gdb/
[deliverable/binutils-gdb.git] / gdb / amd64-tdep.c
1 /* Target-dependent code for AMD64.
2
3 Copyright (C) 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009, 2010,
4 2011 Free Software Foundation, Inc.
5
6 Contributed by Jiri Smid, SuSE Labs.
7
8 This file is part of GDB.
9
10 This program is free software; you can redistribute it and/or modify
11 it under the terms of the GNU General Public License as published by
12 the Free Software Foundation; either version 3 of the License, or
13 (at your option) any later version.
14
15 This program is distributed in the hope that it will be useful,
16 but WITHOUT ANY WARRANTY; without even the implied warranty of
17 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
18 GNU General Public License for more details.
19
20 You should have received a copy of the GNU General Public License
21 along with this program. If not, see <http://www.gnu.org/licenses/>. */
22
23 #include "defs.h"
24 #include "opcode/i386.h"
25 #include "dis-asm.h"
26 #include "arch-utils.h"
27 #include "block.h"
28 #include "dummy-frame.h"
29 #include "frame.h"
30 #include "frame-base.h"
31 #include "frame-unwind.h"
32 #include "inferior.h"
33 #include "gdbcmd.h"
34 #include "gdbcore.h"
35 #include "objfiles.h"
36 #include "regcache.h"
37 #include "regset.h"
38 #include "symfile.h"
39 #include "disasm.h"
40 #include "gdb_assert.h"
41 #include "exceptions.h"
42 #include "amd64-tdep.h"
43 #include "i387-tdep.h"
44
45 #include "features/i386/amd64.c"
46 #include "features/i386/amd64-avx.c"
47
48 #include "ax.h"
49 #include "ax-gdb.h"
50
51 /* Note that the AMD64 architecture was previously known as x86-64.
52 The latter is (forever) engraved into the canonical system name as
53 returned by config.guess, and used as the name for the AMD64 port
54 of GNU/Linux. The BSD's have renamed their ports to amd64; they
55 don't like to shout. For GDB we prefer the amd64_-prefix over the
56 x86_64_-prefix since it's so much easier to type. */
57
58 /* Register information. */
59
60 static const char *amd64_register_names[] =
61 {
62 "rax", "rbx", "rcx", "rdx", "rsi", "rdi", "rbp", "rsp",
63
64 /* %r8 is indeed register number 8. */
65 "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15",
66 "rip", "eflags", "cs", "ss", "ds", "es", "fs", "gs",
67
68 /* %st0 is register number 24. */
69 "st0", "st1", "st2", "st3", "st4", "st5", "st6", "st7",
70 "fctrl", "fstat", "ftag", "fiseg", "fioff", "foseg", "fooff", "fop",
71
72 /* %xmm0 is register number 40. */
73 "xmm0", "xmm1", "xmm2", "xmm3", "xmm4", "xmm5", "xmm6", "xmm7",
74 "xmm8", "xmm9", "xmm10", "xmm11", "xmm12", "xmm13", "xmm14", "xmm15",
75 "mxcsr",
76 };
77
78 static const char *amd64_ymm_names[] =
79 {
80 "ymm0", "ymm1", "ymm2", "ymm3",
81 "ymm4", "ymm5", "ymm6", "ymm7",
82 "ymm8", "ymm9", "ymm10", "ymm11",
83 "ymm12", "ymm13", "ymm14", "ymm15"
84 };
85
86 static const char *amd64_ymmh_names[] =
87 {
88 "ymm0h", "ymm1h", "ymm2h", "ymm3h",
89 "ymm4h", "ymm5h", "ymm6h", "ymm7h",
90 "ymm8h", "ymm9h", "ymm10h", "ymm11h",
91 "ymm12h", "ymm13h", "ymm14h", "ymm15h"
92 };
93
94 /* The registers used to pass integer arguments during a function call. */
95 static int amd64_dummy_call_integer_regs[] =
96 {
97 AMD64_RDI_REGNUM, /* %rdi */
98 AMD64_RSI_REGNUM, /* %rsi */
99 AMD64_RDX_REGNUM, /* %rdx */
100 AMD64_RCX_REGNUM, /* %rcx */
101 8, /* %r8 */
102 9 /* %r9 */
103 };
104
105 /* DWARF Register Number Mapping as defined in the System V psABI,
106 section 3.6. */
107
108 static int amd64_dwarf_regmap[] =
109 {
110 /* General Purpose Registers RAX, RDX, RCX, RBX, RSI, RDI. */
111 AMD64_RAX_REGNUM, AMD64_RDX_REGNUM,
112 AMD64_RCX_REGNUM, AMD64_RBX_REGNUM,
113 AMD64_RSI_REGNUM, AMD64_RDI_REGNUM,
114
115 /* Frame Pointer Register RBP. */
116 AMD64_RBP_REGNUM,
117
118 /* Stack Pointer Register RSP. */
119 AMD64_RSP_REGNUM,
120
121 /* Extended Integer Registers 8 - 15. */
122 8, 9, 10, 11, 12, 13, 14, 15,
123
124 /* Return Address RA. Mapped to RIP. */
125 AMD64_RIP_REGNUM,
126
127 /* SSE Registers 0 - 7. */
128 AMD64_XMM0_REGNUM + 0, AMD64_XMM1_REGNUM,
129 AMD64_XMM0_REGNUM + 2, AMD64_XMM0_REGNUM + 3,
130 AMD64_XMM0_REGNUM + 4, AMD64_XMM0_REGNUM + 5,
131 AMD64_XMM0_REGNUM + 6, AMD64_XMM0_REGNUM + 7,
132
133 /* Extended SSE Registers 8 - 15. */
134 AMD64_XMM0_REGNUM + 8, AMD64_XMM0_REGNUM + 9,
135 AMD64_XMM0_REGNUM + 10, AMD64_XMM0_REGNUM + 11,
136 AMD64_XMM0_REGNUM + 12, AMD64_XMM0_REGNUM + 13,
137 AMD64_XMM0_REGNUM + 14, AMD64_XMM0_REGNUM + 15,
138
139 /* Floating Point Registers 0-7. */
140 AMD64_ST0_REGNUM + 0, AMD64_ST0_REGNUM + 1,
141 AMD64_ST0_REGNUM + 2, AMD64_ST0_REGNUM + 3,
142 AMD64_ST0_REGNUM + 4, AMD64_ST0_REGNUM + 5,
143 AMD64_ST0_REGNUM + 6, AMD64_ST0_REGNUM + 7,
144
145 /* Control and Status Flags Register. */
146 AMD64_EFLAGS_REGNUM,
147
148 /* Selector Registers. */
149 AMD64_ES_REGNUM,
150 AMD64_CS_REGNUM,
151 AMD64_SS_REGNUM,
152 AMD64_DS_REGNUM,
153 AMD64_FS_REGNUM,
154 AMD64_GS_REGNUM,
155 -1,
156 -1,
157
158 /* Segment Base Address Registers. */
159 -1,
160 -1,
161 -1,
162 -1,
163
164 /* Special Selector Registers. */
165 -1,
166 -1,
167
168 /* Floating Point Control Registers. */
169 AMD64_MXCSR_REGNUM,
170 AMD64_FCTRL_REGNUM,
171 AMD64_FSTAT_REGNUM
172 };
173
174 static const int amd64_dwarf_regmap_len =
175 (sizeof (amd64_dwarf_regmap) / sizeof (amd64_dwarf_regmap[0]));
176
177 /* Convert DWARF register number REG to the appropriate register
178 number used by GDB. */
179
180 static int
181 amd64_dwarf_reg_to_regnum (struct gdbarch *gdbarch, int reg)
182 {
183 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
184 int ymm0_regnum = tdep->ymm0_regnum;
185 int regnum = -1;
186
187 if (reg >= 0 && reg < amd64_dwarf_regmap_len)
188 regnum = amd64_dwarf_regmap[reg];
189
190 if (regnum == -1)
191 warning (_("Unmapped DWARF Register #%d encountered."), reg);
192 else if (ymm0_regnum >= 0
193 && i386_xmm_regnum_p (gdbarch, regnum))
194 regnum += ymm0_regnum - I387_XMM0_REGNUM (tdep);
195
196 return regnum;
197 }
198
199 /* Map architectural register numbers to gdb register numbers. */
200
201 static const int amd64_arch_regmap[16] =
202 {
203 AMD64_RAX_REGNUM, /* %rax */
204 AMD64_RCX_REGNUM, /* %rcx */
205 AMD64_RDX_REGNUM, /* %rdx */
206 AMD64_RBX_REGNUM, /* %rbx */
207 AMD64_RSP_REGNUM, /* %rsp */
208 AMD64_RBP_REGNUM, /* %rbp */
209 AMD64_RSI_REGNUM, /* %rsi */
210 AMD64_RDI_REGNUM, /* %rdi */
211 AMD64_R8_REGNUM, /* %r8 */
212 AMD64_R9_REGNUM, /* %r9 */
213 AMD64_R10_REGNUM, /* %r10 */
214 AMD64_R11_REGNUM, /* %r11 */
215 AMD64_R12_REGNUM, /* %r12 */
216 AMD64_R13_REGNUM, /* %r13 */
217 AMD64_R14_REGNUM, /* %r14 */
218 AMD64_R15_REGNUM /* %r15 */
219 };
220
221 static const int amd64_arch_regmap_len =
222 (sizeof (amd64_arch_regmap) / sizeof (amd64_arch_regmap[0]));
223
224 /* Convert architectural register number REG to the appropriate register
225 number used by GDB. */
226
227 static int
228 amd64_arch_reg_to_regnum (int reg)
229 {
230 gdb_assert (reg >= 0 && reg < amd64_arch_regmap_len);
231
232 return amd64_arch_regmap[reg];
233 }
234
235 /* Register names for byte pseudo-registers. */
236
237 static const char *amd64_byte_names[] =
238 {
239 "al", "bl", "cl", "dl", "sil", "dil", "bpl", "spl",
240 "r8l", "r9l", "r10l", "r11l", "r12l", "r13l", "r14l", "r15l",
241 "ah", "bh", "ch", "dh"
242 };
243
244 /* Number of lower byte registers. */
245 #define AMD64_NUM_LOWER_BYTE_REGS 16
246
247 /* Register names for word pseudo-registers. */
248
249 static const char *amd64_word_names[] =
250 {
251 "ax", "bx", "cx", "dx", "si", "di", "bp", "",
252 "r8w", "r9w", "r10w", "r11w", "r12w", "r13w", "r14w", "r15w"
253 };
254
255 /* Register names for dword pseudo-registers. */
256
257 static const char *amd64_dword_names[] =
258 {
259 "eax", "ebx", "ecx", "edx", "esi", "edi", "ebp", "esp",
260 "r8d", "r9d", "r10d", "r11d", "r12d", "r13d", "r14d", "r15d"
261 };
262
263 /* Return the name of register REGNUM. */
264
265 static const char *
266 amd64_pseudo_register_name (struct gdbarch *gdbarch, int regnum)
267 {
268 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
269 if (i386_byte_regnum_p (gdbarch, regnum))
270 return amd64_byte_names[regnum - tdep->al_regnum];
271 else if (i386_ymm_regnum_p (gdbarch, regnum))
272 return amd64_ymm_names[regnum - tdep->ymm0_regnum];
273 else if (i386_word_regnum_p (gdbarch, regnum))
274 return amd64_word_names[regnum - tdep->ax_regnum];
275 else if (i386_dword_regnum_p (gdbarch, regnum))
276 return amd64_dword_names[regnum - tdep->eax_regnum];
277 else
278 return i386_pseudo_register_name (gdbarch, regnum);
279 }
280
281 static struct value *
282 amd64_pseudo_register_read_value (struct gdbarch *gdbarch,
283 struct regcache *regcache,
284 int regnum)
285 {
286 gdb_byte raw_buf[MAX_REGISTER_SIZE];
287 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
288 enum register_status status;
289 struct value *result_value;
290 gdb_byte *buf;
291
292 result_value = allocate_value (register_type (gdbarch, regnum));
293 VALUE_LVAL (result_value) = lval_register;
294 VALUE_REGNUM (result_value) = regnum;
295 buf = value_contents_raw (result_value);
296
297 if (i386_byte_regnum_p (gdbarch, regnum))
298 {
299 int gpnum = regnum - tdep->al_regnum;
300
301 /* Extract (always little endian). */
302 if (gpnum >= AMD64_NUM_LOWER_BYTE_REGS)
303 {
304 /* Special handling for AH, BH, CH, DH. */
305 status = regcache_raw_read (regcache,
306 gpnum - AMD64_NUM_LOWER_BYTE_REGS,
307 raw_buf);
308 if (status == REG_VALID)
309 memcpy (buf, raw_buf + 1, 1);
310 else
311 mark_value_bytes_unavailable (result_value, 0,
312 TYPE_LENGTH (value_type (result_value)));
313 }
314 else
315 {
316 status = regcache_raw_read (regcache, gpnum, raw_buf);
317 if (status == REG_VALID)
318 memcpy (buf, raw_buf, 1);
319 else
320 mark_value_bytes_unavailable (result_value, 0,
321 TYPE_LENGTH (value_type (result_value)));
322 }
323 }
324 else if (i386_dword_regnum_p (gdbarch, regnum))
325 {
326 int gpnum = regnum - tdep->eax_regnum;
327 /* Extract (always little endian). */
328 status = regcache_raw_read (regcache, gpnum, raw_buf);
329 if (status == REG_VALID)
330 memcpy (buf, raw_buf, 4);
331 else
332 mark_value_bytes_unavailable (result_value, 0,
333 TYPE_LENGTH (value_type (result_value)));
334 }
335 else
336 i386_pseudo_register_read_into_value (gdbarch, regcache, regnum,
337 result_value);
338
339 return result_value;
340 }
341
342 static void
343 amd64_pseudo_register_write (struct gdbarch *gdbarch,
344 struct regcache *regcache,
345 int regnum, const gdb_byte *buf)
346 {
347 gdb_byte raw_buf[MAX_REGISTER_SIZE];
348 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
349
350 if (i386_byte_regnum_p (gdbarch, regnum))
351 {
352 int gpnum = regnum - tdep->al_regnum;
353
354 if (gpnum >= AMD64_NUM_LOWER_BYTE_REGS)
355 {
356 /* Read ... AH, BH, CH, DH. */
357 regcache_raw_read (regcache,
358 gpnum - AMD64_NUM_LOWER_BYTE_REGS, raw_buf);
359 /* ... Modify ... (always little endian). */
360 memcpy (raw_buf + 1, buf, 1);
361 /* ... Write. */
362 regcache_raw_write (regcache,
363 gpnum - AMD64_NUM_LOWER_BYTE_REGS, raw_buf);
364 }
365 else
366 {
367 /* Read ... */
368 regcache_raw_read (regcache, gpnum, raw_buf);
369 /* ... Modify ... (always little endian). */
370 memcpy (raw_buf, buf, 1);
371 /* ... Write. */
372 regcache_raw_write (regcache, gpnum, raw_buf);
373 }
374 }
375 else if (i386_dword_regnum_p (gdbarch, regnum))
376 {
377 int gpnum = regnum - tdep->eax_regnum;
378
379 /* Read ... */
380 regcache_raw_read (regcache, gpnum, raw_buf);
381 /* ... Modify ... (always little endian). */
382 memcpy (raw_buf, buf, 4);
383 /* ... Write. */
384 regcache_raw_write (regcache, gpnum, raw_buf);
385 }
386 else
387 i386_pseudo_register_write (gdbarch, regcache, regnum, buf);
388 }
389
390 \f
391
392 /* Return the union class of CLASS1 and CLASS2. See the psABI for
393 details. */
394
395 static enum amd64_reg_class
396 amd64_merge_classes (enum amd64_reg_class class1, enum amd64_reg_class class2)
397 {
398 /* Rule (a): If both classes are equal, this is the resulting class. */
399 if (class1 == class2)
400 return class1;
401
402 /* Rule (b): If one of the classes is NO_CLASS, the resulting class
403 is the other class. */
404 if (class1 == AMD64_NO_CLASS)
405 return class2;
406 if (class2 == AMD64_NO_CLASS)
407 return class1;
408
409 /* Rule (c): If one of the classes is MEMORY, the result is MEMORY. */
410 if (class1 == AMD64_MEMORY || class2 == AMD64_MEMORY)
411 return AMD64_MEMORY;
412
413 /* Rule (d): If one of the classes is INTEGER, the result is INTEGER. */
414 if (class1 == AMD64_INTEGER || class2 == AMD64_INTEGER)
415 return AMD64_INTEGER;
416
417 /* Rule (e): If one of the classes is X87, X87UP, COMPLEX_X87 class,
418 MEMORY is used as class. */
419 if (class1 == AMD64_X87 || class1 == AMD64_X87UP
420 || class1 == AMD64_COMPLEX_X87 || class2 == AMD64_X87
421 || class2 == AMD64_X87UP || class2 == AMD64_COMPLEX_X87)
422 return AMD64_MEMORY;
423
424 /* Rule (f): Otherwise class SSE is used. */
425 return AMD64_SSE;
426 }
427
428 /* Return non-zero if TYPE is a non-POD structure or union type. */
429
430 static int
431 amd64_non_pod_p (struct type *type)
432 {
433 /* ??? A class with a base class certainly isn't POD, but does this
434 catch all non-POD structure types? */
435 if (TYPE_CODE (type) == TYPE_CODE_STRUCT && TYPE_N_BASECLASSES (type) > 0)
436 return 1;
437
438 return 0;
439 }
440
441 /* Classify TYPE according to the rules for aggregate (structures and
442 arrays) and union types, and store the result in CLASS. */
443
444 static void
445 amd64_classify_aggregate (struct type *type, enum amd64_reg_class class[2])
446 {
447 int len = TYPE_LENGTH (type);
448
449 /* 1. If the size of an object is larger than two eightbytes, or in
450 C++, is a non-POD structure or union type, or contains
451 unaligned fields, it has class memory. */
452 if (len > 16 || amd64_non_pod_p (type))
453 {
454 class[0] = class[1] = AMD64_MEMORY;
455 return;
456 }
457
458 /* 2. Both eightbytes get initialized to class NO_CLASS. */
459 class[0] = class[1] = AMD64_NO_CLASS;
460
461 /* 3. Each field of an object is classified recursively so that
462 always two fields are considered. The resulting class is
463 calculated according to the classes of the fields in the
464 eightbyte: */
465
466 if (TYPE_CODE (type) == TYPE_CODE_ARRAY)
467 {
468 struct type *subtype = check_typedef (TYPE_TARGET_TYPE (type));
469
470 /* All fields in an array have the same type. */
471 amd64_classify (subtype, class);
472 if (len > 8 && class[1] == AMD64_NO_CLASS)
473 class[1] = class[0];
474 }
475 else
476 {
477 int i;
478
479 /* Structure or union. */
480 gdb_assert (TYPE_CODE (type) == TYPE_CODE_STRUCT
481 || TYPE_CODE (type) == TYPE_CODE_UNION);
482
483 for (i = 0; i < TYPE_NFIELDS (type); i++)
484 {
485 struct type *subtype = check_typedef (TYPE_FIELD_TYPE (type, i));
486 int pos = TYPE_FIELD_BITPOS (type, i) / 64;
487 enum amd64_reg_class subclass[2];
488 int bitsize = TYPE_FIELD_BITSIZE (type, i);
489 int endpos;
490
491 if (bitsize == 0)
492 bitsize = TYPE_LENGTH (subtype) * 8;
493 endpos = (TYPE_FIELD_BITPOS (type, i) + bitsize - 1) / 64;
494
495 /* Ignore static fields. */
496 if (field_is_static (&TYPE_FIELD (type, i)))
497 continue;
498
499 gdb_assert (pos == 0 || pos == 1);
500
501 amd64_classify (subtype, subclass);
502 class[pos] = amd64_merge_classes (class[pos], subclass[0]);
503 if (bitsize <= 64 && pos == 0 && endpos == 1)
504 /* This is a bit of an odd case: We have a field that would
505 normally fit in one of the two eightbytes, except that
506 it is placed in a way that this field straddles them.
507 This has been seen with a structure containing an array.
508
509 The ABI is a bit unclear in this case, but we assume that
510 this field's class (stored in subclass[0]) must also be merged
511 into class[1]. In other words, our field has a piece stored
512 in the second eight-byte, and thus its class applies to
513 the second eight-byte as well.
514
515 In the case where the field length exceeds 8 bytes,
516 it should not be necessary to merge the field class
517 into class[1]. As LEN > 8, subclass[1] is necessarily
518 different from AMD64_NO_CLASS. If subclass[1] is equal
519 to subclass[0], then the normal class[1]/subclass[1]
520 merging will take care of everything. For subclass[1]
521 to be different from subclass[0], I can only see the case
522 where we have a SSE/SSEUP or X87/X87UP pair, which both
523 use up all 16 bytes of the aggregate, and are already
524 handled just fine (because each portion sits on its own
525 8-byte). */
526 class[1] = amd64_merge_classes (class[1], subclass[0]);
527 if (pos == 0)
528 class[1] = amd64_merge_classes (class[1], subclass[1]);
529 }
530 }
531
532 /* 4. Then a post merger cleanup is done: */
533
534 /* Rule (a): If one of the classes is MEMORY, the whole argument is
535 passed in memory. */
536 if (class[0] == AMD64_MEMORY || class[1] == AMD64_MEMORY)
537 class[0] = class[1] = AMD64_MEMORY;
538
539 /* Rule (b): If SSEUP is not preceded by SSE, it is converted to
540 SSE. */
541 if (class[0] == AMD64_SSEUP)
542 class[0] = AMD64_SSE;
543 if (class[1] == AMD64_SSEUP && class[0] != AMD64_SSE)
544 class[1] = AMD64_SSE;
545 }
546
547 /* Classify TYPE, and store the result in CLASS. */
548
549 void
550 amd64_classify (struct type *type, enum amd64_reg_class class[2])
551 {
552 enum type_code code = TYPE_CODE (type);
553 int len = TYPE_LENGTH (type);
554
555 class[0] = class[1] = AMD64_NO_CLASS;
556
557 /* Arguments of types (signed and unsigned) _Bool, char, short, int,
558 long, long long, and pointers are in the INTEGER class. Similarly,
559 range types, used by languages such as Ada, are also in the INTEGER
560 class. */
561 if ((code == TYPE_CODE_INT || code == TYPE_CODE_ENUM
562 || code == TYPE_CODE_BOOL || code == TYPE_CODE_RANGE
563 || code == TYPE_CODE_CHAR
564 || code == TYPE_CODE_PTR || code == TYPE_CODE_REF)
565 && (len == 1 || len == 2 || len == 4 || len == 8))
566 class[0] = AMD64_INTEGER;
567
568 /* Arguments of types float, double, _Decimal32, _Decimal64 and __m64
569 are in class SSE. */
570 else if ((code == TYPE_CODE_FLT || code == TYPE_CODE_DECFLOAT)
571 && (len == 4 || len == 8))
572 /* FIXME: __m64 . */
573 class[0] = AMD64_SSE;
574
575 /* Arguments of types __float128, _Decimal128 and __m128 are split into
576 two halves. The least significant ones belong to class SSE, the most
577 significant one to class SSEUP. */
578 else if (code == TYPE_CODE_DECFLOAT && len == 16)
579 /* FIXME: __float128, __m128. */
580 class[0] = AMD64_SSE, class[1] = AMD64_SSEUP;
581
582 /* The 64-bit mantissa of arguments of type long double belongs to
583 class X87, the 16-bit exponent plus 6 bytes of padding belongs to
584 class X87UP. */
585 else if (code == TYPE_CODE_FLT && len == 16)
586 /* Class X87 and X87UP. */
587 class[0] = AMD64_X87, class[1] = AMD64_X87UP;
588
589 /* Aggregates. */
590 else if (code == TYPE_CODE_ARRAY || code == TYPE_CODE_STRUCT
591 || code == TYPE_CODE_UNION)
592 amd64_classify_aggregate (type, class);
593 }
594
595 static enum return_value_convention
596 amd64_return_value (struct gdbarch *gdbarch, struct type *func_type,
597 struct type *type, struct regcache *regcache,
598 gdb_byte *readbuf, const gdb_byte *writebuf)
599 {
600 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
601 enum amd64_reg_class class[2];
602 int len = TYPE_LENGTH (type);
603 static int integer_regnum[] = { AMD64_RAX_REGNUM, AMD64_RDX_REGNUM };
604 static int sse_regnum[] = { AMD64_XMM0_REGNUM, AMD64_XMM1_REGNUM };
605 int integer_reg = 0;
606 int sse_reg = 0;
607 int i;
608
609 gdb_assert (!(readbuf && writebuf));
610 gdb_assert (tdep->classify);
611
612 /* 1. Classify the return type with the classification algorithm. */
613 tdep->classify (type, class);
614
615 /* 2. If the type has class MEMORY, then the caller provides space
616 for the return value and passes the address of this storage in
617 %rdi as if it were the first argument to the function. In effect,
618 this address becomes a hidden first argument.
619
620 On return %rax will contain the address that has been passed in
621 by the caller in %rdi. */
622 if (class[0] == AMD64_MEMORY)
623 {
624 /* As indicated by the comment above, the ABI guarantees that we
625 can always find the return value just after the function has
626 returned. */
627
628 if (readbuf)
629 {
630 ULONGEST addr;
631
632 regcache_raw_read_unsigned (regcache, AMD64_RAX_REGNUM, &addr);
633 read_memory (addr, readbuf, TYPE_LENGTH (type));
634 }
635
636 return RETURN_VALUE_ABI_RETURNS_ADDRESS;
637 }
638
639 gdb_assert (class[1] != AMD64_MEMORY);
640 gdb_assert (len <= 16);
641
642 for (i = 0; len > 0; i++, len -= 8)
643 {
644 int regnum = -1;
645 int offset = 0;
646
647 switch (class[i])
648 {
649 case AMD64_INTEGER:
650 /* 3. If the class is INTEGER, the next available register
651 of the sequence %rax, %rdx is used. */
652 regnum = integer_regnum[integer_reg++];
653 break;
654
655 case AMD64_SSE:
656 /* 4. If the class is SSE, the next available SSE register
657 of the sequence %xmm0, %xmm1 is used. */
658 regnum = sse_regnum[sse_reg++];
659 break;
660
661 case AMD64_SSEUP:
662 /* 5. If the class is SSEUP, the eightbyte is passed in the
663 upper half of the last used SSE register. */
664 gdb_assert (sse_reg > 0);
665 regnum = sse_regnum[sse_reg - 1];
666 offset = 8;
667 break;
668
669 case AMD64_X87:
670 /* 6. If the class is X87, the value is returned on the X87
671 stack in %st0 as 80-bit x87 number. */
672 regnum = AMD64_ST0_REGNUM;
673 if (writebuf)
674 i387_return_value (gdbarch, regcache);
675 break;
676
677 case AMD64_X87UP:
678 /* 7. If the class is X87UP, the value is returned together
679 with the previous X87 value in %st0. */
680 gdb_assert (i > 0 && class[0] == AMD64_X87);
681 regnum = AMD64_ST0_REGNUM;
682 offset = 8;
683 len = 2;
684 break;
685
686 case AMD64_NO_CLASS:
687 continue;
688
689 default:
690 gdb_assert (!"Unexpected register class.");
691 }
692
693 gdb_assert (regnum != -1);
694
695 if (readbuf)
696 regcache_raw_read_part (regcache, regnum, offset, min (len, 8),
697 readbuf + i * 8);
698 if (writebuf)
699 regcache_raw_write_part (regcache, regnum, offset, min (len, 8),
700 writebuf + i * 8);
701 }
702
703 return RETURN_VALUE_REGISTER_CONVENTION;
704 }
705 \f
706
707 static CORE_ADDR
708 amd64_push_arguments (struct regcache *regcache, int nargs,
709 struct value **args, CORE_ADDR sp, int struct_return)
710 {
711 struct gdbarch *gdbarch = get_regcache_arch (regcache);
712 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
713 int *integer_regs = tdep->call_dummy_integer_regs;
714 int num_integer_regs = tdep->call_dummy_num_integer_regs;
715
716 static int sse_regnum[] =
717 {
718 /* %xmm0 ... %xmm7 */
719 AMD64_XMM0_REGNUM + 0, AMD64_XMM1_REGNUM,
720 AMD64_XMM0_REGNUM + 2, AMD64_XMM0_REGNUM + 3,
721 AMD64_XMM0_REGNUM + 4, AMD64_XMM0_REGNUM + 5,
722 AMD64_XMM0_REGNUM + 6, AMD64_XMM0_REGNUM + 7,
723 };
724 struct value **stack_args = alloca (nargs * sizeof (struct value *));
725 /* An array that mirrors the stack_args array. For all arguments
726 that are passed by MEMORY, if that argument's address also needs
727 to be stored in a register, the ARG_ADDR_REGNO array will contain
728 that register number (or a negative value otherwise). */
729 int *arg_addr_regno = alloca (nargs * sizeof (int));
730 int num_stack_args = 0;
731 int num_elements = 0;
732 int element = 0;
733 int integer_reg = 0;
734 int sse_reg = 0;
735 int i;
736
737 gdb_assert (tdep->classify);
738
739 /* Reserve a register for the "hidden" argument. */
740 if (struct_return)
741 integer_reg++;
742
743 for (i = 0; i < nargs; i++)
744 {
745 struct type *type = value_type (args[i]);
746 int len = TYPE_LENGTH (type);
747 enum amd64_reg_class class[2];
748 int needed_integer_regs = 0;
749 int needed_sse_regs = 0;
750 int j;
751
752 /* Classify argument. */
753 tdep->classify (type, class);
754
755 /* Calculate the number of integer and SSE registers needed for
756 this argument. */
757 for (j = 0; j < 2; j++)
758 {
759 if (class[j] == AMD64_INTEGER)
760 needed_integer_regs++;
761 else if (class[j] == AMD64_SSE)
762 needed_sse_regs++;
763 }
764
765 /* Check whether enough registers are available, and if the
766 argument should be passed in registers at all. */
767 if (integer_reg + needed_integer_regs > num_integer_regs
768 || sse_reg + needed_sse_regs > ARRAY_SIZE (sse_regnum)
769 || (needed_integer_regs == 0 && needed_sse_regs == 0))
770 {
771 /* The argument will be passed on the stack. */
772 num_elements += ((len + 7) / 8);
773 stack_args[num_stack_args] = args[i];
774 /* If this is an AMD64_MEMORY argument whose address must also
775 be passed in one of the integer registers, reserve that
776 register and associate this value to that register so that
777 we can store the argument address as soon as we know it. */
778 if (class[0] == AMD64_MEMORY
779 && tdep->memory_args_by_pointer
780 && integer_reg < tdep->call_dummy_num_integer_regs)
781 arg_addr_regno[num_stack_args] =
782 tdep->call_dummy_integer_regs[integer_reg++];
783 else
784 arg_addr_regno[num_stack_args] = -1;
785 num_stack_args++;
786 }
787 else
788 {
789 /* The argument will be passed in registers. */
790 const gdb_byte *valbuf = value_contents (args[i]);
791 gdb_byte buf[8];
792
793 gdb_assert (len <= 16);
794
795 for (j = 0; len > 0; j++, len -= 8)
796 {
797 int regnum = -1;
798 int offset = 0;
799
800 switch (class[j])
801 {
802 case AMD64_INTEGER:
803 regnum = integer_regs[integer_reg++];
804 break;
805
806 case AMD64_SSE:
807 regnum = sse_regnum[sse_reg++];
808 break;
809
810 case AMD64_SSEUP:
811 gdb_assert (sse_reg > 0);
812 regnum = sse_regnum[sse_reg - 1];
813 offset = 8;
814 break;
815
816 default:
817 gdb_assert (!"Unexpected register class.");
818 }
819
820 gdb_assert (regnum != -1);
821 memset (buf, 0, sizeof buf);
822 memcpy (buf, valbuf + j * 8, min (len, 8));
823 regcache_raw_write_part (regcache, regnum, offset, 8, buf);
824 }
825 }
826 }
827
828 /* Allocate space for the arguments on the stack. */
829 sp -= num_elements * 8;
830
831 /* The psABI says that "The end of the input argument area shall be
832 aligned on a 16 byte boundary." */
833 sp &= ~0xf;
834
835 /* Write out the arguments to the stack. */
836 for (i = 0; i < num_stack_args; i++)
837 {
838 struct type *type = value_type (stack_args[i]);
839 const gdb_byte *valbuf = value_contents (stack_args[i]);
840 int len = TYPE_LENGTH (type);
841 CORE_ADDR arg_addr = sp + element * 8;
842
843 write_memory (arg_addr, valbuf, len);
844 if (arg_addr_regno[i] >= 0)
845 {
846 /* We also need to store the address of that argument in
847 the given register. */
848 gdb_byte buf[8];
849 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
850
851 store_unsigned_integer (buf, 8, byte_order, arg_addr);
852 regcache_cooked_write (regcache, arg_addr_regno[i], buf);
853 }
854 element += ((len + 7) / 8);
855 }
856
857 /* The psABI says that "For calls that may call functions that use
858 varargs or stdargs (prototype-less calls or calls to functions
859 containing ellipsis (...) in the declaration) %al is used as
860 hidden argument to specify the number of SSE registers used. */
861 regcache_raw_write_unsigned (regcache, AMD64_RAX_REGNUM, sse_reg);
862 return sp;
863 }
864
865 static CORE_ADDR
866 amd64_push_dummy_call (struct gdbarch *gdbarch, struct value *function,
867 struct regcache *regcache, CORE_ADDR bp_addr,
868 int nargs, struct value **args, CORE_ADDR sp,
869 int struct_return, CORE_ADDR struct_addr)
870 {
871 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
872 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
873 gdb_byte buf[8];
874
875 /* Pass arguments. */
876 sp = amd64_push_arguments (regcache, nargs, args, sp, struct_return);
877
878 /* Pass "hidden" argument". */
879 if (struct_return)
880 {
881 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
882 /* The "hidden" argument is passed throught the first argument
883 register. */
884 const int arg_regnum = tdep->call_dummy_integer_regs[0];
885
886 store_unsigned_integer (buf, 8, byte_order, struct_addr);
887 regcache_cooked_write (regcache, arg_regnum, buf);
888 }
889
890 /* Reserve some memory on the stack for the integer-parameter registers,
891 if required by the ABI. */
892 if (tdep->integer_param_regs_saved_in_caller_frame)
893 sp -= tdep->call_dummy_num_integer_regs * 8;
894
895 /* Store return address. */
896 sp -= 8;
897 store_unsigned_integer (buf, 8, byte_order, bp_addr);
898 write_memory (sp, buf, 8);
899
900 /* Finally, update the stack pointer... */
901 store_unsigned_integer (buf, 8, byte_order, sp);
902 regcache_cooked_write (regcache, AMD64_RSP_REGNUM, buf);
903
904 /* ...and fake a frame pointer. */
905 regcache_cooked_write (regcache, AMD64_RBP_REGNUM, buf);
906
907 return sp + 16;
908 }
909 \f
910 /* Displaced instruction handling. */
911
912 /* A partially decoded instruction.
913 This contains enough details for displaced stepping purposes. */
914
915 struct amd64_insn
916 {
917 /* The number of opcode bytes. */
918 int opcode_len;
919 /* The offset of the rex prefix or -1 if not present. */
920 int rex_offset;
921 /* The offset to the first opcode byte. */
922 int opcode_offset;
923 /* The offset to the modrm byte or -1 if not present. */
924 int modrm_offset;
925
926 /* The raw instruction. */
927 gdb_byte *raw_insn;
928 };
929
930 struct displaced_step_closure
931 {
932 /* For rip-relative insns, saved copy of the reg we use instead of %rip. */
933 int tmp_used;
934 int tmp_regno;
935 ULONGEST tmp_save;
936
937 /* Details of the instruction. */
938 struct amd64_insn insn_details;
939
940 /* Amount of space allocated to insn_buf. */
941 int max_len;
942
943 /* The possibly modified insn.
944 This is a variable-length field. */
945 gdb_byte insn_buf[1];
946 };
947
948 /* WARNING: Keep onebyte_has_modrm, twobyte_has_modrm in sync with
949 ../opcodes/i386-dis.c (until libopcodes exports them, or an alternative,
950 at which point delete these in favor of libopcodes' versions). */
951
952 static const unsigned char onebyte_has_modrm[256] = {
953 /* 0 1 2 3 4 5 6 7 8 9 a b c d e f */
954 /* ------------------------------- */
955 /* 00 */ 1,1,1,1,0,0,0,0,1,1,1,1,0,0,0,0, /* 00 */
956 /* 10 */ 1,1,1,1,0,0,0,0,1,1,1,1,0,0,0,0, /* 10 */
957 /* 20 */ 1,1,1,1,0,0,0,0,1,1,1,1,0,0,0,0, /* 20 */
958 /* 30 */ 1,1,1,1,0,0,0,0,1,1,1,1,0,0,0,0, /* 30 */
959 /* 40 */ 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, /* 40 */
960 /* 50 */ 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, /* 50 */
961 /* 60 */ 0,0,1,1,0,0,0,0,0,1,0,1,0,0,0,0, /* 60 */
962 /* 70 */ 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, /* 70 */
963 /* 80 */ 1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1, /* 80 */
964 /* 90 */ 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, /* 90 */
965 /* a0 */ 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, /* a0 */
966 /* b0 */ 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, /* b0 */
967 /* c0 */ 1,1,0,0,1,1,1,1,0,0,0,0,0,0,0,0, /* c0 */
968 /* d0 */ 1,1,1,1,0,0,0,0,1,1,1,1,1,1,1,1, /* d0 */
969 /* e0 */ 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, /* e0 */
970 /* f0 */ 0,0,0,0,0,0,1,1,0,0,0,0,0,0,1,1 /* f0 */
971 /* ------------------------------- */
972 /* 0 1 2 3 4 5 6 7 8 9 a b c d e f */
973 };
974
975 static const unsigned char twobyte_has_modrm[256] = {
976 /* 0 1 2 3 4 5 6 7 8 9 a b c d e f */
977 /* ------------------------------- */
978 /* 00 */ 1,1,1,1,0,0,0,0,0,0,0,0,0,1,0,1, /* 0f */
979 /* 10 */ 1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1, /* 1f */
980 /* 20 */ 1,1,1,1,1,1,1,0,1,1,1,1,1,1,1,1, /* 2f */
981 /* 30 */ 0,0,0,0,0,0,0,0,1,0,1,0,0,0,0,0, /* 3f */
982 /* 40 */ 1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1, /* 4f */
983 /* 50 */ 1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1, /* 5f */
984 /* 60 */ 1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1, /* 6f */
985 /* 70 */ 1,1,1,1,1,1,1,0,1,1,1,1,1,1,1,1, /* 7f */
986 /* 80 */ 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, /* 8f */
987 /* 90 */ 1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1, /* 9f */
988 /* a0 */ 0,0,0,1,1,1,1,1,0,0,0,1,1,1,1,1, /* af */
989 /* b0 */ 1,1,1,1,1,1,1,1,1,0,1,1,1,1,1,1, /* bf */
990 /* c0 */ 1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0, /* cf */
991 /* d0 */ 1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1, /* df */
992 /* e0 */ 1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1, /* ef */
993 /* f0 */ 1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,0 /* ff */
994 /* ------------------------------- */
995 /* 0 1 2 3 4 5 6 7 8 9 a b c d e f */
996 };
997
998 static int amd64_syscall_p (const struct amd64_insn *insn, int *lengthp);
999
1000 static int
1001 rex_prefix_p (gdb_byte pfx)
1002 {
1003 return REX_PREFIX_P (pfx);
1004 }
1005
1006 /* Skip the legacy instruction prefixes in INSN.
1007 We assume INSN is properly sentineled so we don't have to worry
1008 about falling off the end of the buffer. */
1009
1010 static gdb_byte *
1011 amd64_skip_prefixes (gdb_byte *insn)
1012 {
1013 while (1)
1014 {
1015 switch (*insn)
1016 {
1017 case DATA_PREFIX_OPCODE:
1018 case ADDR_PREFIX_OPCODE:
1019 case CS_PREFIX_OPCODE:
1020 case DS_PREFIX_OPCODE:
1021 case ES_PREFIX_OPCODE:
1022 case FS_PREFIX_OPCODE:
1023 case GS_PREFIX_OPCODE:
1024 case SS_PREFIX_OPCODE:
1025 case LOCK_PREFIX_OPCODE:
1026 case REPE_PREFIX_OPCODE:
1027 case REPNE_PREFIX_OPCODE:
1028 ++insn;
1029 continue;
1030 default:
1031 break;
1032 }
1033 break;
1034 }
1035
1036 return insn;
1037 }
1038
1039 /* Return an integer register (other than RSP) that is unused as an input
1040 operand in INSN.
1041 In order to not require adding a rex prefix if the insn doesn't already
1042 have one, the result is restricted to RAX ... RDI, sans RSP.
1043 The register numbering of the result follows architecture ordering,
1044 e.g. RDI = 7. */
1045
1046 static int
1047 amd64_get_unused_input_int_reg (const struct amd64_insn *details)
1048 {
1049 /* 1 bit for each reg */
1050 int used_regs_mask = 0;
1051
1052 /* There can be at most 3 int regs used as inputs in an insn, and we have
1053 7 to choose from (RAX ... RDI, sans RSP).
1054 This allows us to take a conservative approach and keep things simple.
1055 E.g. By avoiding RAX, we don't have to specifically watch for opcodes
1056 that implicitly specify RAX. */
1057
1058 /* Avoid RAX. */
1059 used_regs_mask |= 1 << EAX_REG_NUM;
1060 /* Similarily avoid RDX, implicit operand in divides. */
1061 used_regs_mask |= 1 << EDX_REG_NUM;
1062 /* Avoid RSP. */
1063 used_regs_mask |= 1 << ESP_REG_NUM;
1064
1065 /* If the opcode is one byte long and there's no ModRM byte,
1066 assume the opcode specifies a register. */
1067 if (details->opcode_len == 1 && details->modrm_offset == -1)
1068 used_regs_mask |= 1 << (details->raw_insn[details->opcode_offset] & 7);
1069
1070 /* Mark used regs in the modrm/sib bytes. */
1071 if (details->modrm_offset != -1)
1072 {
1073 int modrm = details->raw_insn[details->modrm_offset];
1074 int mod = MODRM_MOD_FIELD (modrm);
1075 int reg = MODRM_REG_FIELD (modrm);
1076 int rm = MODRM_RM_FIELD (modrm);
1077 int have_sib = mod != 3 && rm == 4;
1078
1079 /* Assume the reg field of the modrm byte specifies a register. */
1080 used_regs_mask |= 1 << reg;
1081
1082 if (have_sib)
1083 {
1084 int base = SIB_BASE_FIELD (details->raw_insn[details->modrm_offset + 1]);
1085 int index = SIB_INDEX_FIELD (details->raw_insn[details->modrm_offset + 1]);
1086 used_regs_mask |= 1 << base;
1087 used_regs_mask |= 1 << index;
1088 }
1089 else
1090 {
1091 used_regs_mask |= 1 << rm;
1092 }
1093 }
1094
1095 gdb_assert (used_regs_mask < 256);
1096 gdb_assert (used_regs_mask != 255);
1097
1098 /* Finally, find a free reg. */
1099 {
1100 int i;
1101
1102 for (i = 0; i < 8; ++i)
1103 {
1104 if (! (used_regs_mask & (1 << i)))
1105 return i;
1106 }
1107
1108 /* We shouldn't get here. */
1109 internal_error (__FILE__, __LINE__, _("unable to find free reg"));
1110 }
1111 }
1112
1113 /* Extract the details of INSN that we need. */
1114
1115 static void
1116 amd64_get_insn_details (gdb_byte *insn, struct amd64_insn *details)
1117 {
1118 gdb_byte *start = insn;
1119 int need_modrm;
1120
1121 details->raw_insn = insn;
1122
1123 details->opcode_len = -1;
1124 details->rex_offset = -1;
1125 details->opcode_offset = -1;
1126 details->modrm_offset = -1;
1127
1128 /* Skip legacy instruction prefixes. */
1129 insn = amd64_skip_prefixes (insn);
1130
1131 /* Skip REX instruction prefix. */
1132 if (rex_prefix_p (*insn))
1133 {
1134 details->rex_offset = insn - start;
1135 ++insn;
1136 }
1137
1138 details->opcode_offset = insn - start;
1139
1140 if (*insn == TWO_BYTE_OPCODE_ESCAPE)
1141 {
1142 /* Two or three-byte opcode. */
1143 ++insn;
1144 need_modrm = twobyte_has_modrm[*insn];
1145
1146 /* Check for three-byte opcode. */
1147 switch (*insn)
1148 {
1149 case 0x24:
1150 case 0x25:
1151 case 0x38:
1152 case 0x3a:
1153 case 0x7a:
1154 case 0x7b:
1155 ++insn;
1156 details->opcode_len = 3;
1157 break;
1158 default:
1159 details->opcode_len = 2;
1160 break;
1161 }
1162 }
1163 else
1164 {
1165 /* One-byte opcode. */
1166 need_modrm = onebyte_has_modrm[*insn];
1167 details->opcode_len = 1;
1168 }
1169
1170 if (need_modrm)
1171 {
1172 ++insn;
1173 details->modrm_offset = insn - start;
1174 }
1175 }
1176
1177 /* Update %rip-relative addressing in INSN.
1178
1179 %rip-relative addressing only uses a 32-bit displacement.
1180 32 bits is not enough to be guaranteed to cover the distance between where
1181 the real instruction is and where its copy is.
1182 Convert the insn to use base+disp addressing.
1183 We set base = pc + insn_length so we can leave disp unchanged. */
1184
1185 static void
1186 fixup_riprel (struct gdbarch *gdbarch, struct displaced_step_closure *dsc,
1187 CORE_ADDR from, CORE_ADDR to, struct regcache *regs)
1188 {
1189 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1190 const struct amd64_insn *insn_details = &dsc->insn_details;
1191 int modrm_offset = insn_details->modrm_offset;
1192 gdb_byte *insn = insn_details->raw_insn + modrm_offset;
1193 CORE_ADDR rip_base;
1194 int32_t disp;
1195 int insn_length;
1196 int arch_tmp_regno, tmp_regno;
1197 ULONGEST orig_value;
1198
1199 /* %rip+disp32 addressing mode, displacement follows ModRM byte. */
1200 ++insn;
1201
1202 /* Compute the rip-relative address. */
1203 disp = extract_signed_integer (insn, sizeof (int32_t), byte_order);
1204 insn_length = gdb_buffered_insn_length (gdbarch, dsc->insn_buf,
1205 dsc->max_len, from);
1206 rip_base = from + insn_length;
1207
1208 /* We need a register to hold the address.
1209 Pick one not used in the insn.
1210 NOTE: arch_tmp_regno uses architecture ordering, e.g. RDI = 7. */
1211 arch_tmp_regno = amd64_get_unused_input_int_reg (insn_details);
1212 tmp_regno = amd64_arch_reg_to_regnum (arch_tmp_regno);
1213
1214 /* REX.B should be unset as we were using rip-relative addressing,
1215 but ensure it's unset anyway, tmp_regno is not r8-r15. */
1216 if (insn_details->rex_offset != -1)
1217 dsc->insn_buf[insn_details->rex_offset] &= ~REX_B;
1218
1219 regcache_cooked_read_unsigned (regs, tmp_regno, &orig_value);
1220 dsc->tmp_regno = tmp_regno;
1221 dsc->tmp_save = orig_value;
1222 dsc->tmp_used = 1;
1223
1224 /* Convert the ModRM field to be base+disp. */
1225 dsc->insn_buf[modrm_offset] &= ~0xc7;
1226 dsc->insn_buf[modrm_offset] |= 0x80 + arch_tmp_regno;
1227
1228 regcache_cooked_write_unsigned (regs, tmp_regno, rip_base);
1229
1230 if (debug_displaced)
1231 fprintf_unfiltered (gdb_stdlog, "displaced: %%rip-relative addressing used.\n"
1232 "displaced: using temp reg %d, old value %s, new value %s\n",
1233 dsc->tmp_regno, paddress (gdbarch, dsc->tmp_save),
1234 paddress (gdbarch, rip_base));
1235 }
1236
1237 static void
1238 fixup_displaced_copy (struct gdbarch *gdbarch,
1239 struct displaced_step_closure *dsc,
1240 CORE_ADDR from, CORE_ADDR to, struct regcache *regs)
1241 {
1242 const struct amd64_insn *details = &dsc->insn_details;
1243
1244 if (details->modrm_offset != -1)
1245 {
1246 gdb_byte modrm = details->raw_insn[details->modrm_offset];
1247
1248 if ((modrm & 0xc7) == 0x05)
1249 {
1250 /* The insn uses rip-relative addressing.
1251 Deal with it. */
1252 fixup_riprel (gdbarch, dsc, from, to, regs);
1253 }
1254 }
1255 }
1256
1257 struct displaced_step_closure *
1258 amd64_displaced_step_copy_insn (struct gdbarch *gdbarch,
1259 CORE_ADDR from, CORE_ADDR to,
1260 struct regcache *regs)
1261 {
1262 int len = gdbarch_max_insn_length (gdbarch);
1263 /* Extra space for sentinels so fixup_{riprel,displaced_copy don't have to
1264 continually watch for running off the end of the buffer. */
1265 int fixup_sentinel_space = len;
1266 struct displaced_step_closure *dsc =
1267 xmalloc (sizeof (*dsc) + len + fixup_sentinel_space);
1268 gdb_byte *buf = &dsc->insn_buf[0];
1269 struct amd64_insn *details = &dsc->insn_details;
1270
1271 dsc->tmp_used = 0;
1272 dsc->max_len = len + fixup_sentinel_space;
1273
1274 read_memory (from, buf, len);
1275
1276 /* Set up the sentinel space so we don't have to worry about running
1277 off the end of the buffer. An excessive number of leading prefixes
1278 could otherwise cause this. */
1279 memset (buf + len, 0, fixup_sentinel_space);
1280
1281 amd64_get_insn_details (buf, details);
1282
1283 /* GDB may get control back after the insn after the syscall.
1284 Presumably this is a kernel bug.
1285 If this is a syscall, make sure there's a nop afterwards. */
1286 {
1287 int syscall_length;
1288
1289 if (amd64_syscall_p (details, &syscall_length))
1290 buf[details->opcode_offset + syscall_length] = NOP_OPCODE;
1291 }
1292
1293 /* Modify the insn to cope with the address where it will be executed from.
1294 In particular, handle any rip-relative addressing. */
1295 fixup_displaced_copy (gdbarch, dsc, from, to, regs);
1296
1297 write_memory (to, buf, len);
1298
1299 if (debug_displaced)
1300 {
1301 fprintf_unfiltered (gdb_stdlog, "displaced: copy %s->%s: ",
1302 paddress (gdbarch, from), paddress (gdbarch, to));
1303 displaced_step_dump_bytes (gdb_stdlog, buf, len);
1304 }
1305
1306 return dsc;
1307 }
1308
1309 static int
1310 amd64_absolute_jmp_p (const struct amd64_insn *details)
1311 {
1312 const gdb_byte *insn = &details->raw_insn[details->opcode_offset];
1313
1314 if (insn[0] == 0xff)
1315 {
1316 /* jump near, absolute indirect (/4) */
1317 if ((insn[1] & 0x38) == 0x20)
1318 return 1;
1319
1320 /* jump far, absolute indirect (/5) */
1321 if ((insn[1] & 0x38) == 0x28)
1322 return 1;
1323 }
1324
1325 return 0;
1326 }
1327
1328 static int
1329 amd64_absolute_call_p (const struct amd64_insn *details)
1330 {
1331 const gdb_byte *insn = &details->raw_insn[details->opcode_offset];
1332
1333 if (insn[0] == 0xff)
1334 {
1335 /* Call near, absolute indirect (/2) */
1336 if ((insn[1] & 0x38) == 0x10)
1337 return 1;
1338
1339 /* Call far, absolute indirect (/3) */
1340 if ((insn[1] & 0x38) == 0x18)
1341 return 1;
1342 }
1343
1344 return 0;
1345 }
1346
1347 static int
1348 amd64_ret_p (const struct amd64_insn *details)
1349 {
1350 /* NOTE: gcc can emit "repz ; ret". */
1351 const gdb_byte *insn = &details->raw_insn[details->opcode_offset];
1352
1353 switch (insn[0])
1354 {
1355 case 0xc2: /* ret near, pop N bytes */
1356 case 0xc3: /* ret near */
1357 case 0xca: /* ret far, pop N bytes */
1358 case 0xcb: /* ret far */
1359 case 0xcf: /* iret */
1360 return 1;
1361
1362 default:
1363 return 0;
1364 }
1365 }
1366
1367 static int
1368 amd64_call_p (const struct amd64_insn *details)
1369 {
1370 const gdb_byte *insn = &details->raw_insn[details->opcode_offset];
1371
1372 if (amd64_absolute_call_p (details))
1373 return 1;
1374
1375 /* call near, relative */
1376 if (insn[0] == 0xe8)
1377 return 1;
1378
1379 return 0;
1380 }
1381
1382 /* Return non-zero if INSN is a system call, and set *LENGTHP to its
1383 length in bytes. Otherwise, return zero. */
1384
1385 static int
1386 amd64_syscall_p (const struct amd64_insn *details, int *lengthp)
1387 {
1388 const gdb_byte *insn = &details->raw_insn[details->opcode_offset];
1389
1390 if (insn[0] == 0x0f && insn[1] == 0x05)
1391 {
1392 *lengthp = 2;
1393 return 1;
1394 }
1395
1396 return 0;
1397 }
1398
1399 /* Fix up the state of registers and memory after having single-stepped
1400 a displaced instruction. */
1401
1402 void
1403 amd64_displaced_step_fixup (struct gdbarch *gdbarch,
1404 struct displaced_step_closure *dsc,
1405 CORE_ADDR from, CORE_ADDR to,
1406 struct regcache *regs)
1407 {
1408 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1409 /* The offset we applied to the instruction's address. */
1410 ULONGEST insn_offset = to - from;
1411 gdb_byte *insn = dsc->insn_buf;
1412 const struct amd64_insn *insn_details = &dsc->insn_details;
1413
1414 if (debug_displaced)
1415 fprintf_unfiltered (gdb_stdlog,
1416 "displaced: fixup (%s, %s), "
1417 "insn = 0x%02x 0x%02x ...\n",
1418 paddress (gdbarch, from), paddress (gdbarch, to),
1419 insn[0], insn[1]);
1420
1421 /* If we used a tmp reg, restore it. */
1422
1423 if (dsc->tmp_used)
1424 {
1425 if (debug_displaced)
1426 fprintf_unfiltered (gdb_stdlog, "displaced: restoring reg %d to %s\n",
1427 dsc->tmp_regno, paddress (gdbarch, dsc->tmp_save));
1428 regcache_cooked_write_unsigned (regs, dsc->tmp_regno, dsc->tmp_save);
1429 }
1430
1431 /* The list of issues to contend with here is taken from
1432 resume_execution in arch/x86/kernel/kprobes.c, Linux 2.6.28.
1433 Yay for Free Software! */
1434
1435 /* Relocate the %rip back to the program's instruction stream,
1436 if necessary. */
1437
1438 /* Except in the case of absolute or indirect jump or call
1439 instructions, or a return instruction, the new rip is relative to
1440 the displaced instruction; make it relative to the original insn.
1441 Well, signal handler returns don't need relocation either, but we use the
1442 value of %rip to recognize those; see below. */
1443 if (! amd64_absolute_jmp_p (insn_details)
1444 && ! amd64_absolute_call_p (insn_details)
1445 && ! amd64_ret_p (insn_details))
1446 {
1447 ULONGEST orig_rip;
1448 int insn_len;
1449
1450 regcache_cooked_read_unsigned (regs, AMD64_RIP_REGNUM, &orig_rip);
1451
1452 /* A signal trampoline system call changes the %rip, resuming
1453 execution of the main program after the signal handler has
1454 returned. That makes them like 'return' instructions; we
1455 shouldn't relocate %rip.
1456
1457 But most system calls don't, and we do need to relocate %rip.
1458
1459 Our heuristic for distinguishing these cases: if stepping
1460 over the system call instruction left control directly after
1461 the instruction, the we relocate --- control almost certainly
1462 doesn't belong in the displaced copy. Otherwise, we assume
1463 the instruction has put control where it belongs, and leave
1464 it unrelocated. Goodness help us if there are PC-relative
1465 system calls. */
1466 if (amd64_syscall_p (insn_details, &insn_len)
1467 && orig_rip != to + insn_len
1468 /* GDB can get control back after the insn after the syscall.
1469 Presumably this is a kernel bug.
1470 Fixup ensures its a nop, we add one to the length for it. */
1471 && orig_rip != to + insn_len + 1)
1472 {
1473 if (debug_displaced)
1474 fprintf_unfiltered (gdb_stdlog,
1475 "displaced: syscall changed %%rip; "
1476 "not relocating\n");
1477 }
1478 else
1479 {
1480 ULONGEST rip = orig_rip - insn_offset;
1481
1482 /* If we just stepped over a breakpoint insn, we don't backup
1483 the pc on purpose; this is to match behaviour without
1484 stepping. */
1485
1486 regcache_cooked_write_unsigned (regs, AMD64_RIP_REGNUM, rip);
1487
1488 if (debug_displaced)
1489 fprintf_unfiltered (gdb_stdlog,
1490 "displaced: "
1491 "relocated %%rip from %s to %s\n",
1492 paddress (gdbarch, orig_rip),
1493 paddress (gdbarch, rip));
1494 }
1495 }
1496
1497 /* If the instruction was PUSHFL, then the TF bit will be set in the
1498 pushed value, and should be cleared. We'll leave this for later,
1499 since GDB already messes up the TF flag when stepping over a
1500 pushfl. */
1501
1502 /* If the instruction was a call, the return address now atop the
1503 stack is the address following the copied instruction. We need
1504 to make it the address following the original instruction. */
1505 if (amd64_call_p (insn_details))
1506 {
1507 ULONGEST rsp;
1508 ULONGEST retaddr;
1509 const ULONGEST retaddr_len = 8;
1510
1511 regcache_cooked_read_unsigned (regs, AMD64_RSP_REGNUM, &rsp);
1512 retaddr = read_memory_unsigned_integer (rsp, retaddr_len, byte_order);
1513 retaddr = (retaddr - insn_offset) & 0xffffffffUL;
1514 write_memory_unsigned_integer (rsp, retaddr_len, byte_order, retaddr);
1515
1516 if (debug_displaced)
1517 fprintf_unfiltered (gdb_stdlog,
1518 "displaced: relocated return addr at %s "
1519 "to %s\n",
1520 paddress (gdbarch, rsp),
1521 paddress (gdbarch, retaddr));
1522 }
1523 }
1524
1525 /* If the instruction INSN uses RIP-relative addressing, return the
1526 offset into the raw INSN where the displacement to be adjusted is
1527 found. Returns 0 if the instruction doesn't use RIP-relative
1528 addressing. */
1529
1530 static int
1531 rip_relative_offset (struct amd64_insn *insn)
1532 {
1533 if (insn->modrm_offset != -1)
1534 {
1535 gdb_byte modrm = insn->raw_insn[insn->modrm_offset];
1536
1537 if ((modrm & 0xc7) == 0x05)
1538 {
1539 /* The displacement is found right after the ModRM byte. */
1540 return insn->modrm_offset + 1;
1541 }
1542 }
1543
1544 return 0;
1545 }
1546
1547 static void
1548 append_insns (CORE_ADDR *to, ULONGEST len, const gdb_byte *buf)
1549 {
1550 target_write_memory (*to, buf, len);
1551 *to += len;
1552 }
1553
1554 static void
1555 amd64_relocate_instruction (struct gdbarch *gdbarch,
1556 CORE_ADDR *to, CORE_ADDR oldloc)
1557 {
1558 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1559 int len = gdbarch_max_insn_length (gdbarch);
1560 /* Extra space for sentinels. */
1561 int fixup_sentinel_space = len;
1562 gdb_byte *buf = xmalloc (len + fixup_sentinel_space);
1563 struct amd64_insn insn_details;
1564 int offset = 0;
1565 LONGEST rel32, newrel;
1566 gdb_byte *insn;
1567 int insn_length;
1568
1569 read_memory (oldloc, buf, len);
1570
1571 /* Set up the sentinel space so we don't have to worry about running
1572 off the end of the buffer. An excessive number of leading prefixes
1573 could otherwise cause this. */
1574 memset (buf + len, 0, fixup_sentinel_space);
1575
1576 insn = buf;
1577 amd64_get_insn_details (insn, &insn_details);
1578
1579 insn_length = gdb_buffered_insn_length (gdbarch, insn, len, oldloc);
1580
1581 /* Skip legacy instruction prefixes. */
1582 insn = amd64_skip_prefixes (insn);
1583
1584 /* Adjust calls with 32-bit relative addresses as push/jump, with
1585 the address pushed being the location where the original call in
1586 the user program would return to. */
1587 if (insn[0] == 0xe8)
1588 {
1589 gdb_byte push_buf[16];
1590 unsigned int ret_addr;
1591
1592 /* Where "ret" in the original code will return to. */
1593 ret_addr = oldloc + insn_length;
1594 push_buf[0] = 0x68; /* pushq $... */
1595 memcpy (&push_buf[1], &ret_addr, 4);
1596 /* Push the push. */
1597 append_insns (to, 5, push_buf);
1598
1599 /* Convert the relative call to a relative jump. */
1600 insn[0] = 0xe9;
1601
1602 /* Adjust the destination offset. */
1603 rel32 = extract_signed_integer (insn + 1, 4, byte_order);
1604 newrel = (oldloc - *to) + rel32;
1605 store_signed_integer (insn + 1, 4, byte_order, newrel);
1606
1607 if (debug_displaced)
1608 fprintf_unfiltered (gdb_stdlog,
1609 "Adjusted insn rel32=%s at %s to"
1610 " rel32=%s at %s\n",
1611 hex_string (rel32), paddress (gdbarch, oldloc),
1612 hex_string (newrel), paddress (gdbarch, *to));
1613
1614 /* Write the adjusted jump into its displaced location. */
1615 append_insns (to, 5, insn);
1616 return;
1617 }
1618
1619 offset = rip_relative_offset (&insn_details);
1620 if (!offset)
1621 {
1622 /* Adjust jumps with 32-bit relative addresses. Calls are
1623 already handled above. */
1624 if (insn[0] == 0xe9)
1625 offset = 1;
1626 /* Adjust conditional jumps. */
1627 else if (insn[0] == 0x0f && (insn[1] & 0xf0) == 0x80)
1628 offset = 2;
1629 }
1630
1631 if (offset)
1632 {
1633 rel32 = extract_signed_integer (insn + offset, 4, byte_order);
1634 newrel = (oldloc - *to) + rel32;
1635 store_signed_integer (insn + offset, 4, byte_order, newrel);
1636 if (debug_displaced)
1637 fprintf_unfiltered (gdb_stdlog,
1638 "Adjusted insn rel32=%s at %s to"
1639 " rel32=%s at %s\n",
1640 hex_string (rel32), paddress (gdbarch, oldloc),
1641 hex_string (newrel), paddress (gdbarch, *to));
1642 }
1643
1644 /* Write the adjusted instruction into its displaced location. */
1645 append_insns (to, insn_length, buf);
1646 }
1647
1648 \f
1649 /* The maximum number of saved registers. This should include %rip. */
1650 #define AMD64_NUM_SAVED_REGS AMD64_NUM_GREGS
1651
1652 struct amd64_frame_cache
1653 {
1654 /* Base address. */
1655 CORE_ADDR base;
1656 int base_p;
1657 CORE_ADDR sp_offset;
1658 CORE_ADDR pc;
1659
1660 /* Saved registers. */
1661 CORE_ADDR saved_regs[AMD64_NUM_SAVED_REGS];
1662 CORE_ADDR saved_sp;
1663 int saved_sp_reg;
1664
1665 /* Do we have a frame? */
1666 int frameless_p;
1667 };
1668
1669 /* Initialize a frame cache. */
1670
1671 static void
1672 amd64_init_frame_cache (struct amd64_frame_cache *cache)
1673 {
1674 int i;
1675
1676 /* Base address. */
1677 cache->base = 0;
1678 cache->base_p = 0;
1679 cache->sp_offset = -8;
1680 cache->pc = 0;
1681
1682 /* Saved registers. We initialize these to -1 since zero is a valid
1683 offset (that's where %rbp is supposed to be stored).
1684 The values start out as being offsets, and are later converted to
1685 addresses (at which point -1 is interpreted as an address, still meaning
1686 "invalid"). */
1687 for (i = 0; i < AMD64_NUM_SAVED_REGS; i++)
1688 cache->saved_regs[i] = -1;
1689 cache->saved_sp = 0;
1690 cache->saved_sp_reg = -1;
1691
1692 /* Frameless until proven otherwise. */
1693 cache->frameless_p = 1;
1694 }
1695
1696 /* Allocate and initialize a frame cache. */
1697
1698 static struct amd64_frame_cache *
1699 amd64_alloc_frame_cache (void)
1700 {
1701 struct amd64_frame_cache *cache;
1702
1703 cache = FRAME_OBSTACK_ZALLOC (struct amd64_frame_cache);
1704 amd64_init_frame_cache (cache);
1705 return cache;
1706 }
1707
1708 /* GCC 4.4 and later, can put code in the prologue to realign the
1709 stack pointer. Check whether PC points to such code, and update
1710 CACHE accordingly. Return the first instruction after the code
1711 sequence or CURRENT_PC, whichever is smaller. If we don't
1712 recognize the code, return PC. */
1713
1714 static CORE_ADDR
1715 amd64_analyze_stack_align (CORE_ADDR pc, CORE_ADDR current_pc,
1716 struct amd64_frame_cache *cache)
1717 {
1718 /* There are 2 code sequences to re-align stack before the frame
1719 gets set up:
1720
1721 1. Use a caller-saved saved register:
1722
1723 leaq 8(%rsp), %reg
1724 andq $-XXX, %rsp
1725 pushq -8(%reg)
1726
1727 2. Use a callee-saved saved register:
1728
1729 pushq %reg
1730 leaq 16(%rsp), %reg
1731 andq $-XXX, %rsp
1732 pushq -8(%reg)
1733
1734 "andq $-XXX, %rsp" can be either 4 bytes or 7 bytes:
1735
1736 0x48 0x83 0xe4 0xf0 andq $-16, %rsp
1737 0x48 0x81 0xe4 0x00 0xff 0xff 0xff andq $-256, %rsp
1738 */
1739
1740 gdb_byte buf[18];
1741 int reg, r;
1742 int offset, offset_and;
1743
1744 if (target_read_memory (pc, buf, sizeof buf))
1745 return pc;
1746
1747 /* Check caller-saved saved register. The first instruction has
1748 to be "leaq 8(%rsp), %reg". */
1749 if ((buf[0] & 0xfb) == 0x48
1750 && buf[1] == 0x8d
1751 && buf[3] == 0x24
1752 && buf[4] == 0x8)
1753 {
1754 /* MOD must be binary 10 and R/M must be binary 100. */
1755 if ((buf[2] & 0xc7) != 0x44)
1756 return pc;
1757
1758 /* REG has register number. */
1759 reg = (buf[2] >> 3) & 7;
1760
1761 /* Check the REX.R bit. */
1762 if (buf[0] == 0x4c)
1763 reg += 8;
1764
1765 offset = 5;
1766 }
1767 else
1768 {
1769 /* Check callee-saved saved register. The first instruction
1770 has to be "pushq %reg". */
1771 reg = 0;
1772 if ((buf[0] & 0xf8) == 0x50)
1773 offset = 0;
1774 else if ((buf[0] & 0xf6) == 0x40
1775 && (buf[1] & 0xf8) == 0x50)
1776 {
1777 /* Check the REX.B bit. */
1778 if ((buf[0] & 1) != 0)
1779 reg = 8;
1780
1781 offset = 1;
1782 }
1783 else
1784 return pc;
1785
1786 /* Get register. */
1787 reg += buf[offset] & 0x7;
1788
1789 offset++;
1790
1791 /* The next instruction has to be "leaq 16(%rsp), %reg". */
1792 if ((buf[offset] & 0xfb) != 0x48
1793 || buf[offset + 1] != 0x8d
1794 || buf[offset + 3] != 0x24
1795 || buf[offset + 4] != 0x10)
1796 return pc;
1797
1798 /* MOD must be binary 10 and R/M must be binary 100. */
1799 if ((buf[offset + 2] & 0xc7) != 0x44)
1800 return pc;
1801
1802 /* REG has register number. */
1803 r = (buf[offset + 2] >> 3) & 7;
1804
1805 /* Check the REX.R bit. */
1806 if (buf[offset] == 0x4c)
1807 r += 8;
1808
1809 /* Registers in pushq and leaq have to be the same. */
1810 if (reg != r)
1811 return pc;
1812
1813 offset += 5;
1814 }
1815
1816 /* Rigister can't be %rsp nor %rbp. */
1817 if (reg == 4 || reg == 5)
1818 return pc;
1819
1820 /* The next instruction has to be "andq $-XXX, %rsp". */
1821 if (buf[offset] != 0x48
1822 || buf[offset + 2] != 0xe4
1823 || (buf[offset + 1] != 0x81 && buf[offset + 1] != 0x83))
1824 return pc;
1825
1826 offset_and = offset;
1827 offset += buf[offset + 1] == 0x81 ? 7 : 4;
1828
1829 /* The next instruction has to be "pushq -8(%reg)". */
1830 r = 0;
1831 if (buf[offset] == 0xff)
1832 offset++;
1833 else if ((buf[offset] & 0xf6) == 0x40
1834 && buf[offset + 1] == 0xff)
1835 {
1836 /* Check the REX.B bit. */
1837 if ((buf[offset] & 0x1) != 0)
1838 r = 8;
1839 offset += 2;
1840 }
1841 else
1842 return pc;
1843
1844 /* 8bit -8 is 0xf8. REG must be binary 110 and MOD must be binary
1845 01. */
1846 if (buf[offset + 1] != 0xf8
1847 || (buf[offset] & 0xf8) != 0x70)
1848 return pc;
1849
1850 /* R/M has register. */
1851 r += buf[offset] & 7;
1852
1853 /* Registers in leaq and pushq have to be the same. */
1854 if (reg != r)
1855 return pc;
1856
1857 if (current_pc > pc + offset_and)
1858 cache->saved_sp_reg = amd64_arch_reg_to_regnum (reg);
1859
1860 return min (pc + offset + 2, current_pc);
1861 }
1862
1863 /* Do a limited analysis of the prologue at PC and update CACHE
1864 accordingly. Bail out early if CURRENT_PC is reached. Return the
1865 address where the analysis stopped.
1866
1867 We will handle only functions beginning with:
1868
1869 pushq %rbp 0x55
1870 movq %rsp, %rbp 0x48 0x89 0xe5
1871
1872 Any function that doesn't start with this sequence will be assumed
1873 to have no prologue and thus no valid frame pointer in %rbp. */
1874
1875 static CORE_ADDR
1876 amd64_analyze_prologue (struct gdbarch *gdbarch,
1877 CORE_ADDR pc, CORE_ADDR current_pc,
1878 struct amd64_frame_cache *cache)
1879 {
1880 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1881 static gdb_byte proto[3] = { 0x48, 0x89, 0xe5 }; /* movq %rsp, %rbp */
1882 gdb_byte buf[3];
1883 gdb_byte op;
1884
1885 if (current_pc <= pc)
1886 return current_pc;
1887
1888 pc = amd64_analyze_stack_align (pc, current_pc, cache);
1889
1890 op = read_memory_unsigned_integer (pc, 1, byte_order);
1891
1892 if (op == 0x55) /* pushq %rbp */
1893 {
1894 /* Take into account that we've executed the `pushq %rbp' that
1895 starts this instruction sequence. */
1896 cache->saved_regs[AMD64_RBP_REGNUM] = 0;
1897 cache->sp_offset += 8;
1898
1899 /* If that's all, return now. */
1900 if (current_pc <= pc + 1)
1901 return current_pc;
1902
1903 /* Check for `movq %rsp, %rbp'. */
1904 read_memory (pc + 1, buf, 3);
1905 if (memcmp (buf, proto, 3) != 0)
1906 return pc + 1;
1907
1908 /* OK, we actually have a frame. */
1909 cache->frameless_p = 0;
1910 return pc + 4;
1911 }
1912
1913 return pc;
1914 }
1915
1916 /* Work around false termination of prologue - GCC PR debug/48827.
1917
1918 START_PC is the first instruction of a function, PC is its minimal already
1919 determined advanced address. Function returns PC if it has nothing to do.
1920
1921 84 c0 test %al,%al
1922 74 23 je after
1923 <-- here is 0 lines advance - the false prologue end marker.
1924 0f 29 85 70 ff ff ff movaps %xmm0,-0x90(%rbp)
1925 0f 29 4d 80 movaps %xmm1,-0x80(%rbp)
1926 0f 29 55 90 movaps %xmm2,-0x70(%rbp)
1927 0f 29 5d a0 movaps %xmm3,-0x60(%rbp)
1928 0f 29 65 b0 movaps %xmm4,-0x50(%rbp)
1929 0f 29 6d c0 movaps %xmm5,-0x40(%rbp)
1930 0f 29 75 d0 movaps %xmm6,-0x30(%rbp)
1931 0f 29 7d e0 movaps %xmm7,-0x20(%rbp)
1932 after: */
1933
1934 static CORE_ADDR
1935 amd64_skip_xmm_prologue (CORE_ADDR pc, CORE_ADDR start_pc)
1936 {
1937 struct symtab_and_line start_pc_sal, next_sal;
1938 gdb_byte buf[4 + 8 * 7];
1939 int offset, xmmreg;
1940
1941 if (pc == start_pc)
1942 return pc;
1943
1944 start_pc_sal = find_pc_sect_line (start_pc, NULL, 0);
1945 if (start_pc_sal.symtab == NULL
1946 || producer_is_gcc_ge_4 (start_pc_sal.symtab->producer) < 6
1947 || start_pc_sal.pc != start_pc || pc >= start_pc_sal.end)
1948 return pc;
1949
1950 next_sal = find_pc_sect_line (start_pc_sal.end, NULL, 0);
1951 if (next_sal.line != start_pc_sal.line)
1952 return pc;
1953
1954 /* START_PC can be from overlayed memory, ignored here. */
1955 if (target_read_memory (next_sal.pc - 4, buf, sizeof (buf)) != 0)
1956 return pc;
1957
1958 /* test %al,%al */
1959 if (buf[0] != 0x84 || buf[1] != 0xc0)
1960 return pc;
1961 /* je AFTER */
1962 if (buf[2] != 0x74)
1963 return pc;
1964
1965 offset = 4;
1966 for (xmmreg = 0; xmmreg < 8; xmmreg++)
1967 {
1968 /* 0x0f 0x29 0b??000101 movaps %xmmreg?,-0x??(%rbp) */
1969 if (buf[offset] != 0x0f || buf[offset + 1] != 0x29
1970 || (buf[offset + 2] & 0x3f) != (xmmreg << 3 | 0x5))
1971 return pc;
1972
1973 /* 0b01?????? */
1974 if ((buf[offset + 2] & 0xc0) == 0x40)
1975 {
1976 /* 8-bit displacement. */
1977 offset += 4;
1978 }
1979 /* 0b10?????? */
1980 else if ((buf[offset + 2] & 0xc0) == 0x80)
1981 {
1982 /* 32-bit displacement. */
1983 offset += 7;
1984 }
1985 else
1986 return pc;
1987 }
1988
1989 /* je AFTER */
1990 if (offset - 4 != buf[3])
1991 return pc;
1992
1993 return next_sal.end;
1994 }
1995
1996 /* Return PC of first real instruction. */
1997
1998 static CORE_ADDR
1999 amd64_skip_prologue (struct gdbarch *gdbarch, CORE_ADDR start_pc)
2000 {
2001 struct amd64_frame_cache cache;
2002 CORE_ADDR pc;
2003
2004 amd64_init_frame_cache (&cache);
2005 pc = amd64_analyze_prologue (gdbarch, start_pc, 0xffffffffffffffffLL,
2006 &cache);
2007 if (cache.frameless_p)
2008 return start_pc;
2009
2010 return amd64_skip_xmm_prologue (pc, start_pc);
2011 }
2012 \f
2013
2014 /* Normal frames. */
2015
2016 static void
2017 amd64_frame_cache_1 (struct frame_info *this_frame,
2018 struct amd64_frame_cache *cache)
2019 {
2020 struct gdbarch *gdbarch = get_frame_arch (this_frame);
2021 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
2022 gdb_byte buf[8];
2023 int i;
2024
2025 cache->pc = get_frame_func (this_frame);
2026 if (cache->pc != 0)
2027 amd64_analyze_prologue (gdbarch, cache->pc, get_frame_pc (this_frame),
2028 cache);
2029
2030 if (cache->frameless_p)
2031 {
2032 /* We didn't find a valid frame. If we're at the start of a
2033 function, or somewhere half-way its prologue, the function's
2034 frame probably hasn't been fully setup yet. Try to
2035 reconstruct the base address for the stack frame by looking
2036 at the stack pointer. For truly "frameless" functions this
2037 might work too. */
2038
2039 if (cache->saved_sp_reg != -1)
2040 {
2041 /* Stack pointer has been saved. */
2042 get_frame_register (this_frame, cache->saved_sp_reg, buf);
2043 cache->saved_sp = extract_unsigned_integer (buf, 8, byte_order);
2044
2045 /* We're halfway aligning the stack. */
2046 cache->base = ((cache->saved_sp - 8) & 0xfffffffffffffff0LL) - 8;
2047 cache->saved_regs[AMD64_RIP_REGNUM] = cache->saved_sp - 8;
2048
2049 /* This will be added back below. */
2050 cache->saved_regs[AMD64_RIP_REGNUM] -= cache->base;
2051 }
2052 else
2053 {
2054 get_frame_register (this_frame, AMD64_RSP_REGNUM, buf);
2055 cache->base = extract_unsigned_integer (buf, 8, byte_order)
2056 + cache->sp_offset;
2057 }
2058 }
2059 else
2060 {
2061 get_frame_register (this_frame, AMD64_RBP_REGNUM, buf);
2062 cache->base = extract_unsigned_integer (buf, 8, byte_order);
2063 }
2064
2065 /* Now that we have the base address for the stack frame we can
2066 calculate the value of %rsp in the calling frame. */
2067 cache->saved_sp = cache->base + 16;
2068
2069 /* For normal frames, %rip is stored at 8(%rbp). If we don't have a
2070 frame we find it at the same offset from the reconstructed base
2071 address. If we're halfway aligning the stack, %rip is handled
2072 differently (see above). */
2073 if (!cache->frameless_p || cache->saved_sp_reg == -1)
2074 cache->saved_regs[AMD64_RIP_REGNUM] = 8;
2075
2076 /* Adjust all the saved registers such that they contain addresses
2077 instead of offsets. */
2078 for (i = 0; i < AMD64_NUM_SAVED_REGS; i++)
2079 if (cache->saved_regs[i] != -1)
2080 cache->saved_regs[i] += cache->base;
2081
2082 cache->base_p = 1;
2083 }
2084
2085 static struct amd64_frame_cache *
2086 amd64_frame_cache (struct frame_info *this_frame, void **this_cache)
2087 {
2088 volatile struct gdb_exception ex;
2089 struct amd64_frame_cache *cache;
2090
2091 if (*this_cache)
2092 return *this_cache;
2093
2094 cache = amd64_alloc_frame_cache ();
2095 *this_cache = cache;
2096
2097 TRY_CATCH (ex, RETURN_MASK_ERROR)
2098 {
2099 amd64_frame_cache_1 (this_frame, cache);
2100 }
2101 if (ex.reason < 0 && ex.error != NOT_AVAILABLE_ERROR)
2102 throw_exception (ex);
2103
2104 return cache;
2105 }
2106
2107 static enum unwind_stop_reason
2108 amd64_frame_unwind_stop_reason (struct frame_info *this_frame,
2109 void **this_cache)
2110 {
2111 struct amd64_frame_cache *cache =
2112 amd64_frame_cache (this_frame, this_cache);
2113
2114 if (!cache->base_p)
2115 return UNWIND_UNAVAILABLE;
2116
2117 /* This marks the outermost frame. */
2118 if (cache->base == 0)
2119 return UNWIND_OUTERMOST;
2120
2121 return UNWIND_NO_REASON;
2122 }
2123
2124 static void
2125 amd64_frame_this_id (struct frame_info *this_frame, void **this_cache,
2126 struct frame_id *this_id)
2127 {
2128 struct amd64_frame_cache *cache =
2129 amd64_frame_cache (this_frame, this_cache);
2130
2131 if (!cache->base_p)
2132 return;
2133
2134 /* This marks the outermost frame. */
2135 if (cache->base == 0)
2136 return;
2137
2138 (*this_id) = frame_id_build (cache->base + 16, cache->pc);
2139 }
2140
2141 static struct value *
2142 amd64_frame_prev_register (struct frame_info *this_frame, void **this_cache,
2143 int regnum)
2144 {
2145 struct gdbarch *gdbarch = get_frame_arch (this_frame);
2146 struct amd64_frame_cache *cache =
2147 amd64_frame_cache (this_frame, this_cache);
2148
2149 gdb_assert (regnum >= 0);
2150
2151 if (regnum == gdbarch_sp_regnum (gdbarch) && cache->saved_sp)
2152 return frame_unwind_got_constant (this_frame, regnum, cache->saved_sp);
2153
2154 if (regnum < AMD64_NUM_SAVED_REGS && cache->saved_regs[regnum] != -1)
2155 return frame_unwind_got_memory (this_frame, regnum,
2156 cache->saved_regs[regnum]);
2157
2158 return frame_unwind_got_register (this_frame, regnum, regnum);
2159 }
2160
2161 static const struct frame_unwind amd64_frame_unwind =
2162 {
2163 NORMAL_FRAME,
2164 amd64_frame_unwind_stop_reason,
2165 amd64_frame_this_id,
2166 amd64_frame_prev_register,
2167 NULL,
2168 default_frame_sniffer
2169 };
2170 \f
2171 /* Generate a bytecode expression to get the value of the saved PC. */
2172
2173 static void
2174 amd64_gen_return_address (struct gdbarch *gdbarch,
2175 struct agent_expr *ax, struct axs_value *value,
2176 CORE_ADDR scope)
2177 {
2178 /* The following sequence assumes the traditional use of the base
2179 register. */
2180 ax_reg (ax, AMD64_RBP_REGNUM);
2181 ax_const_l (ax, 8);
2182 ax_simple (ax, aop_add);
2183 value->type = register_type (gdbarch, AMD64_RIP_REGNUM);
2184 value->kind = axs_lvalue_memory;
2185 }
2186 \f
2187
2188 /* Signal trampolines. */
2189
2190 /* FIXME: kettenis/20030419: Perhaps, we can unify the 32-bit and
2191 64-bit variants. This would require using identical frame caches
2192 on both platforms. */
2193
2194 static struct amd64_frame_cache *
2195 amd64_sigtramp_frame_cache (struct frame_info *this_frame, void **this_cache)
2196 {
2197 struct gdbarch *gdbarch = get_frame_arch (this_frame);
2198 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2199 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
2200 volatile struct gdb_exception ex;
2201 struct amd64_frame_cache *cache;
2202 CORE_ADDR addr;
2203 gdb_byte buf[8];
2204 int i;
2205
2206 if (*this_cache)
2207 return *this_cache;
2208
2209 cache = amd64_alloc_frame_cache ();
2210
2211 TRY_CATCH (ex, RETURN_MASK_ERROR)
2212 {
2213 get_frame_register (this_frame, AMD64_RSP_REGNUM, buf);
2214 cache->base = extract_unsigned_integer (buf, 8, byte_order) - 8;
2215
2216 addr = tdep->sigcontext_addr (this_frame);
2217 gdb_assert (tdep->sc_reg_offset);
2218 gdb_assert (tdep->sc_num_regs <= AMD64_NUM_SAVED_REGS);
2219 for (i = 0; i < tdep->sc_num_regs; i++)
2220 if (tdep->sc_reg_offset[i] != -1)
2221 cache->saved_regs[i] = addr + tdep->sc_reg_offset[i];
2222
2223 cache->base_p = 1;
2224 }
2225 if (ex.reason < 0 && ex.error != NOT_AVAILABLE_ERROR)
2226 throw_exception (ex);
2227
2228 *this_cache = cache;
2229 return cache;
2230 }
2231
2232 static enum unwind_stop_reason
2233 amd64_sigtramp_frame_unwind_stop_reason (struct frame_info *this_frame,
2234 void **this_cache)
2235 {
2236 struct amd64_frame_cache *cache =
2237 amd64_sigtramp_frame_cache (this_frame, this_cache);
2238
2239 if (!cache->base_p)
2240 return UNWIND_UNAVAILABLE;
2241
2242 return UNWIND_NO_REASON;
2243 }
2244
2245 static void
2246 amd64_sigtramp_frame_this_id (struct frame_info *this_frame,
2247 void **this_cache, struct frame_id *this_id)
2248 {
2249 struct amd64_frame_cache *cache =
2250 amd64_sigtramp_frame_cache (this_frame, this_cache);
2251
2252 if (!cache->base_p)
2253 return;
2254
2255 (*this_id) = frame_id_build (cache->base + 16, get_frame_pc (this_frame));
2256 }
2257
2258 static struct value *
2259 amd64_sigtramp_frame_prev_register (struct frame_info *this_frame,
2260 void **this_cache, int regnum)
2261 {
2262 /* Make sure we've initialized the cache. */
2263 amd64_sigtramp_frame_cache (this_frame, this_cache);
2264
2265 return amd64_frame_prev_register (this_frame, this_cache, regnum);
2266 }
2267
2268 static int
2269 amd64_sigtramp_frame_sniffer (const struct frame_unwind *self,
2270 struct frame_info *this_frame,
2271 void **this_cache)
2272 {
2273 struct gdbarch_tdep *tdep = gdbarch_tdep (get_frame_arch (this_frame));
2274
2275 /* We shouldn't even bother if we don't have a sigcontext_addr
2276 handler. */
2277 if (tdep->sigcontext_addr == NULL)
2278 return 0;
2279
2280 if (tdep->sigtramp_p != NULL)
2281 {
2282 if (tdep->sigtramp_p (this_frame))
2283 return 1;
2284 }
2285
2286 if (tdep->sigtramp_start != 0)
2287 {
2288 CORE_ADDR pc = get_frame_pc (this_frame);
2289
2290 gdb_assert (tdep->sigtramp_end != 0);
2291 if (pc >= tdep->sigtramp_start && pc < tdep->sigtramp_end)
2292 return 1;
2293 }
2294
2295 return 0;
2296 }
2297
2298 static const struct frame_unwind amd64_sigtramp_frame_unwind =
2299 {
2300 SIGTRAMP_FRAME,
2301 amd64_sigtramp_frame_unwind_stop_reason,
2302 amd64_sigtramp_frame_this_id,
2303 amd64_sigtramp_frame_prev_register,
2304 NULL,
2305 amd64_sigtramp_frame_sniffer
2306 };
2307 \f
2308
2309 static CORE_ADDR
2310 amd64_frame_base_address (struct frame_info *this_frame, void **this_cache)
2311 {
2312 struct amd64_frame_cache *cache =
2313 amd64_frame_cache (this_frame, this_cache);
2314
2315 return cache->base;
2316 }
2317
2318 static const struct frame_base amd64_frame_base =
2319 {
2320 &amd64_frame_unwind,
2321 amd64_frame_base_address,
2322 amd64_frame_base_address,
2323 amd64_frame_base_address
2324 };
2325
2326 /* Normal frames, but in a function epilogue. */
2327
2328 /* The epilogue is defined here as the 'ret' instruction, which will
2329 follow any instruction such as 'leave' or 'pop %ebp' that destroys
2330 the function's stack frame. */
2331
2332 static int
2333 amd64_in_function_epilogue_p (struct gdbarch *gdbarch, CORE_ADDR pc)
2334 {
2335 gdb_byte insn;
2336 struct symtab *symtab;
2337
2338 symtab = find_pc_symtab (pc);
2339 if (symtab && symtab->epilogue_unwind_valid)
2340 return 0;
2341
2342 if (target_read_memory (pc, &insn, 1))
2343 return 0; /* Can't read memory at pc. */
2344
2345 if (insn != 0xc3) /* 'ret' instruction. */
2346 return 0;
2347
2348 return 1;
2349 }
2350
2351 static int
2352 amd64_epilogue_frame_sniffer (const struct frame_unwind *self,
2353 struct frame_info *this_frame,
2354 void **this_prologue_cache)
2355 {
2356 if (frame_relative_level (this_frame) == 0)
2357 return amd64_in_function_epilogue_p (get_frame_arch (this_frame),
2358 get_frame_pc (this_frame));
2359 else
2360 return 0;
2361 }
2362
2363 static struct amd64_frame_cache *
2364 amd64_epilogue_frame_cache (struct frame_info *this_frame, void **this_cache)
2365 {
2366 struct gdbarch *gdbarch = get_frame_arch (this_frame);
2367 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
2368 volatile struct gdb_exception ex;
2369 struct amd64_frame_cache *cache;
2370 gdb_byte buf[8];
2371
2372 if (*this_cache)
2373 return *this_cache;
2374
2375 cache = amd64_alloc_frame_cache ();
2376 *this_cache = cache;
2377
2378 TRY_CATCH (ex, RETURN_MASK_ERROR)
2379 {
2380 /* Cache base will be %esp plus cache->sp_offset (-8). */
2381 get_frame_register (this_frame, AMD64_RSP_REGNUM, buf);
2382 cache->base = extract_unsigned_integer (buf, 8,
2383 byte_order) + cache->sp_offset;
2384
2385 /* Cache pc will be the frame func. */
2386 cache->pc = get_frame_pc (this_frame);
2387
2388 /* The saved %esp will be at cache->base plus 16. */
2389 cache->saved_sp = cache->base + 16;
2390
2391 /* The saved %eip will be at cache->base plus 8. */
2392 cache->saved_regs[AMD64_RIP_REGNUM] = cache->base + 8;
2393
2394 cache->base_p = 1;
2395 }
2396 if (ex.reason < 0 && ex.error != NOT_AVAILABLE_ERROR)
2397 throw_exception (ex);
2398
2399 return cache;
2400 }
2401
2402 static enum unwind_stop_reason
2403 amd64_epilogue_frame_unwind_stop_reason (struct frame_info *this_frame,
2404 void **this_cache)
2405 {
2406 struct amd64_frame_cache *cache
2407 = amd64_epilogue_frame_cache (this_frame, this_cache);
2408
2409 if (!cache->base_p)
2410 return UNWIND_UNAVAILABLE;
2411
2412 return UNWIND_NO_REASON;
2413 }
2414
2415 static void
2416 amd64_epilogue_frame_this_id (struct frame_info *this_frame,
2417 void **this_cache,
2418 struct frame_id *this_id)
2419 {
2420 struct amd64_frame_cache *cache = amd64_epilogue_frame_cache (this_frame,
2421 this_cache);
2422
2423 if (!cache->base_p)
2424 return;
2425
2426 (*this_id) = frame_id_build (cache->base + 8, cache->pc);
2427 }
2428
2429 static const struct frame_unwind amd64_epilogue_frame_unwind =
2430 {
2431 NORMAL_FRAME,
2432 amd64_epilogue_frame_unwind_stop_reason,
2433 amd64_epilogue_frame_this_id,
2434 amd64_frame_prev_register,
2435 NULL,
2436 amd64_epilogue_frame_sniffer
2437 };
2438
2439 static struct frame_id
2440 amd64_dummy_id (struct gdbarch *gdbarch, struct frame_info *this_frame)
2441 {
2442 CORE_ADDR fp;
2443
2444 fp = get_frame_register_unsigned (this_frame, AMD64_RBP_REGNUM);
2445
2446 return frame_id_build (fp + 16, get_frame_pc (this_frame));
2447 }
2448
2449 /* 16 byte align the SP per frame requirements. */
2450
2451 static CORE_ADDR
2452 amd64_frame_align (struct gdbarch *gdbarch, CORE_ADDR sp)
2453 {
2454 return sp & -(CORE_ADDR)16;
2455 }
2456 \f
2457
2458 /* Supply register REGNUM from the buffer specified by FPREGS and LEN
2459 in the floating-point register set REGSET to register cache
2460 REGCACHE. If REGNUM is -1, do this for all registers in REGSET. */
2461
2462 static void
2463 amd64_supply_fpregset (const struct regset *regset, struct regcache *regcache,
2464 int regnum, const void *fpregs, size_t len)
2465 {
2466 const struct gdbarch_tdep *tdep = gdbarch_tdep (regset->arch);
2467
2468 gdb_assert (len == tdep->sizeof_fpregset);
2469 amd64_supply_fxsave (regcache, regnum, fpregs);
2470 }
2471
2472 /* Collect register REGNUM from the register cache REGCACHE and store
2473 it in the buffer specified by FPREGS and LEN as described by the
2474 floating-point register set REGSET. If REGNUM is -1, do this for
2475 all registers in REGSET. */
2476
2477 static void
2478 amd64_collect_fpregset (const struct regset *regset,
2479 const struct regcache *regcache,
2480 int regnum, void *fpregs, size_t len)
2481 {
2482 const struct gdbarch_tdep *tdep = gdbarch_tdep (regset->arch);
2483
2484 gdb_assert (len == tdep->sizeof_fpregset);
2485 amd64_collect_fxsave (regcache, regnum, fpregs);
2486 }
2487
2488 /* Similar to amd64_supply_fpregset, but use XSAVE extended state. */
2489
2490 static void
2491 amd64_supply_xstateregset (const struct regset *regset,
2492 struct regcache *regcache, int regnum,
2493 const void *xstateregs, size_t len)
2494 {
2495 amd64_supply_xsave (regcache, regnum, xstateregs);
2496 }
2497
2498 /* Similar to amd64_collect_fpregset, but use XSAVE extended state. */
2499
2500 static void
2501 amd64_collect_xstateregset (const struct regset *regset,
2502 const struct regcache *regcache,
2503 int regnum, void *xstateregs, size_t len)
2504 {
2505 amd64_collect_xsave (regcache, regnum, xstateregs, 1);
2506 }
2507
2508 /* Return the appropriate register set for the core section identified
2509 by SECT_NAME and SECT_SIZE. */
2510
2511 static const struct regset *
2512 amd64_regset_from_core_section (struct gdbarch *gdbarch,
2513 const char *sect_name, size_t sect_size)
2514 {
2515 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2516
2517 if (strcmp (sect_name, ".reg2") == 0 && sect_size == tdep->sizeof_fpregset)
2518 {
2519 if (tdep->fpregset == NULL)
2520 tdep->fpregset = regset_alloc (gdbarch, amd64_supply_fpregset,
2521 amd64_collect_fpregset);
2522
2523 return tdep->fpregset;
2524 }
2525
2526 if (strcmp (sect_name, ".reg-xstate") == 0)
2527 {
2528 if (tdep->xstateregset == NULL)
2529 tdep->xstateregset = regset_alloc (gdbarch,
2530 amd64_supply_xstateregset,
2531 amd64_collect_xstateregset);
2532
2533 return tdep->xstateregset;
2534 }
2535
2536 return i386_regset_from_core_section (gdbarch, sect_name, sect_size);
2537 }
2538 \f
2539
2540 /* Figure out where the longjmp will land. Slurp the jmp_buf out of
2541 %rdi. We expect its value to be a pointer to the jmp_buf structure
2542 from which we extract the address that we will land at. This
2543 address is copied into PC. This routine returns non-zero on
2544 success. */
2545
2546 static int
2547 amd64_get_longjmp_target (struct frame_info *frame, CORE_ADDR *pc)
2548 {
2549 gdb_byte buf[8];
2550 CORE_ADDR jb_addr;
2551 struct gdbarch *gdbarch = get_frame_arch (frame);
2552 int jb_pc_offset = gdbarch_tdep (gdbarch)->jb_pc_offset;
2553 int len = TYPE_LENGTH (builtin_type (gdbarch)->builtin_func_ptr);
2554
2555 /* If JB_PC_OFFSET is -1, we have no way to find out where the
2556 longjmp will land. */
2557 if (jb_pc_offset == -1)
2558 return 0;
2559
2560 get_frame_register (frame, AMD64_RDI_REGNUM, buf);
2561 jb_addr= extract_typed_address
2562 (buf, builtin_type (gdbarch)->builtin_data_ptr);
2563 if (target_read_memory (jb_addr + jb_pc_offset, buf, len))
2564 return 0;
2565
2566 *pc = extract_typed_address (buf, builtin_type (gdbarch)->builtin_func_ptr);
2567
2568 return 1;
2569 }
2570
2571 static const int amd64_record_regmap[] =
2572 {
2573 AMD64_RAX_REGNUM, AMD64_RCX_REGNUM, AMD64_RDX_REGNUM, AMD64_RBX_REGNUM,
2574 AMD64_RSP_REGNUM, AMD64_RBP_REGNUM, AMD64_RSI_REGNUM, AMD64_RDI_REGNUM,
2575 AMD64_R8_REGNUM, AMD64_R9_REGNUM, AMD64_R10_REGNUM, AMD64_R11_REGNUM,
2576 AMD64_R12_REGNUM, AMD64_R13_REGNUM, AMD64_R14_REGNUM, AMD64_R15_REGNUM,
2577 AMD64_RIP_REGNUM, AMD64_EFLAGS_REGNUM, AMD64_CS_REGNUM, AMD64_SS_REGNUM,
2578 AMD64_DS_REGNUM, AMD64_ES_REGNUM, AMD64_FS_REGNUM, AMD64_GS_REGNUM
2579 };
2580
2581 void
2582 amd64_init_abi (struct gdbarch_info info, struct gdbarch *gdbarch)
2583 {
2584 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2585 const struct target_desc *tdesc = info.target_desc;
2586
2587 /* AMD64 generally uses `fxsave' instead of `fsave' for saving its
2588 floating-point registers. */
2589 tdep->sizeof_fpregset = I387_SIZEOF_FXSAVE;
2590
2591 if (! tdesc_has_registers (tdesc))
2592 tdesc = tdesc_amd64;
2593 tdep->tdesc = tdesc;
2594
2595 tdep->num_core_regs = AMD64_NUM_GREGS + I387_NUM_REGS;
2596 tdep->register_names = amd64_register_names;
2597
2598 if (tdesc_find_feature (tdesc, "org.gnu.gdb.i386.avx") != NULL)
2599 {
2600 tdep->ymmh_register_names = amd64_ymmh_names;
2601 tdep->num_ymm_regs = 16;
2602 tdep->ymm0h_regnum = AMD64_YMM0H_REGNUM;
2603 }
2604
2605 tdep->num_byte_regs = 20;
2606 tdep->num_word_regs = 16;
2607 tdep->num_dword_regs = 16;
2608 /* Avoid wiring in the MMX registers for now. */
2609 tdep->num_mmx_regs = 0;
2610
2611 set_gdbarch_pseudo_register_read_value (gdbarch,
2612 amd64_pseudo_register_read_value);
2613 set_gdbarch_pseudo_register_write (gdbarch,
2614 amd64_pseudo_register_write);
2615
2616 set_tdesc_pseudo_register_name (gdbarch, amd64_pseudo_register_name);
2617
2618 /* AMD64 has an FPU and 16 SSE registers. */
2619 tdep->st0_regnum = AMD64_ST0_REGNUM;
2620 tdep->num_xmm_regs = 16;
2621
2622 /* This is what all the fuss is about. */
2623 set_gdbarch_long_bit (gdbarch, 64);
2624 set_gdbarch_long_long_bit (gdbarch, 64);
2625 set_gdbarch_ptr_bit (gdbarch, 64);
2626
2627 /* In contrast to the i386, on AMD64 a `long double' actually takes
2628 up 128 bits, even though it's still based on the i387 extended
2629 floating-point format which has only 80 significant bits. */
2630 set_gdbarch_long_double_bit (gdbarch, 128);
2631
2632 set_gdbarch_num_regs (gdbarch, AMD64_NUM_REGS);
2633
2634 /* Register numbers of various important registers. */
2635 set_gdbarch_sp_regnum (gdbarch, AMD64_RSP_REGNUM); /* %rsp */
2636 set_gdbarch_pc_regnum (gdbarch, AMD64_RIP_REGNUM); /* %rip */
2637 set_gdbarch_ps_regnum (gdbarch, AMD64_EFLAGS_REGNUM); /* %eflags */
2638 set_gdbarch_fp0_regnum (gdbarch, AMD64_ST0_REGNUM); /* %st(0) */
2639
2640 /* The "default" register numbering scheme for AMD64 is referred to
2641 as the "DWARF Register Number Mapping" in the System V psABI.
2642 The preferred debugging format for all known AMD64 targets is
2643 actually DWARF2, and GCC doesn't seem to support DWARF (that is
2644 DWARF-1), but we provide the same mapping just in case. This
2645 mapping is also used for stabs, which GCC does support. */
2646 set_gdbarch_stab_reg_to_regnum (gdbarch, amd64_dwarf_reg_to_regnum);
2647 set_gdbarch_dwarf2_reg_to_regnum (gdbarch, amd64_dwarf_reg_to_regnum);
2648
2649 /* We don't override SDB_REG_RO_REGNUM, since COFF doesn't seem to
2650 be in use on any of the supported AMD64 targets. */
2651
2652 /* Call dummy code. */
2653 set_gdbarch_push_dummy_call (gdbarch, amd64_push_dummy_call);
2654 set_gdbarch_frame_align (gdbarch, amd64_frame_align);
2655 set_gdbarch_frame_red_zone_size (gdbarch, 128);
2656 tdep->call_dummy_num_integer_regs =
2657 ARRAY_SIZE (amd64_dummy_call_integer_regs);
2658 tdep->call_dummy_integer_regs = amd64_dummy_call_integer_regs;
2659 tdep->classify = amd64_classify;
2660
2661 set_gdbarch_convert_register_p (gdbarch, i387_convert_register_p);
2662 set_gdbarch_register_to_value (gdbarch, i387_register_to_value);
2663 set_gdbarch_value_to_register (gdbarch, i387_value_to_register);
2664
2665 set_gdbarch_return_value (gdbarch, amd64_return_value);
2666
2667 set_gdbarch_skip_prologue (gdbarch, amd64_skip_prologue);
2668
2669 tdep->record_regmap = amd64_record_regmap;
2670
2671 set_gdbarch_dummy_id (gdbarch, amd64_dummy_id);
2672
2673 /* Hook the function epilogue frame unwinder. This unwinder is
2674 appended to the list first, so that it supercedes the other
2675 unwinders in function epilogues. */
2676 frame_unwind_prepend_unwinder (gdbarch, &amd64_epilogue_frame_unwind);
2677
2678 /* Hook the prologue-based frame unwinders. */
2679 frame_unwind_append_unwinder (gdbarch, &amd64_sigtramp_frame_unwind);
2680 frame_unwind_append_unwinder (gdbarch, &amd64_frame_unwind);
2681 frame_base_set_default (gdbarch, &amd64_frame_base);
2682
2683 /* If we have a register mapping, enable the generic core file support. */
2684 if (tdep->gregset_reg_offset)
2685 set_gdbarch_regset_from_core_section (gdbarch,
2686 amd64_regset_from_core_section);
2687
2688 set_gdbarch_get_longjmp_target (gdbarch, amd64_get_longjmp_target);
2689
2690 set_gdbarch_relocate_instruction (gdbarch, amd64_relocate_instruction);
2691
2692 set_gdbarch_gen_return_address (gdbarch, amd64_gen_return_address);
2693 }
2694
2695 /* Provide a prototype to silence -Wmissing-prototypes. */
2696 void _initialize_amd64_tdep (void);
2697
2698 void
2699 _initialize_amd64_tdep (void)
2700 {
2701 initialize_tdesc_amd64 ();
2702 initialize_tdesc_amd64_avx ();
2703 }
2704 \f
2705
2706 /* The 64-bit FXSAVE format differs from the 32-bit format in the
2707 sense that the instruction pointer and data pointer are simply
2708 64-bit offsets into the code segment and the data segment instead
2709 of a selector offset pair. The functions below store the upper 32
2710 bits of these pointers (instead of just the 16-bits of the segment
2711 selector). */
2712
2713 /* Fill register REGNUM in REGCACHE with the appropriate
2714 floating-point or SSE register value from *FXSAVE. If REGNUM is
2715 -1, do this for all registers. This function masks off any of the
2716 reserved bits in *FXSAVE. */
2717
2718 void
2719 amd64_supply_fxsave (struct regcache *regcache, int regnum,
2720 const void *fxsave)
2721 {
2722 struct gdbarch *gdbarch = get_regcache_arch (regcache);
2723 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2724
2725 i387_supply_fxsave (regcache, regnum, fxsave);
2726
2727 if (fxsave && gdbarch_ptr_bit (gdbarch) == 64)
2728 {
2729 const gdb_byte *regs = fxsave;
2730
2731 if (regnum == -1 || regnum == I387_FISEG_REGNUM (tdep))
2732 regcache_raw_supply (regcache, I387_FISEG_REGNUM (tdep), regs + 12);
2733 if (regnum == -1 || regnum == I387_FOSEG_REGNUM (tdep))
2734 regcache_raw_supply (regcache, I387_FOSEG_REGNUM (tdep), regs + 20);
2735 }
2736 }
2737
2738 /* Similar to amd64_supply_fxsave, but use XSAVE extended state. */
2739
2740 void
2741 amd64_supply_xsave (struct regcache *regcache, int regnum,
2742 const void *xsave)
2743 {
2744 struct gdbarch *gdbarch = get_regcache_arch (regcache);
2745 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2746
2747 i387_supply_xsave (regcache, regnum, xsave);
2748
2749 if (xsave && gdbarch_ptr_bit (gdbarch) == 64)
2750 {
2751 const gdb_byte *regs = xsave;
2752
2753 if (regnum == -1 || regnum == I387_FISEG_REGNUM (tdep))
2754 regcache_raw_supply (regcache, I387_FISEG_REGNUM (tdep),
2755 regs + 12);
2756 if (regnum == -1 || regnum == I387_FOSEG_REGNUM (tdep))
2757 regcache_raw_supply (regcache, I387_FOSEG_REGNUM (tdep),
2758 regs + 20);
2759 }
2760 }
2761
2762 /* Fill register REGNUM (if it is a floating-point or SSE register) in
2763 *FXSAVE with the value from REGCACHE. If REGNUM is -1, do this for
2764 all registers. This function doesn't touch any of the reserved
2765 bits in *FXSAVE. */
2766
2767 void
2768 amd64_collect_fxsave (const struct regcache *regcache, int regnum,
2769 void *fxsave)
2770 {
2771 struct gdbarch *gdbarch = get_regcache_arch (regcache);
2772 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2773 gdb_byte *regs = fxsave;
2774
2775 i387_collect_fxsave (regcache, regnum, fxsave);
2776
2777 if (gdbarch_ptr_bit (gdbarch) == 64)
2778 {
2779 if (regnum == -1 || regnum == I387_FISEG_REGNUM (tdep))
2780 regcache_raw_collect (regcache, I387_FISEG_REGNUM (tdep), regs + 12);
2781 if (regnum == -1 || regnum == I387_FOSEG_REGNUM (tdep))
2782 regcache_raw_collect (regcache, I387_FOSEG_REGNUM (tdep), regs + 20);
2783 }
2784 }
2785
2786 /* Similar to amd64_collect_fxsave, but use XSAVE extended state. */
2787
2788 void
2789 amd64_collect_xsave (const struct regcache *regcache, int regnum,
2790 void *xsave, int gcore)
2791 {
2792 struct gdbarch *gdbarch = get_regcache_arch (regcache);
2793 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2794 gdb_byte *regs = xsave;
2795
2796 i387_collect_xsave (regcache, regnum, xsave, gcore);
2797
2798 if (gdbarch_ptr_bit (gdbarch) == 64)
2799 {
2800 if (regnum == -1 || regnum == I387_FISEG_REGNUM (tdep))
2801 regcache_raw_collect (regcache, I387_FISEG_REGNUM (tdep),
2802 regs + 12);
2803 if (regnum == -1 || regnum == I387_FOSEG_REGNUM (tdep))
2804 regcache_raw_collect (regcache, I387_FOSEG_REGNUM (tdep),
2805 regs + 20);
2806 }
2807 }
This page took 0.090135 seconds and 5 git commands to generate.