Fix AMD64 return value ABI in expression evaluation
[deliverable/binutils-gdb.git] / gdb / amd64-tdep.c
1 /* Target-dependent code for AMD64.
2
3 Copyright (C) 2001-2019 Free Software Foundation, Inc.
4
5 Contributed by Jiri Smid, SuSE Labs.
6
7 This file is part of GDB.
8
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 3 of the License, or
12 (at your option) any later version.
13
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
18
19 You should have received a copy of the GNU General Public License
20 along with this program. If not, see <http://www.gnu.org/licenses/>. */
21
22 #include "defs.h"
23 #include "opcode/i386.h"
24 #include "dis-asm.h"
25 #include "arch-utils.h"
26 #include "block.h"
27 #include "dummy-frame.h"
28 #include "frame.h"
29 #include "frame-base.h"
30 #include "frame-unwind.h"
31 #include "inferior.h"
32 #include "infrun.h"
33 #include "gdbcmd.h"
34 #include "gdbcore.h"
35 #include "objfiles.h"
36 #include "regcache.h"
37 #include "regset.h"
38 #include "symfile.h"
39 #include "disasm.h"
40 #include "amd64-tdep.h"
41 #include "i387-tdep.h"
42 #include "common/x86-xstate.h"
43 #include <algorithm>
44 #include "target-descriptions.h"
45 #include "arch/amd64.h"
46 #include "producer.h"
47 #include "ax.h"
48 #include "ax-gdb.h"
49 #include "common/byte-vector.h"
50 #include "osabi.h"
51 #include "x86-tdep.h"
52
53 /* Note that the AMD64 architecture was previously known as x86-64.
54 The latter is (forever) engraved into the canonical system name as
55 returned by config.guess, and used as the name for the AMD64 port
56 of GNU/Linux. The BSD's have renamed their ports to amd64; they
57 don't like to shout. For GDB we prefer the amd64_-prefix over the
58 x86_64_-prefix since it's so much easier to type. */
59
60 /* Register information. */
61
62 static const char *amd64_register_names[] =
63 {
64 "rax", "rbx", "rcx", "rdx", "rsi", "rdi", "rbp", "rsp",
65
66 /* %r8 is indeed register number 8. */
67 "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15",
68 "rip", "eflags", "cs", "ss", "ds", "es", "fs", "gs",
69
70 /* %st0 is register number 24. */
71 "st0", "st1", "st2", "st3", "st4", "st5", "st6", "st7",
72 "fctrl", "fstat", "ftag", "fiseg", "fioff", "foseg", "fooff", "fop",
73
74 /* %xmm0 is register number 40. */
75 "xmm0", "xmm1", "xmm2", "xmm3", "xmm4", "xmm5", "xmm6", "xmm7",
76 "xmm8", "xmm9", "xmm10", "xmm11", "xmm12", "xmm13", "xmm14", "xmm15",
77 "mxcsr",
78 };
79
80 static const char *amd64_ymm_names[] =
81 {
82 "ymm0", "ymm1", "ymm2", "ymm3",
83 "ymm4", "ymm5", "ymm6", "ymm7",
84 "ymm8", "ymm9", "ymm10", "ymm11",
85 "ymm12", "ymm13", "ymm14", "ymm15"
86 };
87
88 static const char *amd64_ymm_avx512_names[] =
89 {
90 "ymm16", "ymm17", "ymm18", "ymm19",
91 "ymm20", "ymm21", "ymm22", "ymm23",
92 "ymm24", "ymm25", "ymm26", "ymm27",
93 "ymm28", "ymm29", "ymm30", "ymm31"
94 };
95
96 static const char *amd64_ymmh_names[] =
97 {
98 "ymm0h", "ymm1h", "ymm2h", "ymm3h",
99 "ymm4h", "ymm5h", "ymm6h", "ymm7h",
100 "ymm8h", "ymm9h", "ymm10h", "ymm11h",
101 "ymm12h", "ymm13h", "ymm14h", "ymm15h"
102 };
103
104 static const char *amd64_ymmh_avx512_names[] =
105 {
106 "ymm16h", "ymm17h", "ymm18h", "ymm19h",
107 "ymm20h", "ymm21h", "ymm22h", "ymm23h",
108 "ymm24h", "ymm25h", "ymm26h", "ymm27h",
109 "ymm28h", "ymm29h", "ymm30h", "ymm31h"
110 };
111
112 static const char *amd64_mpx_names[] =
113 {
114 "bnd0raw", "bnd1raw", "bnd2raw", "bnd3raw", "bndcfgu", "bndstatus"
115 };
116
117 static const char *amd64_k_names[] =
118 {
119 "k0", "k1", "k2", "k3",
120 "k4", "k5", "k6", "k7"
121 };
122
123 static const char *amd64_zmmh_names[] =
124 {
125 "zmm0h", "zmm1h", "zmm2h", "zmm3h",
126 "zmm4h", "zmm5h", "zmm6h", "zmm7h",
127 "zmm8h", "zmm9h", "zmm10h", "zmm11h",
128 "zmm12h", "zmm13h", "zmm14h", "zmm15h",
129 "zmm16h", "zmm17h", "zmm18h", "zmm19h",
130 "zmm20h", "zmm21h", "zmm22h", "zmm23h",
131 "zmm24h", "zmm25h", "zmm26h", "zmm27h",
132 "zmm28h", "zmm29h", "zmm30h", "zmm31h"
133 };
134
135 static const char *amd64_zmm_names[] =
136 {
137 "zmm0", "zmm1", "zmm2", "zmm3",
138 "zmm4", "zmm5", "zmm6", "zmm7",
139 "zmm8", "zmm9", "zmm10", "zmm11",
140 "zmm12", "zmm13", "zmm14", "zmm15",
141 "zmm16", "zmm17", "zmm18", "zmm19",
142 "zmm20", "zmm21", "zmm22", "zmm23",
143 "zmm24", "zmm25", "zmm26", "zmm27",
144 "zmm28", "zmm29", "zmm30", "zmm31"
145 };
146
147 static const char *amd64_xmm_avx512_names[] = {
148 "xmm16", "xmm17", "xmm18", "xmm19",
149 "xmm20", "xmm21", "xmm22", "xmm23",
150 "xmm24", "xmm25", "xmm26", "xmm27",
151 "xmm28", "xmm29", "xmm30", "xmm31"
152 };
153
154 static const char *amd64_pkeys_names[] = {
155 "pkru"
156 };
157
158 /* DWARF Register Number Mapping as defined in the System V psABI,
159 section 3.6. */
160
161 static int amd64_dwarf_regmap[] =
162 {
163 /* General Purpose Registers RAX, RDX, RCX, RBX, RSI, RDI. */
164 AMD64_RAX_REGNUM, AMD64_RDX_REGNUM,
165 AMD64_RCX_REGNUM, AMD64_RBX_REGNUM,
166 AMD64_RSI_REGNUM, AMD64_RDI_REGNUM,
167
168 /* Frame Pointer Register RBP. */
169 AMD64_RBP_REGNUM,
170
171 /* Stack Pointer Register RSP. */
172 AMD64_RSP_REGNUM,
173
174 /* Extended Integer Registers 8 - 15. */
175 AMD64_R8_REGNUM, /* %r8 */
176 AMD64_R9_REGNUM, /* %r9 */
177 AMD64_R10_REGNUM, /* %r10 */
178 AMD64_R11_REGNUM, /* %r11 */
179 AMD64_R12_REGNUM, /* %r12 */
180 AMD64_R13_REGNUM, /* %r13 */
181 AMD64_R14_REGNUM, /* %r14 */
182 AMD64_R15_REGNUM, /* %r15 */
183
184 /* Return Address RA. Mapped to RIP. */
185 AMD64_RIP_REGNUM,
186
187 /* SSE Registers 0 - 7. */
188 AMD64_XMM0_REGNUM + 0, AMD64_XMM1_REGNUM,
189 AMD64_XMM0_REGNUM + 2, AMD64_XMM0_REGNUM + 3,
190 AMD64_XMM0_REGNUM + 4, AMD64_XMM0_REGNUM + 5,
191 AMD64_XMM0_REGNUM + 6, AMD64_XMM0_REGNUM + 7,
192
193 /* Extended SSE Registers 8 - 15. */
194 AMD64_XMM0_REGNUM + 8, AMD64_XMM0_REGNUM + 9,
195 AMD64_XMM0_REGNUM + 10, AMD64_XMM0_REGNUM + 11,
196 AMD64_XMM0_REGNUM + 12, AMD64_XMM0_REGNUM + 13,
197 AMD64_XMM0_REGNUM + 14, AMD64_XMM0_REGNUM + 15,
198
199 /* Floating Point Registers 0-7. */
200 AMD64_ST0_REGNUM + 0, AMD64_ST0_REGNUM + 1,
201 AMD64_ST0_REGNUM + 2, AMD64_ST0_REGNUM + 3,
202 AMD64_ST0_REGNUM + 4, AMD64_ST0_REGNUM + 5,
203 AMD64_ST0_REGNUM + 6, AMD64_ST0_REGNUM + 7,
204
205 /* MMX Registers 0 - 7.
206 We have to handle those registers specifically, as their register
207 number within GDB depends on the target (or they may even not be
208 available at all). */
209 -1, -1, -1, -1, -1, -1, -1, -1,
210
211 /* Control and Status Flags Register. */
212 AMD64_EFLAGS_REGNUM,
213
214 /* Selector Registers. */
215 AMD64_ES_REGNUM,
216 AMD64_CS_REGNUM,
217 AMD64_SS_REGNUM,
218 AMD64_DS_REGNUM,
219 AMD64_FS_REGNUM,
220 AMD64_GS_REGNUM,
221 -1,
222 -1,
223
224 /* Segment Base Address Registers. */
225 -1,
226 -1,
227 -1,
228 -1,
229
230 /* Special Selector Registers. */
231 -1,
232 -1,
233
234 /* Floating Point Control Registers. */
235 AMD64_MXCSR_REGNUM,
236 AMD64_FCTRL_REGNUM,
237 AMD64_FSTAT_REGNUM
238 };
239
240 static const int amd64_dwarf_regmap_len =
241 (sizeof (amd64_dwarf_regmap) / sizeof (amd64_dwarf_regmap[0]));
242
243 /* Convert DWARF register number REG to the appropriate register
244 number used by GDB. */
245
246 static int
247 amd64_dwarf_reg_to_regnum (struct gdbarch *gdbarch, int reg)
248 {
249 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
250 int ymm0_regnum = tdep->ymm0_regnum;
251 int regnum = -1;
252
253 if (reg >= 0 && reg < amd64_dwarf_regmap_len)
254 regnum = amd64_dwarf_regmap[reg];
255
256 if (ymm0_regnum >= 0
257 && i386_xmm_regnum_p (gdbarch, regnum))
258 regnum += ymm0_regnum - I387_XMM0_REGNUM (tdep);
259
260 return regnum;
261 }
262
263 /* Map architectural register numbers to gdb register numbers. */
264
265 static const int amd64_arch_regmap[16] =
266 {
267 AMD64_RAX_REGNUM, /* %rax */
268 AMD64_RCX_REGNUM, /* %rcx */
269 AMD64_RDX_REGNUM, /* %rdx */
270 AMD64_RBX_REGNUM, /* %rbx */
271 AMD64_RSP_REGNUM, /* %rsp */
272 AMD64_RBP_REGNUM, /* %rbp */
273 AMD64_RSI_REGNUM, /* %rsi */
274 AMD64_RDI_REGNUM, /* %rdi */
275 AMD64_R8_REGNUM, /* %r8 */
276 AMD64_R9_REGNUM, /* %r9 */
277 AMD64_R10_REGNUM, /* %r10 */
278 AMD64_R11_REGNUM, /* %r11 */
279 AMD64_R12_REGNUM, /* %r12 */
280 AMD64_R13_REGNUM, /* %r13 */
281 AMD64_R14_REGNUM, /* %r14 */
282 AMD64_R15_REGNUM /* %r15 */
283 };
284
285 static const int amd64_arch_regmap_len =
286 (sizeof (amd64_arch_regmap) / sizeof (amd64_arch_regmap[0]));
287
288 /* Convert architectural register number REG to the appropriate register
289 number used by GDB. */
290
291 static int
292 amd64_arch_reg_to_regnum (int reg)
293 {
294 gdb_assert (reg >= 0 && reg < amd64_arch_regmap_len);
295
296 return amd64_arch_regmap[reg];
297 }
298
299 /* Register names for byte pseudo-registers. */
300
301 static const char *amd64_byte_names[] =
302 {
303 "al", "bl", "cl", "dl", "sil", "dil", "bpl", "spl",
304 "r8l", "r9l", "r10l", "r11l", "r12l", "r13l", "r14l", "r15l",
305 "ah", "bh", "ch", "dh"
306 };
307
308 /* Number of lower byte registers. */
309 #define AMD64_NUM_LOWER_BYTE_REGS 16
310
311 /* Register names for word pseudo-registers. */
312
313 static const char *amd64_word_names[] =
314 {
315 "ax", "bx", "cx", "dx", "si", "di", "bp", "",
316 "r8w", "r9w", "r10w", "r11w", "r12w", "r13w", "r14w", "r15w"
317 };
318
319 /* Register names for dword pseudo-registers. */
320
321 static const char *amd64_dword_names[] =
322 {
323 "eax", "ebx", "ecx", "edx", "esi", "edi", "ebp", "esp",
324 "r8d", "r9d", "r10d", "r11d", "r12d", "r13d", "r14d", "r15d",
325 "eip"
326 };
327
328 /* Return the name of register REGNUM. */
329
330 static const char *
331 amd64_pseudo_register_name (struct gdbarch *gdbarch, int regnum)
332 {
333 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
334 if (i386_byte_regnum_p (gdbarch, regnum))
335 return amd64_byte_names[regnum - tdep->al_regnum];
336 else if (i386_zmm_regnum_p (gdbarch, regnum))
337 return amd64_zmm_names[regnum - tdep->zmm0_regnum];
338 else if (i386_ymm_regnum_p (gdbarch, regnum))
339 return amd64_ymm_names[regnum - tdep->ymm0_regnum];
340 else if (i386_ymm_avx512_regnum_p (gdbarch, regnum))
341 return amd64_ymm_avx512_names[regnum - tdep->ymm16_regnum];
342 else if (i386_word_regnum_p (gdbarch, regnum))
343 return amd64_word_names[regnum - tdep->ax_regnum];
344 else if (i386_dword_regnum_p (gdbarch, regnum))
345 return amd64_dword_names[regnum - tdep->eax_regnum];
346 else
347 return i386_pseudo_register_name (gdbarch, regnum);
348 }
349
350 static struct value *
351 amd64_pseudo_register_read_value (struct gdbarch *gdbarch,
352 readable_regcache *regcache,
353 int regnum)
354 {
355 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
356
357 value *result_value = allocate_value (register_type (gdbarch, regnum));
358 VALUE_LVAL (result_value) = lval_register;
359 VALUE_REGNUM (result_value) = regnum;
360 gdb_byte *buf = value_contents_raw (result_value);
361
362 if (i386_byte_regnum_p (gdbarch, regnum))
363 {
364 int gpnum = regnum - tdep->al_regnum;
365
366 /* Extract (always little endian). */
367 if (gpnum >= AMD64_NUM_LOWER_BYTE_REGS)
368 {
369 gpnum -= AMD64_NUM_LOWER_BYTE_REGS;
370 gdb_byte raw_buf[register_size (gdbarch, gpnum)];
371
372 /* Special handling for AH, BH, CH, DH. */
373 register_status status = regcache->raw_read (gpnum, raw_buf);
374 if (status == REG_VALID)
375 memcpy (buf, raw_buf + 1, 1);
376 else
377 mark_value_bytes_unavailable (result_value, 0,
378 TYPE_LENGTH (value_type (result_value)));
379 }
380 else
381 {
382 gdb_byte raw_buf[register_size (gdbarch, gpnum)];
383 register_status status = regcache->raw_read (gpnum, raw_buf);
384 if (status == REG_VALID)
385 memcpy (buf, raw_buf, 1);
386 else
387 mark_value_bytes_unavailable (result_value, 0,
388 TYPE_LENGTH (value_type (result_value)));
389 }
390 }
391 else if (i386_dword_regnum_p (gdbarch, regnum))
392 {
393 int gpnum = regnum - tdep->eax_regnum;
394 gdb_byte raw_buf[register_size (gdbarch, gpnum)];
395 /* Extract (always little endian). */
396 register_status status = regcache->raw_read (gpnum, raw_buf);
397 if (status == REG_VALID)
398 memcpy (buf, raw_buf, 4);
399 else
400 mark_value_bytes_unavailable (result_value, 0,
401 TYPE_LENGTH (value_type (result_value)));
402 }
403 else
404 i386_pseudo_register_read_into_value (gdbarch, regcache, regnum,
405 result_value);
406
407 return result_value;
408 }
409
410 static void
411 amd64_pseudo_register_write (struct gdbarch *gdbarch,
412 struct regcache *regcache,
413 int regnum, const gdb_byte *buf)
414 {
415 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
416
417 if (i386_byte_regnum_p (gdbarch, regnum))
418 {
419 int gpnum = regnum - tdep->al_regnum;
420
421 if (gpnum >= AMD64_NUM_LOWER_BYTE_REGS)
422 {
423 gpnum -= AMD64_NUM_LOWER_BYTE_REGS;
424 gdb_byte raw_buf[register_size (gdbarch, gpnum)];
425
426 /* Read ... AH, BH, CH, DH. */
427 regcache->raw_read (gpnum, raw_buf);
428 /* ... Modify ... (always little endian). */
429 memcpy (raw_buf + 1, buf, 1);
430 /* ... Write. */
431 regcache->raw_write (gpnum, raw_buf);
432 }
433 else
434 {
435 gdb_byte raw_buf[register_size (gdbarch, gpnum)];
436
437 /* Read ... */
438 regcache->raw_read (gpnum, raw_buf);
439 /* ... Modify ... (always little endian). */
440 memcpy (raw_buf, buf, 1);
441 /* ... Write. */
442 regcache->raw_write (gpnum, raw_buf);
443 }
444 }
445 else if (i386_dword_regnum_p (gdbarch, regnum))
446 {
447 int gpnum = regnum - tdep->eax_regnum;
448 gdb_byte raw_buf[register_size (gdbarch, gpnum)];
449
450 /* Read ... */
451 regcache->raw_read (gpnum, raw_buf);
452 /* ... Modify ... (always little endian). */
453 memcpy (raw_buf, buf, 4);
454 /* ... Write. */
455 regcache->raw_write (gpnum, raw_buf);
456 }
457 else
458 i386_pseudo_register_write (gdbarch, regcache, regnum, buf);
459 }
460
461 /* Implement the 'ax_pseudo_register_collect' gdbarch method. */
462
463 static int
464 amd64_ax_pseudo_register_collect (struct gdbarch *gdbarch,
465 struct agent_expr *ax, int regnum)
466 {
467 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
468
469 if (i386_byte_regnum_p (gdbarch, regnum))
470 {
471 int gpnum = regnum - tdep->al_regnum;
472
473 if (gpnum >= AMD64_NUM_LOWER_BYTE_REGS)
474 ax_reg_mask (ax, gpnum - AMD64_NUM_LOWER_BYTE_REGS);
475 else
476 ax_reg_mask (ax, gpnum);
477 return 0;
478 }
479 else if (i386_dword_regnum_p (gdbarch, regnum))
480 {
481 int gpnum = regnum - tdep->eax_regnum;
482
483 ax_reg_mask (ax, gpnum);
484 return 0;
485 }
486 else
487 return i386_ax_pseudo_register_collect (gdbarch, ax, regnum);
488 }
489
490 \f
491
492 /* Register classes as defined in the psABI. */
493
494 enum amd64_reg_class
495 {
496 AMD64_INTEGER,
497 AMD64_SSE,
498 AMD64_SSEUP,
499 AMD64_X87,
500 AMD64_X87UP,
501 AMD64_COMPLEX_X87,
502 AMD64_NO_CLASS,
503 AMD64_MEMORY
504 };
505
506 /* Return the union class of CLASS1 and CLASS2. See the psABI for
507 details. */
508
509 static enum amd64_reg_class
510 amd64_merge_classes (enum amd64_reg_class class1, enum amd64_reg_class class2)
511 {
512 /* Rule (a): If both classes are equal, this is the resulting class. */
513 if (class1 == class2)
514 return class1;
515
516 /* Rule (b): If one of the classes is NO_CLASS, the resulting class
517 is the other class. */
518 if (class1 == AMD64_NO_CLASS)
519 return class2;
520 if (class2 == AMD64_NO_CLASS)
521 return class1;
522
523 /* Rule (c): If one of the classes is MEMORY, the result is MEMORY. */
524 if (class1 == AMD64_MEMORY || class2 == AMD64_MEMORY)
525 return AMD64_MEMORY;
526
527 /* Rule (d): If one of the classes is INTEGER, the result is INTEGER. */
528 if (class1 == AMD64_INTEGER || class2 == AMD64_INTEGER)
529 return AMD64_INTEGER;
530
531 /* Rule (e): If one of the classes is X87, X87UP, COMPLEX_X87 class,
532 MEMORY is used as class. */
533 if (class1 == AMD64_X87 || class1 == AMD64_X87UP
534 || class1 == AMD64_COMPLEX_X87 || class2 == AMD64_X87
535 || class2 == AMD64_X87UP || class2 == AMD64_COMPLEX_X87)
536 return AMD64_MEMORY;
537
538 /* Rule (f): Otherwise class SSE is used. */
539 return AMD64_SSE;
540 }
541
542 static void amd64_classify (struct type *type, enum amd64_reg_class theclass[2]);
543
544 /* Return true if TYPE is a structure or union with unaligned fields. */
545
546 static bool
547 amd64_has_unaligned_fields (struct type *type)
548 {
549 if (TYPE_CODE (type) == TYPE_CODE_STRUCT
550 || TYPE_CODE (type) == TYPE_CODE_UNION)
551 {
552 for (int i = 0; i < TYPE_NFIELDS (type); i++)
553 {
554 struct type *subtype = check_typedef (TYPE_FIELD_TYPE (type, i));
555 int bitpos = TYPE_FIELD_BITPOS (type, i);
556 int align = type_align(subtype);
557
558 /* Ignore static fields, or empty fields, for example nested
559 empty structures. */
560 if (field_is_static (&TYPE_FIELD (type, i))
561 || (TYPE_FIELD_BITSIZE (type, i) == 0
562 && TYPE_LENGTH (subtype) == 0))
563 continue;
564
565 if (bitpos % 8 != 0)
566 return true;
567
568 int bytepos = bitpos / 8;
569 if (bytepos % align != 0)
570 return true;
571
572 if (amd64_has_unaligned_fields(subtype))
573 return true;
574 }
575 }
576
577 return false;
578 }
579
580 /* Classify TYPE according to the rules for aggregate (structures and
581 arrays) and union types, and store the result in CLASS. */
582
583 static void
584 amd64_classify_aggregate (struct type *type, enum amd64_reg_class theclass[2])
585 {
586 /* 1. If the size of an object is larger than two eightbytes, or it has
587 unaligned fields, it has class memory. */
588 if (TYPE_LENGTH (type) > 16 || amd64_has_unaligned_fields (type))
589 {
590 theclass[0] = theclass[1] = AMD64_MEMORY;
591 return;
592 }
593
594 /* 2. Both eightbytes get initialized to class NO_CLASS. */
595 theclass[0] = theclass[1] = AMD64_NO_CLASS;
596
597 /* 3. Each field of an object is classified recursively so that
598 always two fields are considered. The resulting class is
599 calculated according to the classes of the fields in the
600 eightbyte: */
601
602 if (TYPE_CODE (type) == TYPE_CODE_ARRAY)
603 {
604 struct type *subtype = check_typedef (TYPE_TARGET_TYPE (type));
605
606 /* All fields in an array have the same type. */
607 amd64_classify (subtype, theclass);
608 if (TYPE_LENGTH (type) > 8 && theclass[1] == AMD64_NO_CLASS)
609 theclass[1] = theclass[0];
610 }
611 else
612 {
613 int i;
614
615 /* Structure or union. */
616 gdb_assert (TYPE_CODE (type) == TYPE_CODE_STRUCT
617 || TYPE_CODE (type) == TYPE_CODE_UNION);
618
619 for (i = 0; i < TYPE_NFIELDS (type); i++)
620 {
621 struct type *subtype = check_typedef (TYPE_FIELD_TYPE (type, i));
622 int pos = TYPE_FIELD_BITPOS (type, i) / 64;
623 enum amd64_reg_class subclass[2];
624 int bitsize = TYPE_FIELD_BITSIZE (type, i);
625 int endpos;
626
627 if (bitsize == 0)
628 bitsize = TYPE_LENGTH (subtype) * 8;
629 endpos = (TYPE_FIELD_BITPOS (type, i) + bitsize - 1) / 64;
630
631 /* Ignore static fields, or empty fields, for example nested
632 empty structures.*/
633 if (field_is_static (&TYPE_FIELD (type, i)) || bitsize == 0)
634 continue;
635
636 gdb_assert (pos == 0 || pos == 1);
637
638 amd64_classify (subtype, subclass);
639 theclass[pos] = amd64_merge_classes (theclass[pos], subclass[0]);
640 if (bitsize <= 64 && pos == 0 && endpos == 1)
641 /* This is a bit of an odd case: We have a field that would
642 normally fit in one of the two eightbytes, except that
643 it is placed in a way that this field straddles them.
644 This has been seen with a structure containing an array.
645
646 The ABI is a bit unclear in this case, but we assume that
647 this field's class (stored in subclass[0]) must also be merged
648 into class[1]. In other words, our field has a piece stored
649 in the second eight-byte, and thus its class applies to
650 the second eight-byte as well.
651
652 In the case where the field length exceeds 8 bytes,
653 it should not be necessary to merge the field class
654 into class[1]. As LEN > 8, subclass[1] is necessarily
655 different from AMD64_NO_CLASS. If subclass[1] is equal
656 to subclass[0], then the normal class[1]/subclass[1]
657 merging will take care of everything. For subclass[1]
658 to be different from subclass[0], I can only see the case
659 where we have a SSE/SSEUP or X87/X87UP pair, which both
660 use up all 16 bytes of the aggregate, and are already
661 handled just fine (because each portion sits on its own
662 8-byte). */
663 theclass[1] = amd64_merge_classes (theclass[1], subclass[0]);
664 if (pos == 0)
665 theclass[1] = amd64_merge_classes (theclass[1], subclass[1]);
666 }
667 }
668
669 /* 4. Then a post merger cleanup is done: */
670
671 /* Rule (a): If one of the classes is MEMORY, the whole argument is
672 passed in memory. */
673 if (theclass[0] == AMD64_MEMORY || theclass[1] == AMD64_MEMORY)
674 theclass[0] = theclass[1] = AMD64_MEMORY;
675
676 /* Rule (b): If SSEUP is not preceded by SSE, it is converted to
677 SSE. */
678 if (theclass[0] == AMD64_SSEUP)
679 theclass[0] = AMD64_SSE;
680 if (theclass[1] == AMD64_SSEUP && theclass[0] != AMD64_SSE)
681 theclass[1] = AMD64_SSE;
682 }
683
684 /* Classify TYPE, and store the result in CLASS. */
685
686 static void
687 amd64_classify (struct type *type, enum amd64_reg_class theclass[2])
688 {
689 enum type_code code = TYPE_CODE (type);
690 int len = TYPE_LENGTH (type);
691
692 theclass[0] = theclass[1] = AMD64_NO_CLASS;
693
694 /* Arguments of types (signed and unsigned) _Bool, char, short, int,
695 long, long long, and pointers are in the INTEGER class. Similarly,
696 range types, used by languages such as Ada, are also in the INTEGER
697 class. */
698 if ((code == TYPE_CODE_INT || code == TYPE_CODE_ENUM
699 || code == TYPE_CODE_BOOL || code == TYPE_CODE_RANGE
700 || code == TYPE_CODE_CHAR
701 || code == TYPE_CODE_PTR || TYPE_IS_REFERENCE (type))
702 && (len == 1 || len == 2 || len == 4 || len == 8))
703 theclass[0] = AMD64_INTEGER;
704
705 /* Arguments of types float, double, _Decimal32, _Decimal64 and __m64
706 are in class SSE. */
707 else if ((code == TYPE_CODE_FLT || code == TYPE_CODE_DECFLOAT)
708 && (len == 4 || len == 8))
709 /* FIXME: __m64 . */
710 theclass[0] = AMD64_SSE;
711
712 /* Arguments of types __float128, _Decimal128 and __m128 are split into
713 two halves. The least significant ones belong to class SSE, the most
714 significant one to class SSEUP. */
715 else if (code == TYPE_CODE_DECFLOAT && len == 16)
716 /* FIXME: __float128, __m128. */
717 theclass[0] = AMD64_SSE, theclass[1] = AMD64_SSEUP;
718
719 /* The 64-bit mantissa of arguments of type long double belongs to
720 class X87, the 16-bit exponent plus 6 bytes of padding belongs to
721 class X87UP. */
722 else if (code == TYPE_CODE_FLT && len == 16)
723 /* Class X87 and X87UP. */
724 theclass[0] = AMD64_X87, theclass[1] = AMD64_X87UP;
725
726 /* Arguments of complex T where T is one of the types float or
727 double get treated as if they are implemented as:
728
729 struct complexT {
730 T real;
731 T imag;
732 };
733
734 */
735 else if (code == TYPE_CODE_COMPLEX && len == 8)
736 theclass[0] = AMD64_SSE;
737 else if (code == TYPE_CODE_COMPLEX && len == 16)
738 theclass[0] = theclass[1] = AMD64_SSE;
739
740 /* A variable of type complex long double is classified as type
741 COMPLEX_X87. */
742 else if (code == TYPE_CODE_COMPLEX && len == 32)
743 theclass[0] = AMD64_COMPLEX_X87;
744
745 /* Aggregates. */
746 else if (code == TYPE_CODE_ARRAY || code == TYPE_CODE_STRUCT
747 || code == TYPE_CODE_UNION)
748 amd64_classify_aggregate (type, theclass);
749 }
750
751 static enum return_value_convention
752 amd64_return_value (struct gdbarch *gdbarch, struct value *function,
753 struct type *type, struct regcache *regcache,
754 gdb_byte *readbuf, const gdb_byte *writebuf)
755 {
756 enum amd64_reg_class theclass[2];
757 int len = TYPE_LENGTH (type);
758 static int integer_regnum[] = { AMD64_RAX_REGNUM, AMD64_RDX_REGNUM };
759 static int sse_regnum[] = { AMD64_XMM0_REGNUM, AMD64_XMM1_REGNUM };
760 int integer_reg = 0;
761 int sse_reg = 0;
762 int i;
763
764 gdb_assert (!(readbuf && writebuf));
765
766 /* 1. Classify the return type with the classification algorithm. */
767 amd64_classify (type, theclass);
768
769 /* 2. If the type has class MEMORY, then the caller provides space
770 for the return value and passes the address of this storage in
771 %rdi as if it were the first argument to the function. In effect,
772 this address becomes a hidden first argument.
773
774 On return %rax will contain the address that has been passed in
775 by the caller in %rdi. */
776 if (theclass[0] == AMD64_MEMORY)
777 {
778 /* As indicated by the comment above, the ABI guarantees that we
779 can always find the return value just after the function has
780 returned. */
781
782 if (readbuf)
783 {
784 ULONGEST addr;
785
786 regcache_raw_read_unsigned (regcache, AMD64_RAX_REGNUM, &addr);
787 read_memory (addr, readbuf, TYPE_LENGTH (type));
788 }
789
790 return RETURN_VALUE_ABI_RETURNS_ADDRESS;
791 }
792
793 /* 8. If the class is COMPLEX_X87, the real part of the value is
794 returned in %st0 and the imaginary part in %st1. */
795 if (theclass[0] == AMD64_COMPLEX_X87)
796 {
797 if (readbuf)
798 {
799 regcache->raw_read (AMD64_ST0_REGNUM, readbuf);
800 regcache->raw_read (AMD64_ST1_REGNUM, readbuf + 16);
801 }
802
803 if (writebuf)
804 {
805 i387_return_value (gdbarch, regcache);
806 regcache->raw_write (AMD64_ST0_REGNUM, writebuf);
807 regcache->raw_write (AMD64_ST1_REGNUM, writebuf + 16);
808
809 /* Fix up the tag word such that both %st(0) and %st(1) are
810 marked as valid. */
811 regcache_raw_write_unsigned (regcache, AMD64_FTAG_REGNUM, 0xfff);
812 }
813
814 return RETURN_VALUE_REGISTER_CONVENTION;
815 }
816
817 gdb_assert (theclass[1] != AMD64_MEMORY);
818 gdb_assert (len <= 16);
819
820 for (i = 0; len > 0; i++, len -= 8)
821 {
822 int regnum = -1;
823 int offset = 0;
824
825 switch (theclass[i])
826 {
827 case AMD64_INTEGER:
828 /* 3. If the class is INTEGER, the next available register
829 of the sequence %rax, %rdx is used. */
830 regnum = integer_regnum[integer_reg++];
831 break;
832
833 case AMD64_SSE:
834 /* 4. If the class is SSE, the next available SSE register
835 of the sequence %xmm0, %xmm1 is used. */
836 regnum = sse_regnum[sse_reg++];
837 break;
838
839 case AMD64_SSEUP:
840 /* 5. If the class is SSEUP, the eightbyte is passed in the
841 upper half of the last used SSE register. */
842 gdb_assert (sse_reg > 0);
843 regnum = sse_regnum[sse_reg - 1];
844 offset = 8;
845 break;
846
847 case AMD64_X87:
848 /* 6. If the class is X87, the value is returned on the X87
849 stack in %st0 as 80-bit x87 number. */
850 regnum = AMD64_ST0_REGNUM;
851 if (writebuf)
852 i387_return_value (gdbarch, regcache);
853 break;
854
855 case AMD64_X87UP:
856 /* 7. If the class is X87UP, the value is returned together
857 with the previous X87 value in %st0. */
858 gdb_assert (i > 0 && theclass[0] == AMD64_X87);
859 regnum = AMD64_ST0_REGNUM;
860 offset = 8;
861 len = 2;
862 break;
863
864 case AMD64_NO_CLASS:
865 continue;
866
867 default:
868 gdb_assert (!"Unexpected register class.");
869 }
870
871 gdb_assert (regnum != -1);
872
873 if (readbuf)
874 regcache->raw_read_part (regnum, offset, std::min (len, 8),
875 readbuf + i * 8);
876 if (writebuf)
877 regcache->raw_write_part (regnum, offset, std::min (len, 8),
878 writebuf + i * 8);
879 }
880
881 return RETURN_VALUE_REGISTER_CONVENTION;
882 }
883 \f
884
885 static CORE_ADDR
886 amd64_push_arguments (struct regcache *regcache, int nargs, struct value **args,
887 CORE_ADDR sp, function_call_return_method return_method)
888 {
889 static int integer_regnum[] =
890 {
891 AMD64_RDI_REGNUM, /* %rdi */
892 AMD64_RSI_REGNUM, /* %rsi */
893 AMD64_RDX_REGNUM, /* %rdx */
894 AMD64_RCX_REGNUM, /* %rcx */
895 AMD64_R8_REGNUM, /* %r8 */
896 AMD64_R9_REGNUM /* %r9 */
897 };
898 static int sse_regnum[] =
899 {
900 /* %xmm0 ... %xmm7 */
901 AMD64_XMM0_REGNUM + 0, AMD64_XMM1_REGNUM,
902 AMD64_XMM0_REGNUM + 2, AMD64_XMM0_REGNUM + 3,
903 AMD64_XMM0_REGNUM + 4, AMD64_XMM0_REGNUM + 5,
904 AMD64_XMM0_REGNUM + 6, AMD64_XMM0_REGNUM + 7,
905 };
906 struct value **stack_args = XALLOCAVEC (struct value *, nargs);
907 int num_stack_args = 0;
908 int num_elements = 0;
909 int element = 0;
910 int integer_reg = 0;
911 int sse_reg = 0;
912 int i;
913
914 /* Reserve a register for the "hidden" argument. */
915 if (return_method == return_method_struct)
916 integer_reg++;
917
918 for (i = 0; i < nargs; i++)
919 {
920 struct type *type = value_type (args[i]);
921 int len = TYPE_LENGTH (type);
922 enum amd64_reg_class theclass[2];
923 int needed_integer_regs = 0;
924 int needed_sse_regs = 0;
925 int j;
926
927 /* Classify argument. */
928 amd64_classify (type, theclass);
929
930 /* Calculate the number of integer and SSE registers needed for
931 this argument. */
932 for (j = 0; j < 2; j++)
933 {
934 if (theclass[j] == AMD64_INTEGER)
935 needed_integer_regs++;
936 else if (theclass[j] == AMD64_SSE)
937 needed_sse_regs++;
938 }
939
940 /* Check whether enough registers are available, and if the
941 argument should be passed in registers at all. */
942 if (integer_reg + needed_integer_regs > ARRAY_SIZE (integer_regnum)
943 || sse_reg + needed_sse_regs > ARRAY_SIZE (sse_regnum)
944 || (needed_integer_regs == 0 && needed_sse_regs == 0))
945 {
946 /* The argument will be passed on the stack. */
947 num_elements += ((len + 7) / 8);
948 stack_args[num_stack_args++] = args[i];
949 }
950 else
951 {
952 /* The argument will be passed in registers. */
953 const gdb_byte *valbuf = value_contents (args[i]);
954 gdb_byte buf[8];
955
956 gdb_assert (len <= 16);
957
958 for (j = 0; len > 0; j++, len -= 8)
959 {
960 int regnum = -1;
961 int offset = 0;
962
963 switch (theclass[j])
964 {
965 case AMD64_INTEGER:
966 regnum = integer_regnum[integer_reg++];
967 break;
968
969 case AMD64_SSE:
970 regnum = sse_regnum[sse_reg++];
971 break;
972
973 case AMD64_SSEUP:
974 gdb_assert (sse_reg > 0);
975 regnum = sse_regnum[sse_reg - 1];
976 offset = 8;
977 break;
978
979 default:
980 gdb_assert (!"Unexpected register class.");
981 }
982
983 gdb_assert (regnum != -1);
984 memset (buf, 0, sizeof buf);
985 memcpy (buf, valbuf + j * 8, std::min (len, 8));
986 regcache->raw_write_part (regnum, offset, 8, buf);
987 }
988 }
989 }
990
991 /* Allocate space for the arguments on the stack. */
992 sp -= num_elements * 8;
993
994 /* The psABI says that "The end of the input argument area shall be
995 aligned on a 16 byte boundary." */
996 sp &= ~0xf;
997
998 /* Write out the arguments to the stack. */
999 for (i = 0; i < num_stack_args; i++)
1000 {
1001 struct type *type = value_type (stack_args[i]);
1002 const gdb_byte *valbuf = value_contents (stack_args[i]);
1003 int len = TYPE_LENGTH (type);
1004
1005 write_memory (sp + element * 8, valbuf, len);
1006 element += ((len + 7) / 8);
1007 }
1008
1009 /* The psABI says that "For calls that may call functions that use
1010 varargs or stdargs (prototype-less calls or calls to functions
1011 containing ellipsis (...) in the declaration) %al is used as
1012 hidden argument to specify the number of SSE registers used. */
1013 regcache_raw_write_unsigned (regcache, AMD64_RAX_REGNUM, sse_reg);
1014 return sp;
1015 }
1016
1017 static CORE_ADDR
1018 amd64_push_dummy_call (struct gdbarch *gdbarch, struct value *function,
1019 struct regcache *regcache, CORE_ADDR bp_addr,
1020 int nargs, struct value **args, CORE_ADDR sp,
1021 function_call_return_method return_method,
1022 CORE_ADDR struct_addr)
1023 {
1024 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1025 gdb_byte buf[8];
1026
1027 /* BND registers can be in arbitrary values at the moment of the
1028 inferior call. This can cause boundary violations that are not
1029 due to a real bug or even desired by the user. The best to be done
1030 is set the BND registers to allow access to the whole memory, INIT
1031 state, before pushing the inferior call. */
1032 i387_reset_bnd_regs (gdbarch, regcache);
1033
1034 /* Pass arguments. */
1035 sp = amd64_push_arguments (regcache, nargs, args, sp, return_method);
1036
1037 /* Pass "hidden" argument". */
1038 if (return_method == return_method_struct)
1039 {
1040 store_unsigned_integer (buf, 8, byte_order, struct_addr);
1041 regcache->cooked_write (AMD64_RDI_REGNUM, buf);
1042 }
1043
1044 /* Store return address. */
1045 sp -= 8;
1046 store_unsigned_integer (buf, 8, byte_order, bp_addr);
1047 write_memory (sp, buf, 8);
1048
1049 /* Finally, update the stack pointer... */
1050 store_unsigned_integer (buf, 8, byte_order, sp);
1051 regcache->cooked_write (AMD64_RSP_REGNUM, buf);
1052
1053 /* ...and fake a frame pointer. */
1054 regcache->cooked_write (AMD64_RBP_REGNUM, buf);
1055
1056 return sp + 16;
1057 }
1058 \f
1059 /* Displaced instruction handling. */
1060
1061 /* A partially decoded instruction.
1062 This contains enough details for displaced stepping purposes. */
1063
1064 struct amd64_insn
1065 {
1066 /* The number of opcode bytes. */
1067 int opcode_len;
1068 /* The offset of the REX/VEX instruction encoding prefix or -1 if
1069 not present. */
1070 int enc_prefix_offset;
1071 /* The offset to the first opcode byte. */
1072 int opcode_offset;
1073 /* The offset to the modrm byte or -1 if not present. */
1074 int modrm_offset;
1075
1076 /* The raw instruction. */
1077 gdb_byte *raw_insn;
1078 };
1079
1080 struct amd64_displaced_step_closure : public displaced_step_closure
1081 {
1082 amd64_displaced_step_closure (int insn_buf_len)
1083 : insn_buf (insn_buf_len, 0)
1084 {}
1085
1086 /* For rip-relative insns, saved copy of the reg we use instead of %rip. */
1087 int tmp_used = 0;
1088 int tmp_regno;
1089 ULONGEST tmp_save;
1090
1091 /* Details of the instruction. */
1092 struct amd64_insn insn_details;
1093
1094 /* The possibly modified insn. */
1095 gdb::byte_vector insn_buf;
1096 };
1097
1098 /* WARNING: Keep onebyte_has_modrm, twobyte_has_modrm in sync with
1099 ../opcodes/i386-dis.c (until libopcodes exports them, or an alternative,
1100 at which point delete these in favor of libopcodes' versions). */
1101
1102 static const unsigned char onebyte_has_modrm[256] = {
1103 /* 0 1 2 3 4 5 6 7 8 9 a b c d e f */
1104 /* ------------------------------- */
1105 /* 00 */ 1,1,1,1,0,0,0,0,1,1,1,1,0,0,0,0, /* 00 */
1106 /* 10 */ 1,1,1,1,0,0,0,0,1,1,1,1,0,0,0,0, /* 10 */
1107 /* 20 */ 1,1,1,1,0,0,0,0,1,1,1,1,0,0,0,0, /* 20 */
1108 /* 30 */ 1,1,1,1,0,0,0,0,1,1,1,1,0,0,0,0, /* 30 */
1109 /* 40 */ 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, /* 40 */
1110 /* 50 */ 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, /* 50 */
1111 /* 60 */ 0,0,1,1,0,0,0,0,0,1,0,1,0,0,0,0, /* 60 */
1112 /* 70 */ 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, /* 70 */
1113 /* 80 */ 1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1, /* 80 */
1114 /* 90 */ 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, /* 90 */
1115 /* a0 */ 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, /* a0 */
1116 /* b0 */ 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, /* b0 */
1117 /* c0 */ 1,1,0,0,1,1,1,1,0,0,0,0,0,0,0,0, /* c0 */
1118 /* d0 */ 1,1,1,1,0,0,0,0,1,1,1,1,1,1,1,1, /* d0 */
1119 /* e0 */ 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, /* e0 */
1120 /* f0 */ 0,0,0,0,0,0,1,1,0,0,0,0,0,0,1,1 /* f0 */
1121 /* ------------------------------- */
1122 /* 0 1 2 3 4 5 6 7 8 9 a b c d e f */
1123 };
1124
1125 static const unsigned char twobyte_has_modrm[256] = {
1126 /* 0 1 2 3 4 5 6 7 8 9 a b c d e f */
1127 /* ------------------------------- */
1128 /* 00 */ 1,1,1,1,0,0,0,0,0,0,0,0,0,1,0,1, /* 0f */
1129 /* 10 */ 1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1, /* 1f */
1130 /* 20 */ 1,1,1,1,1,1,1,0,1,1,1,1,1,1,1,1, /* 2f */
1131 /* 30 */ 0,0,0,0,0,0,0,0,1,0,1,0,0,0,0,0, /* 3f */
1132 /* 40 */ 1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1, /* 4f */
1133 /* 50 */ 1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1, /* 5f */
1134 /* 60 */ 1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1, /* 6f */
1135 /* 70 */ 1,1,1,1,1,1,1,0,1,1,1,1,1,1,1,1, /* 7f */
1136 /* 80 */ 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, /* 8f */
1137 /* 90 */ 1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1, /* 9f */
1138 /* a0 */ 0,0,0,1,1,1,1,1,0,0,0,1,1,1,1,1, /* af */
1139 /* b0 */ 1,1,1,1,1,1,1,1,1,0,1,1,1,1,1,1, /* bf */
1140 /* c0 */ 1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0, /* cf */
1141 /* d0 */ 1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1, /* df */
1142 /* e0 */ 1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1, /* ef */
1143 /* f0 */ 1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,0 /* ff */
1144 /* ------------------------------- */
1145 /* 0 1 2 3 4 5 6 7 8 9 a b c d e f */
1146 };
1147
1148 static int amd64_syscall_p (const struct amd64_insn *insn, int *lengthp);
1149
1150 static int
1151 rex_prefix_p (gdb_byte pfx)
1152 {
1153 return REX_PREFIX_P (pfx);
1154 }
1155
1156 /* True if PFX is the start of the 2-byte VEX prefix. */
1157
1158 static bool
1159 vex2_prefix_p (gdb_byte pfx)
1160 {
1161 return pfx == 0xc5;
1162 }
1163
1164 /* True if PFX is the start of the 3-byte VEX prefix. */
1165
1166 static bool
1167 vex3_prefix_p (gdb_byte pfx)
1168 {
1169 return pfx == 0xc4;
1170 }
1171
1172 /* Skip the legacy instruction prefixes in INSN.
1173 We assume INSN is properly sentineled so we don't have to worry
1174 about falling off the end of the buffer. */
1175
1176 static gdb_byte *
1177 amd64_skip_prefixes (gdb_byte *insn)
1178 {
1179 while (1)
1180 {
1181 switch (*insn)
1182 {
1183 case DATA_PREFIX_OPCODE:
1184 case ADDR_PREFIX_OPCODE:
1185 case CS_PREFIX_OPCODE:
1186 case DS_PREFIX_OPCODE:
1187 case ES_PREFIX_OPCODE:
1188 case FS_PREFIX_OPCODE:
1189 case GS_PREFIX_OPCODE:
1190 case SS_PREFIX_OPCODE:
1191 case LOCK_PREFIX_OPCODE:
1192 case REPE_PREFIX_OPCODE:
1193 case REPNE_PREFIX_OPCODE:
1194 ++insn;
1195 continue;
1196 default:
1197 break;
1198 }
1199 break;
1200 }
1201
1202 return insn;
1203 }
1204
1205 /* Return an integer register (other than RSP) that is unused as an input
1206 operand in INSN.
1207 In order to not require adding a rex prefix if the insn doesn't already
1208 have one, the result is restricted to RAX ... RDI, sans RSP.
1209 The register numbering of the result follows architecture ordering,
1210 e.g. RDI = 7. */
1211
1212 static int
1213 amd64_get_unused_input_int_reg (const struct amd64_insn *details)
1214 {
1215 /* 1 bit for each reg */
1216 int used_regs_mask = 0;
1217
1218 /* There can be at most 3 int regs used as inputs in an insn, and we have
1219 7 to choose from (RAX ... RDI, sans RSP).
1220 This allows us to take a conservative approach and keep things simple.
1221 E.g. By avoiding RAX, we don't have to specifically watch for opcodes
1222 that implicitly specify RAX. */
1223
1224 /* Avoid RAX. */
1225 used_regs_mask |= 1 << EAX_REG_NUM;
1226 /* Similarily avoid RDX, implicit operand in divides. */
1227 used_regs_mask |= 1 << EDX_REG_NUM;
1228 /* Avoid RSP. */
1229 used_regs_mask |= 1 << ESP_REG_NUM;
1230
1231 /* If the opcode is one byte long and there's no ModRM byte,
1232 assume the opcode specifies a register. */
1233 if (details->opcode_len == 1 && details->modrm_offset == -1)
1234 used_regs_mask |= 1 << (details->raw_insn[details->opcode_offset] & 7);
1235
1236 /* Mark used regs in the modrm/sib bytes. */
1237 if (details->modrm_offset != -1)
1238 {
1239 int modrm = details->raw_insn[details->modrm_offset];
1240 int mod = MODRM_MOD_FIELD (modrm);
1241 int reg = MODRM_REG_FIELD (modrm);
1242 int rm = MODRM_RM_FIELD (modrm);
1243 int have_sib = mod != 3 && rm == 4;
1244
1245 /* Assume the reg field of the modrm byte specifies a register. */
1246 used_regs_mask |= 1 << reg;
1247
1248 if (have_sib)
1249 {
1250 int base = SIB_BASE_FIELD (details->raw_insn[details->modrm_offset + 1]);
1251 int idx = SIB_INDEX_FIELD (details->raw_insn[details->modrm_offset + 1]);
1252 used_regs_mask |= 1 << base;
1253 used_regs_mask |= 1 << idx;
1254 }
1255 else
1256 {
1257 used_regs_mask |= 1 << rm;
1258 }
1259 }
1260
1261 gdb_assert (used_regs_mask < 256);
1262 gdb_assert (used_regs_mask != 255);
1263
1264 /* Finally, find a free reg. */
1265 {
1266 int i;
1267
1268 for (i = 0; i < 8; ++i)
1269 {
1270 if (! (used_regs_mask & (1 << i)))
1271 return i;
1272 }
1273
1274 /* We shouldn't get here. */
1275 internal_error (__FILE__, __LINE__, _("unable to find free reg"));
1276 }
1277 }
1278
1279 /* Extract the details of INSN that we need. */
1280
1281 static void
1282 amd64_get_insn_details (gdb_byte *insn, struct amd64_insn *details)
1283 {
1284 gdb_byte *start = insn;
1285 int need_modrm;
1286
1287 details->raw_insn = insn;
1288
1289 details->opcode_len = -1;
1290 details->enc_prefix_offset = -1;
1291 details->opcode_offset = -1;
1292 details->modrm_offset = -1;
1293
1294 /* Skip legacy instruction prefixes. */
1295 insn = amd64_skip_prefixes (insn);
1296
1297 /* Skip REX/VEX instruction encoding prefixes. */
1298 if (rex_prefix_p (*insn))
1299 {
1300 details->enc_prefix_offset = insn - start;
1301 ++insn;
1302 }
1303 else if (vex2_prefix_p (*insn))
1304 {
1305 /* Don't record the offset in this case because this prefix has
1306 no REX.B equivalent. */
1307 insn += 2;
1308 }
1309 else if (vex3_prefix_p (*insn))
1310 {
1311 details->enc_prefix_offset = insn - start;
1312 insn += 3;
1313 }
1314
1315 details->opcode_offset = insn - start;
1316
1317 if (*insn == TWO_BYTE_OPCODE_ESCAPE)
1318 {
1319 /* Two or three-byte opcode. */
1320 ++insn;
1321 need_modrm = twobyte_has_modrm[*insn];
1322
1323 /* Check for three-byte opcode. */
1324 switch (*insn)
1325 {
1326 case 0x24:
1327 case 0x25:
1328 case 0x38:
1329 case 0x3a:
1330 case 0x7a:
1331 case 0x7b:
1332 ++insn;
1333 details->opcode_len = 3;
1334 break;
1335 default:
1336 details->opcode_len = 2;
1337 break;
1338 }
1339 }
1340 else
1341 {
1342 /* One-byte opcode. */
1343 need_modrm = onebyte_has_modrm[*insn];
1344 details->opcode_len = 1;
1345 }
1346
1347 if (need_modrm)
1348 {
1349 ++insn;
1350 details->modrm_offset = insn - start;
1351 }
1352 }
1353
1354 /* Update %rip-relative addressing in INSN.
1355
1356 %rip-relative addressing only uses a 32-bit displacement.
1357 32 bits is not enough to be guaranteed to cover the distance between where
1358 the real instruction is and where its copy is.
1359 Convert the insn to use base+disp addressing.
1360 We set base = pc + insn_length so we can leave disp unchanged. */
1361
1362 static void
1363 fixup_riprel (struct gdbarch *gdbarch, amd64_displaced_step_closure *dsc,
1364 CORE_ADDR from, CORE_ADDR to, struct regcache *regs)
1365 {
1366 const struct amd64_insn *insn_details = &dsc->insn_details;
1367 int modrm_offset = insn_details->modrm_offset;
1368 gdb_byte *insn = insn_details->raw_insn + modrm_offset;
1369 CORE_ADDR rip_base;
1370 int insn_length;
1371 int arch_tmp_regno, tmp_regno;
1372 ULONGEST orig_value;
1373
1374 /* %rip+disp32 addressing mode, displacement follows ModRM byte. */
1375 ++insn;
1376
1377 /* Compute the rip-relative address. */
1378 insn_length = gdb_buffered_insn_length (gdbarch, dsc->insn_buf.data (),
1379 dsc->insn_buf.size (), from);
1380 rip_base = from + insn_length;
1381
1382 /* We need a register to hold the address.
1383 Pick one not used in the insn.
1384 NOTE: arch_tmp_regno uses architecture ordering, e.g. RDI = 7. */
1385 arch_tmp_regno = amd64_get_unused_input_int_reg (insn_details);
1386 tmp_regno = amd64_arch_reg_to_regnum (arch_tmp_regno);
1387
1388 /* Position of the not-B bit in the 3-byte VEX prefix (in byte 1). */
1389 static constexpr gdb_byte VEX3_NOT_B = 0x20;
1390
1391 /* REX.B should be unset (VEX.!B set) as we were using rip-relative
1392 addressing, but ensure it's unset (set for VEX) anyway, tmp_regno
1393 is not r8-r15. */
1394 if (insn_details->enc_prefix_offset != -1)
1395 {
1396 gdb_byte *pfx = &dsc->insn_buf[insn_details->enc_prefix_offset];
1397 if (rex_prefix_p (pfx[0]))
1398 pfx[0] &= ~REX_B;
1399 else if (vex3_prefix_p (pfx[0]))
1400 pfx[1] |= VEX3_NOT_B;
1401 else
1402 gdb_assert_not_reached ("unhandled prefix");
1403 }
1404
1405 regcache_cooked_read_unsigned (regs, tmp_regno, &orig_value);
1406 dsc->tmp_regno = tmp_regno;
1407 dsc->tmp_save = orig_value;
1408 dsc->tmp_used = 1;
1409
1410 /* Convert the ModRM field to be base+disp. */
1411 dsc->insn_buf[modrm_offset] &= ~0xc7;
1412 dsc->insn_buf[modrm_offset] |= 0x80 + arch_tmp_regno;
1413
1414 regcache_cooked_write_unsigned (regs, tmp_regno, rip_base);
1415
1416 if (debug_displaced)
1417 fprintf_unfiltered (gdb_stdlog, "displaced: %%rip-relative addressing used.\n"
1418 "displaced: using temp reg %d, old value %s, new value %s\n",
1419 dsc->tmp_regno, paddress (gdbarch, dsc->tmp_save),
1420 paddress (gdbarch, rip_base));
1421 }
1422
1423 static void
1424 fixup_displaced_copy (struct gdbarch *gdbarch,
1425 amd64_displaced_step_closure *dsc,
1426 CORE_ADDR from, CORE_ADDR to, struct regcache *regs)
1427 {
1428 const struct amd64_insn *details = &dsc->insn_details;
1429
1430 if (details->modrm_offset != -1)
1431 {
1432 gdb_byte modrm = details->raw_insn[details->modrm_offset];
1433
1434 if ((modrm & 0xc7) == 0x05)
1435 {
1436 /* The insn uses rip-relative addressing.
1437 Deal with it. */
1438 fixup_riprel (gdbarch, dsc, from, to, regs);
1439 }
1440 }
1441 }
1442
1443 struct displaced_step_closure *
1444 amd64_displaced_step_copy_insn (struct gdbarch *gdbarch,
1445 CORE_ADDR from, CORE_ADDR to,
1446 struct regcache *regs)
1447 {
1448 int len = gdbarch_max_insn_length (gdbarch);
1449 /* Extra space for sentinels so fixup_{riprel,displaced_copy} don't have to
1450 continually watch for running off the end of the buffer. */
1451 int fixup_sentinel_space = len;
1452 amd64_displaced_step_closure *dsc
1453 = new amd64_displaced_step_closure (len + fixup_sentinel_space);
1454 gdb_byte *buf = &dsc->insn_buf[0];
1455 struct amd64_insn *details = &dsc->insn_details;
1456
1457 read_memory (from, buf, len);
1458
1459 /* Set up the sentinel space so we don't have to worry about running
1460 off the end of the buffer. An excessive number of leading prefixes
1461 could otherwise cause this. */
1462 memset (buf + len, 0, fixup_sentinel_space);
1463
1464 amd64_get_insn_details (buf, details);
1465
1466 /* GDB may get control back after the insn after the syscall.
1467 Presumably this is a kernel bug.
1468 If this is a syscall, make sure there's a nop afterwards. */
1469 {
1470 int syscall_length;
1471
1472 if (amd64_syscall_p (details, &syscall_length))
1473 buf[details->opcode_offset + syscall_length] = NOP_OPCODE;
1474 }
1475
1476 /* Modify the insn to cope with the address where it will be executed from.
1477 In particular, handle any rip-relative addressing. */
1478 fixup_displaced_copy (gdbarch, dsc, from, to, regs);
1479
1480 write_memory (to, buf, len);
1481
1482 if (debug_displaced)
1483 {
1484 fprintf_unfiltered (gdb_stdlog, "displaced: copy %s->%s: ",
1485 paddress (gdbarch, from), paddress (gdbarch, to));
1486 displaced_step_dump_bytes (gdb_stdlog, buf, len);
1487 }
1488
1489 return dsc;
1490 }
1491
1492 static int
1493 amd64_absolute_jmp_p (const struct amd64_insn *details)
1494 {
1495 const gdb_byte *insn = &details->raw_insn[details->opcode_offset];
1496
1497 if (insn[0] == 0xff)
1498 {
1499 /* jump near, absolute indirect (/4) */
1500 if ((insn[1] & 0x38) == 0x20)
1501 return 1;
1502
1503 /* jump far, absolute indirect (/5) */
1504 if ((insn[1] & 0x38) == 0x28)
1505 return 1;
1506 }
1507
1508 return 0;
1509 }
1510
1511 /* Return non-zero if the instruction DETAILS is a jump, zero otherwise. */
1512
1513 static int
1514 amd64_jmp_p (const struct amd64_insn *details)
1515 {
1516 const gdb_byte *insn = &details->raw_insn[details->opcode_offset];
1517
1518 /* jump short, relative. */
1519 if (insn[0] == 0xeb)
1520 return 1;
1521
1522 /* jump near, relative. */
1523 if (insn[0] == 0xe9)
1524 return 1;
1525
1526 return amd64_absolute_jmp_p (details);
1527 }
1528
1529 static int
1530 amd64_absolute_call_p (const struct amd64_insn *details)
1531 {
1532 const gdb_byte *insn = &details->raw_insn[details->opcode_offset];
1533
1534 if (insn[0] == 0xff)
1535 {
1536 /* Call near, absolute indirect (/2) */
1537 if ((insn[1] & 0x38) == 0x10)
1538 return 1;
1539
1540 /* Call far, absolute indirect (/3) */
1541 if ((insn[1] & 0x38) == 0x18)
1542 return 1;
1543 }
1544
1545 return 0;
1546 }
1547
1548 static int
1549 amd64_ret_p (const struct amd64_insn *details)
1550 {
1551 /* NOTE: gcc can emit "repz ; ret". */
1552 const gdb_byte *insn = &details->raw_insn[details->opcode_offset];
1553
1554 switch (insn[0])
1555 {
1556 case 0xc2: /* ret near, pop N bytes */
1557 case 0xc3: /* ret near */
1558 case 0xca: /* ret far, pop N bytes */
1559 case 0xcb: /* ret far */
1560 case 0xcf: /* iret */
1561 return 1;
1562
1563 default:
1564 return 0;
1565 }
1566 }
1567
1568 static int
1569 amd64_call_p (const struct amd64_insn *details)
1570 {
1571 const gdb_byte *insn = &details->raw_insn[details->opcode_offset];
1572
1573 if (amd64_absolute_call_p (details))
1574 return 1;
1575
1576 /* call near, relative */
1577 if (insn[0] == 0xe8)
1578 return 1;
1579
1580 return 0;
1581 }
1582
1583 /* Return non-zero if INSN is a system call, and set *LENGTHP to its
1584 length in bytes. Otherwise, return zero. */
1585
1586 static int
1587 amd64_syscall_p (const struct amd64_insn *details, int *lengthp)
1588 {
1589 const gdb_byte *insn = &details->raw_insn[details->opcode_offset];
1590
1591 if (insn[0] == 0x0f && insn[1] == 0x05)
1592 {
1593 *lengthp = 2;
1594 return 1;
1595 }
1596
1597 return 0;
1598 }
1599
1600 /* Classify the instruction at ADDR using PRED.
1601 Throw an error if the memory can't be read. */
1602
1603 static int
1604 amd64_classify_insn_at (struct gdbarch *gdbarch, CORE_ADDR addr,
1605 int (*pred) (const struct amd64_insn *))
1606 {
1607 struct amd64_insn details;
1608 gdb_byte *buf;
1609 int len, classification;
1610
1611 len = gdbarch_max_insn_length (gdbarch);
1612 buf = (gdb_byte *) alloca (len);
1613
1614 read_code (addr, buf, len);
1615 amd64_get_insn_details (buf, &details);
1616
1617 classification = pred (&details);
1618
1619 return classification;
1620 }
1621
1622 /* The gdbarch insn_is_call method. */
1623
1624 static int
1625 amd64_insn_is_call (struct gdbarch *gdbarch, CORE_ADDR addr)
1626 {
1627 return amd64_classify_insn_at (gdbarch, addr, amd64_call_p);
1628 }
1629
1630 /* The gdbarch insn_is_ret method. */
1631
1632 static int
1633 amd64_insn_is_ret (struct gdbarch *gdbarch, CORE_ADDR addr)
1634 {
1635 return amd64_classify_insn_at (gdbarch, addr, amd64_ret_p);
1636 }
1637
1638 /* The gdbarch insn_is_jump method. */
1639
1640 static int
1641 amd64_insn_is_jump (struct gdbarch *gdbarch, CORE_ADDR addr)
1642 {
1643 return amd64_classify_insn_at (gdbarch, addr, amd64_jmp_p);
1644 }
1645
1646 /* Fix up the state of registers and memory after having single-stepped
1647 a displaced instruction. */
1648
1649 void
1650 amd64_displaced_step_fixup (struct gdbarch *gdbarch,
1651 struct displaced_step_closure *dsc_,
1652 CORE_ADDR from, CORE_ADDR to,
1653 struct regcache *regs)
1654 {
1655 amd64_displaced_step_closure *dsc = (amd64_displaced_step_closure *) dsc_;
1656 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1657 /* The offset we applied to the instruction's address. */
1658 ULONGEST insn_offset = to - from;
1659 gdb_byte *insn = dsc->insn_buf.data ();
1660 const struct amd64_insn *insn_details = &dsc->insn_details;
1661
1662 if (debug_displaced)
1663 fprintf_unfiltered (gdb_stdlog,
1664 "displaced: fixup (%s, %s), "
1665 "insn = 0x%02x 0x%02x ...\n",
1666 paddress (gdbarch, from), paddress (gdbarch, to),
1667 insn[0], insn[1]);
1668
1669 /* If we used a tmp reg, restore it. */
1670
1671 if (dsc->tmp_used)
1672 {
1673 if (debug_displaced)
1674 fprintf_unfiltered (gdb_stdlog, "displaced: restoring reg %d to %s\n",
1675 dsc->tmp_regno, paddress (gdbarch, dsc->tmp_save));
1676 regcache_cooked_write_unsigned (regs, dsc->tmp_regno, dsc->tmp_save);
1677 }
1678
1679 /* The list of issues to contend with here is taken from
1680 resume_execution in arch/x86/kernel/kprobes.c, Linux 2.6.28.
1681 Yay for Free Software! */
1682
1683 /* Relocate the %rip back to the program's instruction stream,
1684 if necessary. */
1685
1686 /* Except in the case of absolute or indirect jump or call
1687 instructions, or a return instruction, the new rip is relative to
1688 the displaced instruction; make it relative to the original insn.
1689 Well, signal handler returns don't need relocation either, but we use the
1690 value of %rip to recognize those; see below. */
1691 if (! amd64_absolute_jmp_p (insn_details)
1692 && ! amd64_absolute_call_p (insn_details)
1693 && ! amd64_ret_p (insn_details))
1694 {
1695 ULONGEST orig_rip;
1696 int insn_len;
1697
1698 regcache_cooked_read_unsigned (regs, AMD64_RIP_REGNUM, &orig_rip);
1699
1700 /* A signal trampoline system call changes the %rip, resuming
1701 execution of the main program after the signal handler has
1702 returned. That makes them like 'return' instructions; we
1703 shouldn't relocate %rip.
1704
1705 But most system calls don't, and we do need to relocate %rip.
1706
1707 Our heuristic for distinguishing these cases: if stepping
1708 over the system call instruction left control directly after
1709 the instruction, the we relocate --- control almost certainly
1710 doesn't belong in the displaced copy. Otherwise, we assume
1711 the instruction has put control where it belongs, and leave
1712 it unrelocated. Goodness help us if there are PC-relative
1713 system calls. */
1714 if (amd64_syscall_p (insn_details, &insn_len)
1715 && orig_rip != to + insn_len
1716 /* GDB can get control back after the insn after the syscall.
1717 Presumably this is a kernel bug.
1718 Fixup ensures its a nop, we add one to the length for it. */
1719 && orig_rip != to + insn_len + 1)
1720 {
1721 if (debug_displaced)
1722 fprintf_unfiltered (gdb_stdlog,
1723 "displaced: syscall changed %%rip; "
1724 "not relocating\n");
1725 }
1726 else
1727 {
1728 ULONGEST rip = orig_rip - insn_offset;
1729
1730 /* If we just stepped over a breakpoint insn, we don't backup
1731 the pc on purpose; this is to match behaviour without
1732 stepping. */
1733
1734 regcache_cooked_write_unsigned (regs, AMD64_RIP_REGNUM, rip);
1735
1736 if (debug_displaced)
1737 fprintf_unfiltered (gdb_stdlog,
1738 "displaced: "
1739 "relocated %%rip from %s to %s\n",
1740 paddress (gdbarch, orig_rip),
1741 paddress (gdbarch, rip));
1742 }
1743 }
1744
1745 /* If the instruction was PUSHFL, then the TF bit will be set in the
1746 pushed value, and should be cleared. We'll leave this for later,
1747 since GDB already messes up the TF flag when stepping over a
1748 pushfl. */
1749
1750 /* If the instruction was a call, the return address now atop the
1751 stack is the address following the copied instruction. We need
1752 to make it the address following the original instruction. */
1753 if (amd64_call_p (insn_details))
1754 {
1755 ULONGEST rsp;
1756 ULONGEST retaddr;
1757 const ULONGEST retaddr_len = 8;
1758
1759 regcache_cooked_read_unsigned (regs, AMD64_RSP_REGNUM, &rsp);
1760 retaddr = read_memory_unsigned_integer (rsp, retaddr_len, byte_order);
1761 retaddr = (retaddr - insn_offset) & 0xffffffffffffffffULL;
1762 write_memory_unsigned_integer (rsp, retaddr_len, byte_order, retaddr);
1763
1764 if (debug_displaced)
1765 fprintf_unfiltered (gdb_stdlog,
1766 "displaced: relocated return addr at %s "
1767 "to %s\n",
1768 paddress (gdbarch, rsp),
1769 paddress (gdbarch, retaddr));
1770 }
1771 }
1772
1773 /* If the instruction INSN uses RIP-relative addressing, return the
1774 offset into the raw INSN where the displacement to be adjusted is
1775 found. Returns 0 if the instruction doesn't use RIP-relative
1776 addressing. */
1777
1778 static int
1779 rip_relative_offset (struct amd64_insn *insn)
1780 {
1781 if (insn->modrm_offset != -1)
1782 {
1783 gdb_byte modrm = insn->raw_insn[insn->modrm_offset];
1784
1785 if ((modrm & 0xc7) == 0x05)
1786 {
1787 /* The displacement is found right after the ModRM byte. */
1788 return insn->modrm_offset + 1;
1789 }
1790 }
1791
1792 return 0;
1793 }
1794
1795 static void
1796 append_insns (CORE_ADDR *to, ULONGEST len, const gdb_byte *buf)
1797 {
1798 target_write_memory (*to, buf, len);
1799 *to += len;
1800 }
1801
1802 static void
1803 amd64_relocate_instruction (struct gdbarch *gdbarch,
1804 CORE_ADDR *to, CORE_ADDR oldloc)
1805 {
1806 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1807 int len = gdbarch_max_insn_length (gdbarch);
1808 /* Extra space for sentinels. */
1809 int fixup_sentinel_space = len;
1810 gdb_byte *buf = (gdb_byte *) xmalloc (len + fixup_sentinel_space);
1811 struct amd64_insn insn_details;
1812 int offset = 0;
1813 LONGEST rel32, newrel;
1814 gdb_byte *insn;
1815 int insn_length;
1816
1817 read_memory (oldloc, buf, len);
1818
1819 /* Set up the sentinel space so we don't have to worry about running
1820 off the end of the buffer. An excessive number of leading prefixes
1821 could otherwise cause this. */
1822 memset (buf + len, 0, fixup_sentinel_space);
1823
1824 insn = buf;
1825 amd64_get_insn_details (insn, &insn_details);
1826
1827 insn_length = gdb_buffered_insn_length (gdbarch, insn, len, oldloc);
1828
1829 /* Skip legacy instruction prefixes. */
1830 insn = amd64_skip_prefixes (insn);
1831
1832 /* Adjust calls with 32-bit relative addresses as push/jump, with
1833 the address pushed being the location where the original call in
1834 the user program would return to. */
1835 if (insn[0] == 0xe8)
1836 {
1837 gdb_byte push_buf[32];
1838 CORE_ADDR ret_addr;
1839 int i = 0;
1840
1841 /* Where "ret" in the original code will return to. */
1842 ret_addr = oldloc + insn_length;
1843
1844 /* If pushing an address higher than or equal to 0x80000000,
1845 avoid 'pushq', as that sign extends its 32-bit operand, which
1846 would be incorrect. */
1847 if (ret_addr <= 0x7fffffff)
1848 {
1849 push_buf[0] = 0x68; /* pushq $... */
1850 store_unsigned_integer (&push_buf[1], 4, byte_order, ret_addr);
1851 i = 5;
1852 }
1853 else
1854 {
1855 push_buf[i++] = 0x48; /* sub $0x8,%rsp */
1856 push_buf[i++] = 0x83;
1857 push_buf[i++] = 0xec;
1858 push_buf[i++] = 0x08;
1859
1860 push_buf[i++] = 0xc7; /* movl $imm,(%rsp) */
1861 push_buf[i++] = 0x04;
1862 push_buf[i++] = 0x24;
1863 store_unsigned_integer (&push_buf[i], 4, byte_order,
1864 ret_addr & 0xffffffff);
1865 i += 4;
1866
1867 push_buf[i++] = 0xc7; /* movl $imm,4(%rsp) */
1868 push_buf[i++] = 0x44;
1869 push_buf[i++] = 0x24;
1870 push_buf[i++] = 0x04;
1871 store_unsigned_integer (&push_buf[i], 4, byte_order,
1872 ret_addr >> 32);
1873 i += 4;
1874 }
1875 gdb_assert (i <= sizeof (push_buf));
1876 /* Push the push. */
1877 append_insns (to, i, push_buf);
1878
1879 /* Convert the relative call to a relative jump. */
1880 insn[0] = 0xe9;
1881
1882 /* Adjust the destination offset. */
1883 rel32 = extract_signed_integer (insn + 1, 4, byte_order);
1884 newrel = (oldloc - *to) + rel32;
1885 store_signed_integer (insn + 1, 4, byte_order, newrel);
1886
1887 if (debug_displaced)
1888 fprintf_unfiltered (gdb_stdlog,
1889 "Adjusted insn rel32=%s at %s to"
1890 " rel32=%s at %s\n",
1891 hex_string (rel32), paddress (gdbarch, oldloc),
1892 hex_string (newrel), paddress (gdbarch, *to));
1893
1894 /* Write the adjusted jump into its displaced location. */
1895 append_insns (to, 5, insn);
1896 return;
1897 }
1898
1899 offset = rip_relative_offset (&insn_details);
1900 if (!offset)
1901 {
1902 /* Adjust jumps with 32-bit relative addresses. Calls are
1903 already handled above. */
1904 if (insn[0] == 0xe9)
1905 offset = 1;
1906 /* Adjust conditional jumps. */
1907 else if (insn[0] == 0x0f && (insn[1] & 0xf0) == 0x80)
1908 offset = 2;
1909 }
1910
1911 if (offset)
1912 {
1913 rel32 = extract_signed_integer (insn + offset, 4, byte_order);
1914 newrel = (oldloc - *to) + rel32;
1915 store_signed_integer (insn + offset, 4, byte_order, newrel);
1916 if (debug_displaced)
1917 fprintf_unfiltered (gdb_stdlog,
1918 "Adjusted insn rel32=%s at %s to"
1919 " rel32=%s at %s\n",
1920 hex_string (rel32), paddress (gdbarch, oldloc),
1921 hex_string (newrel), paddress (gdbarch, *to));
1922 }
1923
1924 /* Write the adjusted instruction into its displaced location. */
1925 append_insns (to, insn_length, buf);
1926 }
1927
1928 \f
1929 /* The maximum number of saved registers. This should include %rip. */
1930 #define AMD64_NUM_SAVED_REGS AMD64_NUM_GREGS
1931
1932 struct amd64_frame_cache
1933 {
1934 /* Base address. */
1935 CORE_ADDR base;
1936 int base_p;
1937 CORE_ADDR sp_offset;
1938 CORE_ADDR pc;
1939
1940 /* Saved registers. */
1941 CORE_ADDR saved_regs[AMD64_NUM_SAVED_REGS];
1942 CORE_ADDR saved_sp;
1943 int saved_sp_reg;
1944
1945 /* Do we have a frame? */
1946 int frameless_p;
1947 };
1948
1949 /* Initialize a frame cache. */
1950
1951 static void
1952 amd64_init_frame_cache (struct amd64_frame_cache *cache)
1953 {
1954 int i;
1955
1956 /* Base address. */
1957 cache->base = 0;
1958 cache->base_p = 0;
1959 cache->sp_offset = -8;
1960 cache->pc = 0;
1961
1962 /* Saved registers. We initialize these to -1 since zero is a valid
1963 offset (that's where %rbp is supposed to be stored).
1964 The values start out as being offsets, and are later converted to
1965 addresses (at which point -1 is interpreted as an address, still meaning
1966 "invalid"). */
1967 for (i = 0; i < AMD64_NUM_SAVED_REGS; i++)
1968 cache->saved_regs[i] = -1;
1969 cache->saved_sp = 0;
1970 cache->saved_sp_reg = -1;
1971
1972 /* Frameless until proven otherwise. */
1973 cache->frameless_p = 1;
1974 }
1975
1976 /* Allocate and initialize a frame cache. */
1977
1978 static struct amd64_frame_cache *
1979 amd64_alloc_frame_cache (void)
1980 {
1981 struct amd64_frame_cache *cache;
1982
1983 cache = FRAME_OBSTACK_ZALLOC (struct amd64_frame_cache);
1984 amd64_init_frame_cache (cache);
1985 return cache;
1986 }
1987
1988 /* GCC 4.4 and later, can put code in the prologue to realign the
1989 stack pointer. Check whether PC points to such code, and update
1990 CACHE accordingly. Return the first instruction after the code
1991 sequence or CURRENT_PC, whichever is smaller. If we don't
1992 recognize the code, return PC. */
1993
1994 static CORE_ADDR
1995 amd64_analyze_stack_align (CORE_ADDR pc, CORE_ADDR current_pc,
1996 struct amd64_frame_cache *cache)
1997 {
1998 /* There are 2 code sequences to re-align stack before the frame
1999 gets set up:
2000
2001 1. Use a caller-saved saved register:
2002
2003 leaq 8(%rsp), %reg
2004 andq $-XXX, %rsp
2005 pushq -8(%reg)
2006
2007 2. Use a callee-saved saved register:
2008
2009 pushq %reg
2010 leaq 16(%rsp), %reg
2011 andq $-XXX, %rsp
2012 pushq -8(%reg)
2013
2014 "andq $-XXX, %rsp" can be either 4 bytes or 7 bytes:
2015
2016 0x48 0x83 0xe4 0xf0 andq $-16, %rsp
2017 0x48 0x81 0xe4 0x00 0xff 0xff 0xff andq $-256, %rsp
2018 */
2019
2020 gdb_byte buf[18];
2021 int reg, r;
2022 int offset, offset_and;
2023
2024 if (target_read_code (pc, buf, sizeof buf))
2025 return pc;
2026
2027 /* Check caller-saved saved register. The first instruction has
2028 to be "leaq 8(%rsp), %reg". */
2029 if ((buf[0] & 0xfb) == 0x48
2030 && buf[1] == 0x8d
2031 && buf[3] == 0x24
2032 && buf[4] == 0x8)
2033 {
2034 /* MOD must be binary 10 and R/M must be binary 100. */
2035 if ((buf[2] & 0xc7) != 0x44)
2036 return pc;
2037
2038 /* REG has register number. */
2039 reg = (buf[2] >> 3) & 7;
2040
2041 /* Check the REX.R bit. */
2042 if (buf[0] == 0x4c)
2043 reg += 8;
2044
2045 offset = 5;
2046 }
2047 else
2048 {
2049 /* Check callee-saved saved register. The first instruction
2050 has to be "pushq %reg". */
2051 reg = 0;
2052 if ((buf[0] & 0xf8) == 0x50)
2053 offset = 0;
2054 else if ((buf[0] & 0xf6) == 0x40
2055 && (buf[1] & 0xf8) == 0x50)
2056 {
2057 /* Check the REX.B bit. */
2058 if ((buf[0] & 1) != 0)
2059 reg = 8;
2060
2061 offset = 1;
2062 }
2063 else
2064 return pc;
2065
2066 /* Get register. */
2067 reg += buf[offset] & 0x7;
2068
2069 offset++;
2070
2071 /* The next instruction has to be "leaq 16(%rsp), %reg". */
2072 if ((buf[offset] & 0xfb) != 0x48
2073 || buf[offset + 1] != 0x8d
2074 || buf[offset + 3] != 0x24
2075 || buf[offset + 4] != 0x10)
2076 return pc;
2077
2078 /* MOD must be binary 10 and R/M must be binary 100. */
2079 if ((buf[offset + 2] & 0xc7) != 0x44)
2080 return pc;
2081
2082 /* REG has register number. */
2083 r = (buf[offset + 2] >> 3) & 7;
2084
2085 /* Check the REX.R bit. */
2086 if (buf[offset] == 0x4c)
2087 r += 8;
2088
2089 /* Registers in pushq and leaq have to be the same. */
2090 if (reg != r)
2091 return pc;
2092
2093 offset += 5;
2094 }
2095
2096 /* Rigister can't be %rsp nor %rbp. */
2097 if (reg == 4 || reg == 5)
2098 return pc;
2099
2100 /* The next instruction has to be "andq $-XXX, %rsp". */
2101 if (buf[offset] != 0x48
2102 || buf[offset + 2] != 0xe4
2103 || (buf[offset + 1] != 0x81 && buf[offset + 1] != 0x83))
2104 return pc;
2105
2106 offset_and = offset;
2107 offset += buf[offset + 1] == 0x81 ? 7 : 4;
2108
2109 /* The next instruction has to be "pushq -8(%reg)". */
2110 r = 0;
2111 if (buf[offset] == 0xff)
2112 offset++;
2113 else if ((buf[offset] & 0xf6) == 0x40
2114 && buf[offset + 1] == 0xff)
2115 {
2116 /* Check the REX.B bit. */
2117 if ((buf[offset] & 0x1) != 0)
2118 r = 8;
2119 offset += 2;
2120 }
2121 else
2122 return pc;
2123
2124 /* 8bit -8 is 0xf8. REG must be binary 110 and MOD must be binary
2125 01. */
2126 if (buf[offset + 1] != 0xf8
2127 || (buf[offset] & 0xf8) != 0x70)
2128 return pc;
2129
2130 /* R/M has register. */
2131 r += buf[offset] & 7;
2132
2133 /* Registers in leaq and pushq have to be the same. */
2134 if (reg != r)
2135 return pc;
2136
2137 if (current_pc > pc + offset_and)
2138 cache->saved_sp_reg = amd64_arch_reg_to_regnum (reg);
2139
2140 return std::min (pc + offset + 2, current_pc);
2141 }
2142
2143 /* Similar to amd64_analyze_stack_align for x32. */
2144
2145 static CORE_ADDR
2146 amd64_x32_analyze_stack_align (CORE_ADDR pc, CORE_ADDR current_pc,
2147 struct amd64_frame_cache *cache)
2148 {
2149 /* There are 2 code sequences to re-align stack before the frame
2150 gets set up:
2151
2152 1. Use a caller-saved saved register:
2153
2154 leaq 8(%rsp), %reg
2155 andq $-XXX, %rsp
2156 pushq -8(%reg)
2157
2158 or
2159
2160 [addr32] leal 8(%rsp), %reg
2161 andl $-XXX, %esp
2162 [addr32] pushq -8(%reg)
2163
2164 2. Use a callee-saved saved register:
2165
2166 pushq %reg
2167 leaq 16(%rsp), %reg
2168 andq $-XXX, %rsp
2169 pushq -8(%reg)
2170
2171 or
2172
2173 pushq %reg
2174 [addr32] leal 16(%rsp), %reg
2175 andl $-XXX, %esp
2176 [addr32] pushq -8(%reg)
2177
2178 "andq $-XXX, %rsp" can be either 4 bytes or 7 bytes:
2179
2180 0x48 0x83 0xe4 0xf0 andq $-16, %rsp
2181 0x48 0x81 0xe4 0x00 0xff 0xff 0xff andq $-256, %rsp
2182
2183 "andl $-XXX, %esp" can be either 3 bytes or 6 bytes:
2184
2185 0x83 0xe4 0xf0 andl $-16, %esp
2186 0x81 0xe4 0x00 0xff 0xff 0xff andl $-256, %esp
2187 */
2188
2189 gdb_byte buf[19];
2190 int reg, r;
2191 int offset, offset_and;
2192
2193 if (target_read_memory (pc, buf, sizeof buf))
2194 return pc;
2195
2196 /* Skip optional addr32 prefix. */
2197 offset = buf[0] == 0x67 ? 1 : 0;
2198
2199 /* Check caller-saved saved register. The first instruction has
2200 to be "leaq 8(%rsp), %reg" or "leal 8(%rsp), %reg". */
2201 if (((buf[offset] & 0xfb) == 0x48 || (buf[offset] & 0xfb) == 0x40)
2202 && buf[offset + 1] == 0x8d
2203 && buf[offset + 3] == 0x24
2204 && buf[offset + 4] == 0x8)
2205 {
2206 /* MOD must be binary 10 and R/M must be binary 100. */
2207 if ((buf[offset + 2] & 0xc7) != 0x44)
2208 return pc;
2209
2210 /* REG has register number. */
2211 reg = (buf[offset + 2] >> 3) & 7;
2212
2213 /* Check the REX.R bit. */
2214 if ((buf[offset] & 0x4) != 0)
2215 reg += 8;
2216
2217 offset += 5;
2218 }
2219 else
2220 {
2221 /* Check callee-saved saved register. The first instruction
2222 has to be "pushq %reg". */
2223 reg = 0;
2224 if ((buf[offset] & 0xf6) == 0x40
2225 && (buf[offset + 1] & 0xf8) == 0x50)
2226 {
2227 /* Check the REX.B bit. */
2228 if ((buf[offset] & 1) != 0)
2229 reg = 8;
2230
2231 offset += 1;
2232 }
2233 else if ((buf[offset] & 0xf8) != 0x50)
2234 return pc;
2235
2236 /* Get register. */
2237 reg += buf[offset] & 0x7;
2238
2239 offset++;
2240
2241 /* Skip optional addr32 prefix. */
2242 if (buf[offset] == 0x67)
2243 offset++;
2244
2245 /* The next instruction has to be "leaq 16(%rsp), %reg" or
2246 "leal 16(%rsp), %reg". */
2247 if (((buf[offset] & 0xfb) != 0x48 && (buf[offset] & 0xfb) != 0x40)
2248 || buf[offset + 1] != 0x8d
2249 || buf[offset + 3] != 0x24
2250 || buf[offset + 4] != 0x10)
2251 return pc;
2252
2253 /* MOD must be binary 10 and R/M must be binary 100. */
2254 if ((buf[offset + 2] & 0xc7) != 0x44)
2255 return pc;
2256
2257 /* REG has register number. */
2258 r = (buf[offset + 2] >> 3) & 7;
2259
2260 /* Check the REX.R bit. */
2261 if ((buf[offset] & 0x4) != 0)
2262 r += 8;
2263
2264 /* Registers in pushq and leaq have to be the same. */
2265 if (reg != r)
2266 return pc;
2267
2268 offset += 5;
2269 }
2270
2271 /* Rigister can't be %rsp nor %rbp. */
2272 if (reg == 4 || reg == 5)
2273 return pc;
2274
2275 /* The next instruction may be "andq $-XXX, %rsp" or
2276 "andl $-XXX, %esp". */
2277 if (buf[offset] != 0x48)
2278 offset--;
2279
2280 if (buf[offset + 2] != 0xe4
2281 || (buf[offset + 1] != 0x81 && buf[offset + 1] != 0x83))
2282 return pc;
2283
2284 offset_and = offset;
2285 offset += buf[offset + 1] == 0x81 ? 7 : 4;
2286
2287 /* Skip optional addr32 prefix. */
2288 if (buf[offset] == 0x67)
2289 offset++;
2290
2291 /* The next instruction has to be "pushq -8(%reg)". */
2292 r = 0;
2293 if (buf[offset] == 0xff)
2294 offset++;
2295 else if ((buf[offset] & 0xf6) == 0x40
2296 && buf[offset + 1] == 0xff)
2297 {
2298 /* Check the REX.B bit. */
2299 if ((buf[offset] & 0x1) != 0)
2300 r = 8;
2301 offset += 2;
2302 }
2303 else
2304 return pc;
2305
2306 /* 8bit -8 is 0xf8. REG must be binary 110 and MOD must be binary
2307 01. */
2308 if (buf[offset + 1] != 0xf8
2309 || (buf[offset] & 0xf8) != 0x70)
2310 return pc;
2311
2312 /* R/M has register. */
2313 r += buf[offset] & 7;
2314
2315 /* Registers in leaq and pushq have to be the same. */
2316 if (reg != r)
2317 return pc;
2318
2319 if (current_pc > pc + offset_and)
2320 cache->saved_sp_reg = amd64_arch_reg_to_regnum (reg);
2321
2322 return std::min (pc + offset + 2, current_pc);
2323 }
2324
2325 /* Do a limited analysis of the prologue at PC and update CACHE
2326 accordingly. Bail out early if CURRENT_PC is reached. Return the
2327 address where the analysis stopped.
2328
2329 We will handle only functions beginning with:
2330
2331 pushq %rbp 0x55
2332 movq %rsp, %rbp 0x48 0x89 0xe5 (or 0x48 0x8b 0xec)
2333
2334 or (for the X32 ABI):
2335
2336 pushq %rbp 0x55
2337 movl %esp, %ebp 0x89 0xe5 (or 0x8b 0xec)
2338
2339 Any function that doesn't start with one of these sequences will be
2340 assumed to have no prologue and thus no valid frame pointer in
2341 %rbp. */
2342
2343 static CORE_ADDR
2344 amd64_analyze_prologue (struct gdbarch *gdbarch,
2345 CORE_ADDR pc, CORE_ADDR current_pc,
2346 struct amd64_frame_cache *cache)
2347 {
2348 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
2349 /* There are two variations of movq %rsp, %rbp. */
2350 static const gdb_byte mov_rsp_rbp_1[3] = { 0x48, 0x89, 0xe5 };
2351 static const gdb_byte mov_rsp_rbp_2[3] = { 0x48, 0x8b, 0xec };
2352 /* Ditto for movl %esp, %ebp. */
2353 static const gdb_byte mov_esp_ebp_1[2] = { 0x89, 0xe5 };
2354 static const gdb_byte mov_esp_ebp_2[2] = { 0x8b, 0xec };
2355
2356 gdb_byte buf[3];
2357 gdb_byte op;
2358
2359 if (current_pc <= pc)
2360 return current_pc;
2361
2362 if (gdbarch_ptr_bit (gdbarch) == 32)
2363 pc = amd64_x32_analyze_stack_align (pc, current_pc, cache);
2364 else
2365 pc = amd64_analyze_stack_align (pc, current_pc, cache);
2366
2367 op = read_code_unsigned_integer (pc, 1, byte_order);
2368
2369 if (op == 0x55) /* pushq %rbp */
2370 {
2371 /* Take into account that we've executed the `pushq %rbp' that
2372 starts this instruction sequence. */
2373 cache->saved_regs[AMD64_RBP_REGNUM] = 0;
2374 cache->sp_offset += 8;
2375
2376 /* If that's all, return now. */
2377 if (current_pc <= pc + 1)
2378 return current_pc;
2379
2380 read_code (pc + 1, buf, 3);
2381
2382 /* Check for `movq %rsp, %rbp'. */
2383 if (memcmp (buf, mov_rsp_rbp_1, 3) == 0
2384 || memcmp (buf, mov_rsp_rbp_2, 3) == 0)
2385 {
2386 /* OK, we actually have a frame. */
2387 cache->frameless_p = 0;
2388 return pc + 4;
2389 }
2390
2391 /* For X32, also check for `movq %esp, %ebp'. */
2392 if (gdbarch_ptr_bit (gdbarch) == 32)
2393 {
2394 if (memcmp (buf, mov_esp_ebp_1, 2) == 0
2395 || memcmp (buf, mov_esp_ebp_2, 2) == 0)
2396 {
2397 /* OK, we actually have a frame. */
2398 cache->frameless_p = 0;
2399 return pc + 3;
2400 }
2401 }
2402
2403 return pc + 1;
2404 }
2405
2406 return pc;
2407 }
2408
2409 /* Work around false termination of prologue - GCC PR debug/48827.
2410
2411 START_PC is the first instruction of a function, PC is its minimal already
2412 determined advanced address. Function returns PC if it has nothing to do.
2413
2414 84 c0 test %al,%al
2415 74 23 je after
2416 <-- here is 0 lines advance - the false prologue end marker.
2417 0f 29 85 70 ff ff ff movaps %xmm0,-0x90(%rbp)
2418 0f 29 4d 80 movaps %xmm1,-0x80(%rbp)
2419 0f 29 55 90 movaps %xmm2,-0x70(%rbp)
2420 0f 29 5d a0 movaps %xmm3,-0x60(%rbp)
2421 0f 29 65 b0 movaps %xmm4,-0x50(%rbp)
2422 0f 29 6d c0 movaps %xmm5,-0x40(%rbp)
2423 0f 29 75 d0 movaps %xmm6,-0x30(%rbp)
2424 0f 29 7d e0 movaps %xmm7,-0x20(%rbp)
2425 after: */
2426
2427 static CORE_ADDR
2428 amd64_skip_xmm_prologue (CORE_ADDR pc, CORE_ADDR start_pc)
2429 {
2430 struct symtab_and_line start_pc_sal, next_sal;
2431 gdb_byte buf[4 + 8 * 7];
2432 int offset, xmmreg;
2433
2434 if (pc == start_pc)
2435 return pc;
2436
2437 start_pc_sal = find_pc_sect_line (start_pc, NULL, 0);
2438 if (start_pc_sal.symtab == NULL
2439 || producer_is_gcc_ge_4 (COMPUNIT_PRODUCER
2440 (SYMTAB_COMPUNIT (start_pc_sal.symtab))) < 6
2441 || start_pc_sal.pc != start_pc || pc >= start_pc_sal.end)
2442 return pc;
2443
2444 next_sal = find_pc_sect_line (start_pc_sal.end, NULL, 0);
2445 if (next_sal.line != start_pc_sal.line)
2446 return pc;
2447
2448 /* START_PC can be from overlayed memory, ignored here. */
2449 if (target_read_code (next_sal.pc - 4, buf, sizeof (buf)) != 0)
2450 return pc;
2451
2452 /* test %al,%al */
2453 if (buf[0] != 0x84 || buf[1] != 0xc0)
2454 return pc;
2455 /* je AFTER */
2456 if (buf[2] != 0x74)
2457 return pc;
2458
2459 offset = 4;
2460 for (xmmreg = 0; xmmreg < 8; xmmreg++)
2461 {
2462 /* 0x0f 0x29 0b??000101 movaps %xmmreg?,-0x??(%rbp) */
2463 if (buf[offset] != 0x0f || buf[offset + 1] != 0x29
2464 || (buf[offset + 2] & 0x3f) != (xmmreg << 3 | 0x5))
2465 return pc;
2466
2467 /* 0b01?????? */
2468 if ((buf[offset + 2] & 0xc0) == 0x40)
2469 {
2470 /* 8-bit displacement. */
2471 offset += 4;
2472 }
2473 /* 0b10?????? */
2474 else if ((buf[offset + 2] & 0xc0) == 0x80)
2475 {
2476 /* 32-bit displacement. */
2477 offset += 7;
2478 }
2479 else
2480 return pc;
2481 }
2482
2483 /* je AFTER */
2484 if (offset - 4 != buf[3])
2485 return pc;
2486
2487 return next_sal.end;
2488 }
2489
2490 /* Return PC of first real instruction. */
2491
2492 static CORE_ADDR
2493 amd64_skip_prologue (struct gdbarch *gdbarch, CORE_ADDR start_pc)
2494 {
2495 struct amd64_frame_cache cache;
2496 CORE_ADDR pc;
2497 CORE_ADDR func_addr;
2498
2499 if (find_pc_partial_function (start_pc, NULL, &func_addr, NULL))
2500 {
2501 CORE_ADDR post_prologue_pc
2502 = skip_prologue_using_sal (gdbarch, func_addr);
2503 struct compunit_symtab *cust = find_pc_compunit_symtab (func_addr);
2504
2505 /* Clang always emits a line note before the prologue and another
2506 one after. We trust clang to emit usable line notes. */
2507 if (post_prologue_pc
2508 && (cust != NULL
2509 && COMPUNIT_PRODUCER (cust) != NULL
2510 && startswith (COMPUNIT_PRODUCER (cust), "clang ")))
2511 return std::max (start_pc, post_prologue_pc);
2512 }
2513
2514 amd64_init_frame_cache (&cache);
2515 pc = amd64_analyze_prologue (gdbarch, start_pc, 0xffffffffffffffffLL,
2516 &cache);
2517 if (cache.frameless_p)
2518 return start_pc;
2519
2520 return amd64_skip_xmm_prologue (pc, start_pc);
2521 }
2522 \f
2523
2524 /* Normal frames. */
2525
2526 static void
2527 amd64_frame_cache_1 (struct frame_info *this_frame,
2528 struct amd64_frame_cache *cache)
2529 {
2530 struct gdbarch *gdbarch = get_frame_arch (this_frame);
2531 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
2532 gdb_byte buf[8];
2533 int i;
2534
2535 cache->pc = get_frame_func (this_frame);
2536 if (cache->pc != 0)
2537 amd64_analyze_prologue (gdbarch, cache->pc, get_frame_pc (this_frame),
2538 cache);
2539
2540 if (cache->frameless_p)
2541 {
2542 /* We didn't find a valid frame. If we're at the start of a
2543 function, or somewhere half-way its prologue, the function's
2544 frame probably hasn't been fully setup yet. Try to
2545 reconstruct the base address for the stack frame by looking
2546 at the stack pointer. For truly "frameless" functions this
2547 might work too. */
2548
2549 if (cache->saved_sp_reg != -1)
2550 {
2551 /* Stack pointer has been saved. */
2552 get_frame_register (this_frame, cache->saved_sp_reg, buf);
2553 cache->saved_sp = extract_unsigned_integer (buf, 8, byte_order);
2554
2555 /* We're halfway aligning the stack. */
2556 cache->base = ((cache->saved_sp - 8) & 0xfffffffffffffff0LL) - 8;
2557 cache->saved_regs[AMD64_RIP_REGNUM] = cache->saved_sp - 8;
2558
2559 /* This will be added back below. */
2560 cache->saved_regs[AMD64_RIP_REGNUM] -= cache->base;
2561 }
2562 else
2563 {
2564 get_frame_register (this_frame, AMD64_RSP_REGNUM, buf);
2565 cache->base = extract_unsigned_integer (buf, 8, byte_order)
2566 + cache->sp_offset;
2567 }
2568 }
2569 else
2570 {
2571 get_frame_register (this_frame, AMD64_RBP_REGNUM, buf);
2572 cache->base = extract_unsigned_integer (buf, 8, byte_order);
2573 }
2574
2575 /* Now that we have the base address for the stack frame we can
2576 calculate the value of %rsp in the calling frame. */
2577 cache->saved_sp = cache->base + 16;
2578
2579 /* For normal frames, %rip is stored at 8(%rbp). If we don't have a
2580 frame we find it at the same offset from the reconstructed base
2581 address. If we're halfway aligning the stack, %rip is handled
2582 differently (see above). */
2583 if (!cache->frameless_p || cache->saved_sp_reg == -1)
2584 cache->saved_regs[AMD64_RIP_REGNUM] = 8;
2585
2586 /* Adjust all the saved registers such that they contain addresses
2587 instead of offsets. */
2588 for (i = 0; i < AMD64_NUM_SAVED_REGS; i++)
2589 if (cache->saved_regs[i] != -1)
2590 cache->saved_regs[i] += cache->base;
2591
2592 cache->base_p = 1;
2593 }
2594
2595 static struct amd64_frame_cache *
2596 amd64_frame_cache (struct frame_info *this_frame, void **this_cache)
2597 {
2598 struct amd64_frame_cache *cache;
2599
2600 if (*this_cache)
2601 return (struct amd64_frame_cache *) *this_cache;
2602
2603 cache = amd64_alloc_frame_cache ();
2604 *this_cache = cache;
2605
2606 try
2607 {
2608 amd64_frame_cache_1 (this_frame, cache);
2609 }
2610 catch (const gdb_exception_error &ex)
2611 {
2612 if (ex.error != NOT_AVAILABLE_ERROR)
2613 throw;
2614 }
2615
2616 return cache;
2617 }
2618
2619 static enum unwind_stop_reason
2620 amd64_frame_unwind_stop_reason (struct frame_info *this_frame,
2621 void **this_cache)
2622 {
2623 struct amd64_frame_cache *cache =
2624 amd64_frame_cache (this_frame, this_cache);
2625
2626 if (!cache->base_p)
2627 return UNWIND_UNAVAILABLE;
2628
2629 /* This marks the outermost frame. */
2630 if (cache->base == 0)
2631 return UNWIND_OUTERMOST;
2632
2633 return UNWIND_NO_REASON;
2634 }
2635
2636 static void
2637 amd64_frame_this_id (struct frame_info *this_frame, void **this_cache,
2638 struct frame_id *this_id)
2639 {
2640 struct amd64_frame_cache *cache =
2641 amd64_frame_cache (this_frame, this_cache);
2642
2643 if (!cache->base_p)
2644 (*this_id) = frame_id_build_unavailable_stack (cache->pc);
2645 else if (cache->base == 0)
2646 {
2647 /* This marks the outermost frame. */
2648 return;
2649 }
2650 else
2651 (*this_id) = frame_id_build (cache->base + 16, cache->pc);
2652 }
2653
2654 static struct value *
2655 amd64_frame_prev_register (struct frame_info *this_frame, void **this_cache,
2656 int regnum)
2657 {
2658 struct gdbarch *gdbarch = get_frame_arch (this_frame);
2659 struct amd64_frame_cache *cache =
2660 amd64_frame_cache (this_frame, this_cache);
2661
2662 gdb_assert (regnum >= 0);
2663
2664 if (regnum == gdbarch_sp_regnum (gdbarch) && cache->saved_sp)
2665 return frame_unwind_got_constant (this_frame, regnum, cache->saved_sp);
2666
2667 if (regnum < AMD64_NUM_SAVED_REGS && cache->saved_regs[regnum] != -1)
2668 return frame_unwind_got_memory (this_frame, regnum,
2669 cache->saved_regs[regnum]);
2670
2671 return frame_unwind_got_register (this_frame, regnum, regnum);
2672 }
2673
2674 static const struct frame_unwind amd64_frame_unwind =
2675 {
2676 NORMAL_FRAME,
2677 amd64_frame_unwind_stop_reason,
2678 amd64_frame_this_id,
2679 amd64_frame_prev_register,
2680 NULL,
2681 default_frame_sniffer
2682 };
2683 \f
2684 /* Generate a bytecode expression to get the value of the saved PC. */
2685
2686 static void
2687 amd64_gen_return_address (struct gdbarch *gdbarch,
2688 struct agent_expr *ax, struct axs_value *value,
2689 CORE_ADDR scope)
2690 {
2691 /* The following sequence assumes the traditional use of the base
2692 register. */
2693 ax_reg (ax, AMD64_RBP_REGNUM);
2694 ax_const_l (ax, 8);
2695 ax_simple (ax, aop_add);
2696 value->type = register_type (gdbarch, AMD64_RIP_REGNUM);
2697 value->kind = axs_lvalue_memory;
2698 }
2699 \f
2700
2701 /* Signal trampolines. */
2702
2703 /* FIXME: kettenis/20030419: Perhaps, we can unify the 32-bit and
2704 64-bit variants. This would require using identical frame caches
2705 on both platforms. */
2706
2707 static struct amd64_frame_cache *
2708 amd64_sigtramp_frame_cache (struct frame_info *this_frame, void **this_cache)
2709 {
2710 struct gdbarch *gdbarch = get_frame_arch (this_frame);
2711 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2712 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
2713 struct amd64_frame_cache *cache;
2714 CORE_ADDR addr;
2715 gdb_byte buf[8];
2716 int i;
2717
2718 if (*this_cache)
2719 return (struct amd64_frame_cache *) *this_cache;
2720
2721 cache = amd64_alloc_frame_cache ();
2722
2723 try
2724 {
2725 get_frame_register (this_frame, AMD64_RSP_REGNUM, buf);
2726 cache->base = extract_unsigned_integer (buf, 8, byte_order) - 8;
2727
2728 addr = tdep->sigcontext_addr (this_frame);
2729 gdb_assert (tdep->sc_reg_offset);
2730 gdb_assert (tdep->sc_num_regs <= AMD64_NUM_SAVED_REGS);
2731 for (i = 0; i < tdep->sc_num_regs; i++)
2732 if (tdep->sc_reg_offset[i] != -1)
2733 cache->saved_regs[i] = addr + tdep->sc_reg_offset[i];
2734
2735 cache->base_p = 1;
2736 }
2737 catch (const gdb_exception_error &ex)
2738 {
2739 if (ex.error != NOT_AVAILABLE_ERROR)
2740 throw;
2741 }
2742
2743 *this_cache = cache;
2744 return cache;
2745 }
2746
2747 static enum unwind_stop_reason
2748 amd64_sigtramp_frame_unwind_stop_reason (struct frame_info *this_frame,
2749 void **this_cache)
2750 {
2751 struct amd64_frame_cache *cache =
2752 amd64_sigtramp_frame_cache (this_frame, this_cache);
2753
2754 if (!cache->base_p)
2755 return UNWIND_UNAVAILABLE;
2756
2757 return UNWIND_NO_REASON;
2758 }
2759
2760 static void
2761 amd64_sigtramp_frame_this_id (struct frame_info *this_frame,
2762 void **this_cache, struct frame_id *this_id)
2763 {
2764 struct amd64_frame_cache *cache =
2765 amd64_sigtramp_frame_cache (this_frame, this_cache);
2766
2767 if (!cache->base_p)
2768 (*this_id) = frame_id_build_unavailable_stack (get_frame_pc (this_frame));
2769 else if (cache->base == 0)
2770 {
2771 /* This marks the outermost frame. */
2772 return;
2773 }
2774 else
2775 (*this_id) = frame_id_build (cache->base + 16, get_frame_pc (this_frame));
2776 }
2777
2778 static struct value *
2779 amd64_sigtramp_frame_prev_register (struct frame_info *this_frame,
2780 void **this_cache, int regnum)
2781 {
2782 /* Make sure we've initialized the cache. */
2783 amd64_sigtramp_frame_cache (this_frame, this_cache);
2784
2785 return amd64_frame_prev_register (this_frame, this_cache, regnum);
2786 }
2787
2788 static int
2789 amd64_sigtramp_frame_sniffer (const struct frame_unwind *self,
2790 struct frame_info *this_frame,
2791 void **this_cache)
2792 {
2793 struct gdbarch_tdep *tdep = gdbarch_tdep (get_frame_arch (this_frame));
2794
2795 /* We shouldn't even bother if we don't have a sigcontext_addr
2796 handler. */
2797 if (tdep->sigcontext_addr == NULL)
2798 return 0;
2799
2800 if (tdep->sigtramp_p != NULL)
2801 {
2802 if (tdep->sigtramp_p (this_frame))
2803 return 1;
2804 }
2805
2806 if (tdep->sigtramp_start != 0)
2807 {
2808 CORE_ADDR pc = get_frame_pc (this_frame);
2809
2810 gdb_assert (tdep->sigtramp_end != 0);
2811 if (pc >= tdep->sigtramp_start && pc < tdep->sigtramp_end)
2812 return 1;
2813 }
2814
2815 return 0;
2816 }
2817
2818 static const struct frame_unwind amd64_sigtramp_frame_unwind =
2819 {
2820 SIGTRAMP_FRAME,
2821 amd64_sigtramp_frame_unwind_stop_reason,
2822 amd64_sigtramp_frame_this_id,
2823 amd64_sigtramp_frame_prev_register,
2824 NULL,
2825 amd64_sigtramp_frame_sniffer
2826 };
2827 \f
2828
2829 static CORE_ADDR
2830 amd64_frame_base_address (struct frame_info *this_frame, void **this_cache)
2831 {
2832 struct amd64_frame_cache *cache =
2833 amd64_frame_cache (this_frame, this_cache);
2834
2835 return cache->base;
2836 }
2837
2838 static const struct frame_base amd64_frame_base =
2839 {
2840 &amd64_frame_unwind,
2841 amd64_frame_base_address,
2842 amd64_frame_base_address,
2843 amd64_frame_base_address
2844 };
2845
2846 /* Normal frames, but in a function epilogue. */
2847
2848 /* Implement the stack_frame_destroyed_p gdbarch method.
2849
2850 The epilogue is defined here as the 'ret' instruction, which will
2851 follow any instruction such as 'leave' or 'pop %ebp' that destroys
2852 the function's stack frame. */
2853
2854 static int
2855 amd64_stack_frame_destroyed_p (struct gdbarch *gdbarch, CORE_ADDR pc)
2856 {
2857 gdb_byte insn;
2858 struct compunit_symtab *cust;
2859
2860 cust = find_pc_compunit_symtab (pc);
2861 if (cust != NULL && COMPUNIT_EPILOGUE_UNWIND_VALID (cust))
2862 return 0;
2863
2864 if (target_read_memory (pc, &insn, 1))
2865 return 0; /* Can't read memory at pc. */
2866
2867 if (insn != 0xc3) /* 'ret' instruction. */
2868 return 0;
2869
2870 return 1;
2871 }
2872
2873 static int
2874 amd64_epilogue_frame_sniffer (const struct frame_unwind *self,
2875 struct frame_info *this_frame,
2876 void **this_prologue_cache)
2877 {
2878 if (frame_relative_level (this_frame) == 0)
2879 return amd64_stack_frame_destroyed_p (get_frame_arch (this_frame),
2880 get_frame_pc (this_frame));
2881 else
2882 return 0;
2883 }
2884
2885 static struct amd64_frame_cache *
2886 amd64_epilogue_frame_cache (struct frame_info *this_frame, void **this_cache)
2887 {
2888 struct gdbarch *gdbarch = get_frame_arch (this_frame);
2889 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
2890 struct amd64_frame_cache *cache;
2891 gdb_byte buf[8];
2892
2893 if (*this_cache)
2894 return (struct amd64_frame_cache *) *this_cache;
2895
2896 cache = amd64_alloc_frame_cache ();
2897 *this_cache = cache;
2898
2899 try
2900 {
2901 /* Cache base will be %esp plus cache->sp_offset (-8). */
2902 get_frame_register (this_frame, AMD64_RSP_REGNUM, buf);
2903 cache->base = extract_unsigned_integer (buf, 8,
2904 byte_order) + cache->sp_offset;
2905
2906 /* Cache pc will be the frame func. */
2907 cache->pc = get_frame_pc (this_frame);
2908
2909 /* The saved %esp will be at cache->base plus 16. */
2910 cache->saved_sp = cache->base + 16;
2911
2912 /* The saved %eip will be at cache->base plus 8. */
2913 cache->saved_regs[AMD64_RIP_REGNUM] = cache->base + 8;
2914
2915 cache->base_p = 1;
2916 }
2917 catch (const gdb_exception_error &ex)
2918 {
2919 if (ex.error != NOT_AVAILABLE_ERROR)
2920 throw;
2921 }
2922
2923 return cache;
2924 }
2925
2926 static enum unwind_stop_reason
2927 amd64_epilogue_frame_unwind_stop_reason (struct frame_info *this_frame,
2928 void **this_cache)
2929 {
2930 struct amd64_frame_cache *cache
2931 = amd64_epilogue_frame_cache (this_frame, this_cache);
2932
2933 if (!cache->base_p)
2934 return UNWIND_UNAVAILABLE;
2935
2936 return UNWIND_NO_REASON;
2937 }
2938
2939 static void
2940 amd64_epilogue_frame_this_id (struct frame_info *this_frame,
2941 void **this_cache,
2942 struct frame_id *this_id)
2943 {
2944 struct amd64_frame_cache *cache = amd64_epilogue_frame_cache (this_frame,
2945 this_cache);
2946
2947 if (!cache->base_p)
2948 (*this_id) = frame_id_build_unavailable_stack (cache->pc);
2949 else
2950 (*this_id) = frame_id_build (cache->base + 8, cache->pc);
2951 }
2952
2953 static const struct frame_unwind amd64_epilogue_frame_unwind =
2954 {
2955 NORMAL_FRAME,
2956 amd64_epilogue_frame_unwind_stop_reason,
2957 amd64_epilogue_frame_this_id,
2958 amd64_frame_prev_register,
2959 NULL,
2960 amd64_epilogue_frame_sniffer
2961 };
2962
2963 static struct frame_id
2964 amd64_dummy_id (struct gdbarch *gdbarch, struct frame_info *this_frame)
2965 {
2966 CORE_ADDR fp;
2967
2968 fp = get_frame_register_unsigned (this_frame, AMD64_RBP_REGNUM);
2969
2970 return frame_id_build (fp + 16, get_frame_pc (this_frame));
2971 }
2972
2973 /* 16 byte align the SP per frame requirements. */
2974
2975 static CORE_ADDR
2976 amd64_frame_align (struct gdbarch *gdbarch, CORE_ADDR sp)
2977 {
2978 return sp & -(CORE_ADDR)16;
2979 }
2980 \f
2981
2982 /* Supply register REGNUM from the buffer specified by FPREGS and LEN
2983 in the floating-point register set REGSET to register cache
2984 REGCACHE. If REGNUM is -1, do this for all registers in REGSET. */
2985
2986 static void
2987 amd64_supply_fpregset (const struct regset *regset, struct regcache *regcache,
2988 int regnum, const void *fpregs, size_t len)
2989 {
2990 struct gdbarch *gdbarch = regcache->arch ();
2991 const struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2992
2993 gdb_assert (len >= tdep->sizeof_fpregset);
2994 amd64_supply_fxsave (regcache, regnum, fpregs);
2995 }
2996
2997 /* Collect register REGNUM from the register cache REGCACHE and store
2998 it in the buffer specified by FPREGS and LEN as described by the
2999 floating-point register set REGSET. If REGNUM is -1, do this for
3000 all registers in REGSET. */
3001
3002 static void
3003 amd64_collect_fpregset (const struct regset *regset,
3004 const struct regcache *regcache,
3005 int regnum, void *fpregs, size_t len)
3006 {
3007 struct gdbarch *gdbarch = regcache->arch ();
3008 const struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3009
3010 gdb_assert (len >= tdep->sizeof_fpregset);
3011 amd64_collect_fxsave (regcache, regnum, fpregs);
3012 }
3013
3014 const struct regset amd64_fpregset =
3015 {
3016 NULL, amd64_supply_fpregset, amd64_collect_fpregset
3017 };
3018 \f
3019
3020 /* Figure out where the longjmp will land. Slurp the jmp_buf out of
3021 %rdi. We expect its value to be a pointer to the jmp_buf structure
3022 from which we extract the address that we will land at. This
3023 address is copied into PC. This routine returns non-zero on
3024 success. */
3025
3026 static int
3027 amd64_get_longjmp_target (struct frame_info *frame, CORE_ADDR *pc)
3028 {
3029 gdb_byte buf[8];
3030 CORE_ADDR jb_addr;
3031 struct gdbarch *gdbarch = get_frame_arch (frame);
3032 int jb_pc_offset = gdbarch_tdep (gdbarch)->jb_pc_offset;
3033 int len = TYPE_LENGTH (builtin_type (gdbarch)->builtin_func_ptr);
3034
3035 /* If JB_PC_OFFSET is -1, we have no way to find out where the
3036 longjmp will land. */
3037 if (jb_pc_offset == -1)
3038 return 0;
3039
3040 get_frame_register (frame, AMD64_RDI_REGNUM, buf);
3041 jb_addr= extract_typed_address
3042 (buf, builtin_type (gdbarch)->builtin_data_ptr);
3043 if (target_read_memory (jb_addr + jb_pc_offset, buf, len))
3044 return 0;
3045
3046 *pc = extract_typed_address (buf, builtin_type (gdbarch)->builtin_func_ptr);
3047
3048 return 1;
3049 }
3050
3051 static const int amd64_record_regmap[] =
3052 {
3053 AMD64_RAX_REGNUM, AMD64_RCX_REGNUM, AMD64_RDX_REGNUM, AMD64_RBX_REGNUM,
3054 AMD64_RSP_REGNUM, AMD64_RBP_REGNUM, AMD64_RSI_REGNUM, AMD64_RDI_REGNUM,
3055 AMD64_R8_REGNUM, AMD64_R9_REGNUM, AMD64_R10_REGNUM, AMD64_R11_REGNUM,
3056 AMD64_R12_REGNUM, AMD64_R13_REGNUM, AMD64_R14_REGNUM, AMD64_R15_REGNUM,
3057 AMD64_RIP_REGNUM, AMD64_EFLAGS_REGNUM, AMD64_CS_REGNUM, AMD64_SS_REGNUM,
3058 AMD64_DS_REGNUM, AMD64_ES_REGNUM, AMD64_FS_REGNUM, AMD64_GS_REGNUM
3059 };
3060
3061 /* Implement the "in_indirect_branch_thunk" gdbarch function. */
3062
3063 static bool
3064 amd64_in_indirect_branch_thunk (struct gdbarch *gdbarch, CORE_ADDR pc)
3065 {
3066 return x86_in_indirect_branch_thunk (pc, amd64_register_names,
3067 AMD64_RAX_REGNUM,
3068 AMD64_RIP_REGNUM);
3069 }
3070
3071 void
3072 amd64_init_abi (struct gdbarch_info info, struct gdbarch *gdbarch,
3073 const target_desc *default_tdesc)
3074 {
3075 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3076 const struct target_desc *tdesc = info.target_desc;
3077 static const char *const stap_integer_prefixes[] = { "$", NULL };
3078 static const char *const stap_register_prefixes[] = { "%", NULL };
3079 static const char *const stap_register_indirection_prefixes[] = { "(",
3080 NULL };
3081 static const char *const stap_register_indirection_suffixes[] = { ")",
3082 NULL };
3083
3084 /* AMD64 generally uses `fxsave' instead of `fsave' for saving its
3085 floating-point registers. */
3086 tdep->sizeof_fpregset = I387_SIZEOF_FXSAVE;
3087 tdep->fpregset = &amd64_fpregset;
3088
3089 if (! tdesc_has_registers (tdesc))
3090 tdesc = default_tdesc;
3091 tdep->tdesc = tdesc;
3092
3093 tdep->num_core_regs = AMD64_NUM_GREGS + I387_NUM_REGS;
3094 tdep->register_names = amd64_register_names;
3095
3096 if (tdesc_find_feature (tdesc, "org.gnu.gdb.i386.avx512") != NULL)
3097 {
3098 tdep->zmmh_register_names = amd64_zmmh_names;
3099 tdep->k_register_names = amd64_k_names;
3100 tdep->xmm_avx512_register_names = amd64_xmm_avx512_names;
3101 tdep->ymm16h_register_names = amd64_ymmh_avx512_names;
3102
3103 tdep->num_zmm_regs = 32;
3104 tdep->num_xmm_avx512_regs = 16;
3105 tdep->num_ymm_avx512_regs = 16;
3106
3107 tdep->zmm0h_regnum = AMD64_ZMM0H_REGNUM;
3108 tdep->k0_regnum = AMD64_K0_REGNUM;
3109 tdep->xmm16_regnum = AMD64_XMM16_REGNUM;
3110 tdep->ymm16h_regnum = AMD64_YMM16H_REGNUM;
3111 }
3112
3113 if (tdesc_find_feature (tdesc, "org.gnu.gdb.i386.avx") != NULL)
3114 {
3115 tdep->ymmh_register_names = amd64_ymmh_names;
3116 tdep->num_ymm_regs = 16;
3117 tdep->ymm0h_regnum = AMD64_YMM0H_REGNUM;
3118 }
3119
3120 if (tdesc_find_feature (tdesc, "org.gnu.gdb.i386.mpx") != NULL)
3121 {
3122 tdep->mpx_register_names = amd64_mpx_names;
3123 tdep->bndcfgu_regnum = AMD64_BNDCFGU_REGNUM;
3124 tdep->bnd0r_regnum = AMD64_BND0R_REGNUM;
3125 }
3126
3127 if (tdesc_find_feature (tdesc, "org.gnu.gdb.i386.segments") != NULL)
3128 {
3129 tdep->fsbase_regnum = AMD64_FSBASE_REGNUM;
3130 }
3131
3132 if (tdesc_find_feature (tdesc, "org.gnu.gdb.i386.pkeys") != NULL)
3133 {
3134 tdep->pkeys_register_names = amd64_pkeys_names;
3135 tdep->pkru_regnum = AMD64_PKRU_REGNUM;
3136 tdep->num_pkeys_regs = 1;
3137 }
3138
3139 tdep->num_byte_regs = 20;
3140 tdep->num_word_regs = 16;
3141 tdep->num_dword_regs = 16;
3142 /* Avoid wiring in the MMX registers for now. */
3143 tdep->num_mmx_regs = 0;
3144
3145 set_gdbarch_pseudo_register_read_value (gdbarch,
3146 amd64_pseudo_register_read_value);
3147 set_gdbarch_pseudo_register_write (gdbarch,
3148 amd64_pseudo_register_write);
3149 set_gdbarch_ax_pseudo_register_collect (gdbarch,
3150 amd64_ax_pseudo_register_collect);
3151
3152 set_tdesc_pseudo_register_name (gdbarch, amd64_pseudo_register_name);
3153
3154 /* AMD64 has an FPU and 16 SSE registers. */
3155 tdep->st0_regnum = AMD64_ST0_REGNUM;
3156 tdep->num_xmm_regs = 16;
3157
3158 /* This is what all the fuss is about. */
3159 set_gdbarch_long_bit (gdbarch, 64);
3160 set_gdbarch_long_long_bit (gdbarch, 64);
3161 set_gdbarch_ptr_bit (gdbarch, 64);
3162
3163 /* In contrast to the i386, on AMD64 a `long double' actually takes
3164 up 128 bits, even though it's still based on the i387 extended
3165 floating-point format which has only 80 significant bits. */
3166 set_gdbarch_long_double_bit (gdbarch, 128);
3167
3168 set_gdbarch_num_regs (gdbarch, AMD64_NUM_REGS);
3169
3170 /* Register numbers of various important registers. */
3171 set_gdbarch_sp_regnum (gdbarch, AMD64_RSP_REGNUM); /* %rsp */
3172 set_gdbarch_pc_regnum (gdbarch, AMD64_RIP_REGNUM); /* %rip */
3173 set_gdbarch_ps_regnum (gdbarch, AMD64_EFLAGS_REGNUM); /* %eflags */
3174 set_gdbarch_fp0_regnum (gdbarch, AMD64_ST0_REGNUM); /* %st(0) */
3175
3176 /* The "default" register numbering scheme for AMD64 is referred to
3177 as the "DWARF Register Number Mapping" in the System V psABI.
3178 The preferred debugging format for all known AMD64 targets is
3179 actually DWARF2, and GCC doesn't seem to support DWARF (that is
3180 DWARF-1), but we provide the same mapping just in case. This
3181 mapping is also used for stabs, which GCC does support. */
3182 set_gdbarch_stab_reg_to_regnum (gdbarch, amd64_dwarf_reg_to_regnum);
3183 set_gdbarch_dwarf2_reg_to_regnum (gdbarch, amd64_dwarf_reg_to_regnum);
3184
3185 /* We don't override SDB_REG_RO_REGNUM, since COFF doesn't seem to
3186 be in use on any of the supported AMD64 targets. */
3187
3188 /* Call dummy code. */
3189 set_gdbarch_push_dummy_call (gdbarch, amd64_push_dummy_call);
3190 set_gdbarch_frame_align (gdbarch, amd64_frame_align);
3191 set_gdbarch_frame_red_zone_size (gdbarch, 128);
3192
3193 set_gdbarch_convert_register_p (gdbarch, i387_convert_register_p);
3194 set_gdbarch_register_to_value (gdbarch, i387_register_to_value);
3195 set_gdbarch_value_to_register (gdbarch, i387_value_to_register);
3196
3197 set_gdbarch_return_value (gdbarch, amd64_return_value);
3198
3199 set_gdbarch_skip_prologue (gdbarch, amd64_skip_prologue);
3200
3201 tdep->record_regmap = amd64_record_regmap;
3202
3203 set_gdbarch_dummy_id (gdbarch, amd64_dummy_id);
3204
3205 /* Hook the function epilogue frame unwinder. This unwinder is
3206 appended to the list first, so that it supercedes the other
3207 unwinders in function epilogues. */
3208 frame_unwind_prepend_unwinder (gdbarch, &amd64_epilogue_frame_unwind);
3209
3210 /* Hook the prologue-based frame unwinders. */
3211 frame_unwind_append_unwinder (gdbarch, &amd64_sigtramp_frame_unwind);
3212 frame_unwind_append_unwinder (gdbarch, &amd64_frame_unwind);
3213 frame_base_set_default (gdbarch, &amd64_frame_base);
3214
3215 set_gdbarch_get_longjmp_target (gdbarch, amd64_get_longjmp_target);
3216
3217 set_gdbarch_relocate_instruction (gdbarch, amd64_relocate_instruction);
3218
3219 set_gdbarch_gen_return_address (gdbarch, amd64_gen_return_address);
3220
3221 /* SystemTap variables and functions. */
3222 set_gdbarch_stap_integer_prefixes (gdbarch, stap_integer_prefixes);
3223 set_gdbarch_stap_register_prefixes (gdbarch, stap_register_prefixes);
3224 set_gdbarch_stap_register_indirection_prefixes (gdbarch,
3225 stap_register_indirection_prefixes);
3226 set_gdbarch_stap_register_indirection_suffixes (gdbarch,
3227 stap_register_indirection_suffixes);
3228 set_gdbarch_stap_is_single_operand (gdbarch,
3229 i386_stap_is_single_operand);
3230 set_gdbarch_stap_parse_special_token (gdbarch,
3231 i386_stap_parse_special_token);
3232 set_gdbarch_insn_is_call (gdbarch, amd64_insn_is_call);
3233 set_gdbarch_insn_is_ret (gdbarch, amd64_insn_is_ret);
3234 set_gdbarch_insn_is_jump (gdbarch, amd64_insn_is_jump);
3235
3236 set_gdbarch_in_indirect_branch_thunk (gdbarch,
3237 amd64_in_indirect_branch_thunk);
3238 }
3239
3240 /* Initialize ARCH for x86-64, no osabi. */
3241
3242 static void
3243 amd64_none_init_abi (gdbarch_info info, gdbarch *arch)
3244 {
3245 amd64_init_abi (info, arch, amd64_target_description (X86_XSTATE_SSE_MASK,
3246 true));
3247 }
3248
3249 static struct type *
3250 amd64_x32_pseudo_register_type (struct gdbarch *gdbarch, int regnum)
3251 {
3252 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3253
3254 switch (regnum - tdep->eax_regnum)
3255 {
3256 case AMD64_RBP_REGNUM: /* %ebp */
3257 case AMD64_RSP_REGNUM: /* %esp */
3258 return builtin_type (gdbarch)->builtin_data_ptr;
3259 case AMD64_RIP_REGNUM: /* %eip */
3260 return builtin_type (gdbarch)->builtin_func_ptr;
3261 }
3262
3263 return i386_pseudo_register_type (gdbarch, regnum);
3264 }
3265
3266 void
3267 amd64_x32_init_abi (struct gdbarch_info info, struct gdbarch *gdbarch,
3268 const target_desc *default_tdesc)
3269 {
3270 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3271
3272 amd64_init_abi (info, gdbarch, default_tdesc);
3273
3274 tdep->num_dword_regs = 17;
3275 set_tdesc_pseudo_register_type (gdbarch, amd64_x32_pseudo_register_type);
3276
3277 set_gdbarch_long_bit (gdbarch, 32);
3278 set_gdbarch_ptr_bit (gdbarch, 32);
3279 }
3280
3281 /* Initialize ARCH for x64-32, no osabi. */
3282
3283 static void
3284 amd64_x32_none_init_abi (gdbarch_info info, gdbarch *arch)
3285 {
3286 amd64_x32_init_abi (info, arch,
3287 amd64_target_description (X86_XSTATE_SSE_MASK, true));
3288 }
3289
3290 /* Return the target description for a specified XSAVE feature mask. */
3291
3292 const struct target_desc *
3293 amd64_target_description (uint64_t xcr0, bool segments)
3294 {
3295 static target_desc *amd64_tdescs \
3296 [2/*AVX*/][2/*MPX*/][2/*AVX512*/][2/*PKRU*/][2/*segments*/] = {};
3297 target_desc **tdesc;
3298
3299 tdesc = &amd64_tdescs[(xcr0 & X86_XSTATE_AVX) ? 1 : 0]
3300 [(xcr0 & X86_XSTATE_MPX) ? 1 : 0]
3301 [(xcr0 & X86_XSTATE_AVX512) ? 1 : 0]
3302 [(xcr0 & X86_XSTATE_PKRU) ? 1 : 0]
3303 [segments ? 1 : 0];
3304
3305 if (*tdesc == NULL)
3306 *tdesc = amd64_create_target_description (xcr0, false, false,
3307 segments);
3308
3309 return *tdesc;
3310 }
3311
3312 void
3313 _initialize_amd64_tdep (void)
3314 {
3315 gdbarch_register_osabi (bfd_arch_i386, bfd_mach_x86_64, GDB_OSABI_NONE,
3316 amd64_none_init_abi);
3317 gdbarch_register_osabi (bfd_arch_i386, bfd_mach_x64_32, GDB_OSABI_NONE,
3318 amd64_x32_none_init_abi);
3319
3320 #if GDB_SELF_TEST
3321 struct
3322 {
3323 const char *xml;
3324 uint64_t mask;
3325 } xml_masks[] = {
3326 { "i386/amd64.xml", X86_XSTATE_SSE_MASK },
3327 { "i386/amd64-avx.xml", X86_XSTATE_AVX_MASK },
3328 { "i386/amd64-mpx.xml", X86_XSTATE_MPX_MASK },
3329 { "i386/amd64-avx-mpx.xml", X86_XSTATE_AVX_MPX_MASK },
3330 { "i386/amd64-avx-avx512.xml", X86_XSTATE_AVX_AVX512_MASK },
3331 { "i386/amd64-avx-mpx-avx512-pku.xml",
3332 X86_XSTATE_AVX_MPX_AVX512_PKU_MASK },
3333 };
3334
3335 for (auto &a : xml_masks)
3336 {
3337 auto tdesc = amd64_target_description (a.mask, true);
3338
3339 selftests::record_xml_tdesc (a.xml, tdesc);
3340 }
3341 #endif /* GDB_SELF_TEST */
3342 }
3343 \f
3344
3345 /* The 64-bit FXSAVE format differs from the 32-bit format in the
3346 sense that the instruction pointer and data pointer are simply
3347 64-bit offsets into the code segment and the data segment instead
3348 of a selector offset pair. The functions below store the upper 32
3349 bits of these pointers (instead of just the 16-bits of the segment
3350 selector). */
3351
3352 /* Fill register REGNUM in REGCACHE with the appropriate
3353 floating-point or SSE register value from *FXSAVE. If REGNUM is
3354 -1, do this for all registers. This function masks off any of the
3355 reserved bits in *FXSAVE. */
3356
3357 void
3358 amd64_supply_fxsave (struct regcache *regcache, int regnum,
3359 const void *fxsave)
3360 {
3361 struct gdbarch *gdbarch = regcache->arch ();
3362 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3363
3364 i387_supply_fxsave (regcache, regnum, fxsave);
3365
3366 if (fxsave
3367 && gdbarch_bfd_arch_info (gdbarch)->bits_per_word == 64)
3368 {
3369 const gdb_byte *regs = (const gdb_byte *) fxsave;
3370
3371 if (regnum == -1 || regnum == I387_FISEG_REGNUM (tdep))
3372 regcache->raw_supply (I387_FISEG_REGNUM (tdep), regs + 12);
3373 if (regnum == -1 || regnum == I387_FOSEG_REGNUM (tdep))
3374 regcache->raw_supply (I387_FOSEG_REGNUM (tdep), regs + 20);
3375 }
3376 }
3377
3378 /* Similar to amd64_supply_fxsave, but use XSAVE extended state. */
3379
3380 void
3381 amd64_supply_xsave (struct regcache *regcache, int regnum,
3382 const void *xsave)
3383 {
3384 struct gdbarch *gdbarch = regcache->arch ();
3385 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3386
3387 i387_supply_xsave (regcache, regnum, xsave);
3388
3389 if (xsave
3390 && gdbarch_bfd_arch_info (gdbarch)->bits_per_word == 64)
3391 {
3392 const gdb_byte *regs = (const gdb_byte *) xsave;
3393 ULONGEST clear_bv;
3394
3395 clear_bv = i387_xsave_get_clear_bv (gdbarch, xsave);
3396
3397 /* If the FISEG and FOSEG registers have not been initialised yet
3398 (their CLEAR_BV bit is set) then their default values of zero will
3399 have already been setup by I387_SUPPLY_XSAVE. */
3400 if (!(clear_bv & X86_XSTATE_X87))
3401 {
3402 if (regnum == -1 || regnum == I387_FISEG_REGNUM (tdep))
3403 regcache->raw_supply (I387_FISEG_REGNUM (tdep), regs + 12);
3404 if (regnum == -1 || regnum == I387_FOSEG_REGNUM (tdep))
3405 regcache->raw_supply (I387_FOSEG_REGNUM (tdep), regs + 20);
3406 }
3407 }
3408 }
3409
3410 /* Fill register REGNUM (if it is a floating-point or SSE register) in
3411 *FXSAVE with the value from REGCACHE. If REGNUM is -1, do this for
3412 all registers. This function doesn't touch any of the reserved
3413 bits in *FXSAVE. */
3414
3415 void
3416 amd64_collect_fxsave (const struct regcache *regcache, int regnum,
3417 void *fxsave)
3418 {
3419 struct gdbarch *gdbarch = regcache->arch ();
3420 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3421 gdb_byte *regs = (gdb_byte *) fxsave;
3422
3423 i387_collect_fxsave (regcache, regnum, fxsave);
3424
3425 if (gdbarch_bfd_arch_info (gdbarch)->bits_per_word == 64)
3426 {
3427 if (regnum == -1 || regnum == I387_FISEG_REGNUM (tdep))
3428 regcache->raw_collect (I387_FISEG_REGNUM (tdep), regs + 12);
3429 if (regnum == -1 || regnum == I387_FOSEG_REGNUM (tdep))
3430 regcache->raw_collect (I387_FOSEG_REGNUM (tdep), regs + 20);
3431 }
3432 }
3433
3434 /* Similar to amd64_collect_fxsave, but use XSAVE extended state. */
3435
3436 void
3437 amd64_collect_xsave (const struct regcache *regcache, int regnum,
3438 void *xsave, int gcore)
3439 {
3440 struct gdbarch *gdbarch = regcache->arch ();
3441 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3442 gdb_byte *regs = (gdb_byte *) xsave;
3443
3444 i387_collect_xsave (regcache, regnum, xsave, gcore);
3445
3446 if (gdbarch_bfd_arch_info (gdbarch)->bits_per_word == 64)
3447 {
3448 if (regnum == -1 || regnum == I387_FISEG_REGNUM (tdep))
3449 regcache->raw_collect (I387_FISEG_REGNUM (tdep),
3450 regs + 12);
3451 if (regnum == -1 || regnum == I387_FOSEG_REGNUM (tdep))
3452 regcache->raw_collect (I387_FOSEG_REGNUM (tdep),
3453 regs + 20);
3454 }
3455 }
This page took 0.104139 seconds and 5 git commands to generate.