Fix gdb.fortran/array-element.exp failures.
[deliverable/binutils-gdb.git] / gdb / amd64-tdep.c
1 /* Target-dependent code for AMD64.
2
3 Copyright (C) 2001-2014 Free Software Foundation, Inc.
4
5 Contributed by Jiri Smid, SuSE Labs.
6
7 This file is part of GDB.
8
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 3 of the License, or
12 (at your option) any later version.
13
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
18
19 You should have received a copy of the GNU General Public License
20 along with this program. If not, see <http://www.gnu.org/licenses/>. */
21
22 #include "defs.h"
23 #include "opcode/i386.h"
24 #include "dis-asm.h"
25 #include "arch-utils.h"
26 #include "block.h"
27 #include "dummy-frame.h"
28 #include "frame.h"
29 #include "frame-base.h"
30 #include "frame-unwind.h"
31 #include "inferior.h"
32 #include "infrun.h"
33 #include "gdbcmd.h"
34 #include "gdbcore.h"
35 #include "objfiles.h"
36 #include "regcache.h"
37 #include "regset.h"
38 #include "symfile.h"
39 #include "disasm.h"
40 #include "exceptions.h"
41 #include "amd64-tdep.h"
42 #include "i387-tdep.h"
43
44 #include "features/i386/amd64.c"
45 #include "features/i386/amd64-avx.c"
46 #include "features/i386/amd64-mpx.c"
47 #include "features/i386/amd64-avx512.c"
48
49 #include "features/i386/x32.c"
50 #include "features/i386/x32-avx.c"
51 #include "features/i386/x32-avx512.c"
52
53 #include "ax.h"
54 #include "ax-gdb.h"
55
56 /* Note that the AMD64 architecture was previously known as x86-64.
57 The latter is (forever) engraved into the canonical system name as
58 returned by config.guess, and used as the name for the AMD64 port
59 of GNU/Linux. The BSD's have renamed their ports to amd64; they
60 don't like to shout. For GDB we prefer the amd64_-prefix over the
61 x86_64_-prefix since it's so much easier to type. */
62
63 /* Register information. */
64
65 static const char *amd64_register_names[] =
66 {
67 "rax", "rbx", "rcx", "rdx", "rsi", "rdi", "rbp", "rsp",
68
69 /* %r8 is indeed register number 8. */
70 "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15",
71 "rip", "eflags", "cs", "ss", "ds", "es", "fs", "gs",
72
73 /* %st0 is register number 24. */
74 "st0", "st1", "st2", "st3", "st4", "st5", "st6", "st7",
75 "fctrl", "fstat", "ftag", "fiseg", "fioff", "foseg", "fooff", "fop",
76
77 /* %xmm0 is register number 40. */
78 "xmm0", "xmm1", "xmm2", "xmm3", "xmm4", "xmm5", "xmm6", "xmm7",
79 "xmm8", "xmm9", "xmm10", "xmm11", "xmm12", "xmm13", "xmm14", "xmm15",
80 "mxcsr",
81 };
82
83 static const char *amd64_ymm_names[] =
84 {
85 "ymm0", "ymm1", "ymm2", "ymm3",
86 "ymm4", "ymm5", "ymm6", "ymm7",
87 "ymm8", "ymm9", "ymm10", "ymm11",
88 "ymm12", "ymm13", "ymm14", "ymm15"
89 };
90
91 static const char *amd64_ymm_avx512_names[] =
92 {
93 "ymm16", "ymm17", "ymm18", "ymm19",
94 "ymm20", "ymm21", "ymm22", "ymm23",
95 "ymm24", "ymm25", "ymm26", "ymm27",
96 "ymm28", "ymm29", "ymm30", "ymm31"
97 };
98
99 static const char *amd64_ymmh_names[] =
100 {
101 "ymm0h", "ymm1h", "ymm2h", "ymm3h",
102 "ymm4h", "ymm5h", "ymm6h", "ymm7h",
103 "ymm8h", "ymm9h", "ymm10h", "ymm11h",
104 "ymm12h", "ymm13h", "ymm14h", "ymm15h"
105 };
106
107 static const char *amd64_ymmh_avx512_names[] =
108 {
109 "ymm16h", "ymm17h", "ymm18h", "ymm19h",
110 "ymm20h", "ymm21h", "ymm22h", "ymm23h",
111 "ymm24h", "ymm25h", "ymm26h", "ymm27h",
112 "ymm28h", "ymm29h", "ymm30h", "ymm31h"
113 };
114
115 static const char *amd64_mpx_names[] =
116 {
117 "bnd0raw", "bnd1raw", "bnd2raw", "bnd3raw", "bndcfgu", "bndstatus"
118 };
119
120 static const char *amd64_k_names[] =
121 {
122 "k0", "k1", "k2", "k3",
123 "k4", "k5", "k6", "k7"
124 };
125
126 static const char *amd64_zmmh_names[] =
127 {
128 "zmm0h", "zmm1h", "zmm2h", "zmm3h",
129 "zmm4h", "zmm5h", "zmm6h", "zmm7h",
130 "zmm8h", "zmm9h", "zmm10h", "zmm11h",
131 "zmm12h", "zmm13h", "zmm14h", "zmm15h",
132 "zmm16h", "zmm17h", "zmm18h", "zmm19h",
133 "zmm20h", "zmm21h", "zmm22h", "zmm23h",
134 "zmm24h", "zmm25h", "zmm26h", "zmm27h",
135 "zmm28h", "zmm29h", "zmm30h", "zmm31h"
136 };
137
138 static const char *amd64_zmm_names[] =
139 {
140 "zmm0", "zmm1", "zmm2", "zmm3",
141 "zmm4", "zmm5", "zmm6", "zmm7",
142 "zmm8", "zmm9", "zmm10", "zmm11",
143 "zmm12", "zmm13", "zmm14", "zmm15",
144 "zmm16", "zmm17", "zmm18", "zmm19",
145 "zmm20", "zmm21", "zmm22", "zmm23",
146 "zmm24", "zmm25", "zmm26", "zmm27",
147 "zmm28", "zmm29", "zmm30", "zmm31"
148 };
149
150 static const char *amd64_xmm_avx512_names[] = {
151 "xmm16", "xmm17", "xmm18", "xmm19",
152 "xmm20", "xmm21", "xmm22", "xmm23",
153 "xmm24", "xmm25", "xmm26", "xmm27",
154 "xmm28", "xmm29", "xmm30", "xmm31"
155 };
156
157 /* DWARF Register Number Mapping as defined in the System V psABI,
158 section 3.6. */
159
160 static int amd64_dwarf_regmap[] =
161 {
162 /* General Purpose Registers RAX, RDX, RCX, RBX, RSI, RDI. */
163 AMD64_RAX_REGNUM, AMD64_RDX_REGNUM,
164 AMD64_RCX_REGNUM, AMD64_RBX_REGNUM,
165 AMD64_RSI_REGNUM, AMD64_RDI_REGNUM,
166
167 /* Frame Pointer Register RBP. */
168 AMD64_RBP_REGNUM,
169
170 /* Stack Pointer Register RSP. */
171 AMD64_RSP_REGNUM,
172
173 /* Extended Integer Registers 8 - 15. */
174 AMD64_R8_REGNUM, /* %r8 */
175 AMD64_R9_REGNUM, /* %r9 */
176 AMD64_R10_REGNUM, /* %r10 */
177 AMD64_R11_REGNUM, /* %r11 */
178 AMD64_R12_REGNUM, /* %r12 */
179 AMD64_R13_REGNUM, /* %r13 */
180 AMD64_R14_REGNUM, /* %r14 */
181 AMD64_R15_REGNUM, /* %r15 */
182
183 /* Return Address RA. Mapped to RIP. */
184 AMD64_RIP_REGNUM,
185
186 /* SSE Registers 0 - 7. */
187 AMD64_XMM0_REGNUM + 0, AMD64_XMM1_REGNUM,
188 AMD64_XMM0_REGNUM + 2, AMD64_XMM0_REGNUM + 3,
189 AMD64_XMM0_REGNUM + 4, AMD64_XMM0_REGNUM + 5,
190 AMD64_XMM0_REGNUM + 6, AMD64_XMM0_REGNUM + 7,
191
192 /* Extended SSE Registers 8 - 15. */
193 AMD64_XMM0_REGNUM + 8, AMD64_XMM0_REGNUM + 9,
194 AMD64_XMM0_REGNUM + 10, AMD64_XMM0_REGNUM + 11,
195 AMD64_XMM0_REGNUM + 12, AMD64_XMM0_REGNUM + 13,
196 AMD64_XMM0_REGNUM + 14, AMD64_XMM0_REGNUM + 15,
197
198 /* Floating Point Registers 0-7. */
199 AMD64_ST0_REGNUM + 0, AMD64_ST0_REGNUM + 1,
200 AMD64_ST0_REGNUM + 2, AMD64_ST0_REGNUM + 3,
201 AMD64_ST0_REGNUM + 4, AMD64_ST0_REGNUM + 5,
202 AMD64_ST0_REGNUM + 6, AMD64_ST0_REGNUM + 7,
203
204 /* Control and Status Flags Register. */
205 AMD64_EFLAGS_REGNUM,
206
207 /* Selector Registers. */
208 AMD64_ES_REGNUM,
209 AMD64_CS_REGNUM,
210 AMD64_SS_REGNUM,
211 AMD64_DS_REGNUM,
212 AMD64_FS_REGNUM,
213 AMD64_GS_REGNUM,
214 -1,
215 -1,
216
217 /* Segment Base Address Registers. */
218 -1,
219 -1,
220 -1,
221 -1,
222
223 /* Special Selector Registers. */
224 -1,
225 -1,
226
227 /* Floating Point Control Registers. */
228 AMD64_MXCSR_REGNUM,
229 AMD64_FCTRL_REGNUM,
230 AMD64_FSTAT_REGNUM
231 };
232
233 static const int amd64_dwarf_regmap_len =
234 (sizeof (amd64_dwarf_regmap) / sizeof (amd64_dwarf_regmap[0]));
235
236 /* Convert DWARF register number REG to the appropriate register
237 number used by GDB. */
238
239 static int
240 amd64_dwarf_reg_to_regnum (struct gdbarch *gdbarch, int reg)
241 {
242 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
243 int ymm0_regnum = tdep->ymm0_regnum;
244 int regnum = -1;
245
246 if (reg >= 0 && reg < amd64_dwarf_regmap_len)
247 regnum = amd64_dwarf_regmap[reg];
248
249 if (regnum == -1)
250 warning (_("Unmapped DWARF Register #%d encountered."), reg);
251 else if (ymm0_regnum >= 0
252 && i386_xmm_regnum_p (gdbarch, regnum))
253 regnum += ymm0_regnum - I387_XMM0_REGNUM (tdep);
254
255 return regnum;
256 }
257
258 /* Map architectural register numbers to gdb register numbers. */
259
260 static const int amd64_arch_regmap[16] =
261 {
262 AMD64_RAX_REGNUM, /* %rax */
263 AMD64_RCX_REGNUM, /* %rcx */
264 AMD64_RDX_REGNUM, /* %rdx */
265 AMD64_RBX_REGNUM, /* %rbx */
266 AMD64_RSP_REGNUM, /* %rsp */
267 AMD64_RBP_REGNUM, /* %rbp */
268 AMD64_RSI_REGNUM, /* %rsi */
269 AMD64_RDI_REGNUM, /* %rdi */
270 AMD64_R8_REGNUM, /* %r8 */
271 AMD64_R9_REGNUM, /* %r9 */
272 AMD64_R10_REGNUM, /* %r10 */
273 AMD64_R11_REGNUM, /* %r11 */
274 AMD64_R12_REGNUM, /* %r12 */
275 AMD64_R13_REGNUM, /* %r13 */
276 AMD64_R14_REGNUM, /* %r14 */
277 AMD64_R15_REGNUM /* %r15 */
278 };
279
280 static const int amd64_arch_regmap_len =
281 (sizeof (amd64_arch_regmap) / sizeof (amd64_arch_regmap[0]));
282
283 /* Convert architectural register number REG to the appropriate register
284 number used by GDB. */
285
286 static int
287 amd64_arch_reg_to_regnum (int reg)
288 {
289 gdb_assert (reg >= 0 && reg < amd64_arch_regmap_len);
290
291 return amd64_arch_regmap[reg];
292 }
293
294 /* Register names for byte pseudo-registers. */
295
296 static const char *amd64_byte_names[] =
297 {
298 "al", "bl", "cl", "dl", "sil", "dil", "bpl", "spl",
299 "r8l", "r9l", "r10l", "r11l", "r12l", "r13l", "r14l", "r15l",
300 "ah", "bh", "ch", "dh"
301 };
302
303 /* Number of lower byte registers. */
304 #define AMD64_NUM_LOWER_BYTE_REGS 16
305
306 /* Register names for word pseudo-registers. */
307
308 static const char *amd64_word_names[] =
309 {
310 "ax", "bx", "cx", "dx", "si", "di", "bp", "",
311 "r8w", "r9w", "r10w", "r11w", "r12w", "r13w", "r14w", "r15w"
312 };
313
314 /* Register names for dword pseudo-registers. */
315
316 static const char *amd64_dword_names[] =
317 {
318 "eax", "ebx", "ecx", "edx", "esi", "edi", "ebp", "esp",
319 "r8d", "r9d", "r10d", "r11d", "r12d", "r13d", "r14d", "r15d",
320 "eip"
321 };
322
323 /* Return the name of register REGNUM. */
324
325 static const char *
326 amd64_pseudo_register_name (struct gdbarch *gdbarch, int regnum)
327 {
328 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
329 if (i386_byte_regnum_p (gdbarch, regnum))
330 return amd64_byte_names[regnum - tdep->al_regnum];
331 else if (i386_zmm_regnum_p (gdbarch, regnum))
332 return amd64_zmm_names[regnum - tdep->zmm0_regnum];
333 else if (i386_ymm_regnum_p (gdbarch, regnum))
334 return amd64_ymm_names[regnum - tdep->ymm0_regnum];
335 else if (i386_ymm_avx512_regnum_p (gdbarch, regnum))
336 return amd64_ymm_avx512_names[regnum - tdep->ymm16_regnum];
337 else if (i386_word_regnum_p (gdbarch, regnum))
338 return amd64_word_names[regnum - tdep->ax_regnum];
339 else if (i386_dword_regnum_p (gdbarch, regnum))
340 return amd64_dword_names[regnum - tdep->eax_regnum];
341 else
342 return i386_pseudo_register_name (gdbarch, regnum);
343 }
344
345 static struct value *
346 amd64_pseudo_register_read_value (struct gdbarch *gdbarch,
347 struct regcache *regcache,
348 int regnum)
349 {
350 gdb_byte raw_buf[MAX_REGISTER_SIZE];
351 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
352 enum register_status status;
353 struct value *result_value;
354 gdb_byte *buf;
355
356 result_value = allocate_value (register_type (gdbarch, regnum));
357 VALUE_LVAL (result_value) = lval_register;
358 VALUE_REGNUM (result_value) = regnum;
359 buf = value_contents_raw (result_value);
360
361 if (i386_byte_regnum_p (gdbarch, regnum))
362 {
363 int gpnum = regnum - tdep->al_regnum;
364
365 /* Extract (always little endian). */
366 if (gpnum >= AMD64_NUM_LOWER_BYTE_REGS)
367 {
368 /* Special handling for AH, BH, CH, DH. */
369 status = regcache_raw_read (regcache,
370 gpnum - AMD64_NUM_LOWER_BYTE_REGS,
371 raw_buf);
372 if (status == REG_VALID)
373 memcpy (buf, raw_buf + 1, 1);
374 else
375 mark_value_bytes_unavailable (result_value, 0,
376 TYPE_LENGTH (value_type (result_value)));
377 }
378 else
379 {
380 status = regcache_raw_read (regcache, gpnum, raw_buf);
381 if (status == REG_VALID)
382 memcpy (buf, raw_buf, 1);
383 else
384 mark_value_bytes_unavailable (result_value, 0,
385 TYPE_LENGTH (value_type (result_value)));
386 }
387 }
388 else if (i386_dword_regnum_p (gdbarch, regnum))
389 {
390 int gpnum = regnum - tdep->eax_regnum;
391 /* Extract (always little endian). */
392 status = regcache_raw_read (regcache, gpnum, raw_buf);
393 if (status == REG_VALID)
394 memcpy (buf, raw_buf, 4);
395 else
396 mark_value_bytes_unavailable (result_value, 0,
397 TYPE_LENGTH (value_type (result_value)));
398 }
399 else
400 i386_pseudo_register_read_into_value (gdbarch, regcache, regnum,
401 result_value);
402
403 return result_value;
404 }
405
406 static void
407 amd64_pseudo_register_write (struct gdbarch *gdbarch,
408 struct regcache *regcache,
409 int regnum, const gdb_byte *buf)
410 {
411 gdb_byte raw_buf[MAX_REGISTER_SIZE];
412 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
413
414 if (i386_byte_regnum_p (gdbarch, regnum))
415 {
416 int gpnum = regnum - tdep->al_regnum;
417
418 if (gpnum >= AMD64_NUM_LOWER_BYTE_REGS)
419 {
420 /* Read ... AH, BH, CH, DH. */
421 regcache_raw_read (regcache,
422 gpnum - AMD64_NUM_LOWER_BYTE_REGS, raw_buf);
423 /* ... Modify ... (always little endian). */
424 memcpy (raw_buf + 1, buf, 1);
425 /* ... Write. */
426 regcache_raw_write (regcache,
427 gpnum - AMD64_NUM_LOWER_BYTE_REGS, raw_buf);
428 }
429 else
430 {
431 /* Read ... */
432 regcache_raw_read (regcache, gpnum, raw_buf);
433 /* ... Modify ... (always little endian). */
434 memcpy (raw_buf, buf, 1);
435 /* ... Write. */
436 regcache_raw_write (regcache, gpnum, raw_buf);
437 }
438 }
439 else if (i386_dword_regnum_p (gdbarch, regnum))
440 {
441 int gpnum = regnum - tdep->eax_regnum;
442
443 /* Read ... */
444 regcache_raw_read (regcache, gpnum, raw_buf);
445 /* ... Modify ... (always little endian). */
446 memcpy (raw_buf, buf, 4);
447 /* ... Write. */
448 regcache_raw_write (regcache, gpnum, raw_buf);
449 }
450 else
451 i386_pseudo_register_write (gdbarch, regcache, regnum, buf);
452 }
453
454 \f
455
456 /* Register classes as defined in the psABI. */
457
458 enum amd64_reg_class
459 {
460 AMD64_INTEGER,
461 AMD64_SSE,
462 AMD64_SSEUP,
463 AMD64_X87,
464 AMD64_X87UP,
465 AMD64_COMPLEX_X87,
466 AMD64_NO_CLASS,
467 AMD64_MEMORY
468 };
469
470 /* Return the union class of CLASS1 and CLASS2. See the psABI for
471 details. */
472
473 static enum amd64_reg_class
474 amd64_merge_classes (enum amd64_reg_class class1, enum amd64_reg_class class2)
475 {
476 /* Rule (a): If both classes are equal, this is the resulting class. */
477 if (class1 == class2)
478 return class1;
479
480 /* Rule (b): If one of the classes is NO_CLASS, the resulting class
481 is the other class. */
482 if (class1 == AMD64_NO_CLASS)
483 return class2;
484 if (class2 == AMD64_NO_CLASS)
485 return class1;
486
487 /* Rule (c): If one of the classes is MEMORY, the result is MEMORY. */
488 if (class1 == AMD64_MEMORY || class2 == AMD64_MEMORY)
489 return AMD64_MEMORY;
490
491 /* Rule (d): If one of the classes is INTEGER, the result is INTEGER. */
492 if (class1 == AMD64_INTEGER || class2 == AMD64_INTEGER)
493 return AMD64_INTEGER;
494
495 /* Rule (e): If one of the classes is X87, X87UP, COMPLEX_X87 class,
496 MEMORY is used as class. */
497 if (class1 == AMD64_X87 || class1 == AMD64_X87UP
498 || class1 == AMD64_COMPLEX_X87 || class2 == AMD64_X87
499 || class2 == AMD64_X87UP || class2 == AMD64_COMPLEX_X87)
500 return AMD64_MEMORY;
501
502 /* Rule (f): Otherwise class SSE is used. */
503 return AMD64_SSE;
504 }
505
506 static void amd64_classify (struct type *type, enum amd64_reg_class class[2]);
507
508 /* Return non-zero if TYPE is a non-POD structure or union type. */
509
510 static int
511 amd64_non_pod_p (struct type *type)
512 {
513 /* ??? A class with a base class certainly isn't POD, but does this
514 catch all non-POD structure types? */
515 if (TYPE_CODE (type) == TYPE_CODE_STRUCT && TYPE_N_BASECLASSES (type) > 0)
516 return 1;
517
518 return 0;
519 }
520
521 /* Classify TYPE according to the rules for aggregate (structures and
522 arrays) and union types, and store the result in CLASS. */
523
524 static void
525 amd64_classify_aggregate (struct type *type, enum amd64_reg_class class[2])
526 {
527 /* 1. If the size of an object is larger than two eightbytes, or in
528 C++, is a non-POD structure or union type, or contains
529 unaligned fields, it has class memory. */
530 if (TYPE_LENGTH (type) > 16 || amd64_non_pod_p (type))
531 {
532 class[0] = class[1] = AMD64_MEMORY;
533 return;
534 }
535
536 /* 2. Both eightbytes get initialized to class NO_CLASS. */
537 class[0] = class[1] = AMD64_NO_CLASS;
538
539 /* 3. Each field of an object is classified recursively so that
540 always two fields are considered. The resulting class is
541 calculated according to the classes of the fields in the
542 eightbyte: */
543
544 if (TYPE_CODE (type) == TYPE_CODE_ARRAY)
545 {
546 struct type *subtype = check_typedef (TYPE_TARGET_TYPE (type));
547
548 /* All fields in an array have the same type. */
549 amd64_classify (subtype, class);
550 if (TYPE_LENGTH (type) > 8 && class[1] == AMD64_NO_CLASS)
551 class[1] = class[0];
552 }
553 else
554 {
555 int i;
556
557 /* Structure or union. */
558 gdb_assert (TYPE_CODE (type) == TYPE_CODE_STRUCT
559 || TYPE_CODE (type) == TYPE_CODE_UNION);
560
561 for (i = 0; i < TYPE_NFIELDS (type); i++)
562 {
563 struct type *subtype = check_typedef (TYPE_FIELD_TYPE (type, i));
564 int pos = TYPE_FIELD_BITPOS (type, i) / 64;
565 enum amd64_reg_class subclass[2];
566 int bitsize = TYPE_FIELD_BITSIZE (type, i);
567 int endpos;
568
569 if (bitsize == 0)
570 bitsize = TYPE_LENGTH (subtype) * 8;
571 endpos = (TYPE_FIELD_BITPOS (type, i) + bitsize - 1) / 64;
572
573 /* Ignore static fields. */
574 if (field_is_static (&TYPE_FIELD (type, i)))
575 continue;
576
577 gdb_assert (pos == 0 || pos == 1);
578
579 amd64_classify (subtype, subclass);
580 class[pos] = amd64_merge_classes (class[pos], subclass[0]);
581 if (bitsize <= 64 && pos == 0 && endpos == 1)
582 /* This is a bit of an odd case: We have a field that would
583 normally fit in one of the two eightbytes, except that
584 it is placed in a way that this field straddles them.
585 This has been seen with a structure containing an array.
586
587 The ABI is a bit unclear in this case, but we assume that
588 this field's class (stored in subclass[0]) must also be merged
589 into class[1]. In other words, our field has a piece stored
590 in the second eight-byte, and thus its class applies to
591 the second eight-byte as well.
592
593 In the case where the field length exceeds 8 bytes,
594 it should not be necessary to merge the field class
595 into class[1]. As LEN > 8, subclass[1] is necessarily
596 different from AMD64_NO_CLASS. If subclass[1] is equal
597 to subclass[0], then the normal class[1]/subclass[1]
598 merging will take care of everything. For subclass[1]
599 to be different from subclass[0], I can only see the case
600 where we have a SSE/SSEUP or X87/X87UP pair, which both
601 use up all 16 bytes of the aggregate, and are already
602 handled just fine (because each portion sits on its own
603 8-byte). */
604 class[1] = amd64_merge_classes (class[1], subclass[0]);
605 if (pos == 0)
606 class[1] = amd64_merge_classes (class[1], subclass[1]);
607 }
608 }
609
610 /* 4. Then a post merger cleanup is done: */
611
612 /* Rule (a): If one of the classes is MEMORY, the whole argument is
613 passed in memory. */
614 if (class[0] == AMD64_MEMORY || class[1] == AMD64_MEMORY)
615 class[0] = class[1] = AMD64_MEMORY;
616
617 /* Rule (b): If SSEUP is not preceded by SSE, it is converted to
618 SSE. */
619 if (class[0] == AMD64_SSEUP)
620 class[0] = AMD64_SSE;
621 if (class[1] == AMD64_SSEUP && class[0] != AMD64_SSE)
622 class[1] = AMD64_SSE;
623 }
624
625 /* Classify TYPE, and store the result in CLASS. */
626
627 static void
628 amd64_classify (struct type *type, enum amd64_reg_class class[2])
629 {
630 enum type_code code = TYPE_CODE (type);
631 int len = TYPE_LENGTH (type);
632
633 class[0] = class[1] = AMD64_NO_CLASS;
634
635 /* Arguments of types (signed and unsigned) _Bool, char, short, int,
636 long, long long, and pointers are in the INTEGER class. Similarly,
637 range types, used by languages such as Ada, are also in the INTEGER
638 class. */
639 if ((code == TYPE_CODE_INT || code == TYPE_CODE_ENUM
640 || code == TYPE_CODE_BOOL || code == TYPE_CODE_RANGE
641 || code == TYPE_CODE_CHAR
642 || code == TYPE_CODE_PTR || code == TYPE_CODE_REF)
643 && (len == 1 || len == 2 || len == 4 || len == 8))
644 class[0] = AMD64_INTEGER;
645
646 /* Arguments of types float, double, _Decimal32, _Decimal64 and __m64
647 are in class SSE. */
648 else if ((code == TYPE_CODE_FLT || code == TYPE_CODE_DECFLOAT)
649 && (len == 4 || len == 8))
650 /* FIXME: __m64 . */
651 class[0] = AMD64_SSE;
652
653 /* Arguments of types __float128, _Decimal128 and __m128 are split into
654 two halves. The least significant ones belong to class SSE, the most
655 significant one to class SSEUP. */
656 else if (code == TYPE_CODE_DECFLOAT && len == 16)
657 /* FIXME: __float128, __m128. */
658 class[0] = AMD64_SSE, class[1] = AMD64_SSEUP;
659
660 /* The 64-bit mantissa of arguments of type long double belongs to
661 class X87, the 16-bit exponent plus 6 bytes of padding belongs to
662 class X87UP. */
663 else if (code == TYPE_CODE_FLT && len == 16)
664 /* Class X87 and X87UP. */
665 class[0] = AMD64_X87, class[1] = AMD64_X87UP;
666
667 /* Arguments of complex T where T is one of the types float or
668 double get treated as if they are implemented as:
669
670 struct complexT {
671 T real;
672 T imag;
673 };
674
675 */
676 else if (code == TYPE_CODE_COMPLEX && len == 8)
677 class[0] = AMD64_SSE;
678 else if (code == TYPE_CODE_COMPLEX && len == 16)
679 class[0] = class[1] = AMD64_SSE;
680
681 /* A variable of type complex long double is classified as type
682 COMPLEX_X87. */
683 else if (code == TYPE_CODE_COMPLEX && len == 32)
684 class[0] = AMD64_COMPLEX_X87;
685
686 /* Aggregates. */
687 else if (code == TYPE_CODE_ARRAY || code == TYPE_CODE_STRUCT
688 || code == TYPE_CODE_UNION)
689 amd64_classify_aggregate (type, class);
690 }
691
692 static enum return_value_convention
693 amd64_return_value (struct gdbarch *gdbarch, struct value *function,
694 struct type *type, struct regcache *regcache,
695 gdb_byte *readbuf, const gdb_byte *writebuf)
696 {
697 enum amd64_reg_class class[2];
698 int len = TYPE_LENGTH (type);
699 static int integer_regnum[] = { AMD64_RAX_REGNUM, AMD64_RDX_REGNUM };
700 static int sse_regnum[] = { AMD64_XMM0_REGNUM, AMD64_XMM1_REGNUM };
701 int integer_reg = 0;
702 int sse_reg = 0;
703 int i;
704
705 gdb_assert (!(readbuf && writebuf));
706
707 /* 1. Classify the return type with the classification algorithm. */
708 amd64_classify (type, class);
709
710 /* 2. If the type has class MEMORY, then the caller provides space
711 for the return value and passes the address of this storage in
712 %rdi as if it were the first argument to the function. In effect,
713 this address becomes a hidden first argument.
714
715 On return %rax will contain the address that has been passed in
716 by the caller in %rdi. */
717 if (class[0] == AMD64_MEMORY)
718 {
719 /* As indicated by the comment above, the ABI guarantees that we
720 can always find the return value just after the function has
721 returned. */
722
723 if (readbuf)
724 {
725 ULONGEST addr;
726
727 regcache_raw_read_unsigned (regcache, AMD64_RAX_REGNUM, &addr);
728 read_memory (addr, readbuf, TYPE_LENGTH (type));
729 }
730
731 return RETURN_VALUE_ABI_RETURNS_ADDRESS;
732 }
733
734 /* 8. If the class is COMPLEX_X87, the real part of the value is
735 returned in %st0 and the imaginary part in %st1. */
736 if (class[0] == AMD64_COMPLEX_X87)
737 {
738 if (readbuf)
739 {
740 regcache_raw_read (regcache, AMD64_ST0_REGNUM, readbuf);
741 regcache_raw_read (regcache, AMD64_ST1_REGNUM, readbuf + 16);
742 }
743
744 if (writebuf)
745 {
746 i387_return_value (gdbarch, regcache);
747 regcache_raw_write (regcache, AMD64_ST0_REGNUM, writebuf);
748 regcache_raw_write (regcache, AMD64_ST1_REGNUM, writebuf + 16);
749
750 /* Fix up the tag word such that both %st(0) and %st(1) are
751 marked as valid. */
752 regcache_raw_write_unsigned (regcache, AMD64_FTAG_REGNUM, 0xfff);
753 }
754
755 return RETURN_VALUE_REGISTER_CONVENTION;
756 }
757
758 gdb_assert (class[1] != AMD64_MEMORY);
759 gdb_assert (len <= 16);
760
761 for (i = 0; len > 0; i++, len -= 8)
762 {
763 int regnum = -1;
764 int offset = 0;
765
766 switch (class[i])
767 {
768 case AMD64_INTEGER:
769 /* 3. If the class is INTEGER, the next available register
770 of the sequence %rax, %rdx is used. */
771 regnum = integer_regnum[integer_reg++];
772 break;
773
774 case AMD64_SSE:
775 /* 4. If the class is SSE, the next available SSE register
776 of the sequence %xmm0, %xmm1 is used. */
777 regnum = sse_regnum[sse_reg++];
778 break;
779
780 case AMD64_SSEUP:
781 /* 5. If the class is SSEUP, the eightbyte is passed in the
782 upper half of the last used SSE register. */
783 gdb_assert (sse_reg > 0);
784 regnum = sse_regnum[sse_reg - 1];
785 offset = 8;
786 break;
787
788 case AMD64_X87:
789 /* 6. If the class is X87, the value is returned on the X87
790 stack in %st0 as 80-bit x87 number. */
791 regnum = AMD64_ST0_REGNUM;
792 if (writebuf)
793 i387_return_value (gdbarch, regcache);
794 break;
795
796 case AMD64_X87UP:
797 /* 7. If the class is X87UP, the value is returned together
798 with the previous X87 value in %st0. */
799 gdb_assert (i > 0 && class[0] == AMD64_X87);
800 regnum = AMD64_ST0_REGNUM;
801 offset = 8;
802 len = 2;
803 break;
804
805 case AMD64_NO_CLASS:
806 continue;
807
808 default:
809 gdb_assert (!"Unexpected register class.");
810 }
811
812 gdb_assert (regnum != -1);
813
814 if (readbuf)
815 regcache_raw_read_part (regcache, regnum, offset, min (len, 8),
816 readbuf + i * 8);
817 if (writebuf)
818 regcache_raw_write_part (regcache, regnum, offset, min (len, 8),
819 writebuf + i * 8);
820 }
821
822 return RETURN_VALUE_REGISTER_CONVENTION;
823 }
824 \f
825
826 static CORE_ADDR
827 amd64_push_arguments (struct regcache *regcache, int nargs,
828 struct value **args, CORE_ADDR sp, int struct_return)
829 {
830 static int integer_regnum[] =
831 {
832 AMD64_RDI_REGNUM, /* %rdi */
833 AMD64_RSI_REGNUM, /* %rsi */
834 AMD64_RDX_REGNUM, /* %rdx */
835 AMD64_RCX_REGNUM, /* %rcx */
836 AMD64_R8_REGNUM, /* %r8 */
837 AMD64_R9_REGNUM /* %r9 */
838 };
839 static int sse_regnum[] =
840 {
841 /* %xmm0 ... %xmm7 */
842 AMD64_XMM0_REGNUM + 0, AMD64_XMM1_REGNUM,
843 AMD64_XMM0_REGNUM + 2, AMD64_XMM0_REGNUM + 3,
844 AMD64_XMM0_REGNUM + 4, AMD64_XMM0_REGNUM + 5,
845 AMD64_XMM0_REGNUM + 6, AMD64_XMM0_REGNUM + 7,
846 };
847 struct value **stack_args = alloca (nargs * sizeof (struct value *));
848 int num_stack_args = 0;
849 int num_elements = 0;
850 int element = 0;
851 int integer_reg = 0;
852 int sse_reg = 0;
853 int i;
854
855 /* Reserve a register for the "hidden" argument. */
856 if (struct_return)
857 integer_reg++;
858
859 for (i = 0; i < nargs; i++)
860 {
861 struct type *type = value_type (args[i]);
862 int len = TYPE_LENGTH (type);
863 enum amd64_reg_class class[2];
864 int needed_integer_regs = 0;
865 int needed_sse_regs = 0;
866 int j;
867
868 /* Classify argument. */
869 amd64_classify (type, class);
870
871 /* Calculate the number of integer and SSE registers needed for
872 this argument. */
873 for (j = 0; j < 2; j++)
874 {
875 if (class[j] == AMD64_INTEGER)
876 needed_integer_regs++;
877 else if (class[j] == AMD64_SSE)
878 needed_sse_regs++;
879 }
880
881 /* Check whether enough registers are available, and if the
882 argument should be passed in registers at all. */
883 if (integer_reg + needed_integer_regs > ARRAY_SIZE (integer_regnum)
884 || sse_reg + needed_sse_regs > ARRAY_SIZE (sse_regnum)
885 || (needed_integer_regs == 0 && needed_sse_regs == 0))
886 {
887 /* The argument will be passed on the stack. */
888 num_elements += ((len + 7) / 8);
889 stack_args[num_stack_args++] = args[i];
890 }
891 else
892 {
893 /* The argument will be passed in registers. */
894 const gdb_byte *valbuf = value_contents (args[i]);
895 gdb_byte buf[8];
896
897 gdb_assert (len <= 16);
898
899 for (j = 0; len > 0; j++, len -= 8)
900 {
901 int regnum = -1;
902 int offset = 0;
903
904 switch (class[j])
905 {
906 case AMD64_INTEGER:
907 regnum = integer_regnum[integer_reg++];
908 break;
909
910 case AMD64_SSE:
911 regnum = sse_regnum[sse_reg++];
912 break;
913
914 case AMD64_SSEUP:
915 gdb_assert (sse_reg > 0);
916 regnum = sse_regnum[sse_reg - 1];
917 offset = 8;
918 break;
919
920 default:
921 gdb_assert (!"Unexpected register class.");
922 }
923
924 gdb_assert (regnum != -1);
925 memset (buf, 0, sizeof buf);
926 memcpy (buf, valbuf + j * 8, min (len, 8));
927 regcache_raw_write_part (regcache, regnum, offset, 8, buf);
928 }
929 }
930 }
931
932 /* Allocate space for the arguments on the stack. */
933 sp -= num_elements * 8;
934
935 /* The psABI says that "The end of the input argument area shall be
936 aligned on a 16 byte boundary." */
937 sp &= ~0xf;
938
939 /* Write out the arguments to the stack. */
940 for (i = 0; i < num_stack_args; i++)
941 {
942 struct type *type = value_type (stack_args[i]);
943 const gdb_byte *valbuf = value_contents (stack_args[i]);
944 int len = TYPE_LENGTH (type);
945
946 write_memory (sp + element * 8, valbuf, len);
947 element += ((len + 7) / 8);
948 }
949
950 /* The psABI says that "For calls that may call functions that use
951 varargs or stdargs (prototype-less calls or calls to functions
952 containing ellipsis (...) in the declaration) %al is used as
953 hidden argument to specify the number of SSE registers used. */
954 regcache_raw_write_unsigned (regcache, AMD64_RAX_REGNUM, sse_reg);
955 return sp;
956 }
957
958 static CORE_ADDR
959 amd64_push_dummy_call (struct gdbarch *gdbarch, struct value *function,
960 struct regcache *regcache, CORE_ADDR bp_addr,
961 int nargs, struct value **args, CORE_ADDR sp,
962 int struct_return, CORE_ADDR struct_addr)
963 {
964 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
965 gdb_byte buf[8];
966
967 /* Pass arguments. */
968 sp = amd64_push_arguments (regcache, nargs, args, sp, struct_return);
969
970 /* Pass "hidden" argument". */
971 if (struct_return)
972 {
973 store_unsigned_integer (buf, 8, byte_order, struct_addr);
974 regcache_cooked_write (regcache, AMD64_RDI_REGNUM, buf);
975 }
976
977 /* Store return address. */
978 sp -= 8;
979 store_unsigned_integer (buf, 8, byte_order, bp_addr);
980 write_memory (sp, buf, 8);
981
982 /* Finally, update the stack pointer... */
983 store_unsigned_integer (buf, 8, byte_order, sp);
984 regcache_cooked_write (regcache, AMD64_RSP_REGNUM, buf);
985
986 /* ...and fake a frame pointer. */
987 regcache_cooked_write (regcache, AMD64_RBP_REGNUM, buf);
988
989 return sp + 16;
990 }
991 \f
992 /* Displaced instruction handling. */
993
994 /* A partially decoded instruction.
995 This contains enough details for displaced stepping purposes. */
996
997 struct amd64_insn
998 {
999 /* The number of opcode bytes. */
1000 int opcode_len;
1001 /* The offset of the rex prefix or -1 if not present. */
1002 int rex_offset;
1003 /* The offset to the first opcode byte. */
1004 int opcode_offset;
1005 /* The offset to the modrm byte or -1 if not present. */
1006 int modrm_offset;
1007
1008 /* The raw instruction. */
1009 gdb_byte *raw_insn;
1010 };
1011
1012 struct displaced_step_closure
1013 {
1014 /* For rip-relative insns, saved copy of the reg we use instead of %rip. */
1015 int tmp_used;
1016 int tmp_regno;
1017 ULONGEST tmp_save;
1018
1019 /* Details of the instruction. */
1020 struct amd64_insn insn_details;
1021
1022 /* Amount of space allocated to insn_buf. */
1023 int max_len;
1024
1025 /* The possibly modified insn.
1026 This is a variable-length field. */
1027 gdb_byte insn_buf[1];
1028 };
1029
1030 /* WARNING: Keep onebyte_has_modrm, twobyte_has_modrm in sync with
1031 ../opcodes/i386-dis.c (until libopcodes exports them, or an alternative,
1032 at which point delete these in favor of libopcodes' versions). */
1033
1034 static const unsigned char onebyte_has_modrm[256] = {
1035 /* 0 1 2 3 4 5 6 7 8 9 a b c d e f */
1036 /* ------------------------------- */
1037 /* 00 */ 1,1,1,1,0,0,0,0,1,1,1,1,0,0,0,0, /* 00 */
1038 /* 10 */ 1,1,1,1,0,0,0,0,1,1,1,1,0,0,0,0, /* 10 */
1039 /* 20 */ 1,1,1,1,0,0,0,0,1,1,1,1,0,0,0,0, /* 20 */
1040 /* 30 */ 1,1,1,1,0,0,0,0,1,1,1,1,0,0,0,0, /* 30 */
1041 /* 40 */ 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, /* 40 */
1042 /* 50 */ 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, /* 50 */
1043 /* 60 */ 0,0,1,1,0,0,0,0,0,1,0,1,0,0,0,0, /* 60 */
1044 /* 70 */ 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, /* 70 */
1045 /* 80 */ 1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1, /* 80 */
1046 /* 90 */ 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, /* 90 */
1047 /* a0 */ 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, /* a0 */
1048 /* b0 */ 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, /* b0 */
1049 /* c0 */ 1,1,0,0,1,1,1,1,0,0,0,0,0,0,0,0, /* c0 */
1050 /* d0 */ 1,1,1,1,0,0,0,0,1,1,1,1,1,1,1,1, /* d0 */
1051 /* e0 */ 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, /* e0 */
1052 /* f0 */ 0,0,0,0,0,0,1,1,0,0,0,0,0,0,1,1 /* f0 */
1053 /* ------------------------------- */
1054 /* 0 1 2 3 4 5 6 7 8 9 a b c d e f */
1055 };
1056
1057 static const unsigned char twobyte_has_modrm[256] = {
1058 /* 0 1 2 3 4 5 6 7 8 9 a b c d e f */
1059 /* ------------------------------- */
1060 /* 00 */ 1,1,1,1,0,0,0,0,0,0,0,0,0,1,0,1, /* 0f */
1061 /* 10 */ 1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1, /* 1f */
1062 /* 20 */ 1,1,1,1,1,1,1,0,1,1,1,1,1,1,1,1, /* 2f */
1063 /* 30 */ 0,0,0,0,0,0,0,0,1,0,1,0,0,0,0,0, /* 3f */
1064 /* 40 */ 1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1, /* 4f */
1065 /* 50 */ 1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1, /* 5f */
1066 /* 60 */ 1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1, /* 6f */
1067 /* 70 */ 1,1,1,1,1,1,1,0,1,1,1,1,1,1,1,1, /* 7f */
1068 /* 80 */ 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, /* 8f */
1069 /* 90 */ 1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1, /* 9f */
1070 /* a0 */ 0,0,0,1,1,1,1,1,0,0,0,1,1,1,1,1, /* af */
1071 /* b0 */ 1,1,1,1,1,1,1,1,1,0,1,1,1,1,1,1, /* bf */
1072 /* c0 */ 1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0, /* cf */
1073 /* d0 */ 1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1, /* df */
1074 /* e0 */ 1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1, /* ef */
1075 /* f0 */ 1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,0 /* ff */
1076 /* ------------------------------- */
1077 /* 0 1 2 3 4 5 6 7 8 9 a b c d e f */
1078 };
1079
1080 static int amd64_syscall_p (const struct amd64_insn *insn, int *lengthp);
1081
1082 static int
1083 rex_prefix_p (gdb_byte pfx)
1084 {
1085 return REX_PREFIX_P (pfx);
1086 }
1087
1088 /* Skip the legacy instruction prefixes in INSN.
1089 We assume INSN is properly sentineled so we don't have to worry
1090 about falling off the end of the buffer. */
1091
1092 static gdb_byte *
1093 amd64_skip_prefixes (gdb_byte *insn)
1094 {
1095 while (1)
1096 {
1097 switch (*insn)
1098 {
1099 case DATA_PREFIX_OPCODE:
1100 case ADDR_PREFIX_OPCODE:
1101 case CS_PREFIX_OPCODE:
1102 case DS_PREFIX_OPCODE:
1103 case ES_PREFIX_OPCODE:
1104 case FS_PREFIX_OPCODE:
1105 case GS_PREFIX_OPCODE:
1106 case SS_PREFIX_OPCODE:
1107 case LOCK_PREFIX_OPCODE:
1108 case REPE_PREFIX_OPCODE:
1109 case REPNE_PREFIX_OPCODE:
1110 ++insn;
1111 continue;
1112 default:
1113 break;
1114 }
1115 break;
1116 }
1117
1118 return insn;
1119 }
1120
1121 /* Return an integer register (other than RSP) that is unused as an input
1122 operand in INSN.
1123 In order to not require adding a rex prefix if the insn doesn't already
1124 have one, the result is restricted to RAX ... RDI, sans RSP.
1125 The register numbering of the result follows architecture ordering,
1126 e.g. RDI = 7. */
1127
1128 static int
1129 amd64_get_unused_input_int_reg (const struct amd64_insn *details)
1130 {
1131 /* 1 bit for each reg */
1132 int used_regs_mask = 0;
1133
1134 /* There can be at most 3 int regs used as inputs in an insn, and we have
1135 7 to choose from (RAX ... RDI, sans RSP).
1136 This allows us to take a conservative approach and keep things simple.
1137 E.g. By avoiding RAX, we don't have to specifically watch for opcodes
1138 that implicitly specify RAX. */
1139
1140 /* Avoid RAX. */
1141 used_regs_mask |= 1 << EAX_REG_NUM;
1142 /* Similarily avoid RDX, implicit operand in divides. */
1143 used_regs_mask |= 1 << EDX_REG_NUM;
1144 /* Avoid RSP. */
1145 used_regs_mask |= 1 << ESP_REG_NUM;
1146
1147 /* If the opcode is one byte long and there's no ModRM byte,
1148 assume the opcode specifies a register. */
1149 if (details->opcode_len == 1 && details->modrm_offset == -1)
1150 used_regs_mask |= 1 << (details->raw_insn[details->opcode_offset] & 7);
1151
1152 /* Mark used regs in the modrm/sib bytes. */
1153 if (details->modrm_offset != -1)
1154 {
1155 int modrm = details->raw_insn[details->modrm_offset];
1156 int mod = MODRM_MOD_FIELD (modrm);
1157 int reg = MODRM_REG_FIELD (modrm);
1158 int rm = MODRM_RM_FIELD (modrm);
1159 int have_sib = mod != 3 && rm == 4;
1160
1161 /* Assume the reg field of the modrm byte specifies a register. */
1162 used_regs_mask |= 1 << reg;
1163
1164 if (have_sib)
1165 {
1166 int base = SIB_BASE_FIELD (details->raw_insn[details->modrm_offset + 1]);
1167 int idx = SIB_INDEX_FIELD (details->raw_insn[details->modrm_offset + 1]);
1168 used_regs_mask |= 1 << base;
1169 used_regs_mask |= 1 << idx;
1170 }
1171 else
1172 {
1173 used_regs_mask |= 1 << rm;
1174 }
1175 }
1176
1177 gdb_assert (used_regs_mask < 256);
1178 gdb_assert (used_regs_mask != 255);
1179
1180 /* Finally, find a free reg. */
1181 {
1182 int i;
1183
1184 for (i = 0; i < 8; ++i)
1185 {
1186 if (! (used_regs_mask & (1 << i)))
1187 return i;
1188 }
1189
1190 /* We shouldn't get here. */
1191 internal_error (__FILE__, __LINE__, _("unable to find free reg"));
1192 }
1193 }
1194
1195 /* Extract the details of INSN that we need. */
1196
1197 static void
1198 amd64_get_insn_details (gdb_byte *insn, struct amd64_insn *details)
1199 {
1200 gdb_byte *start = insn;
1201 int need_modrm;
1202
1203 details->raw_insn = insn;
1204
1205 details->opcode_len = -1;
1206 details->rex_offset = -1;
1207 details->opcode_offset = -1;
1208 details->modrm_offset = -1;
1209
1210 /* Skip legacy instruction prefixes. */
1211 insn = amd64_skip_prefixes (insn);
1212
1213 /* Skip REX instruction prefix. */
1214 if (rex_prefix_p (*insn))
1215 {
1216 details->rex_offset = insn - start;
1217 ++insn;
1218 }
1219
1220 details->opcode_offset = insn - start;
1221
1222 if (*insn == TWO_BYTE_OPCODE_ESCAPE)
1223 {
1224 /* Two or three-byte opcode. */
1225 ++insn;
1226 need_modrm = twobyte_has_modrm[*insn];
1227
1228 /* Check for three-byte opcode. */
1229 switch (*insn)
1230 {
1231 case 0x24:
1232 case 0x25:
1233 case 0x38:
1234 case 0x3a:
1235 case 0x7a:
1236 case 0x7b:
1237 ++insn;
1238 details->opcode_len = 3;
1239 break;
1240 default:
1241 details->opcode_len = 2;
1242 break;
1243 }
1244 }
1245 else
1246 {
1247 /* One-byte opcode. */
1248 need_modrm = onebyte_has_modrm[*insn];
1249 details->opcode_len = 1;
1250 }
1251
1252 if (need_modrm)
1253 {
1254 ++insn;
1255 details->modrm_offset = insn - start;
1256 }
1257 }
1258
1259 /* Update %rip-relative addressing in INSN.
1260
1261 %rip-relative addressing only uses a 32-bit displacement.
1262 32 bits is not enough to be guaranteed to cover the distance between where
1263 the real instruction is and where its copy is.
1264 Convert the insn to use base+disp addressing.
1265 We set base = pc + insn_length so we can leave disp unchanged. */
1266
1267 static void
1268 fixup_riprel (struct gdbarch *gdbarch, struct displaced_step_closure *dsc,
1269 CORE_ADDR from, CORE_ADDR to, struct regcache *regs)
1270 {
1271 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1272 const struct amd64_insn *insn_details = &dsc->insn_details;
1273 int modrm_offset = insn_details->modrm_offset;
1274 gdb_byte *insn = insn_details->raw_insn + modrm_offset;
1275 CORE_ADDR rip_base;
1276 int32_t disp;
1277 int insn_length;
1278 int arch_tmp_regno, tmp_regno;
1279 ULONGEST orig_value;
1280
1281 /* %rip+disp32 addressing mode, displacement follows ModRM byte. */
1282 ++insn;
1283
1284 /* Compute the rip-relative address. */
1285 disp = extract_signed_integer (insn, sizeof (int32_t), byte_order);
1286 insn_length = gdb_buffered_insn_length (gdbarch, dsc->insn_buf,
1287 dsc->max_len, from);
1288 rip_base = from + insn_length;
1289
1290 /* We need a register to hold the address.
1291 Pick one not used in the insn.
1292 NOTE: arch_tmp_regno uses architecture ordering, e.g. RDI = 7. */
1293 arch_tmp_regno = amd64_get_unused_input_int_reg (insn_details);
1294 tmp_regno = amd64_arch_reg_to_regnum (arch_tmp_regno);
1295
1296 /* REX.B should be unset as we were using rip-relative addressing,
1297 but ensure it's unset anyway, tmp_regno is not r8-r15. */
1298 if (insn_details->rex_offset != -1)
1299 dsc->insn_buf[insn_details->rex_offset] &= ~REX_B;
1300
1301 regcache_cooked_read_unsigned (regs, tmp_regno, &orig_value);
1302 dsc->tmp_regno = tmp_regno;
1303 dsc->tmp_save = orig_value;
1304 dsc->tmp_used = 1;
1305
1306 /* Convert the ModRM field to be base+disp. */
1307 dsc->insn_buf[modrm_offset] &= ~0xc7;
1308 dsc->insn_buf[modrm_offset] |= 0x80 + arch_tmp_regno;
1309
1310 regcache_cooked_write_unsigned (regs, tmp_regno, rip_base);
1311
1312 if (debug_displaced)
1313 fprintf_unfiltered (gdb_stdlog, "displaced: %%rip-relative addressing used.\n"
1314 "displaced: using temp reg %d, old value %s, new value %s\n",
1315 dsc->tmp_regno, paddress (gdbarch, dsc->tmp_save),
1316 paddress (gdbarch, rip_base));
1317 }
1318
1319 static void
1320 fixup_displaced_copy (struct gdbarch *gdbarch,
1321 struct displaced_step_closure *dsc,
1322 CORE_ADDR from, CORE_ADDR to, struct regcache *regs)
1323 {
1324 const struct amd64_insn *details = &dsc->insn_details;
1325
1326 if (details->modrm_offset != -1)
1327 {
1328 gdb_byte modrm = details->raw_insn[details->modrm_offset];
1329
1330 if ((modrm & 0xc7) == 0x05)
1331 {
1332 /* The insn uses rip-relative addressing.
1333 Deal with it. */
1334 fixup_riprel (gdbarch, dsc, from, to, regs);
1335 }
1336 }
1337 }
1338
1339 struct displaced_step_closure *
1340 amd64_displaced_step_copy_insn (struct gdbarch *gdbarch,
1341 CORE_ADDR from, CORE_ADDR to,
1342 struct regcache *regs)
1343 {
1344 int len = gdbarch_max_insn_length (gdbarch);
1345 /* Extra space for sentinels so fixup_{riprel,displaced_copy} don't have to
1346 continually watch for running off the end of the buffer. */
1347 int fixup_sentinel_space = len;
1348 struct displaced_step_closure *dsc =
1349 xmalloc (sizeof (*dsc) + len + fixup_sentinel_space);
1350 gdb_byte *buf = &dsc->insn_buf[0];
1351 struct amd64_insn *details = &dsc->insn_details;
1352
1353 dsc->tmp_used = 0;
1354 dsc->max_len = len + fixup_sentinel_space;
1355
1356 read_memory (from, buf, len);
1357
1358 /* Set up the sentinel space so we don't have to worry about running
1359 off the end of the buffer. An excessive number of leading prefixes
1360 could otherwise cause this. */
1361 memset (buf + len, 0, fixup_sentinel_space);
1362
1363 amd64_get_insn_details (buf, details);
1364
1365 /* GDB may get control back after the insn after the syscall.
1366 Presumably this is a kernel bug.
1367 If this is a syscall, make sure there's a nop afterwards. */
1368 {
1369 int syscall_length;
1370
1371 if (amd64_syscall_p (details, &syscall_length))
1372 buf[details->opcode_offset + syscall_length] = NOP_OPCODE;
1373 }
1374
1375 /* Modify the insn to cope with the address where it will be executed from.
1376 In particular, handle any rip-relative addressing. */
1377 fixup_displaced_copy (gdbarch, dsc, from, to, regs);
1378
1379 write_memory (to, buf, len);
1380
1381 if (debug_displaced)
1382 {
1383 fprintf_unfiltered (gdb_stdlog, "displaced: copy %s->%s: ",
1384 paddress (gdbarch, from), paddress (gdbarch, to));
1385 displaced_step_dump_bytes (gdb_stdlog, buf, len);
1386 }
1387
1388 return dsc;
1389 }
1390
1391 static int
1392 amd64_absolute_jmp_p (const struct amd64_insn *details)
1393 {
1394 const gdb_byte *insn = &details->raw_insn[details->opcode_offset];
1395
1396 if (insn[0] == 0xff)
1397 {
1398 /* jump near, absolute indirect (/4) */
1399 if ((insn[1] & 0x38) == 0x20)
1400 return 1;
1401
1402 /* jump far, absolute indirect (/5) */
1403 if ((insn[1] & 0x38) == 0x28)
1404 return 1;
1405 }
1406
1407 return 0;
1408 }
1409
1410 /* Return non-zero if the instruction DETAILS is a jump, zero otherwise. */
1411
1412 static int
1413 amd64_jmp_p (const struct amd64_insn *details)
1414 {
1415 const gdb_byte *insn = &details->raw_insn[details->opcode_offset];
1416
1417 /* jump short, relative. */
1418 if (insn[0] == 0xeb)
1419 return 1;
1420
1421 /* jump near, relative. */
1422 if (insn[0] == 0xe9)
1423 return 1;
1424
1425 return amd64_absolute_jmp_p (details);
1426 }
1427
1428 static int
1429 amd64_absolute_call_p (const struct amd64_insn *details)
1430 {
1431 const gdb_byte *insn = &details->raw_insn[details->opcode_offset];
1432
1433 if (insn[0] == 0xff)
1434 {
1435 /* Call near, absolute indirect (/2) */
1436 if ((insn[1] & 0x38) == 0x10)
1437 return 1;
1438
1439 /* Call far, absolute indirect (/3) */
1440 if ((insn[1] & 0x38) == 0x18)
1441 return 1;
1442 }
1443
1444 return 0;
1445 }
1446
1447 static int
1448 amd64_ret_p (const struct amd64_insn *details)
1449 {
1450 /* NOTE: gcc can emit "repz ; ret". */
1451 const gdb_byte *insn = &details->raw_insn[details->opcode_offset];
1452
1453 switch (insn[0])
1454 {
1455 case 0xc2: /* ret near, pop N bytes */
1456 case 0xc3: /* ret near */
1457 case 0xca: /* ret far, pop N bytes */
1458 case 0xcb: /* ret far */
1459 case 0xcf: /* iret */
1460 return 1;
1461
1462 default:
1463 return 0;
1464 }
1465 }
1466
1467 static int
1468 amd64_call_p (const struct amd64_insn *details)
1469 {
1470 const gdb_byte *insn = &details->raw_insn[details->opcode_offset];
1471
1472 if (amd64_absolute_call_p (details))
1473 return 1;
1474
1475 /* call near, relative */
1476 if (insn[0] == 0xe8)
1477 return 1;
1478
1479 return 0;
1480 }
1481
1482 /* Return non-zero if INSN is a system call, and set *LENGTHP to its
1483 length in bytes. Otherwise, return zero. */
1484
1485 static int
1486 amd64_syscall_p (const struct amd64_insn *details, int *lengthp)
1487 {
1488 const gdb_byte *insn = &details->raw_insn[details->opcode_offset];
1489
1490 if (insn[0] == 0x0f && insn[1] == 0x05)
1491 {
1492 *lengthp = 2;
1493 return 1;
1494 }
1495
1496 return 0;
1497 }
1498
1499 /* Classify the instruction at ADDR using PRED.
1500 Throw an error if the memory can't be read. */
1501
1502 static int
1503 amd64_classify_insn_at (struct gdbarch *gdbarch, CORE_ADDR addr,
1504 int (*pred) (const struct amd64_insn *))
1505 {
1506 struct amd64_insn details;
1507 gdb_byte *buf;
1508 int len, classification;
1509
1510 len = gdbarch_max_insn_length (gdbarch);
1511 buf = alloca (len);
1512
1513 read_code (addr, buf, len);
1514 amd64_get_insn_details (buf, &details);
1515
1516 classification = pred (&details);
1517
1518 return classification;
1519 }
1520
1521 /* The gdbarch insn_is_call method. */
1522
1523 static int
1524 amd64_insn_is_call (struct gdbarch *gdbarch, CORE_ADDR addr)
1525 {
1526 return amd64_classify_insn_at (gdbarch, addr, amd64_call_p);
1527 }
1528
1529 /* The gdbarch insn_is_ret method. */
1530
1531 static int
1532 amd64_insn_is_ret (struct gdbarch *gdbarch, CORE_ADDR addr)
1533 {
1534 return amd64_classify_insn_at (gdbarch, addr, amd64_ret_p);
1535 }
1536
1537 /* The gdbarch insn_is_jump method. */
1538
1539 static int
1540 amd64_insn_is_jump (struct gdbarch *gdbarch, CORE_ADDR addr)
1541 {
1542 return amd64_classify_insn_at (gdbarch, addr, amd64_jmp_p);
1543 }
1544
1545 /* Fix up the state of registers and memory after having single-stepped
1546 a displaced instruction. */
1547
1548 void
1549 amd64_displaced_step_fixup (struct gdbarch *gdbarch,
1550 struct displaced_step_closure *dsc,
1551 CORE_ADDR from, CORE_ADDR to,
1552 struct regcache *regs)
1553 {
1554 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1555 /* The offset we applied to the instruction's address. */
1556 ULONGEST insn_offset = to - from;
1557 gdb_byte *insn = dsc->insn_buf;
1558 const struct amd64_insn *insn_details = &dsc->insn_details;
1559
1560 if (debug_displaced)
1561 fprintf_unfiltered (gdb_stdlog,
1562 "displaced: fixup (%s, %s), "
1563 "insn = 0x%02x 0x%02x ...\n",
1564 paddress (gdbarch, from), paddress (gdbarch, to),
1565 insn[0], insn[1]);
1566
1567 /* If we used a tmp reg, restore it. */
1568
1569 if (dsc->tmp_used)
1570 {
1571 if (debug_displaced)
1572 fprintf_unfiltered (gdb_stdlog, "displaced: restoring reg %d to %s\n",
1573 dsc->tmp_regno, paddress (gdbarch, dsc->tmp_save));
1574 regcache_cooked_write_unsigned (regs, dsc->tmp_regno, dsc->tmp_save);
1575 }
1576
1577 /* The list of issues to contend with here is taken from
1578 resume_execution in arch/x86/kernel/kprobes.c, Linux 2.6.28.
1579 Yay for Free Software! */
1580
1581 /* Relocate the %rip back to the program's instruction stream,
1582 if necessary. */
1583
1584 /* Except in the case of absolute or indirect jump or call
1585 instructions, or a return instruction, the new rip is relative to
1586 the displaced instruction; make it relative to the original insn.
1587 Well, signal handler returns don't need relocation either, but we use the
1588 value of %rip to recognize those; see below. */
1589 if (! amd64_absolute_jmp_p (insn_details)
1590 && ! amd64_absolute_call_p (insn_details)
1591 && ! amd64_ret_p (insn_details))
1592 {
1593 ULONGEST orig_rip;
1594 int insn_len;
1595
1596 regcache_cooked_read_unsigned (regs, AMD64_RIP_REGNUM, &orig_rip);
1597
1598 /* A signal trampoline system call changes the %rip, resuming
1599 execution of the main program after the signal handler has
1600 returned. That makes them like 'return' instructions; we
1601 shouldn't relocate %rip.
1602
1603 But most system calls don't, and we do need to relocate %rip.
1604
1605 Our heuristic for distinguishing these cases: if stepping
1606 over the system call instruction left control directly after
1607 the instruction, the we relocate --- control almost certainly
1608 doesn't belong in the displaced copy. Otherwise, we assume
1609 the instruction has put control where it belongs, and leave
1610 it unrelocated. Goodness help us if there are PC-relative
1611 system calls. */
1612 if (amd64_syscall_p (insn_details, &insn_len)
1613 && orig_rip != to + insn_len
1614 /* GDB can get control back after the insn after the syscall.
1615 Presumably this is a kernel bug.
1616 Fixup ensures its a nop, we add one to the length for it. */
1617 && orig_rip != to + insn_len + 1)
1618 {
1619 if (debug_displaced)
1620 fprintf_unfiltered (gdb_stdlog,
1621 "displaced: syscall changed %%rip; "
1622 "not relocating\n");
1623 }
1624 else
1625 {
1626 ULONGEST rip = orig_rip - insn_offset;
1627
1628 /* If we just stepped over a breakpoint insn, we don't backup
1629 the pc on purpose; this is to match behaviour without
1630 stepping. */
1631
1632 regcache_cooked_write_unsigned (regs, AMD64_RIP_REGNUM, rip);
1633
1634 if (debug_displaced)
1635 fprintf_unfiltered (gdb_stdlog,
1636 "displaced: "
1637 "relocated %%rip from %s to %s\n",
1638 paddress (gdbarch, orig_rip),
1639 paddress (gdbarch, rip));
1640 }
1641 }
1642
1643 /* If the instruction was PUSHFL, then the TF bit will be set in the
1644 pushed value, and should be cleared. We'll leave this for later,
1645 since GDB already messes up the TF flag when stepping over a
1646 pushfl. */
1647
1648 /* If the instruction was a call, the return address now atop the
1649 stack is the address following the copied instruction. We need
1650 to make it the address following the original instruction. */
1651 if (amd64_call_p (insn_details))
1652 {
1653 ULONGEST rsp;
1654 ULONGEST retaddr;
1655 const ULONGEST retaddr_len = 8;
1656
1657 regcache_cooked_read_unsigned (regs, AMD64_RSP_REGNUM, &rsp);
1658 retaddr = read_memory_unsigned_integer (rsp, retaddr_len, byte_order);
1659 retaddr = (retaddr - insn_offset) & 0xffffffffUL;
1660 write_memory_unsigned_integer (rsp, retaddr_len, byte_order, retaddr);
1661
1662 if (debug_displaced)
1663 fprintf_unfiltered (gdb_stdlog,
1664 "displaced: relocated return addr at %s "
1665 "to %s\n",
1666 paddress (gdbarch, rsp),
1667 paddress (gdbarch, retaddr));
1668 }
1669 }
1670
1671 /* If the instruction INSN uses RIP-relative addressing, return the
1672 offset into the raw INSN where the displacement to be adjusted is
1673 found. Returns 0 if the instruction doesn't use RIP-relative
1674 addressing. */
1675
1676 static int
1677 rip_relative_offset (struct amd64_insn *insn)
1678 {
1679 if (insn->modrm_offset != -1)
1680 {
1681 gdb_byte modrm = insn->raw_insn[insn->modrm_offset];
1682
1683 if ((modrm & 0xc7) == 0x05)
1684 {
1685 /* The displacement is found right after the ModRM byte. */
1686 return insn->modrm_offset + 1;
1687 }
1688 }
1689
1690 return 0;
1691 }
1692
1693 static void
1694 append_insns (CORE_ADDR *to, ULONGEST len, const gdb_byte *buf)
1695 {
1696 target_write_memory (*to, buf, len);
1697 *to += len;
1698 }
1699
1700 static void
1701 amd64_relocate_instruction (struct gdbarch *gdbarch,
1702 CORE_ADDR *to, CORE_ADDR oldloc)
1703 {
1704 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1705 int len = gdbarch_max_insn_length (gdbarch);
1706 /* Extra space for sentinels. */
1707 int fixup_sentinel_space = len;
1708 gdb_byte *buf = xmalloc (len + fixup_sentinel_space);
1709 struct amd64_insn insn_details;
1710 int offset = 0;
1711 LONGEST rel32, newrel;
1712 gdb_byte *insn;
1713 int insn_length;
1714
1715 read_memory (oldloc, buf, len);
1716
1717 /* Set up the sentinel space so we don't have to worry about running
1718 off the end of the buffer. An excessive number of leading prefixes
1719 could otherwise cause this. */
1720 memset (buf + len, 0, fixup_sentinel_space);
1721
1722 insn = buf;
1723 amd64_get_insn_details (insn, &insn_details);
1724
1725 insn_length = gdb_buffered_insn_length (gdbarch, insn, len, oldloc);
1726
1727 /* Skip legacy instruction prefixes. */
1728 insn = amd64_skip_prefixes (insn);
1729
1730 /* Adjust calls with 32-bit relative addresses as push/jump, with
1731 the address pushed being the location where the original call in
1732 the user program would return to. */
1733 if (insn[0] == 0xe8)
1734 {
1735 gdb_byte push_buf[16];
1736 unsigned int ret_addr;
1737
1738 /* Where "ret" in the original code will return to. */
1739 ret_addr = oldloc + insn_length;
1740 push_buf[0] = 0x68; /* pushq $... */
1741 store_unsigned_integer (&push_buf[1], 4, byte_order, ret_addr);
1742 /* Push the push. */
1743 append_insns (to, 5, push_buf);
1744
1745 /* Convert the relative call to a relative jump. */
1746 insn[0] = 0xe9;
1747
1748 /* Adjust the destination offset. */
1749 rel32 = extract_signed_integer (insn + 1, 4, byte_order);
1750 newrel = (oldloc - *to) + rel32;
1751 store_signed_integer (insn + 1, 4, byte_order, newrel);
1752
1753 if (debug_displaced)
1754 fprintf_unfiltered (gdb_stdlog,
1755 "Adjusted insn rel32=%s at %s to"
1756 " rel32=%s at %s\n",
1757 hex_string (rel32), paddress (gdbarch, oldloc),
1758 hex_string (newrel), paddress (gdbarch, *to));
1759
1760 /* Write the adjusted jump into its displaced location. */
1761 append_insns (to, 5, insn);
1762 return;
1763 }
1764
1765 offset = rip_relative_offset (&insn_details);
1766 if (!offset)
1767 {
1768 /* Adjust jumps with 32-bit relative addresses. Calls are
1769 already handled above. */
1770 if (insn[0] == 0xe9)
1771 offset = 1;
1772 /* Adjust conditional jumps. */
1773 else if (insn[0] == 0x0f && (insn[1] & 0xf0) == 0x80)
1774 offset = 2;
1775 }
1776
1777 if (offset)
1778 {
1779 rel32 = extract_signed_integer (insn + offset, 4, byte_order);
1780 newrel = (oldloc - *to) + rel32;
1781 store_signed_integer (insn + offset, 4, byte_order, newrel);
1782 if (debug_displaced)
1783 fprintf_unfiltered (gdb_stdlog,
1784 "Adjusted insn rel32=%s at %s to"
1785 " rel32=%s at %s\n",
1786 hex_string (rel32), paddress (gdbarch, oldloc),
1787 hex_string (newrel), paddress (gdbarch, *to));
1788 }
1789
1790 /* Write the adjusted instruction into its displaced location. */
1791 append_insns (to, insn_length, buf);
1792 }
1793
1794 \f
1795 /* The maximum number of saved registers. This should include %rip. */
1796 #define AMD64_NUM_SAVED_REGS AMD64_NUM_GREGS
1797
1798 struct amd64_frame_cache
1799 {
1800 /* Base address. */
1801 CORE_ADDR base;
1802 int base_p;
1803 CORE_ADDR sp_offset;
1804 CORE_ADDR pc;
1805
1806 /* Saved registers. */
1807 CORE_ADDR saved_regs[AMD64_NUM_SAVED_REGS];
1808 CORE_ADDR saved_sp;
1809 int saved_sp_reg;
1810
1811 /* Do we have a frame? */
1812 int frameless_p;
1813 };
1814
1815 /* Initialize a frame cache. */
1816
1817 static void
1818 amd64_init_frame_cache (struct amd64_frame_cache *cache)
1819 {
1820 int i;
1821
1822 /* Base address. */
1823 cache->base = 0;
1824 cache->base_p = 0;
1825 cache->sp_offset = -8;
1826 cache->pc = 0;
1827
1828 /* Saved registers. We initialize these to -1 since zero is a valid
1829 offset (that's where %rbp is supposed to be stored).
1830 The values start out as being offsets, and are later converted to
1831 addresses (at which point -1 is interpreted as an address, still meaning
1832 "invalid"). */
1833 for (i = 0; i < AMD64_NUM_SAVED_REGS; i++)
1834 cache->saved_regs[i] = -1;
1835 cache->saved_sp = 0;
1836 cache->saved_sp_reg = -1;
1837
1838 /* Frameless until proven otherwise. */
1839 cache->frameless_p = 1;
1840 }
1841
1842 /* Allocate and initialize a frame cache. */
1843
1844 static struct amd64_frame_cache *
1845 amd64_alloc_frame_cache (void)
1846 {
1847 struct amd64_frame_cache *cache;
1848
1849 cache = FRAME_OBSTACK_ZALLOC (struct amd64_frame_cache);
1850 amd64_init_frame_cache (cache);
1851 return cache;
1852 }
1853
1854 /* GCC 4.4 and later, can put code in the prologue to realign the
1855 stack pointer. Check whether PC points to such code, and update
1856 CACHE accordingly. Return the first instruction after the code
1857 sequence or CURRENT_PC, whichever is smaller. If we don't
1858 recognize the code, return PC. */
1859
1860 static CORE_ADDR
1861 amd64_analyze_stack_align (CORE_ADDR pc, CORE_ADDR current_pc,
1862 struct amd64_frame_cache *cache)
1863 {
1864 /* There are 2 code sequences to re-align stack before the frame
1865 gets set up:
1866
1867 1. Use a caller-saved saved register:
1868
1869 leaq 8(%rsp), %reg
1870 andq $-XXX, %rsp
1871 pushq -8(%reg)
1872
1873 2. Use a callee-saved saved register:
1874
1875 pushq %reg
1876 leaq 16(%rsp), %reg
1877 andq $-XXX, %rsp
1878 pushq -8(%reg)
1879
1880 "andq $-XXX, %rsp" can be either 4 bytes or 7 bytes:
1881
1882 0x48 0x83 0xe4 0xf0 andq $-16, %rsp
1883 0x48 0x81 0xe4 0x00 0xff 0xff 0xff andq $-256, %rsp
1884 */
1885
1886 gdb_byte buf[18];
1887 int reg, r;
1888 int offset, offset_and;
1889
1890 if (target_read_code (pc, buf, sizeof buf))
1891 return pc;
1892
1893 /* Check caller-saved saved register. The first instruction has
1894 to be "leaq 8(%rsp), %reg". */
1895 if ((buf[0] & 0xfb) == 0x48
1896 && buf[1] == 0x8d
1897 && buf[3] == 0x24
1898 && buf[4] == 0x8)
1899 {
1900 /* MOD must be binary 10 and R/M must be binary 100. */
1901 if ((buf[2] & 0xc7) != 0x44)
1902 return pc;
1903
1904 /* REG has register number. */
1905 reg = (buf[2] >> 3) & 7;
1906
1907 /* Check the REX.R bit. */
1908 if (buf[0] == 0x4c)
1909 reg += 8;
1910
1911 offset = 5;
1912 }
1913 else
1914 {
1915 /* Check callee-saved saved register. The first instruction
1916 has to be "pushq %reg". */
1917 reg = 0;
1918 if ((buf[0] & 0xf8) == 0x50)
1919 offset = 0;
1920 else if ((buf[0] & 0xf6) == 0x40
1921 && (buf[1] & 0xf8) == 0x50)
1922 {
1923 /* Check the REX.B bit. */
1924 if ((buf[0] & 1) != 0)
1925 reg = 8;
1926
1927 offset = 1;
1928 }
1929 else
1930 return pc;
1931
1932 /* Get register. */
1933 reg += buf[offset] & 0x7;
1934
1935 offset++;
1936
1937 /* The next instruction has to be "leaq 16(%rsp), %reg". */
1938 if ((buf[offset] & 0xfb) != 0x48
1939 || buf[offset + 1] != 0x8d
1940 || buf[offset + 3] != 0x24
1941 || buf[offset + 4] != 0x10)
1942 return pc;
1943
1944 /* MOD must be binary 10 and R/M must be binary 100. */
1945 if ((buf[offset + 2] & 0xc7) != 0x44)
1946 return pc;
1947
1948 /* REG has register number. */
1949 r = (buf[offset + 2] >> 3) & 7;
1950
1951 /* Check the REX.R bit. */
1952 if (buf[offset] == 0x4c)
1953 r += 8;
1954
1955 /* Registers in pushq and leaq have to be the same. */
1956 if (reg != r)
1957 return pc;
1958
1959 offset += 5;
1960 }
1961
1962 /* Rigister can't be %rsp nor %rbp. */
1963 if (reg == 4 || reg == 5)
1964 return pc;
1965
1966 /* The next instruction has to be "andq $-XXX, %rsp". */
1967 if (buf[offset] != 0x48
1968 || buf[offset + 2] != 0xe4
1969 || (buf[offset + 1] != 0x81 && buf[offset + 1] != 0x83))
1970 return pc;
1971
1972 offset_and = offset;
1973 offset += buf[offset + 1] == 0x81 ? 7 : 4;
1974
1975 /* The next instruction has to be "pushq -8(%reg)". */
1976 r = 0;
1977 if (buf[offset] == 0xff)
1978 offset++;
1979 else if ((buf[offset] & 0xf6) == 0x40
1980 && buf[offset + 1] == 0xff)
1981 {
1982 /* Check the REX.B bit. */
1983 if ((buf[offset] & 0x1) != 0)
1984 r = 8;
1985 offset += 2;
1986 }
1987 else
1988 return pc;
1989
1990 /* 8bit -8 is 0xf8. REG must be binary 110 and MOD must be binary
1991 01. */
1992 if (buf[offset + 1] != 0xf8
1993 || (buf[offset] & 0xf8) != 0x70)
1994 return pc;
1995
1996 /* R/M has register. */
1997 r += buf[offset] & 7;
1998
1999 /* Registers in leaq and pushq have to be the same. */
2000 if (reg != r)
2001 return pc;
2002
2003 if (current_pc > pc + offset_and)
2004 cache->saved_sp_reg = amd64_arch_reg_to_regnum (reg);
2005
2006 return min (pc + offset + 2, current_pc);
2007 }
2008
2009 /* Similar to amd64_analyze_stack_align for x32. */
2010
2011 static CORE_ADDR
2012 amd64_x32_analyze_stack_align (CORE_ADDR pc, CORE_ADDR current_pc,
2013 struct amd64_frame_cache *cache)
2014 {
2015 /* There are 2 code sequences to re-align stack before the frame
2016 gets set up:
2017
2018 1. Use a caller-saved saved register:
2019
2020 leaq 8(%rsp), %reg
2021 andq $-XXX, %rsp
2022 pushq -8(%reg)
2023
2024 or
2025
2026 [addr32] leal 8(%rsp), %reg
2027 andl $-XXX, %esp
2028 [addr32] pushq -8(%reg)
2029
2030 2. Use a callee-saved saved register:
2031
2032 pushq %reg
2033 leaq 16(%rsp), %reg
2034 andq $-XXX, %rsp
2035 pushq -8(%reg)
2036
2037 or
2038
2039 pushq %reg
2040 [addr32] leal 16(%rsp), %reg
2041 andl $-XXX, %esp
2042 [addr32] pushq -8(%reg)
2043
2044 "andq $-XXX, %rsp" can be either 4 bytes or 7 bytes:
2045
2046 0x48 0x83 0xe4 0xf0 andq $-16, %rsp
2047 0x48 0x81 0xe4 0x00 0xff 0xff 0xff andq $-256, %rsp
2048
2049 "andl $-XXX, %esp" can be either 3 bytes or 6 bytes:
2050
2051 0x83 0xe4 0xf0 andl $-16, %esp
2052 0x81 0xe4 0x00 0xff 0xff 0xff andl $-256, %esp
2053 */
2054
2055 gdb_byte buf[19];
2056 int reg, r;
2057 int offset, offset_and;
2058
2059 if (target_read_memory (pc, buf, sizeof buf))
2060 return pc;
2061
2062 /* Skip optional addr32 prefix. */
2063 offset = buf[0] == 0x67 ? 1 : 0;
2064
2065 /* Check caller-saved saved register. The first instruction has
2066 to be "leaq 8(%rsp), %reg" or "leal 8(%rsp), %reg". */
2067 if (((buf[offset] & 0xfb) == 0x48 || (buf[offset] & 0xfb) == 0x40)
2068 && buf[offset + 1] == 0x8d
2069 && buf[offset + 3] == 0x24
2070 && buf[offset + 4] == 0x8)
2071 {
2072 /* MOD must be binary 10 and R/M must be binary 100. */
2073 if ((buf[offset + 2] & 0xc7) != 0x44)
2074 return pc;
2075
2076 /* REG has register number. */
2077 reg = (buf[offset + 2] >> 3) & 7;
2078
2079 /* Check the REX.R bit. */
2080 if ((buf[offset] & 0x4) != 0)
2081 reg += 8;
2082
2083 offset += 5;
2084 }
2085 else
2086 {
2087 /* Check callee-saved saved register. The first instruction
2088 has to be "pushq %reg". */
2089 reg = 0;
2090 if ((buf[offset] & 0xf6) == 0x40
2091 && (buf[offset + 1] & 0xf8) == 0x50)
2092 {
2093 /* Check the REX.B bit. */
2094 if ((buf[offset] & 1) != 0)
2095 reg = 8;
2096
2097 offset += 1;
2098 }
2099 else if ((buf[offset] & 0xf8) != 0x50)
2100 return pc;
2101
2102 /* Get register. */
2103 reg += buf[offset] & 0x7;
2104
2105 offset++;
2106
2107 /* Skip optional addr32 prefix. */
2108 if (buf[offset] == 0x67)
2109 offset++;
2110
2111 /* The next instruction has to be "leaq 16(%rsp), %reg" or
2112 "leal 16(%rsp), %reg". */
2113 if (((buf[offset] & 0xfb) != 0x48 && (buf[offset] & 0xfb) != 0x40)
2114 || buf[offset + 1] != 0x8d
2115 || buf[offset + 3] != 0x24
2116 || buf[offset + 4] != 0x10)
2117 return pc;
2118
2119 /* MOD must be binary 10 and R/M must be binary 100. */
2120 if ((buf[offset + 2] & 0xc7) != 0x44)
2121 return pc;
2122
2123 /* REG has register number. */
2124 r = (buf[offset + 2] >> 3) & 7;
2125
2126 /* Check the REX.R bit. */
2127 if ((buf[offset] & 0x4) != 0)
2128 r += 8;
2129
2130 /* Registers in pushq and leaq have to be the same. */
2131 if (reg != r)
2132 return pc;
2133
2134 offset += 5;
2135 }
2136
2137 /* Rigister can't be %rsp nor %rbp. */
2138 if (reg == 4 || reg == 5)
2139 return pc;
2140
2141 /* The next instruction may be "andq $-XXX, %rsp" or
2142 "andl $-XXX, %esp". */
2143 if (buf[offset] != 0x48)
2144 offset--;
2145
2146 if (buf[offset + 2] != 0xe4
2147 || (buf[offset + 1] != 0x81 && buf[offset + 1] != 0x83))
2148 return pc;
2149
2150 offset_and = offset;
2151 offset += buf[offset + 1] == 0x81 ? 7 : 4;
2152
2153 /* Skip optional addr32 prefix. */
2154 if (buf[offset] == 0x67)
2155 offset++;
2156
2157 /* The next instruction has to be "pushq -8(%reg)". */
2158 r = 0;
2159 if (buf[offset] == 0xff)
2160 offset++;
2161 else if ((buf[offset] & 0xf6) == 0x40
2162 && buf[offset + 1] == 0xff)
2163 {
2164 /* Check the REX.B bit. */
2165 if ((buf[offset] & 0x1) != 0)
2166 r = 8;
2167 offset += 2;
2168 }
2169 else
2170 return pc;
2171
2172 /* 8bit -8 is 0xf8. REG must be binary 110 and MOD must be binary
2173 01. */
2174 if (buf[offset + 1] != 0xf8
2175 || (buf[offset] & 0xf8) != 0x70)
2176 return pc;
2177
2178 /* R/M has register. */
2179 r += buf[offset] & 7;
2180
2181 /* Registers in leaq and pushq have to be the same. */
2182 if (reg != r)
2183 return pc;
2184
2185 if (current_pc > pc + offset_and)
2186 cache->saved_sp_reg = amd64_arch_reg_to_regnum (reg);
2187
2188 return min (pc + offset + 2, current_pc);
2189 }
2190
2191 /* Do a limited analysis of the prologue at PC and update CACHE
2192 accordingly. Bail out early if CURRENT_PC is reached. Return the
2193 address where the analysis stopped.
2194
2195 We will handle only functions beginning with:
2196
2197 pushq %rbp 0x55
2198 movq %rsp, %rbp 0x48 0x89 0xe5 (or 0x48 0x8b 0xec)
2199
2200 or (for the X32 ABI):
2201
2202 pushq %rbp 0x55
2203 movl %esp, %ebp 0x89 0xe5 (or 0x8b 0xec)
2204
2205 Any function that doesn't start with one of these sequences will be
2206 assumed to have no prologue and thus no valid frame pointer in
2207 %rbp. */
2208
2209 static CORE_ADDR
2210 amd64_analyze_prologue (struct gdbarch *gdbarch,
2211 CORE_ADDR pc, CORE_ADDR current_pc,
2212 struct amd64_frame_cache *cache)
2213 {
2214 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
2215 /* There are two variations of movq %rsp, %rbp. */
2216 static const gdb_byte mov_rsp_rbp_1[3] = { 0x48, 0x89, 0xe5 };
2217 static const gdb_byte mov_rsp_rbp_2[3] = { 0x48, 0x8b, 0xec };
2218 /* Ditto for movl %esp, %ebp. */
2219 static const gdb_byte mov_esp_ebp_1[2] = { 0x89, 0xe5 };
2220 static const gdb_byte mov_esp_ebp_2[2] = { 0x8b, 0xec };
2221
2222 gdb_byte buf[3];
2223 gdb_byte op;
2224
2225 if (current_pc <= pc)
2226 return current_pc;
2227
2228 if (gdbarch_ptr_bit (gdbarch) == 32)
2229 pc = amd64_x32_analyze_stack_align (pc, current_pc, cache);
2230 else
2231 pc = amd64_analyze_stack_align (pc, current_pc, cache);
2232
2233 op = read_code_unsigned_integer (pc, 1, byte_order);
2234
2235 if (op == 0x55) /* pushq %rbp */
2236 {
2237 /* Take into account that we've executed the `pushq %rbp' that
2238 starts this instruction sequence. */
2239 cache->saved_regs[AMD64_RBP_REGNUM] = 0;
2240 cache->sp_offset += 8;
2241
2242 /* If that's all, return now. */
2243 if (current_pc <= pc + 1)
2244 return current_pc;
2245
2246 read_code (pc + 1, buf, 3);
2247
2248 /* Check for `movq %rsp, %rbp'. */
2249 if (memcmp (buf, mov_rsp_rbp_1, 3) == 0
2250 || memcmp (buf, mov_rsp_rbp_2, 3) == 0)
2251 {
2252 /* OK, we actually have a frame. */
2253 cache->frameless_p = 0;
2254 return pc + 4;
2255 }
2256
2257 /* For X32, also check for `movq %esp, %ebp'. */
2258 if (gdbarch_ptr_bit (gdbarch) == 32)
2259 {
2260 if (memcmp (buf, mov_esp_ebp_1, 2) == 0
2261 || memcmp (buf, mov_esp_ebp_2, 2) == 0)
2262 {
2263 /* OK, we actually have a frame. */
2264 cache->frameless_p = 0;
2265 return pc + 3;
2266 }
2267 }
2268
2269 return pc + 1;
2270 }
2271
2272 return pc;
2273 }
2274
2275 /* Work around false termination of prologue - GCC PR debug/48827.
2276
2277 START_PC is the first instruction of a function, PC is its minimal already
2278 determined advanced address. Function returns PC if it has nothing to do.
2279
2280 84 c0 test %al,%al
2281 74 23 je after
2282 <-- here is 0 lines advance - the false prologue end marker.
2283 0f 29 85 70 ff ff ff movaps %xmm0,-0x90(%rbp)
2284 0f 29 4d 80 movaps %xmm1,-0x80(%rbp)
2285 0f 29 55 90 movaps %xmm2,-0x70(%rbp)
2286 0f 29 5d a0 movaps %xmm3,-0x60(%rbp)
2287 0f 29 65 b0 movaps %xmm4,-0x50(%rbp)
2288 0f 29 6d c0 movaps %xmm5,-0x40(%rbp)
2289 0f 29 75 d0 movaps %xmm6,-0x30(%rbp)
2290 0f 29 7d e0 movaps %xmm7,-0x20(%rbp)
2291 after: */
2292
2293 static CORE_ADDR
2294 amd64_skip_xmm_prologue (CORE_ADDR pc, CORE_ADDR start_pc)
2295 {
2296 struct symtab_and_line start_pc_sal, next_sal;
2297 gdb_byte buf[4 + 8 * 7];
2298 int offset, xmmreg;
2299
2300 if (pc == start_pc)
2301 return pc;
2302
2303 start_pc_sal = find_pc_sect_line (start_pc, NULL, 0);
2304 if (start_pc_sal.symtab == NULL
2305 || producer_is_gcc_ge_4 (start_pc_sal.symtab->producer) < 6
2306 || start_pc_sal.pc != start_pc || pc >= start_pc_sal.end)
2307 return pc;
2308
2309 next_sal = find_pc_sect_line (start_pc_sal.end, NULL, 0);
2310 if (next_sal.line != start_pc_sal.line)
2311 return pc;
2312
2313 /* START_PC can be from overlayed memory, ignored here. */
2314 if (target_read_code (next_sal.pc - 4, buf, sizeof (buf)) != 0)
2315 return pc;
2316
2317 /* test %al,%al */
2318 if (buf[0] != 0x84 || buf[1] != 0xc0)
2319 return pc;
2320 /* je AFTER */
2321 if (buf[2] != 0x74)
2322 return pc;
2323
2324 offset = 4;
2325 for (xmmreg = 0; xmmreg < 8; xmmreg++)
2326 {
2327 /* 0x0f 0x29 0b??000101 movaps %xmmreg?,-0x??(%rbp) */
2328 if (buf[offset] != 0x0f || buf[offset + 1] != 0x29
2329 || (buf[offset + 2] & 0x3f) != (xmmreg << 3 | 0x5))
2330 return pc;
2331
2332 /* 0b01?????? */
2333 if ((buf[offset + 2] & 0xc0) == 0x40)
2334 {
2335 /* 8-bit displacement. */
2336 offset += 4;
2337 }
2338 /* 0b10?????? */
2339 else if ((buf[offset + 2] & 0xc0) == 0x80)
2340 {
2341 /* 32-bit displacement. */
2342 offset += 7;
2343 }
2344 else
2345 return pc;
2346 }
2347
2348 /* je AFTER */
2349 if (offset - 4 != buf[3])
2350 return pc;
2351
2352 return next_sal.end;
2353 }
2354
2355 /* Return PC of first real instruction. */
2356
2357 static CORE_ADDR
2358 amd64_skip_prologue (struct gdbarch *gdbarch, CORE_ADDR start_pc)
2359 {
2360 struct amd64_frame_cache cache;
2361 CORE_ADDR pc;
2362 CORE_ADDR func_addr;
2363
2364 if (find_pc_partial_function (start_pc, NULL, &func_addr, NULL))
2365 {
2366 CORE_ADDR post_prologue_pc
2367 = skip_prologue_using_sal (gdbarch, func_addr);
2368 struct symtab *s = find_pc_symtab (func_addr);
2369
2370 /* Clang always emits a line note before the prologue and another
2371 one after. We trust clang to emit usable line notes. */
2372 if (post_prologue_pc
2373 && (s != NULL
2374 && s->producer != NULL
2375 && strncmp (s->producer, "clang ", sizeof ("clang ") - 1) == 0))
2376 return max (start_pc, post_prologue_pc);
2377 }
2378
2379 amd64_init_frame_cache (&cache);
2380 pc = amd64_analyze_prologue (gdbarch, start_pc, 0xffffffffffffffffLL,
2381 &cache);
2382 if (cache.frameless_p)
2383 return start_pc;
2384
2385 return amd64_skip_xmm_prologue (pc, start_pc);
2386 }
2387 \f
2388
2389 /* Normal frames. */
2390
2391 static void
2392 amd64_frame_cache_1 (struct frame_info *this_frame,
2393 struct amd64_frame_cache *cache)
2394 {
2395 struct gdbarch *gdbarch = get_frame_arch (this_frame);
2396 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
2397 gdb_byte buf[8];
2398 int i;
2399
2400 cache->pc = get_frame_func (this_frame);
2401 if (cache->pc != 0)
2402 amd64_analyze_prologue (gdbarch, cache->pc, get_frame_pc (this_frame),
2403 cache);
2404
2405 if (cache->frameless_p)
2406 {
2407 /* We didn't find a valid frame. If we're at the start of a
2408 function, or somewhere half-way its prologue, the function's
2409 frame probably hasn't been fully setup yet. Try to
2410 reconstruct the base address for the stack frame by looking
2411 at the stack pointer. For truly "frameless" functions this
2412 might work too. */
2413
2414 if (cache->saved_sp_reg != -1)
2415 {
2416 /* Stack pointer has been saved. */
2417 get_frame_register (this_frame, cache->saved_sp_reg, buf);
2418 cache->saved_sp = extract_unsigned_integer (buf, 8, byte_order);
2419
2420 /* We're halfway aligning the stack. */
2421 cache->base = ((cache->saved_sp - 8) & 0xfffffffffffffff0LL) - 8;
2422 cache->saved_regs[AMD64_RIP_REGNUM] = cache->saved_sp - 8;
2423
2424 /* This will be added back below. */
2425 cache->saved_regs[AMD64_RIP_REGNUM] -= cache->base;
2426 }
2427 else
2428 {
2429 get_frame_register (this_frame, AMD64_RSP_REGNUM, buf);
2430 cache->base = extract_unsigned_integer (buf, 8, byte_order)
2431 + cache->sp_offset;
2432 }
2433 }
2434 else
2435 {
2436 get_frame_register (this_frame, AMD64_RBP_REGNUM, buf);
2437 cache->base = extract_unsigned_integer (buf, 8, byte_order);
2438 }
2439
2440 /* Now that we have the base address for the stack frame we can
2441 calculate the value of %rsp in the calling frame. */
2442 cache->saved_sp = cache->base + 16;
2443
2444 /* For normal frames, %rip is stored at 8(%rbp). If we don't have a
2445 frame we find it at the same offset from the reconstructed base
2446 address. If we're halfway aligning the stack, %rip is handled
2447 differently (see above). */
2448 if (!cache->frameless_p || cache->saved_sp_reg == -1)
2449 cache->saved_regs[AMD64_RIP_REGNUM] = 8;
2450
2451 /* Adjust all the saved registers such that they contain addresses
2452 instead of offsets. */
2453 for (i = 0; i < AMD64_NUM_SAVED_REGS; i++)
2454 if (cache->saved_regs[i] != -1)
2455 cache->saved_regs[i] += cache->base;
2456
2457 cache->base_p = 1;
2458 }
2459
2460 static struct amd64_frame_cache *
2461 amd64_frame_cache (struct frame_info *this_frame, void **this_cache)
2462 {
2463 volatile struct gdb_exception ex;
2464 struct amd64_frame_cache *cache;
2465
2466 if (*this_cache)
2467 return *this_cache;
2468
2469 cache = amd64_alloc_frame_cache ();
2470 *this_cache = cache;
2471
2472 TRY_CATCH (ex, RETURN_MASK_ERROR)
2473 {
2474 amd64_frame_cache_1 (this_frame, cache);
2475 }
2476 if (ex.reason < 0 && ex.error != NOT_AVAILABLE_ERROR)
2477 throw_exception (ex);
2478
2479 return cache;
2480 }
2481
2482 static enum unwind_stop_reason
2483 amd64_frame_unwind_stop_reason (struct frame_info *this_frame,
2484 void **this_cache)
2485 {
2486 struct amd64_frame_cache *cache =
2487 amd64_frame_cache (this_frame, this_cache);
2488
2489 if (!cache->base_p)
2490 return UNWIND_UNAVAILABLE;
2491
2492 /* This marks the outermost frame. */
2493 if (cache->base == 0)
2494 return UNWIND_OUTERMOST;
2495
2496 return UNWIND_NO_REASON;
2497 }
2498
2499 static void
2500 amd64_frame_this_id (struct frame_info *this_frame, void **this_cache,
2501 struct frame_id *this_id)
2502 {
2503 struct amd64_frame_cache *cache =
2504 amd64_frame_cache (this_frame, this_cache);
2505
2506 if (!cache->base_p)
2507 (*this_id) = frame_id_build_unavailable_stack (cache->pc);
2508 else if (cache->base == 0)
2509 {
2510 /* This marks the outermost frame. */
2511 return;
2512 }
2513 else
2514 (*this_id) = frame_id_build (cache->base + 16, cache->pc);
2515 }
2516
2517 static struct value *
2518 amd64_frame_prev_register (struct frame_info *this_frame, void **this_cache,
2519 int regnum)
2520 {
2521 struct gdbarch *gdbarch = get_frame_arch (this_frame);
2522 struct amd64_frame_cache *cache =
2523 amd64_frame_cache (this_frame, this_cache);
2524
2525 gdb_assert (regnum >= 0);
2526
2527 if (regnum == gdbarch_sp_regnum (gdbarch) && cache->saved_sp)
2528 return frame_unwind_got_constant (this_frame, regnum, cache->saved_sp);
2529
2530 if (regnum < AMD64_NUM_SAVED_REGS && cache->saved_regs[regnum] != -1)
2531 return frame_unwind_got_memory (this_frame, regnum,
2532 cache->saved_regs[regnum]);
2533
2534 return frame_unwind_got_register (this_frame, regnum, regnum);
2535 }
2536
2537 static const struct frame_unwind amd64_frame_unwind =
2538 {
2539 NORMAL_FRAME,
2540 amd64_frame_unwind_stop_reason,
2541 amd64_frame_this_id,
2542 amd64_frame_prev_register,
2543 NULL,
2544 default_frame_sniffer
2545 };
2546 \f
2547 /* Generate a bytecode expression to get the value of the saved PC. */
2548
2549 static void
2550 amd64_gen_return_address (struct gdbarch *gdbarch,
2551 struct agent_expr *ax, struct axs_value *value,
2552 CORE_ADDR scope)
2553 {
2554 /* The following sequence assumes the traditional use of the base
2555 register. */
2556 ax_reg (ax, AMD64_RBP_REGNUM);
2557 ax_const_l (ax, 8);
2558 ax_simple (ax, aop_add);
2559 value->type = register_type (gdbarch, AMD64_RIP_REGNUM);
2560 value->kind = axs_lvalue_memory;
2561 }
2562 \f
2563
2564 /* Signal trampolines. */
2565
2566 /* FIXME: kettenis/20030419: Perhaps, we can unify the 32-bit and
2567 64-bit variants. This would require using identical frame caches
2568 on both platforms. */
2569
2570 static struct amd64_frame_cache *
2571 amd64_sigtramp_frame_cache (struct frame_info *this_frame, void **this_cache)
2572 {
2573 struct gdbarch *gdbarch = get_frame_arch (this_frame);
2574 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2575 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
2576 volatile struct gdb_exception ex;
2577 struct amd64_frame_cache *cache;
2578 CORE_ADDR addr;
2579 gdb_byte buf[8];
2580 int i;
2581
2582 if (*this_cache)
2583 return *this_cache;
2584
2585 cache = amd64_alloc_frame_cache ();
2586
2587 TRY_CATCH (ex, RETURN_MASK_ERROR)
2588 {
2589 get_frame_register (this_frame, AMD64_RSP_REGNUM, buf);
2590 cache->base = extract_unsigned_integer (buf, 8, byte_order) - 8;
2591
2592 addr = tdep->sigcontext_addr (this_frame);
2593 gdb_assert (tdep->sc_reg_offset);
2594 gdb_assert (tdep->sc_num_regs <= AMD64_NUM_SAVED_REGS);
2595 for (i = 0; i < tdep->sc_num_regs; i++)
2596 if (tdep->sc_reg_offset[i] != -1)
2597 cache->saved_regs[i] = addr + tdep->sc_reg_offset[i];
2598
2599 cache->base_p = 1;
2600 }
2601 if (ex.reason < 0 && ex.error != NOT_AVAILABLE_ERROR)
2602 throw_exception (ex);
2603
2604 *this_cache = cache;
2605 return cache;
2606 }
2607
2608 static enum unwind_stop_reason
2609 amd64_sigtramp_frame_unwind_stop_reason (struct frame_info *this_frame,
2610 void **this_cache)
2611 {
2612 struct amd64_frame_cache *cache =
2613 amd64_sigtramp_frame_cache (this_frame, this_cache);
2614
2615 if (!cache->base_p)
2616 return UNWIND_UNAVAILABLE;
2617
2618 return UNWIND_NO_REASON;
2619 }
2620
2621 static void
2622 amd64_sigtramp_frame_this_id (struct frame_info *this_frame,
2623 void **this_cache, struct frame_id *this_id)
2624 {
2625 struct amd64_frame_cache *cache =
2626 amd64_sigtramp_frame_cache (this_frame, this_cache);
2627
2628 if (!cache->base_p)
2629 (*this_id) = frame_id_build_unavailable_stack (get_frame_pc (this_frame));
2630 else if (cache->base == 0)
2631 {
2632 /* This marks the outermost frame. */
2633 return;
2634 }
2635 else
2636 (*this_id) = frame_id_build (cache->base + 16, get_frame_pc (this_frame));
2637 }
2638
2639 static struct value *
2640 amd64_sigtramp_frame_prev_register (struct frame_info *this_frame,
2641 void **this_cache, int regnum)
2642 {
2643 /* Make sure we've initialized the cache. */
2644 amd64_sigtramp_frame_cache (this_frame, this_cache);
2645
2646 return amd64_frame_prev_register (this_frame, this_cache, regnum);
2647 }
2648
2649 static int
2650 amd64_sigtramp_frame_sniffer (const struct frame_unwind *self,
2651 struct frame_info *this_frame,
2652 void **this_cache)
2653 {
2654 struct gdbarch_tdep *tdep = gdbarch_tdep (get_frame_arch (this_frame));
2655
2656 /* We shouldn't even bother if we don't have a sigcontext_addr
2657 handler. */
2658 if (tdep->sigcontext_addr == NULL)
2659 return 0;
2660
2661 if (tdep->sigtramp_p != NULL)
2662 {
2663 if (tdep->sigtramp_p (this_frame))
2664 return 1;
2665 }
2666
2667 if (tdep->sigtramp_start != 0)
2668 {
2669 CORE_ADDR pc = get_frame_pc (this_frame);
2670
2671 gdb_assert (tdep->sigtramp_end != 0);
2672 if (pc >= tdep->sigtramp_start && pc < tdep->sigtramp_end)
2673 return 1;
2674 }
2675
2676 return 0;
2677 }
2678
2679 static const struct frame_unwind amd64_sigtramp_frame_unwind =
2680 {
2681 SIGTRAMP_FRAME,
2682 amd64_sigtramp_frame_unwind_stop_reason,
2683 amd64_sigtramp_frame_this_id,
2684 amd64_sigtramp_frame_prev_register,
2685 NULL,
2686 amd64_sigtramp_frame_sniffer
2687 };
2688 \f
2689
2690 static CORE_ADDR
2691 amd64_frame_base_address (struct frame_info *this_frame, void **this_cache)
2692 {
2693 struct amd64_frame_cache *cache =
2694 amd64_frame_cache (this_frame, this_cache);
2695
2696 return cache->base;
2697 }
2698
2699 static const struct frame_base amd64_frame_base =
2700 {
2701 &amd64_frame_unwind,
2702 amd64_frame_base_address,
2703 amd64_frame_base_address,
2704 amd64_frame_base_address
2705 };
2706
2707 /* Normal frames, but in a function epilogue. */
2708
2709 /* The epilogue is defined here as the 'ret' instruction, which will
2710 follow any instruction such as 'leave' or 'pop %ebp' that destroys
2711 the function's stack frame. */
2712
2713 static int
2714 amd64_in_function_epilogue_p (struct gdbarch *gdbarch, CORE_ADDR pc)
2715 {
2716 gdb_byte insn;
2717 struct symtab *symtab;
2718
2719 symtab = find_pc_symtab (pc);
2720 if (symtab && symtab->epilogue_unwind_valid)
2721 return 0;
2722
2723 if (target_read_memory (pc, &insn, 1))
2724 return 0; /* Can't read memory at pc. */
2725
2726 if (insn != 0xc3) /* 'ret' instruction. */
2727 return 0;
2728
2729 return 1;
2730 }
2731
2732 static int
2733 amd64_epilogue_frame_sniffer (const struct frame_unwind *self,
2734 struct frame_info *this_frame,
2735 void **this_prologue_cache)
2736 {
2737 if (frame_relative_level (this_frame) == 0)
2738 return amd64_in_function_epilogue_p (get_frame_arch (this_frame),
2739 get_frame_pc (this_frame));
2740 else
2741 return 0;
2742 }
2743
2744 static struct amd64_frame_cache *
2745 amd64_epilogue_frame_cache (struct frame_info *this_frame, void **this_cache)
2746 {
2747 struct gdbarch *gdbarch = get_frame_arch (this_frame);
2748 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
2749 volatile struct gdb_exception ex;
2750 struct amd64_frame_cache *cache;
2751 gdb_byte buf[8];
2752
2753 if (*this_cache)
2754 return *this_cache;
2755
2756 cache = amd64_alloc_frame_cache ();
2757 *this_cache = cache;
2758
2759 TRY_CATCH (ex, RETURN_MASK_ERROR)
2760 {
2761 /* Cache base will be %esp plus cache->sp_offset (-8). */
2762 get_frame_register (this_frame, AMD64_RSP_REGNUM, buf);
2763 cache->base = extract_unsigned_integer (buf, 8,
2764 byte_order) + cache->sp_offset;
2765
2766 /* Cache pc will be the frame func. */
2767 cache->pc = get_frame_pc (this_frame);
2768
2769 /* The saved %esp will be at cache->base plus 16. */
2770 cache->saved_sp = cache->base + 16;
2771
2772 /* The saved %eip will be at cache->base plus 8. */
2773 cache->saved_regs[AMD64_RIP_REGNUM] = cache->base + 8;
2774
2775 cache->base_p = 1;
2776 }
2777 if (ex.reason < 0 && ex.error != NOT_AVAILABLE_ERROR)
2778 throw_exception (ex);
2779
2780 return cache;
2781 }
2782
2783 static enum unwind_stop_reason
2784 amd64_epilogue_frame_unwind_stop_reason (struct frame_info *this_frame,
2785 void **this_cache)
2786 {
2787 struct amd64_frame_cache *cache
2788 = amd64_epilogue_frame_cache (this_frame, this_cache);
2789
2790 if (!cache->base_p)
2791 return UNWIND_UNAVAILABLE;
2792
2793 return UNWIND_NO_REASON;
2794 }
2795
2796 static void
2797 amd64_epilogue_frame_this_id (struct frame_info *this_frame,
2798 void **this_cache,
2799 struct frame_id *this_id)
2800 {
2801 struct amd64_frame_cache *cache = amd64_epilogue_frame_cache (this_frame,
2802 this_cache);
2803
2804 if (!cache->base_p)
2805 (*this_id) = frame_id_build_unavailable_stack (cache->pc);
2806 else
2807 (*this_id) = frame_id_build (cache->base + 8, cache->pc);
2808 }
2809
2810 static const struct frame_unwind amd64_epilogue_frame_unwind =
2811 {
2812 NORMAL_FRAME,
2813 amd64_epilogue_frame_unwind_stop_reason,
2814 amd64_epilogue_frame_this_id,
2815 amd64_frame_prev_register,
2816 NULL,
2817 amd64_epilogue_frame_sniffer
2818 };
2819
2820 static struct frame_id
2821 amd64_dummy_id (struct gdbarch *gdbarch, struct frame_info *this_frame)
2822 {
2823 CORE_ADDR fp;
2824
2825 fp = get_frame_register_unsigned (this_frame, AMD64_RBP_REGNUM);
2826
2827 return frame_id_build (fp + 16, get_frame_pc (this_frame));
2828 }
2829
2830 /* 16 byte align the SP per frame requirements. */
2831
2832 static CORE_ADDR
2833 amd64_frame_align (struct gdbarch *gdbarch, CORE_ADDR sp)
2834 {
2835 return sp & -(CORE_ADDR)16;
2836 }
2837 \f
2838
2839 /* Supply register REGNUM from the buffer specified by FPREGS and LEN
2840 in the floating-point register set REGSET to register cache
2841 REGCACHE. If REGNUM is -1, do this for all registers in REGSET. */
2842
2843 static void
2844 amd64_supply_fpregset (const struct regset *regset, struct regcache *regcache,
2845 int regnum, const void *fpregs, size_t len)
2846 {
2847 struct gdbarch *gdbarch = get_regcache_arch (regcache);
2848 const struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2849
2850 gdb_assert (len == tdep->sizeof_fpregset);
2851 amd64_supply_fxsave (regcache, regnum, fpregs);
2852 }
2853
2854 /* Collect register REGNUM from the register cache REGCACHE and store
2855 it in the buffer specified by FPREGS and LEN as described by the
2856 floating-point register set REGSET. If REGNUM is -1, do this for
2857 all registers in REGSET. */
2858
2859 static void
2860 amd64_collect_fpregset (const struct regset *regset,
2861 const struct regcache *regcache,
2862 int regnum, void *fpregs, size_t len)
2863 {
2864 struct gdbarch *gdbarch = get_regcache_arch (regcache);
2865 const struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2866
2867 gdb_assert (len == tdep->sizeof_fpregset);
2868 amd64_collect_fxsave (regcache, regnum, fpregs);
2869 }
2870
2871 /* Similar to amd64_supply_fpregset, but use XSAVE extended state. */
2872
2873 static void
2874 amd64_supply_xstateregset (const struct regset *regset,
2875 struct regcache *regcache, int regnum,
2876 const void *xstateregs, size_t len)
2877 {
2878 amd64_supply_xsave (regcache, regnum, xstateregs);
2879 }
2880
2881 /* Similar to amd64_collect_fpregset, but use XSAVE extended state. */
2882
2883 static void
2884 amd64_collect_xstateregset (const struct regset *regset,
2885 const struct regcache *regcache,
2886 int regnum, void *xstateregs, size_t len)
2887 {
2888 amd64_collect_xsave (regcache, regnum, xstateregs, 1);
2889 }
2890
2891 static const struct regset amd64_fpregset =
2892 {
2893 NULL, amd64_supply_fpregset, amd64_collect_fpregset
2894 };
2895
2896 static const struct regset amd64_xstateregset =
2897 {
2898 NULL, amd64_supply_xstateregset, amd64_collect_xstateregset
2899 };
2900
2901 /* Return the appropriate register set for the core section identified
2902 by SECT_NAME and SECT_SIZE. */
2903
2904 static const struct regset *
2905 amd64_regset_from_core_section (struct gdbarch *gdbarch,
2906 const char *sect_name, size_t sect_size)
2907 {
2908 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2909
2910 if (strcmp (sect_name, ".reg2") == 0 && sect_size == tdep->sizeof_fpregset)
2911 return &amd64_fpregset;
2912
2913 if (strcmp (sect_name, ".reg-xstate") == 0)
2914 return &amd64_xstateregset;
2915
2916 return i386_regset_from_core_section (gdbarch, sect_name, sect_size);
2917 }
2918 \f
2919
2920 /* Figure out where the longjmp will land. Slurp the jmp_buf out of
2921 %rdi. We expect its value to be a pointer to the jmp_buf structure
2922 from which we extract the address that we will land at. This
2923 address is copied into PC. This routine returns non-zero on
2924 success. */
2925
2926 static int
2927 amd64_get_longjmp_target (struct frame_info *frame, CORE_ADDR *pc)
2928 {
2929 gdb_byte buf[8];
2930 CORE_ADDR jb_addr;
2931 struct gdbarch *gdbarch = get_frame_arch (frame);
2932 int jb_pc_offset = gdbarch_tdep (gdbarch)->jb_pc_offset;
2933 int len = TYPE_LENGTH (builtin_type (gdbarch)->builtin_func_ptr);
2934
2935 /* If JB_PC_OFFSET is -1, we have no way to find out where the
2936 longjmp will land. */
2937 if (jb_pc_offset == -1)
2938 return 0;
2939
2940 get_frame_register (frame, AMD64_RDI_REGNUM, buf);
2941 jb_addr= extract_typed_address
2942 (buf, builtin_type (gdbarch)->builtin_data_ptr);
2943 if (target_read_memory (jb_addr + jb_pc_offset, buf, len))
2944 return 0;
2945
2946 *pc = extract_typed_address (buf, builtin_type (gdbarch)->builtin_func_ptr);
2947
2948 return 1;
2949 }
2950
2951 static const int amd64_record_regmap[] =
2952 {
2953 AMD64_RAX_REGNUM, AMD64_RCX_REGNUM, AMD64_RDX_REGNUM, AMD64_RBX_REGNUM,
2954 AMD64_RSP_REGNUM, AMD64_RBP_REGNUM, AMD64_RSI_REGNUM, AMD64_RDI_REGNUM,
2955 AMD64_R8_REGNUM, AMD64_R9_REGNUM, AMD64_R10_REGNUM, AMD64_R11_REGNUM,
2956 AMD64_R12_REGNUM, AMD64_R13_REGNUM, AMD64_R14_REGNUM, AMD64_R15_REGNUM,
2957 AMD64_RIP_REGNUM, AMD64_EFLAGS_REGNUM, AMD64_CS_REGNUM, AMD64_SS_REGNUM,
2958 AMD64_DS_REGNUM, AMD64_ES_REGNUM, AMD64_FS_REGNUM, AMD64_GS_REGNUM
2959 };
2960
2961 void
2962 amd64_init_abi (struct gdbarch_info info, struct gdbarch *gdbarch)
2963 {
2964 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2965 const struct target_desc *tdesc = info.target_desc;
2966 static const char *const stap_integer_prefixes[] = { "$", NULL };
2967 static const char *const stap_register_prefixes[] = { "%", NULL };
2968 static const char *const stap_register_indirection_prefixes[] = { "(",
2969 NULL };
2970 static const char *const stap_register_indirection_suffixes[] = { ")",
2971 NULL };
2972
2973 /* AMD64 generally uses `fxsave' instead of `fsave' for saving its
2974 floating-point registers. */
2975 tdep->sizeof_fpregset = I387_SIZEOF_FXSAVE;
2976
2977 if (! tdesc_has_registers (tdesc))
2978 tdesc = tdesc_amd64;
2979 tdep->tdesc = tdesc;
2980
2981 tdep->num_core_regs = AMD64_NUM_GREGS + I387_NUM_REGS;
2982 tdep->register_names = amd64_register_names;
2983
2984 if (tdesc_find_feature (tdesc, "org.gnu.gdb.i386.avx512") != NULL)
2985 {
2986 tdep->zmmh_register_names = amd64_zmmh_names;
2987 tdep->k_register_names = amd64_k_names;
2988 tdep->xmm_avx512_register_names = amd64_xmm_avx512_names;
2989 tdep->ymm16h_register_names = amd64_ymmh_avx512_names;
2990
2991 tdep->num_zmm_regs = 32;
2992 tdep->num_xmm_avx512_regs = 16;
2993 tdep->num_ymm_avx512_regs = 16;
2994
2995 tdep->zmm0h_regnum = AMD64_ZMM0H_REGNUM;
2996 tdep->k0_regnum = AMD64_K0_REGNUM;
2997 tdep->xmm16_regnum = AMD64_XMM16_REGNUM;
2998 tdep->ymm16h_regnum = AMD64_YMM16H_REGNUM;
2999 }
3000
3001 if (tdesc_find_feature (tdesc, "org.gnu.gdb.i386.avx") != NULL)
3002 {
3003 tdep->ymmh_register_names = amd64_ymmh_names;
3004 tdep->num_ymm_regs = 16;
3005 tdep->ymm0h_regnum = AMD64_YMM0H_REGNUM;
3006 }
3007
3008 if (tdesc_find_feature (tdesc, "org.gnu.gdb.i386.mpx") != NULL)
3009 {
3010 tdep->mpx_register_names = amd64_mpx_names;
3011 tdep->bndcfgu_regnum = AMD64_BNDCFGU_REGNUM;
3012 tdep->bnd0r_regnum = AMD64_BND0R_REGNUM;
3013 }
3014
3015 tdep->num_byte_regs = 20;
3016 tdep->num_word_regs = 16;
3017 tdep->num_dword_regs = 16;
3018 /* Avoid wiring in the MMX registers for now. */
3019 tdep->num_mmx_regs = 0;
3020
3021 set_gdbarch_pseudo_register_read_value (gdbarch,
3022 amd64_pseudo_register_read_value);
3023 set_gdbarch_pseudo_register_write (gdbarch,
3024 amd64_pseudo_register_write);
3025
3026 set_tdesc_pseudo_register_name (gdbarch, amd64_pseudo_register_name);
3027
3028 /* AMD64 has an FPU and 16 SSE registers. */
3029 tdep->st0_regnum = AMD64_ST0_REGNUM;
3030 tdep->num_xmm_regs = 16;
3031
3032 /* This is what all the fuss is about. */
3033 set_gdbarch_long_bit (gdbarch, 64);
3034 set_gdbarch_long_long_bit (gdbarch, 64);
3035 set_gdbarch_ptr_bit (gdbarch, 64);
3036
3037 /* In contrast to the i386, on AMD64 a `long double' actually takes
3038 up 128 bits, even though it's still based on the i387 extended
3039 floating-point format which has only 80 significant bits. */
3040 set_gdbarch_long_double_bit (gdbarch, 128);
3041
3042 set_gdbarch_num_regs (gdbarch, AMD64_NUM_REGS);
3043
3044 /* Register numbers of various important registers. */
3045 set_gdbarch_sp_regnum (gdbarch, AMD64_RSP_REGNUM); /* %rsp */
3046 set_gdbarch_pc_regnum (gdbarch, AMD64_RIP_REGNUM); /* %rip */
3047 set_gdbarch_ps_regnum (gdbarch, AMD64_EFLAGS_REGNUM); /* %eflags */
3048 set_gdbarch_fp0_regnum (gdbarch, AMD64_ST0_REGNUM); /* %st(0) */
3049
3050 /* The "default" register numbering scheme for AMD64 is referred to
3051 as the "DWARF Register Number Mapping" in the System V psABI.
3052 The preferred debugging format for all known AMD64 targets is
3053 actually DWARF2, and GCC doesn't seem to support DWARF (that is
3054 DWARF-1), but we provide the same mapping just in case. This
3055 mapping is also used for stabs, which GCC does support. */
3056 set_gdbarch_stab_reg_to_regnum (gdbarch, amd64_dwarf_reg_to_regnum);
3057 set_gdbarch_dwarf2_reg_to_regnum (gdbarch, amd64_dwarf_reg_to_regnum);
3058
3059 /* We don't override SDB_REG_RO_REGNUM, since COFF doesn't seem to
3060 be in use on any of the supported AMD64 targets. */
3061
3062 /* Call dummy code. */
3063 set_gdbarch_push_dummy_call (gdbarch, amd64_push_dummy_call);
3064 set_gdbarch_frame_align (gdbarch, amd64_frame_align);
3065 set_gdbarch_frame_red_zone_size (gdbarch, 128);
3066
3067 set_gdbarch_convert_register_p (gdbarch, i387_convert_register_p);
3068 set_gdbarch_register_to_value (gdbarch, i387_register_to_value);
3069 set_gdbarch_value_to_register (gdbarch, i387_value_to_register);
3070
3071 set_gdbarch_return_value (gdbarch, amd64_return_value);
3072
3073 set_gdbarch_skip_prologue (gdbarch, amd64_skip_prologue);
3074
3075 tdep->record_regmap = amd64_record_regmap;
3076
3077 set_gdbarch_dummy_id (gdbarch, amd64_dummy_id);
3078
3079 /* Hook the function epilogue frame unwinder. This unwinder is
3080 appended to the list first, so that it supercedes the other
3081 unwinders in function epilogues. */
3082 frame_unwind_prepend_unwinder (gdbarch, &amd64_epilogue_frame_unwind);
3083
3084 /* Hook the prologue-based frame unwinders. */
3085 frame_unwind_append_unwinder (gdbarch, &amd64_sigtramp_frame_unwind);
3086 frame_unwind_append_unwinder (gdbarch, &amd64_frame_unwind);
3087 frame_base_set_default (gdbarch, &amd64_frame_base);
3088
3089 /* If we have a register mapping, enable the generic core file support. */
3090 if (tdep->gregset_reg_offset)
3091 set_gdbarch_regset_from_core_section (gdbarch,
3092 amd64_regset_from_core_section);
3093
3094 set_gdbarch_get_longjmp_target (gdbarch, amd64_get_longjmp_target);
3095
3096 set_gdbarch_relocate_instruction (gdbarch, amd64_relocate_instruction);
3097
3098 set_gdbarch_gen_return_address (gdbarch, amd64_gen_return_address);
3099
3100 /* SystemTap variables and functions. */
3101 set_gdbarch_stap_integer_prefixes (gdbarch, stap_integer_prefixes);
3102 set_gdbarch_stap_register_prefixes (gdbarch, stap_register_prefixes);
3103 set_gdbarch_stap_register_indirection_prefixes (gdbarch,
3104 stap_register_indirection_prefixes);
3105 set_gdbarch_stap_register_indirection_suffixes (gdbarch,
3106 stap_register_indirection_suffixes);
3107 set_gdbarch_stap_is_single_operand (gdbarch,
3108 i386_stap_is_single_operand);
3109 set_gdbarch_stap_parse_special_token (gdbarch,
3110 i386_stap_parse_special_token);
3111 set_gdbarch_insn_is_call (gdbarch, amd64_insn_is_call);
3112 set_gdbarch_insn_is_ret (gdbarch, amd64_insn_is_ret);
3113 set_gdbarch_insn_is_jump (gdbarch, amd64_insn_is_jump);
3114 }
3115 \f
3116
3117 static struct type *
3118 amd64_x32_pseudo_register_type (struct gdbarch *gdbarch, int regnum)
3119 {
3120 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3121
3122 switch (regnum - tdep->eax_regnum)
3123 {
3124 case AMD64_RBP_REGNUM: /* %ebp */
3125 case AMD64_RSP_REGNUM: /* %esp */
3126 return builtin_type (gdbarch)->builtin_data_ptr;
3127 case AMD64_RIP_REGNUM: /* %eip */
3128 return builtin_type (gdbarch)->builtin_func_ptr;
3129 }
3130
3131 return i386_pseudo_register_type (gdbarch, regnum);
3132 }
3133
3134 void
3135 amd64_x32_init_abi (struct gdbarch_info info, struct gdbarch *gdbarch)
3136 {
3137 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3138 const struct target_desc *tdesc = info.target_desc;
3139
3140 amd64_init_abi (info, gdbarch);
3141
3142 if (! tdesc_has_registers (tdesc))
3143 tdesc = tdesc_x32;
3144 tdep->tdesc = tdesc;
3145
3146 tdep->num_dword_regs = 17;
3147 set_tdesc_pseudo_register_type (gdbarch, amd64_x32_pseudo_register_type);
3148
3149 set_gdbarch_long_bit (gdbarch, 32);
3150 set_gdbarch_ptr_bit (gdbarch, 32);
3151 }
3152
3153 /* Provide a prototype to silence -Wmissing-prototypes. */
3154 void _initialize_amd64_tdep (void);
3155
3156 void
3157 _initialize_amd64_tdep (void)
3158 {
3159 initialize_tdesc_amd64 ();
3160 initialize_tdesc_amd64_avx ();
3161 initialize_tdesc_amd64_mpx ();
3162 initialize_tdesc_amd64_avx512 ();
3163
3164 initialize_tdesc_x32 ();
3165 initialize_tdesc_x32_avx ();
3166 initialize_tdesc_x32_avx512 ();
3167 }
3168 \f
3169
3170 /* The 64-bit FXSAVE format differs from the 32-bit format in the
3171 sense that the instruction pointer and data pointer are simply
3172 64-bit offsets into the code segment and the data segment instead
3173 of a selector offset pair. The functions below store the upper 32
3174 bits of these pointers (instead of just the 16-bits of the segment
3175 selector). */
3176
3177 /* Fill register REGNUM in REGCACHE with the appropriate
3178 floating-point or SSE register value from *FXSAVE. If REGNUM is
3179 -1, do this for all registers. This function masks off any of the
3180 reserved bits in *FXSAVE. */
3181
3182 void
3183 amd64_supply_fxsave (struct regcache *regcache, int regnum,
3184 const void *fxsave)
3185 {
3186 struct gdbarch *gdbarch = get_regcache_arch (regcache);
3187 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3188
3189 i387_supply_fxsave (regcache, regnum, fxsave);
3190
3191 if (fxsave
3192 && gdbarch_bfd_arch_info (gdbarch)->bits_per_word == 64)
3193 {
3194 const gdb_byte *regs = fxsave;
3195
3196 if (regnum == -1 || regnum == I387_FISEG_REGNUM (tdep))
3197 regcache_raw_supply (regcache, I387_FISEG_REGNUM (tdep), regs + 12);
3198 if (regnum == -1 || regnum == I387_FOSEG_REGNUM (tdep))
3199 regcache_raw_supply (regcache, I387_FOSEG_REGNUM (tdep), regs + 20);
3200 }
3201 }
3202
3203 /* Similar to amd64_supply_fxsave, but use XSAVE extended state. */
3204
3205 void
3206 amd64_supply_xsave (struct regcache *regcache, int regnum,
3207 const void *xsave)
3208 {
3209 struct gdbarch *gdbarch = get_regcache_arch (regcache);
3210 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3211
3212 i387_supply_xsave (regcache, regnum, xsave);
3213
3214 if (xsave
3215 && gdbarch_bfd_arch_info (gdbarch)->bits_per_word == 64)
3216 {
3217 const gdb_byte *regs = xsave;
3218
3219 if (regnum == -1 || regnum == I387_FISEG_REGNUM (tdep))
3220 regcache_raw_supply (regcache, I387_FISEG_REGNUM (tdep),
3221 regs + 12);
3222 if (regnum == -1 || regnum == I387_FOSEG_REGNUM (tdep))
3223 regcache_raw_supply (regcache, I387_FOSEG_REGNUM (tdep),
3224 regs + 20);
3225 }
3226 }
3227
3228 /* Fill register REGNUM (if it is a floating-point or SSE register) in
3229 *FXSAVE with the value from REGCACHE. If REGNUM is -1, do this for
3230 all registers. This function doesn't touch any of the reserved
3231 bits in *FXSAVE. */
3232
3233 void
3234 amd64_collect_fxsave (const struct regcache *regcache, int regnum,
3235 void *fxsave)
3236 {
3237 struct gdbarch *gdbarch = get_regcache_arch (regcache);
3238 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3239 gdb_byte *regs = fxsave;
3240
3241 i387_collect_fxsave (regcache, regnum, fxsave);
3242
3243 if (gdbarch_bfd_arch_info (gdbarch)->bits_per_word == 64)
3244 {
3245 if (regnum == -1 || regnum == I387_FISEG_REGNUM (tdep))
3246 regcache_raw_collect (regcache, I387_FISEG_REGNUM (tdep), regs + 12);
3247 if (regnum == -1 || regnum == I387_FOSEG_REGNUM (tdep))
3248 regcache_raw_collect (regcache, I387_FOSEG_REGNUM (tdep), regs + 20);
3249 }
3250 }
3251
3252 /* Similar to amd64_collect_fxsave, but use XSAVE extended state. */
3253
3254 void
3255 amd64_collect_xsave (const struct regcache *regcache, int regnum,
3256 void *xsave, int gcore)
3257 {
3258 struct gdbarch *gdbarch = get_regcache_arch (regcache);
3259 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3260 gdb_byte *regs = xsave;
3261
3262 i387_collect_xsave (regcache, regnum, xsave, gcore);
3263
3264 if (gdbarch_bfd_arch_info (gdbarch)->bits_per_word == 64)
3265 {
3266 if (regnum == -1 || regnum == I387_FISEG_REGNUM (tdep))
3267 regcache_raw_collect (regcache, I387_FISEG_REGNUM (tdep),
3268 regs + 12);
3269 if (regnum == -1 || regnum == I387_FOSEG_REGNUM (tdep))
3270 regcache_raw_collect (regcache, I387_FOSEG_REGNUM (tdep),
3271 regs + 20);
3272 }
3273 }
This page took 0.096424 seconds and 4 git commands to generate.