abf3e4d91904d75bfad50493ab3a5dfd7516639f
[deliverable/binutils-gdb.git] / gdb / amd64-tdep.c
1 /* Target-dependent code for AMD64.
2
3 Copyright (C) 2001-2018 Free Software Foundation, Inc.
4
5 Contributed by Jiri Smid, SuSE Labs.
6
7 This file is part of GDB.
8
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 3 of the License, or
12 (at your option) any later version.
13
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
18
19 You should have received a copy of the GNU General Public License
20 along with this program. If not, see <http://www.gnu.org/licenses/>. */
21
22 #include "defs.h"
23 #include "opcode/i386.h"
24 #include "dis-asm.h"
25 #include "arch-utils.h"
26 #include "block.h"
27 #include "dummy-frame.h"
28 #include "frame.h"
29 #include "frame-base.h"
30 #include "frame-unwind.h"
31 #include "inferior.h"
32 #include "infrun.h"
33 #include "gdbcmd.h"
34 #include "gdbcore.h"
35 #include "objfiles.h"
36 #include "regcache.h"
37 #include "regset.h"
38 #include "symfile.h"
39 #include "disasm.h"
40 #include "amd64-tdep.h"
41 #include "i387-tdep.h"
42 #include "x86-xstate.h"
43 #include <algorithm>
44 #include "target-descriptions.h"
45 #include "arch/amd64.h"
46 #include "producer.h"
47 #include "ax.h"
48 #include "ax-gdb.h"
49 #include "common/byte-vector.h"
50 #include "osabi.h"
51 #include "x86-tdep.h"
52
53 /* Note that the AMD64 architecture was previously known as x86-64.
54 The latter is (forever) engraved into the canonical system name as
55 returned by config.guess, and used as the name for the AMD64 port
56 of GNU/Linux. The BSD's have renamed their ports to amd64; they
57 don't like to shout. For GDB we prefer the amd64_-prefix over the
58 x86_64_-prefix since it's so much easier to type. */
59
60 /* Register information. */
61
62 static const char *amd64_register_names[] =
63 {
64 "rax", "rbx", "rcx", "rdx", "rsi", "rdi", "rbp", "rsp",
65
66 /* %r8 is indeed register number 8. */
67 "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15",
68 "rip", "eflags", "cs", "ss", "ds", "es", "fs", "gs",
69
70 /* %st0 is register number 24. */
71 "st0", "st1", "st2", "st3", "st4", "st5", "st6", "st7",
72 "fctrl", "fstat", "ftag", "fiseg", "fioff", "foseg", "fooff", "fop",
73
74 /* %xmm0 is register number 40. */
75 "xmm0", "xmm1", "xmm2", "xmm3", "xmm4", "xmm5", "xmm6", "xmm7",
76 "xmm8", "xmm9", "xmm10", "xmm11", "xmm12", "xmm13", "xmm14", "xmm15",
77 "mxcsr",
78 };
79
80 static const char *amd64_ymm_names[] =
81 {
82 "ymm0", "ymm1", "ymm2", "ymm3",
83 "ymm4", "ymm5", "ymm6", "ymm7",
84 "ymm8", "ymm9", "ymm10", "ymm11",
85 "ymm12", "ymm13", "ymm14", "ymm15"
86 };
87
88 static const char *amd64_ymm_avx512_names[] =
89 {
90 "ymm16", "ymm17", "ymm18", "ymm19",
91 "ymm20", "ymm21", "ymm22", "ymm23",
92 "ymm24", "ymm25", "ymm26", "ymm27",
93 "ymm28", "ymm29", "ymm30", "ymm31"
94 };
95
96 static const char *amd64_ymmh_names[] =
97 {
98 "ymm0h", "ymm1h", "ymm2h", "ymm3h",
99 "ymm4h", "ymm5h", "ymm6h", "ymm7h",
100 "ymm8h", "ymm9h", "ymm10h", "ymm11h",
101 "ymm12h", "ymm13h", "ymm14h", "ymm15h"
102 };
103
104 static const char *amd64_ymmh_avx512_names[] =
105 {
106 "ymm16h", "ymm17h", "ymm18h", "ymm19h",
107 "ymm20h", "ymm21h", "ymm22h", "ymm23h",
108 "ymm24h", "ymm25h", "ymm26h", "ymm27h",
109 "ymm28h", "ymm29h", "ymm30h", "ymm31h"
110 };
111
112 static const char *amd64_mpx_names[] =
113 {
114 "bnd0raw", "bnd1raw", "bnd2raw", "bnd3raw", "bndcfgu", "bndstatus"
115 };
116
117 static const char *amd64_k_names[] =
118 {
119 "k0", "k1", "k2", "k3",
120 "k4", "k5", "k6", "k7"
121 };
122
123 static const char *amd64_zmmh_names[] =
124 {
125 "zmm0h", "zmm1h", "zmm2h", "zmm3h",
126 "zmm4h", "zmm5h", "zmm6h", "zmm7h",
127 "zmm8h", "zmm9h", "zmm10h", "zmm11h",
128 "zmm12h", "zmm13h", "zmm14h", "zmm15h",
129 "zmm16h", "zmm17h", "zmm18h", "zmm19h",
130 "zmm20h", "zmm21h", "zmm22h", "zmm23h",
131 "zmm24h", "zmm25h", "zmm26h", "zmm27h",
132 "zmm28h", "zmm29h", "zmm30h", "zmm31h"
133 };
134
135 static const char *amd64_zmm_names[] =
136 {
137 "zmm0", "zmm1", "zmm2", "zmm3",
138 "zmm4", "zmm5", "zmm6", "zmm7",
139 "zmm8", "zmm9", "zmm10", "zmm11",
140 "zmm12", "zmm13", "zmm14", "zmm15",
141 "zmm16", "zmm17", "zmm18", "zmm19",
142 "zmm20", "zmm21", "zmm22", "zmm23",
143 "zmm24", "zmm25", "zmm26", "zmm27",
144 "zmm28", "zmm29", "zmm30", "zmm31"
145 };
146
147 static const char *amd64_xmm_avx512_names[] = {
148 "xmm16", "xmm17", "xmm18", "xmm19",
149 "xmm20", "xmm21", "xmm22", "xmm23",
150 "xmm24", "xmm25", "xmm26", "xmm27",
151 "xmm28", "xmm29", "xmm30", "xmm31"
152 };
153
154 static const char *amd64_pkeys_names[] = {
155 "pkru"
156 };
157
158 /* DWARF Register Number Mapping as defined in the System V psABI,
159 section 3.6. */
160
161 static int amd64_dwarf_regmap[] =
162 {
163 /* General Purpose Registers RAX, RDX, RCX, RBX, RSI, RDI. */
164 AMD64_RAX_REGNUM, AMD64_RDX_REGNUM,
165 AMD64_RCX_REGNUM, AMD64_RBX_REGNUM,
166 AMD64_RSI_REGNUM, AMD64_RDI_REGNUM,
167
168 /* Frame Pointer Register RBP. */
169 AMD64_RBP_REGNUM,
170
171 /* Stack Pointer Register RSP. */
172 AMD64_RSP_REGNUM,
173
174 /* Extended Integer Registers 8 - 15. */
175 AMD64_R8_REGNUM, /* %r8 */
176 AMD64_R9_REGNUM, /* %r9 */
177 AMD64_R10_REGNUM, /* %r10 */
178 AMD64_R11_REGNUM, /* %r11 */
179 AMD64_R12_REGNUM, /* %r12 */
180 AMD64_R13_REGNUM, /* %r13 */
181 AMD64_R14_REGNUM, /* %r14 */
182 AMD64_R15_REGNUM, /* %r15 */
183
184 /* Return Address RA. Mapped to RIP. */
185 AMD64_RIP_REGNUM,
186
187 /* SSE Registers 0 - 7. */
188 AMD64_XMM0_REGNUM + 0, AMD64_XMM1_REGNUM,
189 AMD64_XMM0_REGNUM + 2, AMD64_XMM0_REGNUM + 3,
190 AMD64_XMM0_REGNUM + 4, AMD64_XMM0_REGNUM + 5,
191 AMD64_XMM0_REGNUM + 6, AMD64_XMM0_REGNUM + 7,
192
193 /* Extended SSE Registers 8 - 15. */
194 AMD64_XMM0_REGNUM + 8, AMD64_XMM0_REGNUM + 9,
195 AMD64_XMM0_REGNUM + 10, AMD64_XMM0_REGNUM + 11,
196 AMD64_XMM0_REGNUM + 12, AMD64_XMM0_REGNUM + 13,
197 AMD64_XMM0_REGNUM + 14, AMD64_XMM0_REGNUM + 15,
198
199 /* Floating Point Registers 0-7. */
200 AMD64_ST0_REGNUM + 0, AMD64_ST0_REGNUM + 1,
201 AMD64_ST0_REGNUM + 2, AMD64_ST0_REGNUM + 3,
202 AMD64_ST0_REGNUM + 4, AMD64_ST0_REGNUM + 5,
203 AMD64_ST0_REGNUM + 6, AMD64_ST0_REGNUM + 7,
204
205 /* MMX Registers 0 - 7.
206 We have to handle those registers specifically, as their register
207 number within GDB depends on the target (or they may even not be
208 available at all). */
209 -1, -1, -1, -1, -1, -1, -1, -1,
210
211 /* Control and Status Flags Register. */
212 AMD64_EFLAGS_REGNUM,
213
214 /* Selector Registers. */
215 AMD64_ES_REGNUM,
216 AMD64_CS_REGNUM,
217 AMD64_SS_REGNUM,
218 AMD64_DS_REGNUM,
219 AMD64_FS_REGNUM,
220 AMD64_GS_REGNUM,
221 -1,
222 -1,
223
224 /* Segment Base Address Registers. */
225 -1,
226 -1,
227 -1,
228 -1,
229
230 /* Special Selector Registers. */
231 -1,
232 -1,
233
234 /* Floating Point Control Registers. */
235 AMD64_MXCSR_REGNUM,
236 AMD64_FCTRL_REGNUM,
237 AMD64_FSTAT_REGNUM
238 };
239
240 static const int amd64_dwarf_regmap_len =
241 (sizeof (amd64_dwarf_regmap) / sizeof (amd64_dwarf_regmap[0]));
242
243 /* Convert DWARF register number REG to the appropriate register
244 number used by GDB. */
245
246 static int
247 amd64_dwarf_reg_to_regnum (struct gdbarch *gdbarch, int reg)
248 {
249 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
250 int ymm0_regnum = tdep->ymm0_regnum;
251 int regnum = -1;
252
253 if (reg >= 0 && reg < amd64_dwarf_regmap_len)
254 regnum = amd64_dwarf_regmap[reg];
255
256 if (ymm0_regnum >= 0
257 && i386_xmm_regnum_p (gdbarch, regnum))
258 regnum += ymm0_regnum - I387_XMM0_REGNUM (tdep);
259
260 return regnum;
261 }
262
263 /* Map architectural register numbers to gdb register numbers. */
264
265 static const int amd64_arch_regmap[16] =
266 {
267 AMD64_RAX_REGNUM, /* %rax */
268 AMD64_RCX_REGNUM, /* %rcx */
269 AMD64_RDX_REGNUM, /* %rdx */
270 AMD64_RBX_REGNUM, /* %rbx */
271 AMD64_RSP_REGNUM, /* %rsp */
272 AMD64_RBP_REGNUM, /* %rbp */
273 AMD64_RSI_REGNUM, /* %rsi */
274 AMD64_RDI_REGNUM, /* %rdi */
275 AMD64_R8_REGNUM, /* %r8 */
276 AMD64_R9_REGNUM, /* %r9 */
277 AMD64_R10_REGNUM, /* %r10 */
278 AMD64_R11_REGNUM, /* %r11 */
279 AMD64_R12_REGNUM, /* %r12 */
280 AMD64_R13_REGNUM, /* %r13 */
281 AMD64_R14_REGNUM, /* %r14 */
282 AMD64_R15_REGNUM /* %r15 */
283 };
284
285 static const int amd64_arch_regmap_len =
286 (sizeof (amd64_arch_regmap) / sizeof (amd64_arch_regmap[0]));
287
288 /* Convert architectural register number REG to the appropriate register
289 number used by GDB. */
290
291 static int
292 amd64_arch_reg_to_regnum (int reg)
293 {
294 gdb_assert (reg >= 0 && reg < amd64_arch_regmap_len);
295
296 return amd64_arch_regmap[reg];
297 }
298
299 /* Register names for byte pseudo-registers. */
300
301 static const char *amd64_byte_names[] =
302 {
303 "al", "bl", "cl", "dl", "sil", "dil", "bpl", "spl",
304 "r8l", "r9l", "r10l", "r11l", "r12l", "r13l", "r14l", "r15l",
305 "ah", "bh", "ch", "dh"
306 };
307
308 /* Number of lower byte registers. */
309 #define AMD64_NUM_LOWER_BYTE_REGS 16
310
311 /* Register names for word pseudo-registers. */
312
313 static const char *amd64_word_names[] =
314 {
315 "ax", "bx", "cx", "dx", "si", "di", "bp", "",
316 "r8w", "r9w", "r10w", "r11w", "r12w", "r13w", "r14w", "r15w"
317 };
318
319 /* Register names for dword pseudo-registers. */
320
321 static const char *amd64_dword_names[] =
322 {
323 "eax", "ebx", "ecx", "edx", "esi", "edi", "ebp", "esp",
324 "r8d", "r9d", "r10d", "r11d", "r12d", "r13d", "r14d", "r15d",
325 "eip"
326 };
327
328 /* Return the name of register REGNUM. */
329
330 static const char *
331 amd64_pseudo_register_name (struct gdbarch *gdbarch, int regnum)
332 {
333 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
334 if (i386_byte_regnum_p (gdbarch, regnum))
335 return amd64_byte_names[regnum - tdep->al_regnum];
336 else if (i386_zmm_regnum_p (gdbarch, regnum))
337 return amd64_zmm_names[regnum - tdep->zmm0_regnum];
338 else if (i386_ymm_regnum_p (gdbarch, regnum))
339 return amd64_ymm_names[regnum - tdep->ymm0_regnum];
340 else if (i386_ymm_avx512_regnum_p (gdbarch, regnum))
341 return amd64_ymm_avx512_names[regnum - tdep->ymm16_regnum];
342 else if (i386_word_regnum_p (gdbarch, regnum))
343 return amd64_word_names[regnum - tdep->ax_regnum];
344 else if (i386_dword_regnum_p (gdbarch, regnum))
345 return amd64_dword_names[regnum - tdep->eax_regnum];
346 else
347 return i386_pseudo_register_name (gdbarch, regnum);
348 }
349
350 static struct value *
351 amd64_pseudo_register_read_value (struct gdbarch *gdbarch,
352 readable_regcache *regcache,
353 int regnum)
354 {
355 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
356
357 value *result_value = allocate_value (register_type (gdbarch, regnum));
358 VALUE_LVAL (result_value) = lval_register;
359 VALUE_REGNUM (result_value) = regnum;
360 gdb_byte *buf = value_contents_raw (result_value);
361
362 if (i386_byte_regnum_p (gdbarch, regnum))
363 {
364 int gpnum = regnum - tdep->al_regnum;
365
366 /* Extract (always little endian). */
367 if (gpnum >= AMD64_NUM_LOWER_BYTE_REGS)
368 {
369 gpnum -= AMD64_NUM_LOWER_BYTE_REGS;
370 gdb_byte raw_buf[register_size (gdbarch, gpnum)];
371
372 /* Special handling for AH, BH, CH, DH. */
373 register_status status = regcache->raw_read (gpnum, raw_buf);
374 if (status == REG_VALID)
375 memcpy (buf, raw_buf + 1, 1);
376 else
377 mark_value_bytes_unavailable (result_value, 0,
378 TYPE_LENGTH (value_type (result_value)));
379 }
380 else
381 {
382 gdb_byte raw_buf[register_size (gdbarch, gpnum)];
383 register_status status = regcache->raw_read (gpnum, raw_buf);
384 if (status == REG_VALID)
385 memcpy (buf, raw_buf, 1);
386 else
387 mark_value_bytes_unavailable (result_value, 0,
388 TYPE_LENGTH (value_type (result_value)));
389 }
390 }
391 else if (i386_dword_regnum_p (gdbarch, regnum))
392 {
393 int gpnum = regnum - tdep->eax_regnum;
394 gdb_byte raw_buf[register_size (gdbarch, gpnum)];
395 /* Extract (always little endian). */
396 register_status status = regcache->raw_read (gpnum, raw_buf);
397 if (status == REG_VALID)
398 memcpy (buf, raw_buf, 4);
399 else
400 mark_value_bytes_unavailable (result_value, 0,
401 TYPE_LENGTH (value_type (result_value)));
402 }
403 else
404 i386_pseudo_register_read_into_value (gdbarch, regcache, regnum,
405 result_value);
406
407 return result_value;
408 }
409
410 static void
411 amd64_pseudo_register_write (struct gdbarch *gdbarch,
412 struct regcache *regcache,
413 int regnum, const gdb_byte *buf)
414 {
415 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
416
417 if (i386_byte_regnum_p (gdbarch, regnum))
418 {
419 int gpnum = regnum - tdep->al_regnum;
420
421 if (gpnum >= AMD64_NUM_LOWER_BYTE_REGS)
422 {
423 gpnum -= AMD64_NUM_LOWER_BYTE_REGS;
424 gdb_byte raw_buf[register_size (gdbarch, gpnum)];
425
426 /* Read ... AH, BH, CH, DH. */
427 regcache->raw_read (gpnum, raw_buf);
428 /* ... Modify ... (always little endian). */
429 memcpy (raw_buf + 1, buf, 1);
430 /* ... Write. */
431 regcache->raw_write (gpnum, raw_buf);
432 }
433 else
434 {
435 gdb_byte raw_buf[register_size (gdbarch, gpnum)];
436
437 /* Read ... */
438 regcache->raw_read (gpnum, raw_buf);
439 /* ... Modify ... (always little endian). */
440 memcpy (raw_buf, buf, 1);
441 /* ... Write. */
442 regcache->raw_write (gpnum, raw_buf);
443 }
444 }
445 else if (i386_dword_regnum_p (gdbarch, regnum))
446 {
447 int gpnum = regnum - tdep->eax_regnum;
448 gdb_byte raw_buf[register_size (gdbarch, gpnum)];
449
450 /* Read ... */
451 regcache->raw_read (gpnum, raw_buf);
452 /* ... Modify ... (always little endian). */
453 memcpy (raw_buf, buf, 4);
454 /* ... Write. */
455 regcache->raw_write (gpnum, raw_buf);
456 }
457 else
458 i386_pseudo_register_write (gdbarch, regcache, regnum, buf);
459 }
460
461 /* Implement the 'ax_pseudo_register_collect' gdbarch method. */
462
463 static int
464 amd64_ax_pseudo_register_collect (struct gdbarch *gdbarch,
465 struct agent_expr *ax, int regnum)
466 {
467 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
468
469 if (i386_byte_regnum_p (gdbarch, regnum))
470 {
471 int gpnum = regnum - tdep->al_regnum;
472
473 if (gpnum >= AMD64_NUM_LOWER_BYTE_REGS)
474 ax_reg_mask (ax, gpnum - AMD64_NUM_LOWER_BYTE_REGS);
475 else
476 ax_reg_mask (ax, gpnum);
477 return 0;
478 }
479 else if (i386_dword_regnum_p (gdbarch, regnum))
480 {
481 int gpnum = regnum - tdep->eax_regnum;
482
483 ax_reg_mask (ax, gpnum);
484 return 0;
485 }
486 else
487 return i386_ax_pseudo_register_collect (gdbarch, ax, regnum);
488 }
489
490 \f
491
492 /* Register classes as defined in the psABI. */
493
494 enum amd64_reg_class
495 {
496 AMD64_INTEGER,
497 AMD64_SSE,
498 AMD64_SSEUP,
499 AMD64_X87,
500 AMD64_X87UP,
501 AMD64_COMPLEX_X87,
502 AMD64_NO_CLASS,
503 AMD64_MEMORY
504 };
505
506 /* Return the union class of CLASS1 and CLASS2. See the psABI for
507 details. */
508
509 static enum amd64_reg_class
510 amd64_merge_classes (enum amd64_reg_class class1, enum amd64_reg_class class2)
511 {
512 /* Rule (a): If both classes are equal, this is the resulting class. */
513 if (class1 == class2)
514 return class1;
515
516 /* Rule (b): If one of the classes is NO_CLASS, the resulting class
517 is the other class. */
518 if (class1 == AMD64_NO_CLASS)
519 return class2;
520 if (class2 == AMD64_NO_CLASS)
521 return class1;
522
523 /* Rule (c): If one of the classes is MEMORY, the result is MEMORY. */
524 if (class1 == AMD64_MEMORY || class2 == AMD64_MEMORY)
525 return AMD64_MEMORY;
526
527 /* Rule (d): If one of the classes is INTEGER, the result is INTEGER. */
528 if (class1 == AMD64_INTEGER || class2 == AMD64_INTEGER)
529 return AMD64_INTEGER;
530
531 /* Rule (e): If one of the classes is X87, X87UP, COMPLEX_X87 class,
532 MEMORY is used as class. */
533 if (class1 == AMD64_X87 || class1 == AMD64_X87UP
534 || class1 == AMD64_COMPLEX_X87 || class2 == AMD64_X87
535 || class2 == AMD64_X87UP || class2 == AMD64_COMPLEX_X87)
536 return AMD64_MEMORY;
537
538 /* Rule (f): Otherwise class SSE is used. */
539 return AMD64_SSE;
540 }
541
542 static void amd64_classify (struct type *type, enum amd64_reg_class theclass[2]);
543
544 /* Return non-zero if TYPE is a non-POD structure or union type. */
545
546 static int
547 amd64_non_pod_p (struct type *type)
548 {
549 /* ??? A class with a base class certainly isn't POD, but does this
550 catch all non-POD structure types? */
551 if (TYPE_CODE (type) == TYPE_CODE_STRUCT && TYPE_N_BASECLASSES (type) > 0)
552 return 1;
553
554 return 0;
555 }
556
557 /* Classify TYPE according to the rules for aggregate (structures and
558 arrays) and union types, and store the result in CLASS. */
559
560 static void
561 amd64_classify_aggregate (struct type *type, enum amd64_reg_class theclass[2])
562 {
563 /* 1. If the size of an object is larger than two eightbytes, or in
564 C++, is a non-POD structure or union type, or contains
565 unaligned fields, it has class memory. */
566 if (TYPE_LENGTH (type) > 16 || amd64_non_pod_p (type))
567 {
568 theclass[0] = theclass[1] = AMD64_MEMORY;
569 return;
570 }
571
572 /* 2. Both eightbytes get initialized to class NO_CLASS. */
573 theclass[0] = theclass[1] = AMD64_NO_CLASS;
574
575 /* 3. Each field of an object is classified recursively so that
576 always two fields are considered. The resulting class is
577 calculated according to the classes of the fields in the
578 eightbyte: */
579
580 if (TYPE_CODE (type) == TYPE_CODE_ARRAY)
581 {
582 struct type *subtype = check_typedef (TYPE_TARGET_TYPE (type));
583
584 /* All fields in an array have the same type. */
585 amd64_classify (subtype, theclass);
586 if (TYPE_LENGTH (type) > 8 && theclass[1] == AMD64_NO_CLASS)
587 theclass[1] = theclass[0];
588 }
589 else
590 {
591 int i;
592
593 /* Structure or union. */
594 gdb_assert (TYPE_CODE (type) == TYPE_CODE_STRUCT
595 || TYPE_CODE (type) == TYPE_CODE_UNION);
596
597 for (i = 0; i < TYPE_NFIELDS (type); i++)
598 {
599 struct type *subtype = check_typedef (TYPE_FIELD_TYPE (type, i));
600 int pos = TYPE_FIELD_BITPOS (type, i) / 64;
601 enum amd64_reg_class subclass[2];
602 int bitsize = TYPE_FIELD_BITSIZE (type, i);
603 int endpos;
604
605 if (bitsize == 0)
606 bitsize = TYPE_LENGTH (subtype) * 8;
607 endpos = (TYPE_FIELD_BITPOS (type, i) + bitsize - 1) / 64;
608
609 /* Ignore static fields, or empty fields, for example nested
610 empty structures.*/
611 if (field_is_static (&TYPE_FIELD (type, i)) || bitsize == 0)
612 continue;
613
614 gdb_assert (pos == 0 || pos == 1);
615
616 amd64_classify (subtype, subclass);
617 theclass[pos] = amd64_merge_classes (theclass[pos], subclass[0]);
618 if (bitsize <= 64 && pos == 0 && endpos == 1)
619 /* This is a bit of an odd case: We have a field that would
620 normally fit in one of the two eightbytes, except that
621 it is placed in a way that this field straddles them.
622 This has been seen with a structure containing an array.
623
624 The ABI is a bit unclear in this case, but we assume that
625 this field's class (stored in subclass[0]) must also be merged
626 into class[1]. In other words, our field has a piece stored
627 in the second eight-byte, and thus its class applies to
628 the second eight-byte as well.
629
630 In the case where the field length exceeds 8 bytes,
631 it should not be necessary to merge the field class
632 into class[1]. As LEN > 8, subclass[1] is necessarily
633 different from AMD64_NO_CLASS. If subclass[1] is equal
634 to subclass[0], then the normal class[1]/subclass[1]
635 merging will take care of everything. For subclass[1]
636 to be different from subclass[0], I can only see the case
637 where we have a SSE/SSEUP or X87/X87UP pair, which both
638 use up all 16 bytes of the aggregate, and are already
639 handled just fine (because each portion sits on its own
640 8-byte). */
641 theclass[1] = amd64_merge_classes (theclass[1], subclass[0]);
642 if (pos == 0)
643 theclass[1] = amd64_merge_classes (theclass[1], subclass[1]);
644 }
645 }
646
647 /* 4. Then a post merger cleanup is done: */
648
649 /* Rule (a): If one of the classes is MEMORY, the whole argument is
650 passed in memory. */
651 if (theclass[0] == AMD64_MEMORY || theclass[1] == AMD64_MEMORY)
652 theclass[0] = theclass[1] = AMD64_MEMORY;
653
654 /* Rule (b): If SSEUP is not preceded by SSE, it is converted to
655 SSE. */
656 if (theclass[0] == AMD64_SSEUP)
657 theclass[0] = AMD64_SSE;
658 if (theclass[1] == AMD64_SSEUP && theclass[0] != AMD64_SSE)
659 theclass[1] = AMD64_SSE;
660 }
661
662 /* Classify TYPE, and store the result in CLASS. */
663
664 static void
665 amd64_classify (struct type *type, enum amd64_reg_class theclass[2])
666 {
667 enum type_code code = TYPE_CODE (type);
668 int len = TYPE_LENGTH (type);
669
670 theclass[0] = theclass[1] = AMD64_NO_CLASS;
671
672 /* Arguments of types (signed and unsigned) _Bool, char, short, int,
673 long, long long, and pointers are in the INTEGER class. Similarly,
674 range types, used by languages such as Ada, are also in the INTEGER
675 class. */
676 if ((code == TYPE_CODE_INT || code == TYPE_CODE_ENUM
677 || code == TYPE_CODE_BOOL || code == TYPE_CODE_RANGE
678 || code == TYPE_CODE_CHAR
679 || code == TYPE_CODE_PTR || TYPE_IS_REFERENCE (type))
680 && (len == 1 || len == 2 || len == 4 || len == 8))
681 theclass[0] = AMD64_INTEGER;
682
683 /* Arguments of types float, double, _Decimal32, _Decimal64 and __m64
684 are in class SSE. */
685 else if ((code == TYPE_CODE_FLT || code == TYPE_CODE_DECFLOAT)
686 && (len == 4 || len == 8))
687 /* FIXME: __m64 . */
688 theclass[0] = AMD64_SSE;
689
690 /* Arguments of types __float128, _Decimal128 and __m128 are split into
691 two halves. The least significant ones belong to class SSE, the most
692 significant one to class SSEUP. */
693 else if (code == TYPE_CODE_DECFLOAT && len == 16)
694 /* FIXME: __float128, __m128. */
695 theclass[0] = AMD64_SSE, theclass[1] = AMD64_SSEUP;
696
697 /* The 64-bit mantissa of arguments of type long double belongs to
698 class X87, the 16-bit exponent plus 6 bytes of padding belongs to
699 class X87UP. */
700 else if (code == TYPE_CODE_FLT && len == 16)
701 /* Class X87 and X87UP. */
702 theclass[0] = AMD64_X87, theclass[1] = AMD64_X87UP;
703
704 /* Arguments of complex T where T is one of the types float or
705 double get treated as if they are implemented as:
706
707 struct complexT {
708 T real;
709 T imag;
710 };
711
712 */
713 else if (code == TYPE_CODE_COMPLEX && len == 8)
714 theclass[0] = AMD64_SSE;
715 else if (code == TYPE_CODE_COMPLEX && len == 16)
716 theclass[0] = theclass[1] = AMD64_SSE;
717
718 /* A variable of type complex long double is classified as type
719 COMPLEX_X87. */
720 else if (code == TYPE_CODE_COMPLEX && len == 32)
721 theclass[0] = AMD64_COMPLEX_X87;
722
723 /* Aggregates. */
724 else if (code == TYPE_CODE_ARRAY || code == TYPE_CODE_STRUCT
725 || code == TYPE_CODE_UNION)
726 amd64_classify_aggregate (type, theclass);
727 }
728
729 static enum return_value_convention
730 amd64_return_value (struct gdbarch *gdbarch, struct value *function,
731 struct type *type, struct regcache *regcache,
732 gdb_byte *readbuf, const gdb_byte *writebuf)
733 {
734 enum amd64_reg_class theclass[2];
735 int len = TYPE_LENGTH (type);
736 static int integer_regnum[] = { AMD64_RAX_REGNUM, AMD64_RDX_REGNUM };
737 static int sse_regnum[] = { AMD64_XMM0_REGNUM, AMD64_XMM1_REGNUM };
738 int integer_reg = 0;
739 int sse_reg = 0;
740 int i;
741
742 gdb_assert (!(readbuf && writebuf));
743
744 /* 1. Classify the return type with the classification algorithm. */
745 amd64_classify (type, theclass);
746
747 /* 2. If the type has class MEMORY, then the caller provides space
748 for the return value and passes the address of this storage in
749 %rdi as if it were the first argument to the function. In effect,
750 this address becomes a hidden first argument.
751
752 On return %rax will contain the address that has been passed in
753 by the caller in %rdi. */
754 if (theclass[0] == AMD64_MEMORY)
755 {
756 /* As indicated by the comment above, the ABI guarantees that we
757 can always find the return value just after the function has
758 returned. */
759
760 if (readbuf)
761 {
762 ULONGEST addr;
763
764 regcache_raw_read_unsigned (regcache, AMD64_RAX_REGNUM, &addr);
765 read_memory (addr, readbuf, TYPE_LENGTH (type));
766 }
767
768 return RETURN_VALUE_ABI_RETURNS_ADDRESS;
769 }
770
771 /* 8. If the class is COMPLEX_X87, the real part of the value is
772 returned in %st0 and the imaginary part in %st1. */
773 if (theclass[0] == AMD64_COMPLEX_X87)
774 {
775 if (readbuf)
776 {
777 regcache->raw_read (AMD64_ST0_REGNUM, readbuf);
778 regcache->raw_read (AMD64_ST1_REGNUM, readbuf + 16);
779 }
780
781 if (writebuf)
782 {
783 i387_return_value (gdbarch, regcache);
784 regcache->raw_write (AMD64_ST0_REGNUM, writebuf);
785 regcache->raw_write (AMD64_ST1_REGNUM, writebuf + 16);
786
787 /* Fix up the tag word such that both %st(0) and %st(1) are
788 marked as valid. */
789 regcache_raw_write_unsigned (regcache, AMD64_FTAG_REGNUM, 0xfff);
790 }
791
792 return RETURN_VALUE_REGISTER_CONVENTION;
793 }
794
795 gdb_assert (theclass[1] != AMD64_MEMORY);
796 gdb_assert (len <= 16);
797
798 for (i = 0; len > 0; i++, len -= 8)
799 {
800 int regnum = -1;
801 int offset = 0;
802
803 switch (theclass[i])
804 {
805 case AMD64_INTEGER:
806 /* 3. If the class is INTEGER, the next available register
807 of the sequence %rax, %rdx is used. */
808 regnum = integer_regnum[integer_reg++];
809 break;
810
811 case AMD64_SSE:
812 /* 4. If the class is SSE, the next available SSE register
813 of the sequence %xmm0, %xmm1 is used. */
814 regnum = sse_regnum[sse_reg++];
815 break;
816
817 case AMD64_SSEUP:
818 /* 5. If the class is SSEUP, the eightbyte is passed in the
819 upper half of the last used SSE register. */
820 gdb_assert (sse_reg > 0);
821 regnum = sse_regnum[sse_reg - 1];
822 offset = 8;
823 break;
824
825 case AMD64_X87:
826 /* 6. If the class is X87, the value is returned on the X87
827 stack in %st0 as 80-bit x87 number. */
828 regnum = AMD64_ST0_REGNUM;
829 if (writebuf)
830 i387_return_value (gdbarch, regcache);
831 break;
832
833 case AMD64_X87UP:
834 /* 7. If the class is X87UP, the value is returned together
835 with the previous X87 value in %st0. */
836 gdb_assert (i > 0 && theclass[0] == AMD64_X87);
837 regnum = AMD64_ST0_REGNUM;
838 offset = 8;
839 len = 2;
840 break;
841
842 case AMD64_NO_CLASS:
843 continue;
844
845 default:
846 gdb_assert (!"Unexpected register class.");
847 }
848
849 gdb_assert (regnum != -1);
850
851 if (readbuf)
852 regcache->raw_read_part (regnum, offset, std::min (len, 8),
853 readbuf + i * 8);
854 if (writebuf)
855 regcache->raw_write_part (regnum, offset, std::min (len, 8),
856 writebuf + i * 8);
857 }
858
859 return RETURN_VALUE_REGISTER_CONVENTION;
860 }
861 \f
862
863 static CORE_ADDR
864 amd64_push_arguments (struct regcache *regcache, int nargs,
865 struct value **args, CORE_ADDR sp, int struct_return)
866 {
867 static int integer_regnum[] =
868 {
869 AMD64_RDI_REGNUM, /* %rdi */
870 AMD64_RSI_REGNUM, /* %rsi */
871 AMD64_RDX_REGNUM, /* %rdx */
872 AMD64_RCX_REGNUM, /* %rcx */
873 AMD64_R8_REGNUM, /* %r8 */
874 AMD64_R9_REGNUM /* %r9 */
875 };
876 static int sse_regnum[] =
877 {
878 /* %xmm0 ... %xmm7 */
879 AMD64_XMM0_REGNUM + 0, AMD64_XMM1_REGNUM,
880 AMD64_XMM0_REGNUM + 2, AMD64_XMM0_REGNUM + 3,
881 AMD64_XMM0_REGNUM + 4, AMD64_XMM0_REGNUM + 5,
882 AMD64_XMM0_REGNUM + 6, AMD64_XMM0_REGNUM + 7,
883 };
884 struct value **stack_args = XALLOCAVEC (struct value *, nargs);
885 int num_stack_args = 0;
886 int num_elements = 0;
887 int element = 0;
888 int integer_reg = 0;
889 int sse_reg = 0;
890 int i;
891
892 /* Reserve a register for the "hidden" argument. */
893 if (struct_return)
894 integer_reg++;
895
896 for (i = 0; i < nargs; i++)
897 {
898 struct type *type = value_type (args[i]);
899 int len = TYPE_LENGTH (type);
900 enum amd64_reg_class theclass[2];
901 int needed_integer_regs = 0;
902 int needed_sse_regs = 0;
903 int j;
904
905 /* Classify argument. */
906 amd64_classify (type, theclass);
907
908 /* Calculate the number of integer and SSE registers needed for
909 this argument. */
910 for (j = 0; j < 2; j++)
911 {
912 if (theclass[j] == AMD64_INTEGER)
913 needed_integer_regs++;
914 else if (theclass[j] == AMD64_SSE)
915 needed_sse_regs++;
916 }
917
918 /* Check whether enough registers are available, and if the
919 argument should be passed in registers at all. */
920 if (integer_reg + needed_integer_regs > ARRAY_SIZE (integer_regnum)
921 || sse_reg + needed_sse_regs > ARRAY_SIZE (sse_regnum)
922 || (needed_integer_regs == 0 && needed_sse_regs == 0))
923 {
924 /* The argument will be passed on the stack. */
925 num_elements += ((len + 7) / 8);
926 stack_args[num_stack_args++] = args[i];
927 }
928 else
929 {
930 /* The argument will be passed in registers. */
931 const gdb_byte *valbuf = value_contents (args[i]);
932 gdb_byte buf[8];
933
934 gdb_assert (len <= 16);
935
936 for (j = 0; len > 0; j++, len -= 8)
937 {
938 int regnum = -1;
939 int offset = 0;
940
941 switch (theclass[j])
942 {
943 case AMD64_INTEGER:
944 regnum = integer_regnum[integer_reg++];
945 break;
946
947 case AMD64_SSE:
948 regnum = sse_regnum[sse_reg++];
949 break;
950
951 case AMD64_SSEUP:
952 gdb_assert (sse_reg > 0);
953 regnum = sse_regnum[sse_reg - 1];
954 offset = 8;
955 break;
956
957 default:
958 gdb_assert (!"Unexpected register class.");
959 }
960
961 gdb_assert (regnum != -1);
962 memset (buf, 0, sizeof buf);
963 memcpy (buf, valbuf + j * 8, std::min (len, 8));
964 regcache->raw_write_part (regnum, offset, 8, buf);
965 }
966 }
967 }
968
969 /* Allocate space for the arguments on the stack. */
970 sp -= num_elements * 8;
971
972 /* The psABI says that "The end of the input argument area shall be
973 aligned on a 16 byte boundary." */
974 sp &= ~0xf;
975
976 /* Write out the arguments to the stack. */
977 for (i = 0; i < num_stack_args; i++)
978 {
979 struct type *type = value_type (stack_args[i]);
980 const gdb_byte *valbuf = value_contents (stack_args[i]);
981 int len = TYPE_LENGTH (type);
982
983 write_memory (sp + element * 8, valbuf, len);
984 element += ((len + 7) / 8);
985 }
986
987 /* The psABI says that "For calls that may call functions that use
988 varargs or stdargs (prototype-less calls or calls to functions
989 containing ellipsis (...) in the declaration) %al is used as
990 hidden argument to specify the number of SSE registers used. */
991 regcache_raw_write_unsigned (regcache, AMD64_RAX_REGNUM, sse_reg);
992 return sp;
993 }
994
995 static CORE_ADDR
996 amd64_push_dummy_call (struct gdbarch *gdbarch, struct value *function,
997 struct regcache *regcache, CORE_ADDR bp_addr,
998 int nargs, struct value **args, CORE_ADDR sp,
999 int struct_return, CORE_ADDR struct_addr)
1000 {
1001 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1002 gdb_byte buf[8];
1003
1004 /* BND registers can be in arbitrary values at the moment of the
1005 inferior call. This can cause boundary violations that are not
1006 due to a real bug or even desired by the user. The best to be done
1007 is set the BND registers to allow access to the whole memory, INIT
1008 state, before pushing the inferior call. */
1009 i387_reset_bnd_regs (gdbarch, regcache);
1010
1011 /* Pass arguments. */
1012 sp = amd64_push_arguments (regcache, nargs, args, sp, struct_return);
1013
1014 /* Pass "hidden" argument". */
1015 if (struct_return)
1016 {
1017 store_unsigned_integer (buf, 8, byte_order, struct_addr);
1018 regcache->cooked_write (AMD64_RDI_REGNUM, buf);
1019 }
1020
1021 /* Store return address. */
1022 sp -= 8;
1023 store_unsigned_integer (buf, 8, byte_order, bp_addr);
1024 write_memory (sp, buf, 8);
1025
1026 /* Finally, update the stack pointer... */
1027 store_unsigned_integer (buf, 8, byte_order, sp);
1028 regcache->cooked_write (AMD64_RSP_REGNUM, buf);
1029
1030 /* ...and fake a frame pointer. */
1031 regcache->cooked_write (AMD64_RBP_REGNUM, buf);
1032
1033 return sp + 16;
1034 }
1035 \f
1036 /* Displaced instruction handling. */
1037
1038 /* A partially decoded instruction.
1039 This contains enough details for displaced stepping purposes. */
1040
1041 struct amd64_insn
1042 {
1043 /* The number of opcode bytes. */
1044 int opcode_len;
1045 /* The offset of the REX/VEX instruction encoding prefix or -1 if
1046 not present. */
1047 int enc_prefix_offset;
1048 /* The offset to the first opcode byte. */
1049 int opcode_offset;
1050 /* The offset to the modrm byte or -1 if not present. */
1051 int modrm_offset;
1052
1053 /* The raw instruction. */
1054 gdb_byte *raw_insn;
1055 };
1056
1057 struct amd64_displaced_step_closure : public displaced_step_closure
1058 {
1059 amd64_displaced_step_closure (int insn_buf_len)
1060 : insn_buf (insn_buf_len, 0)
1061 {}
1062
1063 /* For rip-relative insns, saved copy of the reg we use instead of %rip. */
1064 int tmp_used = 0;
1065 int tmp_regno;
1066 ULONGEST tmp_save;
1067
1068 /* Details of the instruction. */
1069 struct amd64_insn insn_details;
1070
1071 /* The possibly modified insn. */
1072 gdb::byte_vector insn_buf;
1073 };
1074
1075 /* WARNING: Keep onebyte_has_modrm, twobyte_has_modrm in sync with
1076 ../opcodes/i386-dis.c (until libopcodes exports them, or an alternative,
1077 at which point delete these in favor of libopcodes' versions). */
1078
1079 static const unsigned char onebyte_has_modrm[256] = {
1080 /* 0 1 2 3 4 5 6 7 8 9 a b c d e f */
1081 /* ------------------------------- */
1082 /* 00 */ 1,1,1,1,0,0,0,0,1,1,1,1,0,0,0,0, /* 00 */
1083 /* 10 */ 1,1,1,1,0,0,0,0,1,1,1,1,0,0,0,0, /* 10 */
1084 /* 20 */ 1,1,1,1,0,0,0,0,1,1,1,1,0,0,0,0, /* 20 */
1085 /* 30 */ 1,1,1,1,0,0,0,0,1,1,1,1,0,0,0,0, /* 30 */
1086 /* 40 */ 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, /* 40 */
1087 /* 50 */ 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, /* 50 */
1088 /* 60 */ 0,0,1,1,0,0,0,0,0,1,0,1,0,0,0,0, /* 60 */
1089 /* 70 */ 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, /* 70 */
1090 /* 80 */ 1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1, /* 80 */
1091 /* 90 */ 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, /* 90 */
1092 /* a0 */ 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, /* a0 */
1093 /* b0 */ 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, /* b0 */
1094 /* c0 */ 1,1,0,0,1,1,1,1,0,0,0,0,0,0,0,0, /* c0 */
1095 /* d0 */ 1,1,1,1,0,0,0,0,1,1,1,1,1,1,1,1, /* d0 */
1096 /* e0 */ 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, /* e0 */
1097 /* f0 */ 0,0,0,0,0,0,1,1,0,0,0,0,0,0,1,1 /* f0 */
1098 /* ------------------------------- */
1099 /* 0 1 2 3 4 5 6 7 8 9 a b c d e f */
1100 };
1101
1102 static const unsigned char twobyte_has_modrm[256] = {
1103 /* 0 1 2 3 4 5 6 7 8 9 a b c d e f */
1104 /* ------------------------------- */
1105 /* 00 */ 1,1,1,1,0,0,0,0,0,0,0,0,0,1,0,1, /* 0f */
1106 /* 10 */ 1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1, /* 1f */
1107 /* 20 */ 1,1,1,1,1,1,1,0,1,1,1,1,1,1,1,1, /* 2f */
1108 /* 30 */ 0,0,0,0,0,0,0,0,1,0,1,0,0,0,0,0, /* 3f */
1109 /* 40 */ 1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1, /* 4f */
1110 /* 50 */ 1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1, /* 5f */
1111 /* 60 */ 1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1, /* 6f */
1112 /* 70 */ 1,1,1,1,1,1,1,0,1,1,1,1,1,1,1,1, /* 7f */
1113 /* 80 */ 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, /* 8f */
1114 /* 90 */ 1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1, /* 9f */
1115 /* a0 */ 0,0,0,1,1,1,1,1,0,0,0,1,1,1,1,1, /* af */
1116 /* b0 */ 1,1,1,1,1,1,1,1,1,0,1,1,1,1,1,1, /* bf */
1117 /* c0 */ 1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0, /* cf */
1118 /* d0 */ 1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1, /* df */
1119 /* e0 */ 1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1, /* ef */
1120 /* f0 */ 1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,0 /* ff */
1121 /* ------------------------------- */
1122 /* 0 1 2 3 4 5 6 7 8 9 a b c d e f */
1123 };
1124
1125 static int amd64_syscall_p (const struct amd64_insn *insn, int *lengthp);
1126
1127 static int
1128 rex_prefix_p (gdb_byte pfx)
1129 {
1130 return REX_PREFIX_P (pfx);
1131 }
1132
1133 /* True if PFX is the start of the 2-byte VEX prefix. */
1134
1135 static bool
1136 vex2_prefix_p (gdb_byte pfx)
1137 {
1138 return pfx == 0xc5;
1139 }
1140
1141 /* True if PFX is the start of the 3-byte VEX prefix. */
1142
1143 static bool
1144 vex3_prefix_p (gdb_byte pfx)
1145 {
1146 return pfx == 0xc4;
1147 }
1148
1149 /* Skip the legacy instruction prefixes in INSN.
1150 We assume INSN is properly sentineled so we don't have to worry
1151 about falling off the end of the buffer. */
1152
1153 static gdb_byte *
1154 amd64_skip_prefixes (gdb_byte *insn)
1155 {
1156 while (1)
1157 {
1158 switch (*insn)
1159 {
1160 case DATA_PREFIX_OPCODE:
1161 case ADDR_PREFIX_OPCODE:
1162 case CS_PREFIX_OPCODE:
1163 case DS_PREFIX_OPCODE:
1164 case ES_PREFIX_OPCODE:
1165 case FS_PREFIX_OPCODE:
1166 case GS_PREFIX_OPCODE:
1167 case SS_PREFIX_OPCODE:
1168 case LOCK_PREFIX_OPCODE:
1169 case REPE_PREFIX_OPCODE:
1170 case REPNE_PREFIX_OPCODE:
1171 ++insn;
1172 continue;
1173 default:
1174 break;
1175 }
1176 break;
1177 }
1178
1179 return insn;
1180 }
1181
1182 /* Return an integer register (other than RSP) that is unused as an input
1183 operand in INSN.
1184 In order to not require adding a rex prefix if the insn doesn't already
1185 have one, the result is restricted to RAX ... RDI, sans RSP.
1186 The register numbering of the result follows architecture ordering,
1187 e.g. RDI = 7. */
1188
1189 static int
1190 amd64_get_unused_input_int_reg (const struct amd64_insn *details)
1191 {
1192 /* 1 bit for each reg */
1193 int used_regs_mask = 0;
1194
1195 /* There can be at most 3 int regs used as inputs in an insn, and we have
1196 7 to choose from (RAX ... RDI, sans RSP).
1197 This allows us to take a conservative approach and keep things simple.
1198 E.g. By avoiding RAX, we don't have to specifically watch for opcodes
1199 that implicitly specify RAX. */
1200
1201 /* Avoid RAX. */
1202 used_regs_mask |= 1 << EAX_REG_NUM;
1203 /* Similarily avoid RDX, implicit operand in divides. */
1204 used_regs_mask |= 1 << EDX_REG_NUM;
1205 /* Avoid RSP. */
1206 used_regs_mask |= 1 << ESP_REG_NUM;
1207
1208 /* If the opcode is one byte long and there's no ModRM byte,
1209 assume the opcode specifies a register. */
1210 if (details->opcode_len == 1 && details->modrm_offset == -1)
1211 used_regs_mask |= 1 << (details->raw_insn[details->opcode_offset] & 7);
1212
1213 /* Mark used regs in the modrm/sib bytes. */
1214 if (details->modrm_offset != -1)
1215 {
1216 int modrm = details->raw_insn[details->modrm_offset];
1217 int mod = MODRM_MOD_FIELD (modrm);
1218 int reg = MODRM_REG_FIELD (modrm);
1219 int rm = MODRM_RM_FIELD (modrm);
1220 int have_sib = mod != 3 && rm == 4;
1221
1222 /* Assume the reg field of the modrm byte specifies a register. */
1223 used_regs_mask |= 1 << reg;
1224
1225 if (have_sib)
1226 {
1227 int base = SIB_BASE_FIELD (details->raw_insn[details->modrm_offset + 1]);
1228 int idx = SIB_INDEX_FIELD (details->raw_insn[details->modrm_offset + 1]);
1229 used_regs_mask |= 1 << base;
1230 used_regs_mask |= 1 << idx;
1231 }
1232 else
1233 {
1234 used_regs_mask |= 1 << rm;
1235 }
1236 }
1237
1238 gdb_assert (used_regs_mask < 256);
1239 gdb_assert (used_regs_mask != 255);
1240
1241 /* Finally, find a free reg. */
1242 {
1243 int i;
1244
1245 for (i = 0; i < 8; ++i)
1246 {
1247 if (! (used_regs_mask & (1 << i)))
1248 return i;
1249 }
1250
1251 /* We shouldn't get here. */
1252 internal_error (__FILE__, __LINE__, _("unable to find free reg"));
1253 }
1254 }
1255
1256 /* Extract the details of INSN that we need. */
1257
1258 static void
1259 amd64_get_insn_details (gdb_byte *insn, struct amd64_insn *details)
1260 {
1261 gdb_byte *start = insn;
1262 int need_modrm;
1263
1264 details->raw_insn = insn;
1265
1266 details->opcode_len = -1;
1267 details->enc_prefix_offset = -1;
1268 details->opcode_offset = -1;
1269 details->modrm_offset = -1;
1270
1271 /* Skip legacy instruction prefixes. */
1272 insn = amd64_skip_prefixes (insn);
1273
1274 /* Skip REX/VEX instruction encoding prefixes. */
1275 if (rex_prefix_p (*insn))
1276 {
1277 details->enc_prefix_offset = insn - start;
1278 ++insn;
1279 }
1280 else if (vex2_prefix_p (*insn))
1281 {
1282 /* Don't record the offset in this case because this prefix has
1283 no REX.B equivalent. */
1284 insn += 2;
1285 }
1286 else if (vex3_prefix_p (*insn))
1287 {
1288 details->enc_prefix_offset = insn - start;
1289 insn += 3;
1290 }
1291
1292 details->opcode_offset = insn - start;
1293
1294 if (*insn == TWO_BYTE_OPCODE_ESCAPE)
1295 {
1296 /* Two or three-byte opcode. */
1297 ++insn;
1298 need_modrm = twobyte_has_modrm[*insn];
1299
1300 /* Check for three-byte opcode. */
1301 switch (*insn)
1302 {
1303 case 0x24:
1304 case 0x25:
1305 case 0x38:
1306 case 0x3a:
1307 case 0x7a:
1308 case 0x7b:
1309 ++insn;
1310 details->opcode_len = 3;
1311 break;
1312 default:
1313 details->opcode_len = 2;
1314 break;
1315 }
1316 }
1317 else
1318 {
1319 /* One-byte opcode. */
1320 need_modrm = onebyte_has_modrm[*insn];
1321 details->opcode_len = 1;
1322 }
1323
1324 if (need_modrm)
1325 {
1326 ++insn;
1327 details->modrm_offset = insn - start;
1328 }
1329 }
1330
1331 /* Update %rip-relative addressing in INSN.
1332
1333 %rip-relative addressing only uses a 32-bit displacement.
1334 32 bits is not enough to be guaranteed to cover the distance between where
1335 the real instruction is and where its copy is.
1336 Convert the insn to use base+disp addressing.
1337 We set base = pc + insn_length so we can leave disp unchanged. */
1338
1339 static void
1340 fixup_riprel (struct gdbarch *gdbarch, amd64_displaced_step_closure *dsc,
1341 CORE_ADDR from, CORE_ADDR to, struct regcache *regs)
1342 {
1343 const struct amd64_insn *insn_details = &dsc->insn_details;
1344 int modrm_offset = insn_details->modrm_offset;
1345 gdb_byte *insn = insn_details->raw_insn + modrm_offset;
1346 CORE_ADDR rip_base;
1347 int insn_length;
1348 int arch_tmp_regno, tmp_regno;
1349 ULONGEST orig_value;
1350
1351 /* %rip+disp32 addressing mode, displacement follows ModRM byte. */
1352 ++insn;
1353
1354 /* Compute the rip-relative address. */
1355 insn_length = gdb_buffered_insn_length (gdbarch, dsc->insn_buf.data (),
1356 dsc->insn_buf.size (), from);
1357 rip_base = from + insn_length;
1358
1359 /* We need a register to hold the address.
1360 Pick one not used in the insn.
1361 NOTE: arch_tmp_regno uses architecture ordering, e.g. RDI = 7. */
1362 arch_tmp_regno = amd64_get_unused_input_int_reg (insn_details);
1363 tmp_regno = amd64_arch_reg_to_regnum (arch_tmp_regno);
1364
1365 /* Position of the not-B bit in the 3-byte VEX prefix (in byte 1). */
1366 static constexpr gdb_byte VEX3_NOT_B = 0x20;
1367
1368 /* REX.B should be unset (VEX.!B set) as we were using rip-relative
1369 addressing, but ensure it's unset (set for VEX) anyway, tmp_regno
1370 is not r8-r15. */
1371 if (insn_details->enc_prefix_offset != -1)
1372 {
1373 gdb_byte *pfx = &dsc->insn_buf[insn_details->enc_prefix_offset];
1374 if (rex_prefix_p (pfx[0]))
1375 pfx[0] &= ~REX_B;
1376 else if (vex3_prefix_p (pfx[0]))
1377 pfx[1] |= VEX3_NOT_B;
1378 else
1379 gdb_assert_not_reached ("unhandled prefix");
1380 }
1381
1382 regcache_cooked_read_unsigned (regs, tmp_regno, &orig_value);
1383 dsc->tmp_regno = tmp_regno;
1384 dsc->tmp_save = orig_value;
1385 dsc->tmp_used = 1;
1386
1387 /* Convert the ModRM field to be base+disp. */
1388 dsc->insn_buf[modrm_offset] &= ~0xc7;
1389 dsc->insn_buf[modrm_offset] |= 0x80 + arch_tmp_regno;
1390
1391 regcache_cooked_write_unsigned (regs, tmp_regno, rip_base);
1392
1393 if (debug_displaced)
1394 fprintf_unfiltered (gdb_stdlog, "displaced: %%rip-relative addressing used.\n"
1395 "displaced: using temp reg %d, old value %s, new value %s\n",
1396 dsc->tmp_regno, paddress (gdbarch, dsc->tmp_save),
1397 paddress (gdbarch, rip_base));
1398 }
1399
1400 static void
1401 fixup_displaced_copy (struct gdbarch *gdbarch,
1402 amd64_displaced_step_closure *dsc,
1403 CORE_ADDR from, CORE_ADDR to, struct regcache *regs)
1404 {
1405 const struct amd64_insn *details = &dsc->insn_details;
1406
1407 if (details->modrm_offset != -1)
1408 {
1409 gdb_byte modrm = details->raw_insn[details->modrm_offset];
1410
1411 if ((modrm & 0xc7) == 0x05)
1412 {
1413 /* The insn uses rip-relative addressing.
1414 Deal with it. */
1415 fixup_riprel (gdbarch, dsc, from, to, regs);
1416 }
1417 }
1418 }
1419
1420 struct displaced_step_closure *
1421 amd64_displaced_step_copy_insn (struct gdbarch *gdbarch,
1422 CORE_ADDR from, CORE_ADDR to,
1423 struct regcache *regs)
1424 {
1425 int len = gdbarch_max_insn_length (gdbarch);
1426 /* Extra space for sentinels so fixup_{riprel,displaced_copy} don't have to
1427 continually watch for running off the end of the buffer. */
1428 int fixup_sentinel_space = len;
1429 amd64_displaced_step_closure *dsc
1430 = new amd64_displaced_step_closure (len + fixup_sentinel_space);
1431 gdb_byte *buf = &dsc->insn_buf[0];
1432 struct amd64_insn *details = &dsc->insn_details;
1433
1434 read_memory (from, buf, len);
1435
1436 /* Set up the sentinel space so we don't have to worry about running
1437 off the end of the buffer. An excessive number of leading prefixes
1438 could otherwise cause this. */
1439 memset (buf + len, 0, fixup_sentinel_space);
1440
1441 amd64_get_insn_details (buf, details);
1442
1443 /* GDB may get control back after the insn after the syscall.
1444 Presumably this is a kernel bug.
1445 If this is a syscall, make sure there's a nop afterwards. */
1446 {
1447 int syscall_length;
1448
1449 if (amd64_syscall_p (details, &syscall_length))
1450 buf[details->opcode_offset + syscall_length] = NOP_OPCODE;
1451 }
1452
1453 /* Modify the insn to cope with the address where it will be executed from.
1454 In particular, handle any rip-relative addressing. */
1455 fixup_displaced_copy (gdbarch, dsc, from, to, regs);
1456
1457 write_memory (to, buf, len);
1458
1459 if (debug_displaced)
1460 {
1461 fprintf_unfiltered (gdb_stdlog, "displaced: copy %s->%s: ",
1462 paddress (gdbarch, from), paddress (gdbarch, to));
1463 displaced_step_dump_bytes (gdb_stdlog, buf, len);
1464 }
1465
1466 return dsc;
1467 }
1468
1469 static int
1470 amd64_absolute_jmp_p (const struct amd64_insn *details)
1471 {
1472 const gdb_byte *insn = &details->raw_insn[details->opcode_offset];
1473
1474 if (insn[0] == 0xff)
1475 {
1476 /* jump near, absolute indirect (/4) */
1477 if ((insn[1] & 0x38) == 0x20)
1478 return 1;
1479
1480 /* jump far, absolute indirect (/5) */
1481 if ((insn[1] & 0x38) == 0x28)
1482 return 1;
1483 }
1484
1485 return 0;
1486 }
1487
1488 /* Return non-zero if the instruction DETAILS is a jump, zero otherwise. */
1489
1490 static int
1491 amd64_jmp_p (const struct amd64_insn *details)
1492 {
1493 const gdb_byte *insn = &details->raw_insn[details->opcode_offset];
1494
1495 /* jump short, relative. */
1496 if (insn[0] == 0xeb)
1497 return 1;
1498
1499 /* jump near, relative. */
1500 if (insn[0] == 0xe9)
1501 return 1;
1502
1503 return amd64_absolute_jmp_p (details);
1504 }
1505
1506 static int
1507 amd64_absolute_call_p (const struct amd64_insn *details)
1508 {
1509 const gdb_byte *insn = &details->raw_insn[details->opcode_offset];
1510
1511 if (insn[0] == 0xff)
1512 {
1513 /* Call near, absolute indirect (/2) */
1514 if ((insn[1] & 0x38) == 0x10)
1515 return 1;
1516
1517 /* Call far, absolute indirect (/3) */
1518 if ((insn[1] & 0x38) == 0x18)
1519 return 1;
1520 }
1521
1522 return 0;
1523 }
1524
1525 static int
1526 amd64_ret_p (const struct amd64_insn *details)
1527 {
1528 /* NOTE: gcc can emit "repz ; ret". */
1529 const gdb_byte *insn = &details->raw_insn[details->opcode_offset];
1530
1531 switch (insn[0])
1532 {
1533 case 0xc2: /* ret near, pop N bytes */
1534 case 0xc3: /* ret near */
1535 case 0xca: /* ret far, pop N bytes */
1536 case 0xcb: /* ret far */
1537 case 0xcf: /* iret */
1538 return 1;
1539
1540 default:
1541 return 0;
1542 }
1543 }
1544
1545 static int
1546 amd64_call_p (const struct amd64_insn *details)
1547 {
1548 const gdb_byte *insn = &details->raw_insn[details->opcode_offset];
1549
1550 if (amd64_absolute_call_p (details))
1551 return 1;
1552
1553 /* call near, relative */
1554 if (insn[0] == 0xe8)
1555 return 1;
1556
1557 return 0;
1558 }
1559
1560 /* Return non-zero if INSN is a system call, and set *LENGTHP to its
1561 length in bytes. Otherwise, return zero. */
1562
1563 static int
1564 amd64_syscall_p (const struct amd64_insn *details, int *lengthp)
1565 {
1566 const gdb_byte *insn = &details->raw_insn[details->opcode_offset];
1567
1568 if (insn[0] == 0x0f && insn[1] == 0x05)
1569 {
1570 *lengthp = 2;
1571 return 1;
1572 }
1573
1574 return 0;
1575 }
1576
1577 /* Classify the instruction at ADDR using PRED.
1578 Throw an error if the memory can't be read. */
1579
1580 static int
1581 amd64_classify_insn_at (struct gdbarch *gdbarch, CORE_ADDR addr,
1582 int (*pred) (const struct amd64_insn *))
1583 {
1584 struct amd64_insn details;
1585 gdb_byte *buf;
1586 int len, classification;
1587
1588 len = gdbarch_max_insn_length (gdbarch);
1589 buf = (gdb_byte *) alloca (len);
1590
1591 read_code (addr, buf, len);
1592 amd64_get_insn_details (buf, &details);
1593
1594 classification = pred (&details);
1595
1596 return classification;
1597 }
1598
1599 /* The gdbarch insn_is_call method. */
1600
1601 static int
1602 amd64_insn_is_call (struct gdbarch *gdbarch, CORE_ADDR addr)
1603 {
1604 return amd64_classify_insn_at (gdbarch, addr, amd64_call_p);
1605 }
1606
1607 /* The gdbarch insn_is_ret method. */
1608
1609 static int
1610 amd64_insn_is_ret (struct gdbarch *gdbarch, CORE_ADDR addr)
1611 {
1612 return amd64_classify_insn_at (gdbarch, addr, amd64_ret_p);
1613 }
1614
1615 /* The gdbarch insn_is_jump method. */
1616
1617 static int
1618 amd64_insn_is_jump (struct gdbarch *gdbarch, CORE_ADDR addr)
1619 {
1620 return amd64_classify_insn_at (gdbarch, addr, amd64_jmp_p);
1621 }
1622
1623 /* Fix up the state of registers and memory after having single-stepped
1624 a displaced instruction. */
1625
1626 void
1627 amd64_displaced_step_fixup (struct gdbarch *gdbarch,
1628 struct displaced_step_closure *dsc_,
1629 CORE_ADDR from, CORE_ADDR to,
1630 struct regcache *regs)
1631 {
1632 amd64_displaced_step_closure *dsc = (amd64_displaced_step_closure *) dsc_;
1633 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1634 /* The offset we applied to the instruction's address. */
1635 ULONGEST insn_offset = to - from;
1636 gdb_byte *insn = dsc->insn_buf.data ();
1637 const struct amd64_insn *insn_details = &dsc->insn_details;
1638
1639 if (debug_displaced)
1640 fprintf_unfiltered (gdb_stdlog,
1641 "displaced: fixup (%s, %s), "
1642 "insn = 0x%02x 0x%02x ...\n",
1643 paddress (gdbarch, from), paddress (gdbarch, to),
1644 insn[0], insn[1]);
1645
1646 /* If we used a tmp reg, restore it. */
1647
1648 if (dsc->tmp_used)
1649 {
1650 if (debug_displaced)
1651 fprintf_unfiltered (gdb_stdlog, "displaced: restoring reg %d to %s\n",
1652 dsc->tmp_regno, paddress (gdbarch, dsc->tmp_save));
1653 regcache_cooked_write_unsigned (regs, dsc->tmp_regno, dsc->tmp_save);
1654 }
1655
1656 /* The list of issues to contend with here is taken from
1657 resume_execution in arch/x86/kernel/kprobes.c, Linux 2.6.28.
1658 Yay for Free Software! */
1659
1660 /* Relocate the %rip back to the program's instruction stream,
1661 if necessary. */
1662
1663 /* Except in the case of absolute or indirect jump or call
1664 instructions, or a return instruction, the new rip is relative to
1665 the displaced instruction; make it relative to the original insn.
1666 Well, signal handler returns don't need relocation either, but we use the
1667 value of %rip to recognize those; see below. */
1668 if (! amd64_absolute_jmp_p (insn_details)
1669 && ! amd64_absolute_call_p (insn_details)
1670 && ! amd64_ret_p (insn_details))
1671 {
1672 ULONGEST orig_rip;
1673 int insn_len;
1674
1675 regcache_cooked_read_unsigned (regs, AMD64_RIP_REGNUM, &orig_rip);
1676
1677 /* A signal trampoline system call changes the %rip, resuming
1678 execution of the main program after the signal handler has
1679 returned. That makes them like 'return' instructions; we
1680 shouldn't relocate %rip.
1681
1682 But most system calls don't, and we do need to relocate %rip.
1683
1684 Our heuristic for distinguishing these cases: if stepping
1685 over the system call instruction left control directly after
1686 the instruction, the we relocate --- control almost certainly
1687 doesn't belong in the displaced copy. Otherwise, we assume
1688 the instruction has put control where it belongs, and leave
1689 it unrelocated. Goodness help us if there are PC-relative
1690 system calls. */
1691 if (amd64_syscall_p (insn_details, &insn_len)
1692 && orig_rip != to + insn_len
1693 /* GDB can get control back after the insn after the syscall.
1694 Presumably this is a kernel bug.
1695 Fixup ensures its a nop, we add one to the length for it. */
1696 && orig_rip != to + insn_len + 1)
1697 {
1698 if (debug_displaced)
1699 fprintf_unfiltered (gdb_stdlog,
1700 "displaced: syscall changed %%rip; "
1701 "not relocating\n");
1702 }
1703 else
1704 {
1705 ULONGEST rip = orig_rip - insn_offset;
1706
1707 /* If we just stepped over a breakpoint insn, we don't backup
1708 the pc on purpose; this is to match behaviour without
1709 stepping. */
1710
1711 regcache_cooked_write_unsigned (regs, AMD64_RIP_REGNUM, rip);
1712
1713 if (debug_displaced)
1714 fprintf_unfiltered (gdb_stdlog,
1715 "displaced: "
1716 "relocated %%rip from %s to %s\n",
1717 paddress (gdbarch, orig_rip),
1718 paddress (gdbarch, rip));
1719 }
1720 }
1721
1722 /* If the instruction was PUSHFL, then the TF bit will be set in the
1723 pushed value, and should be cleared. We'll leave this for later,
1724 since GDB already messes up the TF flag when stepping over a
1725 pushfl. */
1726
1727 /* If the instruction was a call, the return address now atop the
1728 stack is the address following the copied instruction. We need
1729 to make it the address following the original instruction. */
1730 if (amd64_call_p (insn_details))
1731 {
1732 ULONGEST rsp;
1733 ULONGEST retaddr;
1734 const ULONGEST retaddr_len = 8;
1735
1736 regcache_cooked_read_unsigned (regs, AMD64_RSP_REGNUM, &rsp);
1737 retaddr = read_memory_unsigned_integer (rsp, retaddr_len, byte_order);
1738 retaddr = (retaddr - insn_offset) & 0xffffffffffffffffULL;
1739 write_memory_unsigned_integer (rsp, retaddr_len, byte_order, retaddr);
1740
1741 if (debug_displaced)
1742 fprintf_unfiltered (gdb_stdlog,
1743 "displaced: relocated return addr at %s "
1744 "to %s\n",
1745 paddress (gdbarch, rsp),
1746 paddress (gdbarch, retaddr));
1747 }
1748 }
1749
1750 /* If the instruction INSN uses RIP-relative addressing, return the
1751 offset into the raw INSN where the displacement to be adjusted is
1752 found. Returns 0 if the instruction doesn't use RIP-relative
1753 addressing. */
1754
1755 static int
1756 rip_relative_offset (struct amd64_insn *insn)
1757 {
1758 if (insn->modrm_offset != -1)
1759 {
1760 gdb_byte modrm = insn->raw_insn[insn->modrm_offset];
1761
1762 if ((modrm & 0xc7) == 0x05)
1763 {
1764 /* The displacement is found right after the ModRM byte. */
1765 return insn->modrm_offset + 1;
1766 }
1767 }
1768
1769 return 0;
1770 }
1771
1772 static void
1773 append_insns (CORE_ADDR *to, ULONGEST len, const gdb_byte *buf)
1774 {
1775 target_write_memory (*to, buf, len);
1776 *to += len;
1777 }
1778
1779 static void
1780 amd64_relocate_instruction (struct gdbarch *gdbarch,
1781 CORE_ADDR *to, CORE_ADDR oldloc)
1782 {
1783 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1784 int len = gdbarch_max_insn_length (gdbarch);
1785 /* Extra space for sentinels. */
1786 int fixup_sentinel_space = len;
1787 gdb_byte *buf = (gdb_byte *) xmalloc (len + fixup_sentinel_space);
1788 struct amd64_insn insn_details;
1789 int offset = 0;
1790 LONGEST rel32, newrel;
1791 gdb_byte *insn;
1792 int insn_length;
1793
1794 read_memory (oldloc, buf, len);
1795
1796 /* Set up the sentinel space so we don't have to worry about running
1797 off the end of the buffer. An excessive number of leading prefixes
1798 could otherwise cause this. */
1799 memset (buf + len, 0, fixup_sentinel_space);
1800
1801 insn = buf;
1802 amd64_get_insn_details (insn, &insn_details);
1803
1804 insn_length = gdb_buffered_insn_length (gdbarch, insn, len, oldloc);
1805
1806 /* Skip legacy instruction prefixes. */
1807 insn = amd64_skip_prefixes (insn);
1808
1809 /* Adjust calls with 32-bit relative addresses as push/jump, with
1810 the address pushed being the location where the original call in
1811 the user program would return to. */
1812 if (insn[0] == 0xe8)
1813 {
1814 gdb_byte push_buf[32];
1815 CORE_ADDR ret_addr;
1816 int i = 0;
1817
1818 /* Where "ret" in the original code will return to. */
1819 ret_addr = oldloc + insn_length;
1820
1821 /* If pushing an address higher than or equal to 0x80000000,
1822 avoid 'pushq', as that sign extends its 32-bit operand, which
1823 would be incorrect. */
1824 if (ret_addr <= 0x7fffffff)
1825 {
1826 push_buf[0] = 0x68; /* pushq $... */
1827 store_unsigned_integer (&push_buf[1], 4, byte_order, ret_addr);
1828 i = 5;
1829 }
1830 else
1831 {
1832 push_buf[i++] = 0x48; /* sub $0x8,%rsp */
1833 push_buf[i++] = 0x83;
1834 push_buf[i++] = 0xec;
1835 push_buf[i++] = 0x08;
1836
1837 push_buf[i++] = 0xc7; /* movl $imm,(%rsp) */
1838 push_buf[i++] = 0x04;
1839 push_buf[i++] = 0x24;
1840 store_unsigned_integer (&push_buf[i], 4, byte_order,
1841 ret_addr & 0xffffffff);
1842 i += 4;
1843
1844 push_buf[i++] = 0xc7; /* movl $imm,4(%rsp) */
1845 push_buf[i++] = 0x44;
1846 push_buf[i++] = 0x24;
1847 push_buf[i++] = 0x04;
1848 store_unsigned_integer (&push_buf[i], 4, byte_order,
1849 ret_addr >> 32);
1850 i += 4;
1851 }
1852 gdb_assert (i <= sizeof (push_buf));
1853 /* Push the push. */
1854 append_insns (to, i, push_buf);
1855
1856 /* Convert the relative call to a relative jump. */
1857 insn[0] = 0xe9;
1858
1859 /* Adjust the destination offset. */
1860 rel32 = extract_signed_integer (insn + 1, 4, byte_order);
1861 newrel = (oldloc - *to) + rel32;
1862 store_signed_integer (insn + 1, 4, byte_order, newrel);
1863
1864 if (debug_displaced)
1865 fprintf_unfiltered (gdb_stdlog,
1866 "Adjusted insn rel32=%s at %s to"
1867 " rel32=%s at %s\n",
1868 hex_string (rel32), paddress (gdbarch, oldloc),
1869 hex_string (newrel), paddress (gdbarch, *to));
1870
1871 /* Write the adjusted jump into its displaced location. */
1872 append_insns (to, 5, insn);
1873 return;
1874 }
1875
1876 offset = rip_relative_offset (&insn_details);
1877 if (!offset)
1878 {
1879 /* Adjust jumps with 32-bit relative addresses. Calls are
1880 already handled above. */
1881 if (insn[0] == 0xe9)
1882 offset = 1;
1883 /* Adjust conditional jumps. */
1884 else if (insn[0] == 0x0f && (insn[1] & 0xf0) == 0x80)
1885 offset = 2;
1886 }
1887
1888 if (offset)
1889 {
1890 rel32 = extract_signed_integer (insn + offset, 4, byte_order);
1891 newrel = (oldloc - *to) + rel32;
1892 store_signed_integer (insn + offset, 4, byte_order, newrel);
1893 if (debug_displaced)
1894 fprintf_unfiltered (gdb_stdlog,
1895 "Adjusted insn rel32=%s at %s to"
1896 " rel32=%s at %s\n",
1897 hex_string (rel32), paddress (gdbarch, oldloc),
1898 hex_string (newrel), paddress (gdbarch, *to));
1899 }
1900
1901 /* Write the adjusted instruction into its displaced location. */
1902 append_insns (to, insn_length, buf);
1903 }
1904
1905 \f
1906 /* The maximum number of saved registers. This should include %rip. */
1907 #define AMD64_NUM_SAVED_REGS AMD64_NUM_GREGS
1908
1909 struct amd64_frame_cache
1910 {
1911 /* Base address. */
1912 CORE_ADDR base;
1913 int base_p;
1914 CORE_ADDR sp_offset;
1915 CORE_ADDR pc;
1916
1917 /* Saved registers. */
1918 CORE_ADDR saved_regs[AMD64_NUM_SAVED_REGS];
1919 CORE_ADDR saved_sp;
1920 int saved_sp_reg;
1921
1922 /* Do we have a frame? */
1923 int frameless_p;
1924 };
1925
1926 /* Initialize a frame cache. */
1927
1928 static void
1929 amd64_init_frame_cache (struct amd64_frame_cache *cache)
1930 {
1931 int i;
1932
1933 /* Base address. */
1934 cache->base = 0;
1935 cache->base_p = 0;
1936 cache->sp_offset = -8;
1937 cache->pc = 0;
1938
1939 /* Saved registers. We initialize these to -1 since zero is a valid
1940 offset (that's where %rbp is supposed to be stored).
1941 The values start out as being offsets, and are later converted to
1942 addresses (at which point -1 is interpreted as an address, still meaning
1943 "invalid"). */
1944 for (i = 0; i < AMD64_NUM_SAVED_REGS; i++)
1945 cache->saved_regs[i] = -1;
1946 cache->saved_sp = 0;
1947 cache->saved_sp_reg = -1;
1948
1949 /* Frameless until proven otherwise. */
1950 cache->frameless_p = 1;
1951 }
1952
1953 /* Allocate and initialize a frame cache. */
1954
1955 static struct amd64_frame_cache *
1956 amd64_alloc_frame_cache (void)
1957 {
1958 struct amd64_frame_cache *cache;
1959
1960 cache = FRAME_OBSTACK_ZALLOC (struct amd64_frame_cache);
1961 amd64_init_frame_cache (cache);
1962 return cache;
1963 }
1964
1965 /* GCC 4.4 and later, can put code in the prologue to realign the
1966 stack pointer. Check whether PC points to such code, and update
1967 CACHE accordingly. Return the first instruction after the code
1968 sequence or CURRENT_PC, whichever is smaller. If we don't
1969 recognize the code, return PC. */
1970
1971 static CORE_ADDR
1972 amd64_analyze_stack_align (CORE_ADDR pc, CORE_ADDR current_pc,
1973 struct amd64_frame_cache *cache)
1974 {
1975 /* There are 2 code sequences to re-align stack before the frame
1976 gets set up:
1977
1978 1. Use a caller-saved saved register:
1979
1980 leaq 8(%rsp), %reg
1981 andq $-XXX, %rsp
1982 pushq -8(%reg)
1983
1984 2. Use a callee-saved saved register:
1985
1986 pushq %reg
1987 leaq 16(%rsp), %reg
1988 andq $-XXX, %rsp
1989 pushq -8(%reg)
1990
1991 "andq $-XXX, %rsp" can be either 4 bytes or 7 bytes:
1992
1993 0x48 0x83 0xe4 0xf0 andq $-16, %rsp
1994 0x48 0x81 0xe4 0x00 0xff 0xff 0xff andq $-256, %rsp
1995 */
1996
1997 gdb_byte buf[18];
1998 int reg, r;
1999 int offset, offset_and;
2000
2001 if (target_read_code (pc, buf, sizeof buf))
2002 return pc;
2003
2004 /* Check caller-saved saved register. The first instruction has
2005 to be "leaq 8(%rsp), %reg". */
2006 if ((buf[0] & 0xfb) == 0x48
2007 && buf[1] == 0x8d
2008 && buf[3] == 0x24
2009 && buf[4] == 0x8)
2010 {
2011 /* MOD must be binary 10 and R/M must be binary 100. */
2012 if ((buf[2] & 0xc7) != 0x44)
2013 return pc;
2014
2015 /* REG has register number. */
2016 reg = (buf[2] >> 3) & 7;
2017
2018 /* Check the REX.R bit. */
2019 if (buf[0] == 0x4c)
2020 reg += 8;
2021
2022 offset = 5;
2023 }
2024 else
2025 {
2026 /* Check callee-saved saved register. The first instruction
2027 has to be "pushq %reg". */
2028 reg = 0;
2029 if ((buf[0] & 0xf8) == 0x50)
2030 offset = 0;
2031 else if ((buf[0] & 0xf6) == 0x40
2032 && (buf[1] & 0xf8) == 0x50)
2033 {
2034 /* Check the REX.B bit. */
2035 if ((buf[0] & 1) != 0)
2036 reg = 8;
2037
2038 offset = 1;
2039 }
2040 else
2041 return pc;
2042
2043 /* Get register. */
2044 reg += buf[offset] & 0x7;
2045
2046 offset++;
2047
2048 /* The next instruction has to be "leaq 16(%rsp), %reg". */
2049 if ((buf[offset] & 0xfb) != 0x48
2050 || buf[offset + 1] != 0x8d
2051 || buf[offset + 3] != 0x24
2052 || buf[offset + 4] != 0x10)
2053 return pc;
2054
2055 /* MOD must be binary 10 and R/M must be binary 100. */
2056 if ((buf[offset + 2] & 0xc7) != 0x44)
2057 return pc;
2058
2059 /* REG has register number. */
2060 r = (buf[offset + 2] >> 3) & 7;
2061
2062 /* Check the REX.R bit. */
2063 if (buf[offset] == 0x4c)
2064 r += 8;
2065
2066 /* Registers in pushq and leaq have to be the same. */
2067 if (reg != r)
2068 return pc;
2069
2070 offset += 5;
2071 }
2072
2073 /* Rigister can't be %rsp nor %rbp. */
2074 if (reg == 4 || reg == 5)
2075 return pc;
2076
2077 /* The next instruction has to be "andq $-XXX, %rsp". */
2078 if (buf[offset] != 0x48
2079 || buf[offset + 2] != 0xe4
2080 || (buf[offset + 1] != 0x81 && buf[offset + 1] != 0x83))
2081 return pc;
2082
2083 offset_and = offset;
2084 offset += buf[offset + 1] == 0x81 ? 7 : 4;
2085
2086 /* The next instruction has to be "pushq -8(%reg)". */
2087 r = 0;
2088 if (buf[offset] == 0xff)
2089 offset++;
2090 else if ((buf[offset] & 0xf6) == 0x40
2091 && buf[offset + 1] == 0xff)
2092 {
2093 /* Check the REX.B bit. */
2094 if ((buf[offset] & 0x1) != 0)
2095 r = 8;
2096 offset += 2;
2097 }
2098 else
2099 return pc;
2100
2101 /* 8bit -8 is 0xf8. REG must be binary 110 and MOD must be binary
2102 01. */
2103 if (buf[offset + 1] != 0xf8
2104 || (buf[offset] & 0xf8) != 0x70)
2105 return pc;
2106
2107 /* R/M has register. */
2108 r += buf[offset] & 7;
2109
2110 /* Registers in leaq and pushq have to be the same. */
2111 if (reg != r)
2112 return pc;
2113
2114 if (current_pc > pc + offset_and)
2115 cache->saved_sp_reg = amd64_arch_reg_to_regnum (reg);
2116
2117 return std::min (pc + offset + 2, current_pc);
2118 }
2119
2120 /* Similar to amd64_analyze_stack_align for x32. */
2121
2122 static CORE_ADDR
2123 amd64_x32_analyze_stack_align (CORE_ADDR pc, CORE_ADDR current_pc,
2124 struct amd64_frame_cache *cache)
2125 {
2126 /* There are 2 code sequences to re-align stack before the frame
2127 gets set up:
2128
2129 1. Use a caller-saved saved register:
2130
2131 leaq 8(%rsp), %reg
2132 andq $-XXX, %rsp
2133 pushq -8(%reg)
2134
2135 or
2136
2137 [addr32] leal 8(%rsp), %reg
2138 andl $-XXX, %esp
2139 [addr32] pushq -8(%reg)
2140
2141 2. Use a callee-saved saved register:
2142
2143 pushq %reg
2144 leaq 16(%rsp), %reg
2145 andq $-XXX, %rsp
2146 pushq -8(%reg)
2147
2148 or
2149
2150 pushq %reg
2151 [addr32] leal 16(%rsp), %reg
2152 andl $-XXX, %esp
2153 [addr32] pushq -8(%reg)
2154
2155 "andq $-XXX, %rsp" can be either 4 bytes or 7 bytes:
2156
2157 0x48 0x83 0xe4 0xf0 andq $-16, %rsp
2158 0x48 0x81 0xe4 0x00 0xff 0xff 0xff andq $-256, %rsp
2159
2160 "andl $-XXX, %esp" can be either 3 bytes or 6 bytes:
2161
2162 0x83 0xe4 0xf0 andl $-16, %esp
2163 0x81 0xe4 0x00 0xff 0xff 0xff andl $-256, %esp
2164 */
2165
2166 gdb_byte buf[19];
2167 int reg, r;
2168 int offset, offset_and;
2169
2170 if (target_read_memory (pc, buf, sizeof buf))
2171 return pc;
2172
2173 /* Skip optional addr32 prefix. */
2174 offset = buf[0] == 0x67 ? 1 : 0;
2175
2176 /* Check caller-saved saved register. The first instruction has
2177 to be "leaq 8(%rsp), %reg" or "leal 8(%rsp), %reg". */
2178 if (((buf[offset] & 0xfb) == 0x48 || (buf[offset] & 0xfb) == 0x40)
2179 && buf[offset + 1] == 0x8d
2180 && buf[offset + 3] == 0x24
2181 && buf[offset + 4] == 0x8)
2182 {
2183 /* MOD must be binary 10 and R/M must be binary 100. */
2184 if ((buf[offset + 2] & 0xc7) != 0x44)
2185 return pc;
2186
2187 /* REG has register number. */
2188 reg = (buf[offset + 2] >> 3) & 7;
2189
2190 /* Check the REX.R bit. */
2191 if ((buf[offset] & 0x4) != 0)
2192 reg += 8;
2193
2194 offset += 5;
2195 }
2196 else
2197 {
2198 /* Check callee-saved saved register. The first instruction
2199 has to be "pushq %reg". */
2200 reg = 0;
2201 if ((buf[offset] & 0xf6) == 0x40
2202 && (buf[offset + 1] & 0xf8) == 0x50)
2203 {
2204 /* Check the REX.B bit. */
2205 if ((buf[offset] & 1) != 0)
2206 reg = 8;
2207
2208 offset += 1;
2209 }
2210 else if ((buf[offset] & 0xf8) != 0x50)
2211 return pc;
2212
2213 /* Get register. */
2214 reg += buf[offset] & 0x7;
2215
2216 offset++;
2217
2218 /* Skip optional addr32 prefix. */
2219 if (buf[offset] == 0x67)
2220 offset++;
2221
2222 /* The next instruction has to be "leaq 16(%rsp), %reg" or
2223 "leal 16(%rsp), %reg". */
2224 if (((buf[offset] & 0xfb) != 0x48 && (buf[offset] & 0xfb) != 0x40)
2225 || buf[offset + 1] != 0x8d
2226 || buf[offset + 3] != 0x24
2227 || buf[offset + 4] != 0x10)
2228 return pc;
2229
2230 /* MOD must be binary 10 and R/M must be binary 100. */
2231 if ((buf[offset + 2] & 0xc7) != 0x44)
2232 return pc;
2233
2234 /* REG has register number. */
2235 r = (buf[offset + 2] >> 3) & 7;
2236
2237 /* Check the REX.R bit. */
2238 if ((buf[offset] & 0x4) != 0)
2239 r += 8;
2240
2241 /* Registers in pushq and leaq have to be the same. */
2242 if (reg != r)
2243 return pc;
2244
2245 offset += 5;
2246 }
2247
2248 /* Rigister can't be %rsp nor %rbp. */
2249 if (reg == 4 || reg == 5)
2250 return pc;
2251
2252 /* The next instruction may be "andq $-XXX, %rsp" or
2253 "andl $-XXX, %esp". */
2254 if (buf[offset] != 0x48)
2255 offset--;
2256
2257 if (buf[offset + 2] != 0xe4
2258 || (buf[offset + 1] != 0x81 && buf[offset + 1] != 0x83))
2259 return pc;
2260
2261 offset_and = offset;
2262 offset += buf[offset + 1] == 0x81 ? 7 : 4;
2263
2264 /* Skip optional addr32 prefix. */
2265 if (buf[offset] == 0x67)
2266 offset++;
2267
2268 /* The next instruction has to be "pushq -8(%reg)". */
2269 r = 0;
2270 if (buf[offset] == 0xff)
2271 offset++;
2272 else if ((buf[offset] & 0xf6) == 0x40
2273 && buf[offset + 1] == 0xff)
2274 {
2275 /* Check the REX.B bit. */
2276 if ((buf[offset] & 0x1) != 0)
2277 r = 8;
2278 offset += 2;
2279 }
2280 else
2281 return pc;
2282
2283 /* 8bit -8 is 0xf8. REG must be binary 110 and MOD must be binary
2284 01. */
2285 if (buf[offset + 1] != 0xf8
2286 || (buf[offset] & 0xf8) != 0x70)
2287 return pc;
2288
2289 /* R/M has register. */
2290 r += buf[offset] & 7;
2291
2292 /* Registers in leaq and pushq have to be the same. */
2293 if (reg != r)
2294 return pc;
2295
2296 if (current_pc > pc + offset_and)
2297 cache->saved_sp_reg = amd64_arch_reg_to_regnum (reg);
2298
2299 return std::min (pc + offset + 2, current_pc);
2300 }
2301
2302 /* Do a limited analysis of the prologue at PC and update CACHE
2303 accordingly. Bail out early if CURRENT_PC is reached. Return the
2304 address where the analysis stopped.
2305
2306 We will handle only functions beginning with:
2307
2308 pushq %rbp 0x55
2309 movq %rsp, %rbp 0x48 0x89 0xe5 (or 0x48 0x8b 0xec)
2310
2311 or (for the X32 ABI):
2312
2313 pushq %rbp 0x55
2314 movl %esp, %ebp 0x89 0xe5 (or 0x8b 0xec)
2315
2316 Any function that doesn't start with one of these sequences will be
2317 assumed to have no prologue and thus no valid frame pointer in
2318 %rbp. */
2319
2320 static CORE_ADDR
2321 amd64_analyze_prologue (struct gdbarch *gdbarch,
2322 CORE_ADDR pc, CORE_ADDR current_pc,
2323 struct amd64_frame_cache *cache)
2324 {
2325 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
2326 /* There are two variations of movq %rsp, %rbp. */
2327 static const gdb_byte mov_rsp_rbp_1[3] = { 0x48, 0x89, 0xe5 };
2328 static const gdb_byte mov_rsp_rbp_2[3] = { 0x48, 0x8b, 0xec };
2329 /* Ditto for movl %esp, %ebp. */
2330 static const gdb_byte mov_esp_ebp_1[2] = { 0x89, 0xe5 };
2331 static const gdb_byte mov_esp_ebp_2[2] = { 0x8b, 0xec };
2332
2333 gdb_byte buf[3];
2334 gdb_byte op;
2335
2336 if (current_pc <= pc)
2337 return current_pc;
2338
2339 if (gdbarch_ptr_bit (gdbarch) == 32)
2340 pc = amd64_x32_analyze_stack_align (pc, current_pc, cache);
2341 else
2342 pc = amd64_analyze_stack_align (pc, current_pc, cache);
2343
2344 op = read_code_unsigned_integer (pc, 1, byte_order);
2345
2346 if (op == 0x55) /* pushq %rbp */
2347 {
2348 /* Take into account that we've executed the `pushq %rbp' that
2349 starts this instruction sequence. */
2350 cache->saved_regs[AMD64_RBP_REGNUM] = 0;
2351 cache->sp_offset += 8;
2352
2353 /* If that's all, return now. */
2354 if (current_pc <= pc + 1)
2355 return current_pc;
2356
2357 read_code (pc + 1, buf, 3);
2358
2359 /* Check for `movq %rsp, %rbp'. */
2360 if (memcmp (buf, mov_rsp_rbp_1, 3) == 0
2361 || memcmp (buf, mov_rsp_rbp_2, 3) == 0)
2362 {
2363 /* OK, we actually have a frame. */
2364 cache->frameless_p = 0;
2365 return pc + 4;
2366 }
2367
2368 /* For X32, also check for `movq %esp, %ebp'. */
2369 if (gdbarch_ptr_bit (gdbarch) == 32)
2370 {
2371 if (memcmp (buf, mov_esp_ebp_1, 2) == 0
2372 || memcmp (buf, mov_esp_ebp_2, 2) == 0)
2373 {
2374 /* OK, we actually have a frame. */
2375 cache->frameless_p = 0;
2376 return pc + 3;
2377 }
2378 }
2379
2380 return pc + 1;
2381 }
2382
2383 return pc;
2384 }
2385
2386 /* Work around false termination of prologue - GCC PR debug/48827.
2387
2388 START_PC is the first instruction of a function, PC is its minimal already
2389 determined advanced address. Function returns PC if it has nothing to do.
2390
2391 84 c0 test %al,%al
2392 74 23 je after
2393 <-- here is 0 lines advance - the false prologue end marker.
2394 0f 29 85 70 ff ff ff movaps %xmm0,-0x90(%rbp)
2395 0f 29 4d 80 movaps %xmm1,-0x80(%rbp)
2396 0f 29 55 90 movaps %xmm2,-0x70(%rbp)
2397 0f 29 5d a0 movaps %xmm3,-0x60(%rbp)
2398 0f 29 65 b0 movaps %xmm4,-0x50(%rbp)
2399 0f 29 6d c0 movaps %xmm5,-0x40(%rbp)
2400 0f 29 75 d0 movaps %xmm6,-0x30(%rbp)
2401 0f 29 7d e0 movaps %xmm7,-0x20(%rbp)
2402 after: */
2403
2404 static CORE_ADDR
2405 amd64_skip_xmm_prologue (CORE_ADDR pc, CORE_ADDR start_pc)
2406 {
2407 struct symtab_and_line start_pc_sal, next_sal;
2408 gdb_byte buf[4 + 8 * 7];
2409 int offset, xmmreg;
2410
2411 if (pc == start_pc)
2412 return pc;
2413
2414 start_pc_sal = find_pc_sect_line (start_pc, NULL, 0);
2415 if (start_pc_sal.symtab == NULL
2416 || producer_is_gcc_ge_4 (COMPUNIT_PRODUCER
2417 (SYMTAB_COMPUNIT (start_pc_sal.symtab))) < 6
2418 || start_pc_sal.pc != start_pc || pc >= start_pc_sal.end)
2419 return pc;
2420
2421 next_sal = find_pc_sect_line (start_pc_sal.end, NULL, 0);
2422 if (next_sal.line != start_pc_sal.line)
2423 return pc;
2424
2425 /* START_PC can be from overlayed memory, ignored here. */
2426 if (target_read_code (next_sal.pc - 4, buf, sizeof (buf)) != 0)
2427 return pc;
2428
2429 /* test %al,%al */
2430 if (buf[0] != 0x84 || buf[1] != 0xc0)
2431 return pc;
2432 /* je AFTER */
2433 if (buf[2] != 0x74)
2434 return pc;
2435
2436 offset = 4;
2437 for (xmmreg = 0; xmmreg < 8; xmmreg++)
2438 {
2439 /* 0x0f 0x29 0b??000101 movaps %xmmreg?,-0x??(%rbp) */
2440 if (buf[offset] != 0x0f || buf[offset + 1] != 0x29
2441 || (buf[offset + 2] & 0x3f) != (xmmreg << 3 | 0x5))
2442 return pc;
2443
2444 /* 0b01?????? */
2445 if ((buf[offset + 2] & 0xc0) == 0x40)
2446 {
2447 /* 8-bit displacement. */
2448 offset += 4;
2449 }
2450 /* 0b10?????? */
2451 else if ((buf[offset + 2] & 0xc0) == 0x80)
2452 {
2453 /* 32-bit displacement. */
2454 offset += 7;
2455 }
2456 else
2457 return pc;
2458 }
2459
2460 /* je AFTER */
2461 if (offset - 4 != buf[3])
2462 return pc;
2463
2464 return next_sal.end;
2465 }
2466
2467 /* Return PC of first real instruction. */
2468
2469 static CORE_ADDR
2470 amd64_skip_prologue (struct gdbarch *gdbarch, CORE_ADDR start_pc)
2471 {
2472 struct amd64_frame_cache cache;
2473 CORE_ADDR pc;
2474 CORE_ADDR func_addr;
2475
2476 if (find_pc_partial_function (start_pc, NULL, &func_addr, NULL))
2477 {
2478 CORE_ADDR post_prologue_pc
2479 = skip_prologue_using_sal (gdbarch, func_addr);
2480 struct compunit_symtab *cust = find_pc_compunit_symtab (func_addr);
2481
2482 /* Clang always emits a line note before the prologue and another
2483 one after. We trust clang to emit usable line notes. */
2484 if (post_prologue_pc
2485 && (cust != NULL
2486 && COMPUNIT_PRODUCER (cust) != NULL
2487 && startswith (COMPUNIT_PRODUCER (cust), "clang ")))
2488 return std::max (start_pc, post_prologue_pc);
2489 }
2490
2491 amd64_init_frame_cache (&cache);
2492 pc = amd64_analyze_prologue (gdbarch, start_pc, 0xffffffffffffffffLL,
2493 &cache);
2494 if (cache.frameless_p)
2495 return start_pc;
2496
2497 return amd64_skip_xmm_prologue (pc, start_pc);
2498 }
2499 \f
2500
2501 /* Normal frames. */
2502
2503 static void
2504 amd64_frame_cache_1 (struct frame_info *this_frame,
2505 struct amd64_frame_cache *cache)
2506 {
2507 struct gdbarch *gdbarch = get_frame_arch (this_frame);
2508 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
2509 gdb_byte buf[8];
2510 int i;
2511
2512 cache->pc = get_frame_func (this_frame);
2513 if (cache->pc != 0)
2514 amd64_analyze_prologue (gdbarch, cache->pc, get_frame_pc (this_frame),
2515 cache);
2516
2517 if (cache->frameless_p)
2518 {
2519 /* We didn't find a valid frame. If we're at the start of a
2520 function, or somewhere half-way its prologue, the function's
2521 frame probably hasn't been fully setup yet. Try to
2522 reconstruct the base address for the stack frame by looking
2523 at the stack pointer. For truly "frameless" functions this
2524 might work too. */
2525
2526 if (cache->saved_sp_reg != -1)
2527 {
2528 /* Stack pointer has been saved. */
2529 get_frame_register (this_frame, cache->saved_sp_reg, buf);
2530 cache->saved_sp = extract_unsigned_integer (buf, 8, byte_order);
2531
2532 /* We're halfway aligning the stack. */
2533 cache->base = ((cache->saved_sp - 8) & 0xfffffffffffffff0LL) - 8;
2534 cache->saved_regs[AMD64_RIP_REGNUM] = cache->saved_sp - 8;
2535
2536 /* This will be added back below. */
2537 cache->saved_regs[AMD64_RIP_REGNUM] -= cache->base;
2538 }
2539 else
2540 {
2541 get_frame_register (this_frame, AMD64_RSP_REGNUM, buf);
2542 cache->base = extract_unsigned_integer (buf, 8, byte_order)
2543 + cache->sp_offset;
2544 }
2545 }
2546 else
2547 {
2548 get_frame_register (this_frame, AMD64_RBP_REGNUM, buf);
2549 cache->base = extract_unsigned_integer (buf, 8, byte_order);
2550 }
2551
2552 /* Now that we have the base address for the stack frame we can
2553 calculate the value of %rsp in the calling frame. */
2554 cache->saved_sp = cache->base + 16;
2555
2556 /* For normal frames, %rip is stored at 8(%rbp). If we don't have a
2557 frame we find it at the same offset from the reconstructed base
2558 address. If we're halfway aligning the stack, %rip is handled
2559 differently (see above). */
2560 if (!cache->frameless_p || cache->saved_sp_reg == -1)
2561 cache->saved_regs[AMD64_RIP_REGNUM] = 8;
2562
2563 /* Adjust all the saved registers such that they contain addresses
2564 instead of offsets. */
2565 for (i = 0; i < AMD64_NUM_SAVED_REGS; i++)
2566 if (cache->saved_regs[i] != -1)
2567 cache->saved_regs[i] += cache->base;
2568
2569 cache->base_p = 1;
2570 }
2571
2572 static struct amd64_frame_cache *
2573 amd64_frame_cache (struct frame_info *this_frame, void **this_cache)
2574 {
2575 struct amd64_frame_cache *cache;
2576
2577 if (*this_cache)
2578 return (struct amd64_frame_cache *) *this_cache;
2579
2580 cache = amd64_alloc_frame_cache ();
2581 *this_cache = cache;
2582
2583 TRY
2584 {
2585 amd64_frame_cache_1 (this_frame, cache);
2586 }
2587 CATCH (ex, RETURN_MASK_ERROR)
2588 {
2589 if (ex.error != NOT_AVAILABLE_ERROR)
2590 throw_exception (ex);
2591 }
2592 END_CATCH
2593
2594 return cache;
2595 }
2596
2597 static enum unwind_stop_reason
2598 amd64_frame_unwind_stop_reason (struct frame_info *this_frame,
2599 void **this_cache)
2600 {
2601 struct amd64_frame_cache *cache =
2602 amd64_frame_cache (this_frame, this_cache);
2603
2604 if (!cache->base_p)
2605 return UNWIND_UNAVAILABLE;
2606
2607 /* This marks the outermost frame. */
2608 if (cache->base == 0)
2609 return UNWIND_OUTERMOST;
2610
2611 return UNWIND_NO_REASON;
2612 }
2613
2614 static void
2615 amd64_frame_this_id (struct frame_info *this_frame, void **this_cache,
2616 struct frame_id *this_id)
2617 {
2618 struct amd64_frame_cache *cache =
2619 amd64_frame_cache (this_frame, this_cache);
2620
2621 if (!cache->base_p)
2622 (*this_id) = frame_id_build_unavailable_stack (cache->pc);
2623 else if (cache->base == 0)
2624 {
2625 /* This marks the outermost frame. */
2626 return;
2627 }
2628 else
2629 (*this_id) = frame_id_build (cache->base + 16, cache->pc);
2630 }
2631
2632 static struct value *
2633 amd64_frame_prev_register (struct frame_info *this_frame, void **this_cache,
2634 int regnum)
2635 {
2636 struct gdbarch *gdbarch = get_frame_arch (this_frame);
2637 struct amd64_frame_cache *cache =
2638 amd64_frame_cache (this_frame, this_cache);
2639
2640 gdb_assert (regnum >= 0);
2641
2642 if (regnum == gdbarch_sp_regnum (gdbarch) && cache->saved_sp)
2643 return frame_unwind_got_constant (this_frame, regnum, cache->saved_sp);
2644
2645 if (regnum < AMD64_NUM_SAVED_REGS && cache->saved_regs[regnum] != -1)
2646 return frame_unwind_got_memory (this_frame, regnum,
2647 cache->saved_regs[regnum]);
2648
2649 return frame_unwind_got_register (this_frame, regnum, regnum);
2650 }
2651
2652 static const struct frame_unwind amd64_frame_unwind =
2653 {
2654 NORMAL_FRAME,
2655 amd64_frame_unwind_stop_reason,
2656 amd64_frame_this_id,
2657 amd64_frame_prev_register,
2658 NULL,
2659 default_frame_sniffer
2660 };
2661 \f
2662 /* Generate a bytecode expression to get the value of the saved PC. */
2663
2664 static void
2665 amd64_gen_return_address (struct gdbarch *gdbarch,
2666 struct agent_expr *ax, struct axs_value *value,
2667 CORE_ADDR scope)
2668 {
2669 /* The following sequence assumes the traditional use of the base
2670 register. */
2671 ax_reg (ax, AMD64_RBP_REGNUM);
2672 ax_const_l (ax, 8);
2673 ax_simple (ax, aop_add);
2674 value->type = register_type (gdbarch, AMD64_RIP_REGNUM);
2675 value->kind = axs_lvalue_memory;
2676 }
2677 \f
2678
2679 /* Signal trampolines. */
2680
2681 /* FIXME: kettenis/20030419: Perhaps, we can unify the 32-bit and
2682 64-bit variants. This would require using identical frame caches
2683 on both platforms. */
2684
2685 static struct amd64_frame_cache *
2686 amd64_sigtramp_frame_cache (struct frame_info *this_frame, void **this_cache)
2687 {
2688 struct gdbarch *gdbarch = get_frame_arch (this_frame);
2689 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2690 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
2691 struct amd64_frame_cache *cache;
2692 CORE_ADDR addr;
2693 gdb_byte buf[8];
2694 int i;
2695
2696 if (*this_cache)
2697 return (struct amd64_frame_cache *) *this_cache;
2698
2699 cache = amd64_alloc_frame_cache ();
2700
2701 TRY
2702 {
2703 get_frame_register (this_frame, AMD64_RSP_REGNUM, buf);
2704 cache->base = extract_unsigned_integer (buf, 8, byte_order) - 8;
2705
2706 addr = tdep->sigcontext_addr (this_frame);
2707 gdb_assert (tdep->sc_reg_offset);
2708 gdb_assert (tdep->sc_num_regs <= AMD64_NUM_SAVED_REGS);
2709 for (i = 0; i < tdep->sc_num_regs; i++)
2710 if (tdep->sc_reg_offset[i] != -1)
2711 cache->saved_regs[i] = addr + tdep->sc_reg_offset[i];
2712
2713 cache->base_p = 1;
2714 }
2715 CATCH (ex, RETURN_MASK_ERROR)
2716 {
2717 if (ex.error != NOT_AVAILABLE_ERROR)
2718 throw_exception (ex);
2719 }
2720 END_CATCH
2721
2722 *this_cache = cache;
2723 return cache;
2724 }
2725
2726 static enum unwind_stop_reason
2727 amd64_sigtramp_frame_unwind_stop_reason (struct frame_info *this_frame,
2728 void **this_cache)
2729 {
2730 struct amd64_frame_cache *cache =
2731 amd64_sigtramp_frame_cache (this_frame, this_cache);
2732
2733 if (!cache->base_p)
2734 return UNWIND_UNAVAILABLE;
2735
2736 return UNWIND_NO_REASON;
2737 }
2738
2739 static void
2740 amd64_sigtramp_frame_this_id (struct frame_info *this_frame,
2741 void **this_cache, struct frame_id *this_id)
2742 {
2743 struct amd64_frame_cache *cache =
2744 amd64_sigtramp_frame_cache (this_frame, this_cache);
2745
2746 if (!cache->base_p)
2747 (*this_id) = frame_id_build_unavailable_stack (get_frame_pc (this_frame));
2748 else if (cache->base == 0)
2749 {
2750 /* This marks the outermost frame. */
2751 return;
2752 }
2753 else
2754 (*this_id) = frame_id_build (cache->base + 16, get_frame_pc (this_frame));
2755 }
2756
2757 static struct value *
2758 amd64_sigtramp_frame_prev_register (struct frame_info *this_frame,
2759 void **this_cache, int regnum)
2760 {
2761 /* Make sure we've initialized the cache. */
2762 amd64_sigtramp_frame_cache (this_frame, this_cache);
2763
2764 return amd64_frame_prev_register (this_frame, this_cache, regnum);
2765 }
2766
2767 static int
2768 amd64_sigtramp_frame_sniffer (const struct frame_unwind *self,
2769 struct frame_info *this_frame,
2770 void **this_cache)
2771 {
2772 struct gdbarch_tdep *tdep = gdbarch_tdep (get_frame_arch (this_frame));
2773
2774 /* We shouldn't even bother if we don't have a sigcontext_addr
2775 handler. */
2776 if (tdep->sigcontext_addr == NULL)
2777 return 0;
2778
2779 if (tdep->sigtramp_p != NULL)
2780 {
2781 if (tdep->sigtramp_p (this_frame))
2782 return 1;
2783 }
2784
2785 if (tdep->sigtramp_start != 0)
2786 {
2787 CORE_ADDR pc = get_frame_pc (this_frame);
2788
2789 gdb_assert (tdep->sigtramp_end != 0);
2790 if (pc >= tdep->sigtramp_start && pc < tdep->sigtramp_end)
2791 return 1;
2792 }
2793
2794 return 0;
2795 }
2796
2797 static const struct frame_unwind amd64_sigtramp_frame_unwind =
2798 {
2799 SIGTRAMP_FRAME,
2800 amd64_sigtramp_frame_unwind_stop_reason,
2801 amd64_sigtramp_frame_this_id,
2802 amd64_sigtramp_frame_prev_register,
2803 NULL,
2804 amd64_sigtramp_frame_sniffer
2805 };
2806 \f
2807
2808 static CORE_ADDR
2809 amd64_frame_base_address (struct frame_info *this_frame, void **this_cache)
2810 {
2811 struct amd64_frame_cache *cache =
2812 amd64_frame_cache (this_frame, this_cache);
2813
2814 return cache->base;
2815 }
2816
2817 static const struct frame_base amd64_frame_base =
2818 {
2819 &amd64_frame_unwind,
2820 amd64_frame_base_address,
2821 amd64_frame_base_address,
2822 amd64_frame_base_address
2823 };
2824
2825 /* Normal frames, but in a function epilogue. */
2826
2827 /* Implement the stack_frame_destroyed_p gdbarch method.
2828
2829 The epilogue is defined here as the 'ret' instruction, which will
2830 follow any instruction such as 'leave' or 'pop %ebp' that destroys
2831 the function's stack frame. */
2832
2833 static int
2834 amd64_stack_frame_destroyed_p (struct gdbarch *gdbarch, CORE_ADDR pc)
2835 {
2836 gdb_byte insn;
2837 struct compunit_symtab *cust;
2838
2839 cust = find_pc_compunit_symtab (pc);
2840 if (cust != NULL && COMPUNIT_EPILOGUE_UNWIND_VALID (cust))
2841 return 0;
2842
2843 if (target_read_memory (pc, &insn, 1))
2844 return 0; /* Can't read memory at pc. */
2845
2846 if (insn != 0xc3) /* 'ret' instruction. */
2847 return 0;
2848
2849 return 1;
2850 }
2851
2852 static int
2853 amd64_epilogue_frame_sniffer (const struct frame_unwind *self,
2854 struct frame_info *this_frame,
2855 void **this_prologue_cache)
2856 {
2857 if (frame_relative_level (this_frame) == 0)
2858 return amd64_stack_frame_destroyed_p (get_frame_arch (this_frame),
2859 get_frame_pc (this_frame));
2860 else
2861 return 0;
2862 }
2863
2864 static struct amd64_frame_cache *
2865 amd64_epilogue_frame_cache (struct frame_info *this_frame, void **this_cache)
2866 {
2867 struct gdbarch *gdbarch = get_frame_arch (this_frame);
2868 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
2869 struct amd64_frame_cache *cache;
2870 gdb_byte buf[8];
2871
2872 if (*this_cache)
2873 return (struct amd64_frame_cache *) *this_cache;
2874
2875 cache = amd64_alloc_frame_cache ();
2876 *this_cache = cache;
2877
2878 TRY
2879 {
2880 /* Cache base will be %esp plus cache->sp_offset (-8). */
2881 get_frame_register (this_frame, AMD64_RSP_REGNUM, buf);
2882 cache->base = extract_unsigned_integer (buf, 8,
2883 byte_order) + cache->sp_offset;
2884
2885 /* Cache pc will be the frame func. */
2886 cache->pc = get_frame_pc (this_frame);
2887
2888 /* The saved %esp will be at cache->base plus 16. */
2889 cache->saved_sp = cache->base + 16;
2890
2891 /* The saved %eip will be at cache->base plus 8. */
2892 cache->saved_regs[AMD64_RIP_REGNUM] = cache->base + 8;
2893
2894 cache->base_p = 1;
2895 }
2896 CATCH (ex, RETURN_MASK_ERROR)
2897 {
2898 if (ex.error != NOT_AVAILABLE_ERROR)
2899 throw_exception (ex);
2900 }
2901 END_CATCH
2902
2903 return cache;
2904 }
2905
2906 static enum unwind_stop_reason
2907 amd64_epilogue_frame_unwind_stop_reason (struct frame_info *this_frame,
2908 void **this_cache)
2909 {
2910 struct amd64_frame_cache *cache
2911 = amd64_epilogue_frame_cache (this_frame, this_cache);
2912
2913 if (!cache->base_p)
2914 return UNWIND_UNAVAILABLE;
2915
2916 return UNWIND_NO_REASON;
2917 }
2918
2919 static void
2920 amd64_epilogue_frame_this_id (struct frame_info *this_frame,
2921 void **this_cache,
2922 struct frame_id *this_id)
2923 {
2924 struct amd64_frame_cache *cache = amd64_epilogue_frame_cache (this_frame,
2925 this_cache);
2926
2927 if (!cache->base_p)
2928 (*this_id) = frame_id_build_unavailable_stack (cache->pc);
2929 else
2930 (*this_id) = frame_id_build (cache->base + 8, cache->pc);
2931 }
2932
2933 static const struct frame_unwind amd64_epilogue_frame_unwind =
2934 {
2935 NORMAL_FRAME,
2936 amd64_epilogue_frame_unwind_stop_reason,
2937 amd64_epilogue_frame_this_id,
2938 amd64_frame_prev_register,
2939 NULL,
2940 amd64_epilogue_frame_sniffer
2941 };
2942
2943 static struct frame_id
2944 amd64_dummy_id (struct gdbarch *gdbarch, struct frame_info *this_frame)
2945 {
2946 CORE_ADDR fp;
2947
2948 fp = get_frame_register_unsigned (this_frame, AMD64_RBP_REGNUM);
2949
2950 return frame_id_build (fp + 16, get_frame_pc (this_frame));
2951 }
2952
2953 /* 16 byte align the SP per frame requirements. */
2954
2955 static CORE_ADDR
2956 amd64_frame_align (struct gdbarch *gdbarch, CORE_ADDR sp)
2957 {
2958 return sp & -(CORE_ADDR)16;
2959 }
2960 \f
2961
2962 /* Supply register REGNUM from the buffer specified by FPREGS and LEN
2963 in the floating-point register set REGSET to register cache
2964 REGCACHE. If REGNUM is -1, do this for all registers in REGSET. */
2965
2966 static void
2967 amd64_supply_fpregset (const struct regset *regset, struct regcache *regcache,
2968 int regnum, const void *fpregs, size_t len)
2969 {
2970 struct gdbarch *gdbarch = regcache->arch ();
2971 const struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2972
2973 gdb_assert (len >= tdep->sizeof_fpregset);
2974 amd64_supply_fxsave (regcache, regnum, fpregs);
2975 }
2976
2977 /* Collect register REGNUM from the register cache REGCACHE and store
2978 it in the buffer specified by FPREGS and LEN as described by the
2979 floating-point register set REGSET. If REGNUM is -1, do this for
2980 all registers in REGSET. */
2981
2982 static void
2983 amd64_collect_fpregset (const struct regset *regset,
2984 const struct regcache *regcache,
2985 int regnum, void *fpregs, size_t len)
2986 {
2987 struct gdbarch *gdbarch = regcache->arch ();
2988 const struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2989
2990 gdb_assert (len >= tdep->sizeof_fpregset);
2991 amd64_collect_fxsave (regcache, regnum, fpregs);
2992 }
2993
2994 const struct regset amd64_fpregset =
2995 {
2996 NULL, amd64_supply_fpregset, amd64_collect_fpregset
2997 };
2998 \f
2999
3000 /* Figure out where the longjmp will land. Slurp the jmp_buf out of
3001 %rdi. We expect its value to be a pointer to the jmp_buf structure
3002 from which we extract the address that we will land at. This
3003 address is copied into PC. This routine returns non-zero on
3004 success. */
3005
3006 static int
3007 amd64_get_longjmp_target (struct frame_info *frame, CORE_ADDR *pc)
3008 {
3009 gdb_byte buf[8];
3010 CORE_ADDR jb_addr;
3011 struct gdbarch *gdbarch = get_frame_arch (frame);
3012 int jb_pc_offset = gdbarch_tdep (gdbarch)->jb_pc_offset;
3013 int len = TYPE_LENGTH (builtin_type (gdbarch)->builtin_func_ptr);
3014
3015 /* If JB_PC_OFFSET is -1, we have no way to find out where the
3016 longjmp will land. */
3017 if (jb_pc_offset == -1)
3018 return 0;
3019
3020 get_frame_register (frame, AMD64_RDI_REGNUM, buf);
3021 jb_addr= extract_typed_address
3022 (buf, builtin_type (gdbarch)->builtin_data_ptr);
3023 if (target_read_memory (jb_addr + jb_pc_offset, buf, len))
3024 return 0;
3025
3026 *pc = extract_typed_address (buf, builtin_type (gdbarch)->builtin_func_ptr);
3027
3028 return 1;
3029 }
3030
3031 static const int amd64_record_regmap[] =
3032 {
3033 AMD64_RAX_REGNUM, AMD64_RCX_REGNUM, AMD64_RDX_REGNUM, AMD64_RBX_REGNUM,
3034 AMD64_RSP_REGNUM, AMD64_RBP_REGNUM, AMD64_RSI_REGNUM, AMD64_RDI_REGNUM,
3035 AMD64_R8_REGNUM, AMD64_R9_REGNUM, AMD64_R10_REGNUM, AMD64_R11_REGNUM,
3036 AMD64_R12_REGNUM, AMD64_R13_REGNUM, AMD64_R14_REGNUM, AMD64_R15_REGNUM,
3037 AMD64_RIP_REGNUM, AMD64_EFLAGS_REGNUM, AMD64_CS_REGNUM, AMD64_SS_REGNUM,
3038 AMD64_DS_REGNUM, AMD64_ES_REGNUM, AMD64_FS_REGNUM, AMD64_GS_REGNUM
3039 };
3040
3041 /* Implement the "in_indirect_branch_thunk" gdbarch function. */
3042
3043 static bool
3044 amd64_in_indirect_branch_thunk (struct gdbarch *gdbarch, CORE_ADDR pc)
3045 {
3046 return x86_in_indirect_branch_thunk (pc, amd64_register_names,
3047 AMD64_RAX_REGNUM,
3048 AMD64_RIP_REGNUM);
3049 }
3050
3051 void
3052 amd64_init_abi (struct gdbarch_info info, struct gdbarch *gdbarch,
3053 const target_desc *default_tdesc)
3054 {
3055 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3056 const struct target_desc *tdesc = info.target_desc;
3057 static const char *const stap_integer_prefixes[] = { "$", NULL };
3058 static const char *const stap_register_prefixes[] = { "%", NULL };
3059 static const char *const stap_register_indirection_prefixes[] = { "(",
3060 NULL };
3061 static const char *const stap_register_indirection_suffixes[] = { ")",
3062 NULL };
3063
3064 /* AMD64 generally uses `fxsave' instead of `fsave' for saving its
3065 floating-point registers. */
3066 tdep->sizeof_fpregset = I387_SIZEOF_FXSAVE;
3067 tdep->fpregset = &amd64_fpregset;
3068
3069 if (! tdesc_has_registers (tdesc))
3070 tdesc = default_tdesc;
3071 tdep->tdesc = tdesc;
3072
3073 tdep->num_core_regs = AMD64_NUM_GREGS + I387_NUM_REGS;
3074 tdep->register_names = amd64_register_names;
3075
3076 if (tdesc_find_feature (tdesc, "org.gnu.gdb.i386.avx512") != NULL)
3077 {
3078 tdep->zmmh_register_names = amd64_zmmh_names;
3079 tdep->k_register_names = amd64_k_names;
3080 tdep->xmm_avx512_register_names = amd64_xmm_avx512_names;
3081 tdep->ymm16h_register_names = amd64_ymmh_avx512_names;
3082
3083 tdep->num_zmm_regs = 32;
3084 tdep->num_xmm_avx512_regs = 16;
3085 tdep->num_ymm_avx512_regs = 16;
3086
3087 tdep->zmm0h_regnum = AMD64_ZMM0H_REGNUM;
3088 tdep->k0_regnum = AMD64_K0_REGNUM;
3089 tdep->xmm16_regnum = AMD64_XMM16_REGNUM;
3090 tdep->ymm16h_regnum = AMD64_YMM16H_REGNUM;
3091 }
3092
3093 if (tdesc_find_feature (tdesc, "org.gnu.gdb.i386.avx") != NULL)
3094 {
3095 tdep->ymmh_register_names = amd64_ymmh_names;
3096 tdep->num_ymm_regs = 16;
3097 tdep->ymm0h_regnum = AMD64_YMM0H_REGNUM;
3098 }
3099
3100 if (tdesc_find_feature (tdesc, "org.gnu.gdb.i386.mpx") != NULL)
3101 {
3102 tdep->mpx_register_names = amd64_mpx_names;
3103 tdep->bndcfgu_regnum = AMD64_BNDCFGU_REGNUM;
3104 tdep->bnd0r_regnum = AMD64_BND0R_REGNUM;
3105 }
3106
3107 if (tdesc_find_feature (tdesc, "org.gnu.gdb.i386.segments") != NULL)
3108 {
3109 const struct tdesc_feature *feature =
3110 tdesc_find_feature (tdesc, "org.gnu.gdb.i386.segments");
3111 struct tdesc_arch_data *tdesc_data_segments =
3112 (struct tdesc_arch_data *) info.tdep_info;
3113
3114 tdesc_numbered_register (feature, tdesc_data_segments,
3115 AMD64_FSBASE_REGNUM, "fs_base");
3116 tdesc_numbered_register (feature, tdesc_data_segments,
3117 AMD64_GSBASE_REGNUM, "gs_base");
3118 }
3119
3120 if (tdesc_find_feature (tdesc, "org.gnu.gdb.i386.pkeys") != NULL)
3121 {
3122 tdep->pkeys_register_names = amd64_pkeys_names;
3123 tdep->pkru_regnum = AMD64_PKRU_REGNUM;
3124 tdep->num_pkeys_regs = 1;
3125 }
3126
3127 tdep->num_byte_regs = 20;
3128 tdep->num_word_regs = 16;
3129 tdep->num_dword_regs = 16;
3130 /* Avoid wiring in the MMX registers for now. */
3131 tdep->num_mmx_regs = 0;
3132
3133 set_gdbarch_pseudo_register_read_value (gdbarch,
3134 amd64_pseudo_register_read_value);
3135 set_gdbarch_pseudo_register_write (gdbarch,
3136 amd64_pseudo_register_write);
3137 set_gdbarch_ax_pseudo_register_collect (gdbarch,
3138 amd64_ax_pseudo_register_collect);
3139
3140 set_tdesc_pseudo_register_name (gdbarch, amd64_pseudo_register_name);
3141
3142 /* AMD64 has an FPU and 16 SSE registers. */
3143 tdep->st0_regnum = AMD64_ST0_REGNUM;
3144 tdep->num_xmm_regs = 16;
3145
3146 /* This is what all the fuss is about. */
3147 set_gdbarch_long_bit (gdbarch, 64);
3148 set_gdbarch_long_long_bit (gdbarch, 64);
3149 set_gdbarch_ptr_bit (gdbarch, 64);
3150
3151 /* In contrast to the i386, on AMD64 a `long double' actually takes
3152 up 128 bits, even though it's still based on the i387 extended
3153 floating-point format which has only 80 significant bits. */
3154 set_gdbarch_long_double_bit (gdbarch, 128);
3155
3156 set_gdbarch_num_regs (gdbarch, AMD64_NUM_REGS);
3157
3158 /* Register numbers of various important registers. */
3159 set_gdbarch_sp_regnum (gdbarch, AMD64_RSP_REGNUM); /* %rsp */
3160 set_gdbarch_pc_regnum (gdbarch, AMD64_RIP_REGNUM); /* %rip */
3161 set_gdbarch_ps_regnum (gdbarch, AMD64_EFLAGS_REGNUM); /* %eflags */
3162 set_gdbarch_fp0_regnum (gdbarch, AMD64_ST0_REGNUM); /* %st(0) */
3163
3164 /* The "default" register numbering scheme for AMD64 is referred to
3165 as the "DWARF Register Number Mapping" in the System V psABI.
3166 The preferred debugging format for all known AMD64 targets is
3167 actually DWARF2, and GCC doesn't seem to support DWARF (that is
3168 DWARF-1), but we provide the same mapping just in case. This
3169 mapping is also used for stabs, which GCC does support. */
3170 set_gdbarch_stab_reg_to_regnum (gdbarch, amd64_dwarf_reg_to_regnum);
3171 set_gdbarch_dwarf2_reg_to_regnum (gdbarch, amd64_dwarf_reg_to_regnum);
3172
3173 /* We don't override SDB_REG_RO_REGNUM, since COFF doesn't seem to
3174 be in use on any of the supported AMD64 targets. */
3175
3176 /* Call dummy code. */
3177 set_gdbarch_push_dummy_call (gdbarch, amd64_push_dummy_call);
3178 set_gdbarch_frame_align (gdbarch, amd64_frame_align);
3179 set_gdbarch_frame_red_zone_size (gdbarch, 128);
3180
3181 set_gdbarch_convert_register_p (gdbarch, i387_convert_register_p);
3182 set_gdbarch_register_to_value (gdbarch, i387_register_to_value);
3183 set_gdbarch_value_to_register (gdbarch, i387_value_to_register);
3184
3185 set_gdbarch_return_value (gdbarch, amd64_return_value);
3186
3187 set_gdbarch_skip_prologue (gdbarch, amd64_skip_prologue);
3188
3189 tdep->record_regmap = amd64_record_regmap;
3190
3191 set_gdbarch_dummy_id (gdbarch, amd64_dummy_id);
3192
3193 /* Hook the function epilogue frame unwinder. This unwinder is
3194 appended to the list first, so that it supercedes the other
3195 unwinders in function epilogues. */
3196 frame_unwind_prepend_unwinder (gdbarch, &amd64_epilogue_frame_unwind);
3197
3198 /* Hook the prologue-based frame unwinders. */
3199 frame_unwind_append_unwinder (gdbarch, &amd64_sigtramp_frame_unwind);
3200 frame_unwind_append_unwinder (gdbarch, &amd64_frame_unwind);
3201 frame_base_set_default (gdbarch, &amd64_frame_base);
3202
3203 set_gdbarch_get_longjmp_target (gdbarch, amd64_get_longjmp_target);
3204
3205 set_gdbarch_relocate_instruction (gdbarch, amd64_relocate_instruction);
3206
3207 set_gdbarch_gen_return_address (gdbarch, amd64_gen_return_address);
3208
3209 /* SystemTap variables and functions. */
3210 set_gdbarch_stap_integer_prefixes (gdbarch, stap_integer_prefixes);
3211 set_gdbarch_stap_register_prefixes (gdbarch, stap_register_prefixes);
3212 set_gdbarch_stap_register_indirection_prefixes (gdbarch,
3213 stap_register_indirection_prefixes);
3214 set_gdbarch_stap_register_indirection_suffixes (gdbarch,
3215 stap_register_indirection_suffixes);
3216 set_gdbarch_stap_is_single_operand (gdbarch,
3217 i386_stap_is_single_operand);
3218 set_gdbarch_stap_parse_special_token (gdbarch,
3219 i386_stap_parse_special_token);
3220 set_gdbarch_insn_is_call (gdbarch, amd64_insn_is_call);
3221 set_gdbarch_insn_is_ret (gdbarch, amd64_insn_is_ret);
3222 set_gdbarch_insn_is_jump (gdbarch, amd64_insn_is_jump);
3223
3224 set_gdbarch_in_indirect_branch_thunk (gdbarch,
3225 amd64_in_indirect_branch_thunk);
3226 }
3227
3228 /* Initialize ARCH for x86-64, no osabi. */
3229
3230 static void
3231 amd64_none_init_abi (gdbarch_info info, gdbarch *arch)
3232 {
3233 amd64_init_abi (info, arch, amd64_target_description (X86_XSTATE_SSE_MASK,
3234 true));
3235 }
3236
3237 static struct type *
3238 amd64_x32_pseudo_register_type (struct gdbarch *gdbarch, int regnum)
3239 {
3240 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3241
3242 switch (regnum - tdep->eax_regnum)
3243 {
3244 case AMD64_RBP_REGNUM: /* %ebp */
3245 case AMD64_RSP_REGNUM: /* %esp */
3246 return builtin_type (gdbarch)->builtin_data_ptr;
3247 case AMD64_RIP_REGNUM: /* %eip */
3248 return builtin_type (gdbarch)->builtin_func_ptr;
3249 }
3250
3251 return i386_pseudo_register_type (gdbarch, regnum);
3252 }
3253
3254 void
3255 amd64_x32_init_abi (struct gdbarch_info info, struct gdbarch *gdbarch,
3256 const target_desc *default_tdesc)
3257 {
3258 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3259
3260 amd64_init_abi (info, gdbarch, default_tdesc);
3261
3262 tdep->num_dword_regs = 17;
3263 set_tdesc_pseudo_register_type (gdbarch, amd64_x32_pseudo_register_type);
3264
3265 set_gdbarch_long_bit (gdbarch, 32);
3266 set_gdbarch_ptr_bit (gdbarch, 32);
3267 }
3268
3269 /* Initialize ARCH for x64-32, no osabi. */
3270
3271 static void
3272 amd64_x32_none_init_abi (gdbarch_info info, gdbarch *arch)
3273 {
3274 amd64_x32_init_abi (info, arch,
3275 amd64_target_description (X86_XSTATE_SSE_MASK, true));
3276 }
3277
3278 /* Return the target description for a specified XSAVE feature mask. */
3279
3280 const struct target_desc *
3281 amd64_target_description (uint64_t xcr0, bool segments)
3282 {
3283 static target_desc *amd64_tdescs \
3284 [2/*AVX*/][2/*MPX*/][2/*AVX512*/][2/*PKRU*/][2/*segments*/] = {};
3285 target_desc **tdesc;
3286
3287 tdesc = &amd64_tdescs[(xcr0 & X86_XSTATE_AVX) ? 1 : 0]
3288 [(xcr0 & X86_XSTATE_MPX) ? 1 : 0]
3289 [(xcr0 & X86_XSTATE_AVX512) ? 1 : 0]
3290 [(xcr0 & X86_XSTATE_PKRU) ? 1 : 0]
3291 [segments ? 1 : 0];
3292
3293 if (*tdesc == NULL)
3294 *tdesc = amd64_create_target_description (xcr0, false, false,
3295 segments);
3296
3297 return *tdesc;
3298 }
3299
3300 void
3301 _initialize_amd64_tdep (void)
3302 {
3303 gdbarch_register_osabi (bfd_arch_i386, bfd_mach_x86_64, GDB_OSABI_NONE,
3304 amd64_none_init_abi);
3305 gdbarch_register_osabi (bfd_arch_i386, bfd_mach_x64_32, GDB_OSABI_NONE,
3306 amd64_x32_none_init_abi);
3307
3308 #if GDB_SELF_TEST
3309 struct
3310 {
3311 const char *xml;
3312 uint64_t mask;
3313 } xml_masks[] = {
3314 { "i386/amd64.xml", X86_XSTATE_SSE_MASK },
3315 { "i386/amd64-avx.xml", X86_XSTATE_AVX_MASK },
3316 { "i386/amd64-mpx.xml", X86_XSTATE_MPX_MASK },
3317 { "i386/amd64-avx-mpx.xml", X86_XSTATE_AVX_MPX_MASK },
3318 { "i386/amd64-avx-avx512.xml", X86_XSTATE_AVX_AVX512_MASK },
3319 { "i386/amd64-avx-mpx-avx512-pku.xml",
3320 X86_XSTATE_AVX_MPX_AVX512_PKU_MASK },
3321 };
3322
3323 for (auto &a : xml_masks)
3324 {
3325 auto tdesc = amd64_target_description (a.mask, true);
3326
3327 selftests::record_xml_tdesc (a.xml, tdesc);
3328 }
3329 #endif /* GDB_SELF_TEST */
3330 }
3331 \f
3332
3333 /* The 64-bit FXSAVE format differs from the 32-bit format in the
3334 sense that the instruction pointer and data pointer are simply
3335 64-bit offsets into the code segment and the data segment instead
3336 of a selector offset pair. The functions below store the upper 32
3337 bits of these pointers (instead of just the 16-bits of the segment
3338 selector). */
3339
3340 /* Fill register REGNUM in REGCACHE with the appropriate
3341 floating-point or SSE register value from *FXSAVE. If REGNUM is
3342 -1, do this for all registers. This function masks off any of the
3343 reserved bits in *FXSAVE. */
3344
3345 void
3346 amd64_supply_fxsave (struct regcache *regcache, int regnum,
3347 const void *fxsave)
3348 {
3349 struct gdbarch *gdbarch = regcache->arch ();
3350 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3351
3352 i387_supply_fxsave (regcache, regnum, fxsave);
3353
3354 if (fxsave
3355 && gdbarch_bfd_arch_info (gdbarch)->bits_per_word == 64)
3356 {
3357 const gdb_byte *regs = (const gdb_byte *) fxsave;
3358
3359 if (regnum == -1 || regnum == I387_FISEG_REGNUM (tdep))
3360 regcache->raw_supply (I387_FISEG_REGNUM (tdep), regs + 12);
3361 if (regnum == -1 || regnum == I387_FOSEG_REGNUM (tdep))
3362 regcache->raw_supply (I387_FOSEG_REGNUM (tdep), regs + 20);
3363 }
3364 }
3365
3366 /* Similar to amd64_supply_fxsave, but use XSAVE extended state. */
3367
3368 void
3369 amd64_supply_xsave (struct regcache *regcache, int regnum,
3370 const void *xsave)
3371 {
3372 struct gdbarch *gdbarch = regcache->arch ();
3373 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3374
3375 i387_supply_xsave (regcache, regnum, xsave);
3376
3377 if (xsave
3378 && gdbarch_bfd_arch_info (gdbarch)->bits_per_word == 64)
3379 {
3380 const gdb_byte *regs = (const gdb_byte *) xsave;
3381 ULONGEST clear_bv;
3382
3383 clear_bv = i387_xsave_get_clear_bv (gdbarch, xsave);
3384
3385 /* If the FISEG and FOSEG registers have not been initialised yet
3386 (their CLEAR_BV bit is set) then their default values of zero will
3387 have already been setup by I387_SUPPLY_XSAVE. */
3388 if (!(clear_bv & X86_XSTATE_X87))
3389 {
3390 if (regnum == -1 || regnum == I387_FISEG_REGNUM (tdep))
3391 regcache->raw_supply (I387_FISEG_REGNUM (tdep), regs + 12);
3392 if (regnum == -1 || regnum == I387_FOSEG_REGNUM (tdep))
3393 regcache->raw_supply (I387_FOSEG_REGNUM (tdep), regs + 20);
3394 }
3395 }
3396 }
3397
3398 /* Fill register REGNUM (if it is a floating-point or SSE register) in
3399 *FXSAVE with the value from REGCACHE. If REGNUM is -1, do this for
3400 all registers. This function doesn't touch any of the reserved
3401 bits in *FXSAVE. */
3402
3403 void
3404 amd64_collect_fxsave (const struct regcache *regcache, int regnum,
3405 void *fxsave)
3406 {
3407 struct gdbarch *gdbarch = regcache->arch ();
3408 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3409 gdb_byte *regs = (gdb_byte *) fxsave;
3410
3411 i387_collect_fxsave (regcache, regnum, fxsave);
3412
3413 if (gdbarch_bfd_arch_info (gdbarch)->bits_per_word == 64)
3414 {
3415 if (regnum == -1 || regnum == I387_FISEG_REGNUM (tdep))
3416 regcache->raw_collect (I387_FISEG_REGNUM (tdep), regs + 12);
3417 if (regnum == -1 || regnum == I387_FOSEG_REGNUM (tdep))
3418 regcache->raw_collect (I387_FOSEG_REGNUM (tdep), regs + 20);
3419 }
3420 }
3421
3422 /* Similar to amd64_collect_fxsave, but use XSAVE extended state. */
3423
3424 void
3425 amd64_collect_xsave (const struct regcache *regcache, int regnum,
3426 void *xsave, int gcore)
3427 {
3428 struct gdbarch *gdbarch = regcache->arch ();
3429 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3430 gdb_byte *regs = (gdb_byte *) xsave;
3431
3432 i387_collect_xsave (regcache, regnum, xsave, gcore);
3433
3434 if (gdbarch_bfd_arch_info (gdbarch)->bits_per_word == 64)
3435 {
3436 if (regnum == -1 || regnum == I387_FISEG_REGNUM (tdep))
3437 regcache->raw_collect (I387_FISEG_REGNUM (tdep),
3438 regs + 12);
3439 if (regnum == -1 || regnum == I387_FOSEG_REGNUM (tdep))
3440 regcache->raw_collect (I387_FOSEG_REGNUM (tdep),
3441 regs + 20);
3442 }
3443 }
This page took 0.103125 seconds and 4 git commands to generate.