 8;
480 len = 2;
481 break;
482
483 case AMD64_NO_CLASS:
484 continue;
485
486 default:
487 gdb_assert (!"Unexpected register class.");
488 }
489
490 gdb_assert (regnum != -1);
491
492 if (readbuf)
493 regcache_raw_read_part (regcache, regnum, offset, min (len, 8),
494 readbuf + i * 8);
495 if (writebuf)
496 regcache_raw_write_part (regcache, regnum, offset, min (len, 8),
497 writebuf + i * 8);
498 }
499
500 return RETURN_VALUE_REGISTER_CONVENTION;
501 }
502 \f
503
504 static CORE_ADDR
505 amd64_push_arguments (struct regcache *regcache, int nargs,
506 struct value **args, CORE_ADDR sp, int struct_return)
507 {
508 static int integer_regnum[] =
509 {
510 AMD64_RDI_REGNUM, /* %rdi */
511 AMD64_RSI_REGNUM, /* %rsi */
512 AMD64_RDX_REGNUM, /* %rdx */
513 AMD64_RCX_REGNUM, /* %rcx */
514 8, /* %r8 */
515 9 /* %r9 */
516 };
517 static int sse_regnum[] =
518 {
519 /* %xmm0 ... %xmm7 */
520 AMD64_XMM0_REGNUM + 0, AMD64_XMM1_REGNUM,
521 AMD64_XMM0_REGNUM + 2, AMD64_XMM0_REGNUM + 3,
522 AMD64_XMM0_REGNUM + 4, AMD64_XMM0_REGNUM + 5,
523 AMD64_XMM0_REGNUM + 6, AMD64_XMM0_REGNUM + 7,
524 };
525 struct value **stack_args = alloca (nargs * sizeof (struct value *));
526 int num_stack_args = 0;
527 int num_elements = 0;
528 int element = 0;
529 int integer_reg = 0;
530 int sse_reg = 0;
531 int i;
532
533 /* Reserve a register for the "hidden" argument. */
534 if (struct_return)
535 integer_reg++;
536
537 for (i = 0; i < nargs; i++)
538 {
539 struct type *type = value_type (args[i]);
540 int len = TYPE_LENGTH (type);
541 enum amd64_reg_class class[2];
542 int needed_integer_regs = 0;
543 int needed_sse_regs = 0;
544 int j;
545
546 /* Classify argument. */
547 amd64_classify (type, class);
548
549 /* Calculate the number of integer and SSE registers needed for
550 this argument. */
551 for (j = 0; j < 2; j++)
552 {
553 if (class[j] == AMD64_INTEGER)
554 needed_integer_regs++;
555 else if (class[j] == AMD64_SSE)
556 needed_sse_regs++;
557 }
558
559 /* Check whether enough registers are available, and if the
560 argument should be passed in registers at all. */
561 if (integer_reg + needed_integer_regs > ARRAY_SIZE (integer_regnum)
562 || sse_reg + needed_sse_regs > ARRAY_SIZE (sse_regnum)
563 || (needed_integer_regs == 0 && needed_sse_regs == 0))
564 {
565 /* The argument will be passed on the stack. */
566 num_elements += ((len + 7) / 8);
567 stack_args[num_stack_args++] = args[i];
568 }
569 else
570 {
571 /* The argument will be passed in registers. */
572 const gdb_byte *valbuf = value_contents (args[i]);
573 gdb_byte buf[8];
574
575 gdb_assert (len <= 16);
576
577 for (j = 0; len > 0; j++, len -= 8)
578 {
579 int regnum = -1;
580 int offset = 0;
581
582 switch (class[j])
583 {
584 case AMD64_INTEGER:
585 regnum = integer_regnum[integer_reg++];
586 break;
587
588 case AMD64_SSE:
589 regnum = sse_regnum[sse_reg++];
590 break;
591
592 case AMD64_SSEUP:
593 gdb_assert (sse_reg > 0);
594 regnum = sse_regnum[sse_reg - 1];
595 offset = 8;
596 break;
597
598 default:
599 gdb_assert (!"Unexpected register class.");
600 }
601
602 gdb_assert (regnum != -1);
603 memset (buf, 0, sizeof buf);
604 memcpy (buf, valbuf + j * 8, min (len, 8));
605 regcache_raw_write_part (regcache, regnum, offset, 8, buf);
606 }
607 }
608 }
609
610 /* Allocate space for the arguments on the stack. */
611 sp -= num_elements * 8;
612
613 /* The psABI says that "The end of the input argument area shall be
614 aligned on a 16 byte boundary." */
615 sp &= ~0xf;
616
617 /* Write out the arguments to the stack. */
618 for (i = 0; i < num_stack_args; i++)
619 {
620 struct type *type = value_type (stack_args[i]);
621 const gdb_byte *valbuf = value_contents (stack_args[i]);
622 int len = TYPE_LENGTH (type);
623
624 write_memory (sp + element * 8, valbuf, len);
625 element += ((len + 7) / 8);
626 }
627
628 /* The psABI says that "For calls that may call functions that use
629 varargs or stdargs (prototype-less calls or calls to functions
630 containing ellipsis (...) in the declaration) %al is used as
631 hidden argument to specify the number of SSE registers used. */
632 regcache_raw_write_unsigned (regcache, AMD64_RAX_REGNUM, sse_reg);
633 return sp;
634 }
635
636 static CORE_ADDR
637 amd64_push_dummy_call (struct gdbarch *gdbarch, struct value *function,
638 struct regcache *regcache, CORE_ADDR bp_addr,
639 int nargs, struct value **args, CORE_ADDR sp,
640 int struct_return, CORE_ADDR struct_addr)
641 {
642 gdb_byte buf[8];
643
644 /* Pass arguments. */
645 sp = amd64_push_arguments (regcache, nargs, args, sp, struct_return);
646
647 /* Pass "hidden" argument". */
648 if (struct_return)
649 {
650 store_unsigned_integer (buf, 8, struct_addr);
651 regcache_cooked_write (regcache, AMD64_RDI_REGNUM, buf);
652 }
653
654 /* Store return address. */
655 sp -= 8;
656 store_unsigned_integer (buf, 8, bp_addr);
657 write_memory (sp, buf, 8);
658
659 /* Finally, update the stack pointer... */
660 store_unsigned_integer (buf, 8, sp);
661 regcache_cooked_write (regcache, AMD64_RSP_REGNUM, buf);
662
663 /* ...and fake a frame pointer. */
664 regcache_cooked_write (regcache, AMD64_RBP_REGNUM, buf);
665
666 return sp + 16;
667 }
668 \f
669
670 /* The maximum number of saved registers. This should include %rip. */
671 #define AMD64_NUM_SAVED_REGS AMD64_NUM_GREGS
672
673 struct amd64_frame_cache
674 {
675 /* Base address. */
676 CORE_ADDR base;
677 CORE_ADDR sp_offset;
678 CORE_ADDR pc;
679
680 /* Saved registers. */
681 CORE_ADDR saved_regs[AMD64_NUM_SAVED_REGS];
682 CORE_ADDR saved_sp;
683 int saved_sp_reg;
684
685 /* Do we have a frame? */
686 int frameless_p;
687 };
688
689 /* Initialize a frame cache. */
690
691 static void
692 amd64_init_frame_cache (struct amd64_frame_cache *cache)
693 {
694 int i;
695
696 /* Base address. */
697 cache->base = 0;
698 cache->sp_offset = -8;
699 cache->pc = 0;
700
701 /* Saved registers. We initialize these to -1 since zero is a valid
702 offset (that's where %rbp is supposed to be stored). */
703 for (i = 0; i < AMD64_NUM_SAVED_REGS; i++)
704 cache->saved_regs[i] = -1;
705 cache->saved_sp = 0;
706 cache->saved_sp_reg = -1;
707
708 /* Frameless until proven otherwise. */
709 cache->frameless_p = 1;
710 }
711
712 /* Allocate and initialize a frame cache. */
713
714 static struct amd64_frame_cache *
715 amd64_alloc_frame_cache (void)
716 {
717 struct amd64_frame_cache *cache;
718
719 cache = FRAME_OBSTACK_ZALLOC (struct amd64_frame_cache);
720 amd64_init_frame_cache (cache);
721 return cache;
722 }
723
724 /* GCC 4.4 and later, can put code in the prologue to realign the
725 stack pointer. Check whether PC points to such code, and update
726 CACHE accordingly. Return the first instruction after the code
727 sequence or CURRENT_PC, whichever is smaller. If we don't
728 recognize the code, return PC. */
729
730 static CORE_ADDR
731 amd64_analyze_stack_align (CORE_ADDR pc, CORE_ADDR current_pc,
732 struct amd64_frame_cache *cache)
733 {
734 /* There are 2 code sequences to re-align stack before the frame
735 gets set up:
736
737 1. Use a caller-saved saved register:
738
739 leaq 8(%rsp), %reg
740 andq $-XXX, %rsp
741 pushq -8(%reg)
742
743 2. Use a callee-saved saved register:
744
745 pushq %reg
746 leaq 16(%rsp), %reg
747 andq $-XXX, %rsp
748 pushq -8(%reg)
749
750 "andq $-XXX, %rsp" can be either 4 bytes or 7 bytes:
751
752 0x48 0x83 0xe4 0xf0 andq $-16, %rsp
753 0x48 0x81 0xe4 0x00 0xff 0xff 0xff andq $-256, %rsp
754 */
755
756 gdb_byte buf[18];
757 int reg, r;
758 int offset, offset_and;
759 static int regnums[16] = {
760 AMD64_RAX_REGNUM, /* %rax */
761 AMD64_RCX_REGNUM, /* %rcx */
762 AMD64_RDX_REGNUM, /* %rdx */
763 AMD64_RBX_REGNUM, /* %rbx */
764 AMD64_RSP_REGNUM, /* %rsp */
765 AMD64_RBP_REGNUM, /* %rbp */
766 AMD64_RSI_REGNUM, /* %rsi */
767 AMD64_RDI_REGNUM, /* %rdi */
768 AMD64_R8_REGNUM, /* %r8 */
769 AMD64_R9_REGNUM, /* %r9 */
770 AMD64_R10_REGNUM, /* %r10 */
771 AMD64_R11_REGNUM, /* %r11 */
772 AMD64_R12_REGNUM, /* %r12 */
773 AMD64_R13_REGNUM, /* %r13 */
774 AMD64_R14_REGNUM, /* %r14 */
775 AMD64_R15_REGNUM, /* %r15 */
776 };
777
778 if (target_read_memory (pc, buf, sizeof buf))
779 return pc;
780
781 /* Check caller-saved saved register. The first instruction has
782 to be "leaq 8(%rsp), %reg". */
783 if ((buf[0] & 0xfb) == 0x48
784 && buf[1] == 0x8d
785 && buf[3] == 0x24
786 && buf[4] == 0x8)
787 {
788 /* MOD must be binary 10 and R/M must be binary 100. */
789 if ((buf[2] & 0xc7) != 0x44)
790 return pc;
791
792 /* REG has register number. */
793 reg = (buf[2] >> 3) & 7;
794
795 /* Check the REX.R bit. */
796 if (buf[0] == 0x4c)
797 reg += 8;
798
799 offset = 5;
800 }
801 else
802 {
803 /* Check callee-saved saved register. The first instruction
804 has to be "pushq %reg". */
805 reg = 0;
806 if ((buf[0] & 0xf8) == 0x50)
807 offset = 0;
808 else if ((buf[0] & 0xf6) == 0x40
809 && (buf[1] & 0xf8) == 0x50)
810 {
811 /* Check the REX.B bit. */
812 if ((buf[0] & 1) != 0)
813 reg = 8;
814
815 offset = 1;
816 }
817 else
818 return pc;
819
820 /* Get register. */
821 reg += buf[offset] & 0x7;
822
823 offset++;
824
825 /* The next instruction has to be "leaq 16(%rsp), %reg". */
826 if ((buf[offset] & 0xfb) != 0x48
827 || buf[offset + 1] != 0x8d
828 || buf[offset + 3] != 0x24
829 || buf[offset + 4] != 0x10)
830 return pc;
831
832 /* MOD must be binary 10 and R/M must be binary 100. */
833 if ((buf[offset + 2] & 0xc7) != 0x44)
834 return pc;
835
836 /* REG has register number. */
837 r = (buf[offset + 2] >> 3) & 7;
838
839 /* Check the REX.R bit. */
840 if (buf[offset] == 0x4c)
841 r += 8;
842
843 /* Registers in pushq and leaq have to be the same. */
844 if (reg != r)
845 return pc;
846
847 offset += 5;
848 }
849
850 /* Rigister can't be %rsp nor %rbp. */
851 if (reg == 4 || reg == 5)
852 return pc;
853
854 /* The next instruction has to be "andq $-XXX, %rsp". */
855 if (buf[offset] != 0x48
856 || buf[offset + 2] != 0xe4
857 || (buf[offset + 1] != 0x81 && buf[offset + 1] != 0x83))
858 return pc;
859
860 offset_and = offset;
861 offset += buf[offset + 1] == 0x81 ? 7 : 4;
862
863 /* The next instruction has to be "pushq -8(%reg)". */
864 r = 0;
865 if (buf[offset] == 0xff)
866 offset++;
867 else if ((buf[offset] & 0xf6) == 0x40
868 && buf[offset + 1] == 0xff)
869 {
870 /* Check the REX.B bit. */
871 if ((buf[offset] & 0x1) != 0)
872 r = 8;
873 offset += 2;
874 }
875 else
876 return pc;
877
878 /* 8bit -8 is 0xf8. REG must be binary 110 and MOD must be binary
879 01. */
880 if (buf[offset + 1] != 0xf8
881 || (buf[offset] & 0xf8) != 0x70)
882 return pc;
883
884 /* R/M has register. */
885 r += buf[offset] & 7;
886
887 /* Registers in leaq and pushq have to be the same. */
888 if (reg != r)
889 return pc;
890
891 if (current_pc > pc + offset_and)
892 cache->saved_sp_reg = regnums[reg];
893
894 return min (pc + offset + 2, current_pc);
895 }
896
897 /* Do a limited analysis of the prologue at PC and update CACHE
898 accordingly. Bail out early if CURRENT_PC is reached. Return the
899 address where the analysis stopped.
900
901 We will handle only functions beginning with:
902
903 pushq %rbp 0x55
904 movq %rsp, %rbp 0x48 0x89 0xe5
905
906 Any function that doesn't start with this sequence will be assumed
907 to have no prologue and thus no valid frame pointer in %rbp. */
908
909 static CORE_ADDR
910 amd64_analyze_prologue (CORE_ADDR pc, CORE_ADDR current_pc,
911 struct amd64_frame_cache *cache)
912 {
913 static gdb_byte proto[3] = { 0x48, 0x89, 0xe5 }; /* movq %rsp, %rbp */
914 gdb_byte buf[3];
915 gdb_byte op;
916
917 if (current_pc <= pc)
918 return current_pc;
919
920 pc = amd64_analyze_stack_align (pc, current_pc, cache);
921
922 op = read_memory_unsigned_integer (pc, 1);
923
924 if (op == 0x55) /* pushq %rbp */
925 {
926 /* Take into account that we've executed the `pushq %rbp' that
927 starts this instruction sequence. */
928 cache->saved_regs[AMD64_RBP_REGNUM] = 0;
929 cache->sp_offset += 8;
930
931 /* If that's all, return now. */
932 if (current_pc <= pc + 1)
933 return current_pc;
934
935 /* Check for `movq %rsp, %rbp'. */
936 read_memory (pc + 1, buf, 3);
937 if (memcmp (buf, proto, 3) != 0)
938 return pc + 1;
939
940 /* OK, we actually have a frame. */
941 cache->frameless_p = 0;
942 return pc + 4;
943 }
944
945 return pc;
946 }
947
948 /* Return PC of first real instruction. */
949
950 static CORE_ADDR
951 amd64_skip_prologue (struct gdbarch *gdbarch, CORE_ADDR start_pc)
952 {
953 struct amd64_frame_cache cache;
954 CORE_ADDR pc;
955
956 amd64_init_frame_cache (&cache);
957 pc = amd64_analyze_prologue (start_pc, 0xffffffffffffffffLL, &cache);
958 if (cache.frameless_p)
959 return start_pc;
960
961 return pc;
962 }
963 \f
964
965 /* Normal frames. */
966
967 static struct amd64_frame_cache *
968 amd64_frame_cache (struct frame_info *this_frame, void **this_cache)
969 {
970 struct amd64_frame_cache *cache;
971 gdb_byte buf[8];
972 int i;
973
974 if (*this_cache)
975 return *this_cache;
976
977 cache = amd64_alloc_frame_cache ();
978 *this_cache = cache;
979
980 cache->pc = get_frame_func (this_frame);
981 if (cache->pc != 0)
982 amd64_analyze_prologue (cache->pc, get_frame_pc (this_frame), cache);
983
984 if (cache->saved_sp_reg != -1)
985 {
986 /* Stack pointer has been saved. */
987 get_frame_register (this_frame, cache->saved_sp_reg, buf);
988 cache->saved_sp = extract_unsigned_integer(buf, 8);
989 }
990
991 if (cache->frameless_p)
992 {
993 /* We didn't find a valid frame. If we're at the start of a
994 function, or somewhere half-way its prologue, the function's
995 frame probably hasn't been fully setup yet. Try to
996 reconstruct the base address for the stack frame by looking
997 at the stack pointer. For truly "frameless" functions this
998 might work too. */
999
1000 if (cache->saved_sp_reg != -1)
1001 {
1002 /* We're halfway aligning the stack. */
1003 cache->base = ((cache->saved_sp - 8) & 0xfffffffffffffff0LL) - 8;
1004 cache->saved_regs[AMD64_RIP_REGNUM] = cache->saved_sp - 8;
1005
1006 /* This will be added back below. */
1007 cache->saved_regs[AMD64_RIP_REGNUM] -= cache->base;
1008 }
1009 else
1010 {
1011 get_frame_register (this_frame, AMD64_RSP_REGNUM, buf);
1012 cache->base = extract_unsigned_integer (buf, 8) + cache->sp_offset;
1013 }
1014 }
1015 else
1016 {
1017 get_frame_register (this_frame, AMD64_RBP_REGNUM, buf);
1018 cache->base = extract_unsigned_integer (buf, 8);
1019 }
1020
1021 /* Now that we have the base address for the stack frame we can
1022 calculate the value of %rsp in the calling frame. */
1023 cache->saved_sp = cache->base + 16;
1024
1025 /* For normal frames, %rip is stored at 8(%rbp). If we don't have a
1026 frame we find it at the same offset from the reconstructed base
1027 address. If we're halfway aligning the stack, %rip is handled
1028 differently (see above). */
1029 if (!cache->frameless_p || cache->saved_sp_reg == -1)
1030 cache->saved_regs[AMD64_RIP_REGNUM] = 8;
1031
1032 /* Adjust all the saved registers such that they contain addresses
1033 instead of offsets. */
1034 for (i = 0; i < AMD64_NUM_SAVED_REGS; i++)
1035 if (cache->saved_regs[i] != -1)
1036 cache->saved_regs[i] += cache->base;
1037
1038 return cache;
1039 }
1040
1041 static void
1042 amd64_frame_this_id (struct frame_info *this_frame, void **this_cache,
1043 struct frame_id *this_id)
1044 {
1045 struct amd64_frame_cache *cache =
1046 amd64_frame_cache (this_frame, this_cache);
1047
1048 /* This marks the outermost frame. */
1049 if (cache->base == 0)
1050 return;
1051
1052 (*this_id) = frame_id_build (cache->base + 16, cache->pc);
1053 }
1054
1055 static struct value *
1056 amd64_frame_prev_register (struct frame_info *this_frame, void **this_cache,
1057 int regnum)
1058 {
1059 struct gdbarch *gdbarch = get_frame_arch (this_frame);
1060 struct amd64_frame_cache *cache =
1061 amd64_frame_cache (this_frame, this_cache);
1062
1063 gdb_assert (regnum >= 0);
1064
1065 if (regnum == gdbarch_sp_regnum (gdbarch) && cache->saved_sp)
1066 return frame_unwind_got_constant (this_frame, regnum, cache->saved_sp);
1067
1068 if (regnum < AMD64_NUM_SAVED_REGS && cache->saved_regs[regnum] != -1)
1069 return frame_unwind_got_memory (this_frame, regnum,
1070 cache->saved_regs[regnum]);
1071
1072 return frame_unwind_got_register (this_frame, regnum, regnum);
1073 }
1074
1075 static const struct frame_unwind amd64_frame_unwind =
1076 {
1077 NORMAL_FRAME,
1078 amd64_frame_this_id,
1079 amd64_frame_prev_register,
1080 NULL,
1081 default_frame_sniffer
1082 };
1083 \f
1084
1085 /* Signal trampolines. */
1086
1087 /* FIXME: kettenis/20030419: Perhaps, we can unify the 32-bit and
1088 64-bit variants. This would require using identical frame caches
1089 on both platforms. */
1090
1091 static struct amd64_frame_cache *
1092 amd64_sigtramp_frame_cache (struct frame_info *this_frame, void **this_cache)
1093 {
1094 struct amd64_frame_cache *cache;
1095 struct gdbarch_tdep *tdep = gdbarch_tdep (get_frame_arch (this_frame));
1096 CORE_ADDR addr;
1097 gdb_byte buf[8];
1098 int i;
1099
1100 if (*this_cache)
1101 return *this_cache;
1102
1103 cache = amd64_alloc_frame_cache ();
1104
1105 get_frame_register (this_frame, AMD64_RSP_REGNUM, buf);
1106 cache->base = extract_unsigned_integer (buf, 8) - 8;
1107
1108 addr = tdep->sigcontext_addr (this_frame);
1109 gdb_assert (tdep->sc_reg_offset);
1110 gdb_assert (tdep->sc_num_regs <= AMD64_NUM_SAVED_REGS);
1111 for (i = 0; i < tdep->sc_num_regs; i++)
1112 if (tdep->sc_reg_offset[i] != -1)
1113 cache->saved_regs[i] = addr + tdep->sc_reg_offset[i];
1114
1115 *this_cache = cache;
1116 return cache;
1117 }
1118
1119 static void
1120 amd64_sigtramp_frame_this_id (struct frame_info *this_frame,
1121 void **this_cache, struct frame_id *this_id)
1122 {
1123 struct amd64_frame_cache *cache =
1124 amd64_sigtramp_frame_cache (this_frame, this_cache);
1125
1126 (*this_id) = frame_id_build (cache->base + 16, get_frame_pc (this_frame));
1127 }
1128
1129 static struct value *
1130 amd64_sigtramp_frame_prev_register (struct frame_info *this_frame,
1131 void **this_cache, int regnum)
1132 {
1133 /* Make sure we've initialized the cache. */
1134 amd64_sigtramp_frame_cache (this_frame, this_cache);
1135
1136 return amd64_frame_prev_register (this_frame, this_cache, regnum);
1137 }
1138
1139 static int
1140 amd64_sigtramp_frame_sniffer (const struct frame_unwind *self,
1141 struct frame_info *this_frame,
1142 void **this_cache)
1143 {
1144 struct gdbarch_tdep *tdep = gdbarch_tdep (get_frame_arch (this_frame));
1145
1146 /* We shouldn't even bother if we don't have a sigcontext_addr
1147 handler. */
1148 if (tdep->sigcontext_addr == NULL)
1149 return 0;
1150
1151 if (tdep->sigtramp_p != NULL)
1152 {
1153 if (tdep->sigtramp_p (this_frame))
1154 return 1;
1155 }
1156
1157 if (tdep->sigtramp_start != 0)
1158 {
1159 CORE_ADDR pc = get_frame_pc (this_frame);
1160
1161 gdb_assert (tdep->sigtramp_end != 0);
1162 if (pc >= tdep->sigtramp_start && pc < tdep->sigtramp_end)
1163 return 1;
1164 }
1165
1166 return 0;
1167 }
1168
1169 static const struct frame_unwind amd64_sigtramp_frame_unwind =
1170 {
1171 SIGTRAMP_FRAME,
1172 amd64_sigtramp_frame_this_id,
1173 amd64_sigtramp_frame_prev_register,
1174 NULL,
1175 amd64_sigtramp_frame_sniffer
1176 };
1177 \f
1178
1179 static CORE_ADDR
1180 amd64_frame_base_address (struct frame_info *this_frame, void **this_cache)
1181 {
1182 struct amd64_frame_cache *cache =
1183 amd64_frame_cache (this_frame, this_cache);
1184
1185 return cache->base;
1186 }
1187
1188 static const struct frame_base amd64_frame_base =
1189 {
1190 &amd64_frame_unwind,
1191 amd64_frame_base_address,
1192 amd64_frame_base_address,
1193 amd64_frame_base_address
1194 };
1195
1196 static struct frame_id
1197 amd64_dummy_id (struct gdbarch *gdbarch, struct frame_info *this_frame)
1198 {
1199 CORE_ADDR fp;
1200
1201 fp = get_frame_register_unsigned (this_frame, AMD64_RBP_REGNUM);
1202
1203 return frame_id_build (fp + 16, get_frame_pc (this_frame));
1204 }
1205
1206 /* 16 byte align the SP per frame requirements. */
1207
1208 static CORE_ADDR
1209 amd64_frame_align (struct gdbarch *gdbarch, CORE_ADDR sp)
1210 {
1211 return sp & -(CORE_ADDR)16;
1212 }
1213 \f
1214
1215 /* Supply register REGNUM from the buffer specified by FPREGS and LEN
1216 in the floating-point register set REGSET to register cache
1217 REGCACHE. If REGNUM is -1, do this for all registers in REGSET. */
1218
1219 static void
1220 amd64_supply_fpregset (const struct regset *regset, struct regcache *regcache,
1221 int regnum, const void *fpregs, size_t len)
1222 {
1223 const struct gdbarch_tdep *tdep = gdbarch_tdep (regset->arch);
1224
1225 gdb_assert (len == tdep->sizeof_fpregset);
1226 amd64_supply_fxsave (regcache, regnum, fpregs);
1227 }
1228
1229 /* Collect register REGNUM from the register cache REGCACHE and store
1230 it in the buffer specified by FPREGS and LEN as described by the
1231 floating-point register set REGSET. If REGNUM is -1, do this for
1232 all registers in REGSET. */
1233
1234 static void
1235 amd64_collect_fpregset (const struct regset *regset,
1236 const struct regcache *regcache,
1237 int regnum, void *fpregs, size_t len)
1238 {
1239 const struct gdbarch_tdep *tdep = gdbarch_tdep (regset->arch);
1240
1241 gdb_assert (len == tdep->sizeof_fpregset);
1242 amd64_collect_fxsave (regcache, regnum, fpregs);
1243 }
1244
1245 /* Return the appropriate register set for the core section identified
1246 by SECT_NAME and SECT_SIZE. */
1247
1248 static const struct regset *
1249 amd64_regset_from_core_section (struct gdbarch *gdbarch,
1250 const char *sect_name, size_t sect_size)
1251 {
1252 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
1253
1254 if (strcmp (sect_name, ".reg2") == 0 && sect_size == tdep->sizeof_fpregset)
1255 {
1256 if (tdep->fpregset == NULL)
1257 tdep->fpregset = regset_alloc (gdbarch, amd64_supply_fpregset,
1258 amd64_collect_fpregset);
1259
1260 return tdep->fpregset;
1261 }
1262
1263 return i386_regset_from_core_section (gdbarch, sect_name, sect_size);
1264 }
1265 \f
1266
1267 /* Figure out where the longjmp will land. Slurp the jmp_buf out of
1268 %rdi. We expect its value to be a pointer to the jmp_buf structure
1269 from which we extract the address that we will land at. This
1270 address is copied into PC. This routine returns non-zero on
1271 success. */
1272
1273 static int
1274 amd64_get_longjmp_target (struct frame_info *frame, CORE_ADDR *pc)
1275 {
1276 gdb_byte buf[8];
1277 CORE_ADDR jb_addr;
1278 struct gdbarch *gdbarch = get_frame_arch (frame);
1279 int jb_pc_offset = gdbarch_tdep (gdbarch)->jb_pc_offset;
1280 int len = TYPE_LENGTH (builtin_type_void_func_ptr);
1281
1282 /* If JB_PC_OFFSET is -1, we have no way to find out where the
1283 longjmp will land. */
1284 if (jb_pc_offset == -1)
1285 return 0;
1286
1287 get_frame_register (frame, AMD64_RDI_REGNUM, buf);
1288 jb_addr = extract_typed_address (buf, builtin_type_void_data_ptr);
1289 if (target_read_memory (jb_addr + jb_pc_offset, buf, len))
1290 return 0;
1291
1292 *pc = extract_typed_address (buf, builtin_type_void_func_ptr);
1293
1294 return 1;
1295 }
1296
1297 void
1298 amd64_init_abi (struct gdbarch_info info, struct gdbarch *gdbarch)
1299 {
1300 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
1301
1302 /* AMD64 generally uses `fxsave' instead of `fsave' for saving its
1303 floating-point registers. */
1304 tdep->sizeof_fpregset = I387_SIZEOF_FXSAVE;
1305
1306 /* AMD64 has an FPU and 16 SSE registers. */
1307 tdep->st0_regnum = AMD64_ST0_REGNUM;
1308 tdep->num_xmm_regs = 16;
1309
1310 /* This is what all the fuss is about. */
1311 set_gdbarch_long_bit (gdbarch, 64);
1312 set_gdbarch_long_long_bit (gdbarch, 64);
1313 set_gdbarch_ptr_bit (gdbarch, 64);
1314
1315 /* In contrast to the i386, on AMD64 a `long double' actually takes
1316 up 128 bits, even though it's still based on the i387 extended
1317 floating-point format which has only 80 significant bits. */
1318 set_gdbarch_long_double_bit (gdbarch, 128);
1319
1320 set_gdbarch_num_regs (gdbarch, AMD64_NUM_REGS);
1321 set_gdbarch_register_name (gdbarch, amd64_register_name);
1322 set_gdbarch_register_type (gdbarch, amd64_register_type);
1323
1324 /* Register numbers of various important registers. */
1325 set_gdbarch_sp_regnum (gdbarch, AMD64_RSP_REGNUM); /* %rsp */
1326 set_gdbarch_pc_regnum (gdbarch, AMD64_RIP_REGNUM); /* %rip */
1327 set_gdbarch_ps_regnum (gdbarch, AMD64_EFLAGS_REGNUM); /* %eflags */
1328 set_gdbarch_fp0_regnum (gdbarch, AMD64_ST0_REGNUM); /* %st(0) */
1329
1330 /* The "default" register numbering scheme for AMD64 is referred to
1331 as the "DWARF Register Number Mapping" in the System V psABI.
1332 The preferred debugging format for all known AMD64 targets is
1333 actually DWARF2, and GCC doesn't seem to support DWARF (that is
1334 DWARF-1), but we provide the same mapping just in case. This
1335 mapping is also used for stabs, which GCC does support. */
1336 set_gdbarch_stab_reg_to_regnum (gdbarch, amd64_dwarf_reg_to_regnum);
1337 set_gdbarch_dwarf2_reg_to_regnum (gdbarch, amd64_dwarf_reg_to_regnum);
1338
1339 /* We don't override SDB_REG_RO_REGNUM, since COFF doesn't seem to
1340 be in use on any of the supported AMD64 targets. */
1341
1342 /* Call dummy code. */
1343 set_gdbarch_push_dummy_call (gdbarch, amd64_push_dummy_call);
1344 set_gdbarch_frame_align (gdbarch, amd64_frame_align);
1345 set_gdbarch_frame_red_zone_size (gdbarch, 128);
1346
1347 set_gdbarch_convert_register_p (gdbarch, i387_convert_register_p);
1348 set_gdbarch_register_to_value (gdbarch, i387_register_to_value);
1349 set_gdbarch_value_to_register (gdbarch, i387_value_to_register);
1350
1351 set_gdbarch_return_value (gdbarch, amd64_return_value);
1352
1353 set_gdbarch_skip_prologue (gdbarch, amd64_skip_prologue);
1354
1355 /* Avoid wiring in the MMX registers for now. */
1356 set_gdbarch_num_pseudo_regs (gdbarch, 0);
1357 tdep->mm0_regnum = -1;
1358
1359 set_gdbarch_dummy_id (gdbarch, amd64_dummy_id);
1360
1361 frame_unwind_append_unwinder (gdbarch, &amd64_sigtramp_frame_unwind);
1362 frame_unwind_append_unwinder (gdbarch, &amd64_frame_unwind);
1363 frame_base_set_default (gdbarch, &amd64_frame_base);
1364
1365 /* If we have a register mapping, enable the generic core file support. */
1366 if (tdep->gregset_reg_offset)
1367 set_gdbarch_regset_from_core_section (gdbarch,
1368 amd64_regset_from_core_section);
1369
1370 set_gdbarch_get_longjmp_target (gdbarch, amd64_get_longjmp_target);
1371 }
1372 \f
1373
1374 /* The 64-bit FXSAVE format differs from the 32-bit format in the
1375 sense that the instruction pointer and data pointer are simply
1376 64-bit offsets into the code segment and the data segment instead
1377 of a selector offset pair. The functions below store the upper 32
1378 bits of these pointers (instead of just the 16-bits of the segment
1379 selector). */
1380
1381 /* Fill register REGNUM in REGCACHE with the appropriate
1382 floating-point or SSE register value from *FXSAVE. If REGNUM is
1383 -1, do this for all registers. This function masks off any of the
1384 reserved bits in *FXSAVE. */
1385
1386 void
1387 amd64_supply_fxsave (struct regcache *regcache, int regnum,
1388 const void *fxsave)
1389 {
1390 struct gdbarch *gdbarch = get_regcache_arch (regcache);
1391 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
1392
1393 i387_supply_fxsave (regcache, regnum, fxsave);
1394
1395 if (fxsave && gdbarch_ptr_bit (gdbarch) == 64)
1396 {
1397 const gdb_byte *regs = fxsave;
1398
1399 if (regnum == -1 || regnum == I387_FISEG_REGNUM (tdep))
1400 regcache_raw_supply (regcache, I387_FISEG_REGNUM (tdep), regs + 12);
1401 if (regnum == -1 || regnum == I387_FOSEG_REGNUM (tdep))
1402 regcache_raw_supply (regcache, I387_FOSEG_REGNUM (tdep), regs + 20);
1403 }
1404 }
1405
1406 /* Fill register REGNUM (if it is a floating-point or SSE register) in
1407 *FXSAVE with the value from REGCACHE. If REGNUM is -1, do this for
1408 all registers. This function doesn't touch any of the reserved
1409 bits in *FXSAVE. */
1410
1411 void
1412 amd64_collect_fxsave (const struct regcache *regcache, int regnum,
1413 void *fxsave)
1414 {
1415 struct gdbarch *gdbarch = get_regcache_arch (regcache);
1416 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
1417 gdb_byte *regs = fxsave;
1418
1419 i387_collect_fxsave (regcache, regnum, fxsave);
1420
1421 if (gdbarch_ptr_bit (gdbarch) == 64)
1422 {
1423 if (regnum == -1 || regnum == I387_FISEG_REGNUM (tdep))
1424 regcache_raw_collect (regcache, I387_FISEG_REGNUM (tdep), regs + 12);
1425 if (regnum == -1 || regnum == I387_FOSEG_REGNUM (tdep))
1426 regcache_raw_collect (regcache, I387_FOSEG_REGNUM (tdep), regs + 20);
1427 }
1428 }
This page took 0.087233 seconds and 4 git commands to generate.