Revert use of memory_args_by_pointer in i386 gdbarch_tdep.
[deliverable/binutils-gdb.git] / gdb / amd64-tdep.c
1 /* Target-dependent code for AMD64.
2
3 Copyright (C) 2001-2013 Free Software Foundation, Inc.
4
5 Contributed by Jiri Smid, SuSE Labs.
6
7 This file is part of GDB.
8
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 3 of the License, or
12 (at your option) any later version.
13
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
18
19 You should have received a copy of the GNU General Public License
20 along with this program. If not, see <http://www.gnu.org/licenses/>. */
21
22 #include "defs.h"
23 #include "opcode/i386.h"
24 #include "dis-asm.h"
25 #include "arch-utils.h"
26 #include "block.h"
27 #include "dummy-frame.h"
28 #include "frame.h"
29 #include "frame-base.h"
30 #include "frame-unwind.h"
31 #include "inferior.h"
32 #include "gdbcmd.h"
33 #include "gdbcore.h"
34 #include "objfiles.h"
35 #include "regcache.h"
36 #include "regset.h"
37 #include "symfile.h"
38 #include "disasm.h"
39 #include "gdb_assert.h"
40 #include "exceptions.h"
41 #include "amd64-tdep.h"
42 #include "i387-tdep.h"
43
44 #include "features/i386/amd64.c"
45 #include "features/i386/amd64-avx.c"
46 #include "features/i386/x32.c"
47 #include "features/i386/x32-avx.c"
48
49 #include "ax.h"
50 #include "ax-gdb.h"
51
52 /* Note that the AMD64 architecture was previously known as x86-64.
53 The latter is (forever) engraved into the canonical system name as
54 returned by config.guess, and used as the name for the AMD64 port
55 of GNU/Linux. The BSD's have renamed their ports to amd64; they
56 don't like to shout. For GDB we prefer the amd64_-prefix over the
57 x86_64_-prefix since it's so much easier to type. */
58
59 /* Register information. */
60
61 static const char *amd64_register_names[] =
62 {
63 "rax", "rbx", "rcx", "rdx", "rsi", "rdi", "rbp", "rsp",
64
65 /* %r8 is indeed register number 8. */
66 "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15",
67 "rip", "eflags", "cs", "ss", "ds", "es", "fs", "gs",
68
69 /* %st0 is register number 24. */
70 "st0", "st1", "st2", "st3", "st4", "st5", "st6", "st7",
71 "fctrl", "fstat", "ftag", "fiseg", "fioff", "foseg", "fooff", "fop",
72
73 /* %xmm0 is register number 40. */
74 "xmm0", "xmm1", "xmm2", "xmm3", "xmm4", "xmm5", "xmm6", "xmm7",
75 "xmm8", "xmm9", "xmm10", "xmm11", "xmm12", "xmm13", "xmm14", "xmm15",
76 "mxcsr",
77 };
78
79 static const char *amd64_ymm_names[] =
80 {
81 "ymm0", "ymm1", "ymm2", "ymm3",
82 "ymm4", "ymm5", "ymm6", "ymm7",
83 "ymm8", "ymm9", "ymm10", "ymm11",
84 "ymm12", "ymm13", "ymm14", "ymm15"
85 };
86
87 static const char *amd64_ymmh_names[] =
88 {
89 "ymm0h", "ymm1h", "ymm2h", "ymm3h",
90 "ymm4h", "ymm5h", "ymm6h", "ymm7h",
91 "ymm8h", "ymm9h", "ymm10h", "ymm11h",
92 "ymm12h", "ymm13h", "ymm14h", "ymm15h"
93 };
94
95 /* The registers used to pass integer arguments during a function call. */
96 static int amd64_dummy_call_integer_regs[] =
97 {
98 AMD64_RDI_REGNUM, /* %rdi */
99 AMD64_RSI_REGNUM, /* %rsi */
100 AMD64_RDX_REGNUM, /* %rdx */
101 AMD64_RCX_REGNUM, /* %rcx */
102 8, /* %r8 */
103 9 /* %r9 */
104 };
105
106 /* DWARF Register Number Mapping as defined in the System V psABI,
107 section 3.6. */
108
109 static int amd64_dwarf_regmap[] =
110 {
111 /* General Purpose Registers RAX, RDX, RCX, RBX, RSI, RDI. */
112 AMD64_RAX_REGNUM, AMD64_RDX_REGNUM,
113 AMD64_RCX_REGNUM, AMD64_RBX_REGNUM,
114 AMD64_RSI_REGNUM, AMD64_RDI_REGNUM,
115
116 /* Frame Pointer Register RBP. */
117 AMD64_RBP_REGNUM,
118
119 /* Stack Pointer Register RSP. */
120 AMD64_RSP_REGNUM,
121
122 /* Extended Integer Registers 8 - 15. */
123 8, 9, 10, 11, 12, 13, 14, 15,
124
125 /* Return Address RA. Mapped to RIP. */
126 AMD64_RIP_REGNUM,
127
128 /* SSE Registers 0 - 7. */
129 AMD64_XMM0_REGNUM + 0, AMD64_XMM1_REGNUM,
130 AMD64_XMM0_REGNUM + 2, AMD64_XMM0_REGNUM + 3,
131 AMD64_XMM0_REGNUM + 4, AMD64_XMM0_REGNUM + 5,
132 AMD64_XMM0_REGNUM + 6, AMD64_XMM0_REGNUM + 7,
133
134 /* Extended SSE Registers 8 - 15. */
135 AMD64_XMM0_REGNUM + 8, AMD64_XMM0_REGNUM + 9,
136 AMD64_XMM0_REGNUM + 10, AMD64_XMM0_REGNUM + 11,
137 AMD64_XMM0_REGNUM + 12, AMD64_XMM0_REGNUM + 13,
138 AMD64_XMM0_REGNUM + 14, AMD64_XMM0_REGNUM + 15,
139
140 /* Floating Point Registers 0-7. */
141 AMD64_ST0_REGNUM + 0, AMD64_ST0_REGNUM + 1,
142 AMD64_ST0_REGNUM + 2, AMD64_ST0_REGNUM + 3,
143 AMD64_ST0_REGNUM + 4, AMD64_ST0_REGNUM + 5,
144 AMD64_ST0_REGNUM + 6, AMD64_ST0_REGNUM + 7,
145
146 /* Control and Status Flags Register. */
147 AMD64_EFLAGS_REGNUM,
148
149 /* Selector Registers. */
150 AMD64_ES_REGNUM,
151 AMD64_CS_REGNUM,
152 AMD64_SS_REGNUM,
153 AMD64_DS_REGNUM,
154 AMD64_FS_REGNUM,
155 AMD64_GS_REGNUM,
156 -1,
157 -1,
158
159 /* Segment Base Address Registers. */
160 -1,
161 -1,
162 -1,
163 -1,
164
165 /* Special Selector Registers. */
166 -1,
167 -1,
168
169 /* Floating Point Control Registers. */
170 AMD64_MXCSR_REGNUM,
171 AMD64_FCTRL_REGNUM,
172 AMD64_FSTAT_REGNUM
173 };
174
175 static const int amd64_dwarf_regmap_len =
176 (sizeof (amd64_dwarf_regmap) / sizeof (amd64_dwarf_regmap[0]));
177
178 /* Convert DWARF register number REG to the appropriate register
179 number used by GDB. */
180
181 static int
182 amd64_dwarf_reg_to_regnum (struct gdbarch *gdbarch, int reg)
183 {
184 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
185 int ymm0_regnum = tdep->ymm0_regnum;
186 int regnum = -1;
187
188 if (reg >= 0 && reg < amd64_dwarf_regmap_len)
189 regnum = amd64_dwarf_regmap[reg];
190
191 if (regnum == -1)
192 warning (_("Unmapped DWARF Register #%d encountered."), reg);
193 else if (ymm0_regnum >= 0
194 && i386_xmm_regnum_p (gdbarch, regnum))
195 regnum += ymm0_regnum - I387_XMM0_REGNUM (tdep);
196
197 return regnum;
198 }
199
200 /* Map architectural register numbers to gdb register numbers. */
201
202 static const int amd64_arch_regmap[16] =
203 {
204 AMD64_RAX_REGNUM, /* %rax */
205 AMD64_RCX_REGNUM, /* %rcx */
206 AMD64_RDX_REGNUM, /* %rdx */
207 AMD64_RBX_REGNUM, /* %rbx */
208 AMD64_RSP_REGNUM, /* %rsp */
209 AMD64_RBP_REGNUM, /* %rbp */
210 AMD64_RSI_REGNUM, /* %rsi */
211 AMD64_RDI_REGNUM, /* %rdi */
212 AMD64_R8_REGNUM, /* %r8 */
213 AMD64_R9_REGNUM, /* %r9 */
214 AMD64_R10_REGNUM, /* %r10 */
215 AMD64_R11_REGNUM, /* %r11 */
216 AMD64_R12_REGNUM, /* %r12 */
217 AMD64_R13_REGNUM, /* %r13 */
218 AMD64_R14_REGNUM, /* %r14 */
219 AMD64_R15_REGNUM /* %r15 */
220 };
221
222 static const int amd64_arch_regmap_len =
223 (sizeof (amd64_arch_regmap) / sizeof (amd64_arch_regmap[0]));
224
225 /* Convert architectural register number REG to the appropriate register
226 number used by GDB. */
227
228 static int
229 amd64_arch_reg_to_regnum (int reg)
230 {
231 gdb_assert (reg >= 0 && reg < amd64_arch_regmap_len);
232
233 return amd64_arch_regmap[reg];
234 }
235
236 /* Register names for byte pseudo-registers. */
237
238 static const char *amd64_byte_names[] =
239 {
240 "al", "bl", "cl", "dl", "sil", "dil", "bpl", "spl",
241 "r8l", "r9l", "r10l", "r11l", "r12l", "r13l", "r14l", "r15l",
242 "ah", "bh", "ch", "dh"
243 };
244
245 /* Number of lower byte registers. */
246 #define AMD64_NUM_LOWER_BYTE_REGS 16
247
248 /* Register names for word pseudo-registers. */
249
250 static const char *amd64_word_names[] =
251 {
252 "ax", "bx", "cx", "dx", "si", "di", "bp", "",
253 "r8w", "r9w", "r10w", "r11w", "r12w", "r13w", "r14w", "r15w"
254 };
255
256 /* Register names for dword pseudo-registers. */
257
258 static const char *amd64_dword_names[] =
259 {
260 "eax", "ebx", "ecx", "edx", "esi", "edi", "ebp", "esp",
261 "r8d", "r9d", "r10d", "r11d", "r12d", "r13d", "r14d", "r15d",
262 "eip"
263 };
264
265 /* Return the name of register REGNUM. */
266
267 static const char *
268 amd64_pseudo_register_name (struct gdbarch *gdbarch, int regnum)
269 {
270 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
271 if (i386_byte_regnum_p (gdbarch, regnum))
272 return amd64_byte_names[regnum - tdep->al_regnum];
273 else if (i386_ymm_regnum_p (gdbarch, regnum))
274 return amd64_ymm_names[regnum - tdep->ymm0_regnum];
275 else if (i386_word_regnum_p (gdbarch, regnum))
276 return amd64_word_names[regnum - tdep->ax_regnum];
277 else if (i386_dword_regnum_p (gdbarch, regnum))
278 return amd64_dword_names[regnum - tdep->eax_regnum];
279 else
280 return i386_pseudo_register_name (gdbarch, regnum);
281 }
282
283 static struct value *
284 amd64_pseudo_register_read_value (struct gdbarch *gdbarch,
285 struct regcache *regcache,
286 int regnum)
287 {
288 gdb_byte raw_buf[MAX_REGISTER_SIZE];
289 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
290 enum register_status status;
291 struct value *result_value;
292 gdb_byte *buf;
293
294 result_value = allocate_value (register_type (gdbarch, regnum));
295 VALUE_LVAL (result_value) = lval_register;
296 VALUE_REGNUM (result_value) = regnum;
297 buf = value_contents_raw (result_value);
298
299 if (i386_byte_regnum_p (gdbarch, regnum))
300 {
301 int gpnum = regnum - tdep->al_regnum;
302
303 /* Extract (always little endian). */
304 if (gpnum >= AMD64_NUM_LOWER_BYTE_REGS)
305 {
306 /* Special handling for AH, BH, CH, DH. */
307 status = regcache_raw_read (regcache,
308 gpnum - AMD64_NUM_LOWER_BYTE_REGS,
309 raw_buf);
310 if (status == REG_VALID)
311 memcpy (buf, raw_buf + 1, 1);
312 else
313 mark_value_bytes_unavailable (result_value, 0,
314 TYPE_LENGTH (value_type (result_value)));
315 }
316 else
317 {
318 status = regcache_raw_read (regcache, gpnum, raw_buf);
319 if (status == REG_VALID)
320 memcpy (buf, raw_buf, 1);
321 else
322 mark_value_bytes_unavailable (result_value, 0,
323 TYPE_LENGTH (value_type (result_value)));
324 }
325 }
326 else if (i386_dword_regnum_p (gdbarch, regnum))
327 {
328 int gpnum = regnum - tdep->eax_regnum;
329 /* Extract (always little endian). */
330 status = regcache_raw_read (regcache, gpnum, raw_buf);
331 if (status == REG_VALID)
332 memcpy (buf, raw_buf, 4);
333 else
334 mark_value_bytes_unavailable (result_value, 0,
335 TYPE_LENGTH (value_type (result_value)));
336 }
337 else
338 i386_pseudo_register_read_into_value (gdbarch, regcache, regnum,
339 result_value);
340
341 return result_value;
342 }
343
344 static void
345 amd64_pseudo_register_write (struct gdbarch *gdbarch,
346 struct regcache *regcache,
347 int regnum, const gdb_byte *buf)
348 {
349 gdb_byte raw_buf[MAX_REGISTER_SIZE];
350 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
351
352 if (i386_byte_regnum_p (gdbarch, regnum))
353 {
354 int gpnum = regnum - tdep->al_regnum;
355
356 if (gpnum >= AMD64_NUM_LOWER_BYTE_REGS)
357 {
358 /* Read ... AH, BH, CH, DH. */
359 regcache_raw_read (regcache,
360 gpnum - AMD64_NUM_LOWER_BYTE_REGS, raw_buf);
361 /* ... Modify ... (always little endian). */
362 memcpy (raw_buf + 1, buf, 1);
363 /* ... Write. */
364 regcache_raw_write (regcache,
365 gpnum - AMD64_NUM_LOWER_BYTE_REGS, raw_buf);
366 }
367 else
368 {
369 /* Read ... */
370 regcache_raw_read (regcache, gpnum, raw_buf);
371 /* ... Modify ... (always little endian). */
372 memcpy (raw_buf, buf, 1);
373 /* ... Write. */
374 regcache_raw_write (regcache, gpnum, raw_buf);
375 }
376 }
377 else if (i386_dword_regnum_p (gdbarch, regnum))
378 {
379 int gpnum = regnum - tdep->eax_regnum;
380
381 /* Read ... */
382 regcache_raw_read (regcache, gpnum, raw_buf);
383 /* ... Modify ... (always little endian). */
384 memcpy (raw_buf, buf, 4);
385 /* ... Write. */
386 regcache_raw_write (regcache, gpnum, raw_buf);
387 }
388 else
389 i386_pseudo_register_write (gdbarch, regcache, regnum, buf);
390 }
391
392 \f
393
394 /* Return the union class of CLASS1 and CLASS2. See the psABI for
395 details. */
396
397 static enum amd64_reg_class
398 amd64_merge_classes (enum amd64_reg_class class1, enum amd64_reg_class class2)
399 {
400 /* Rule (a): If both classes are equal, this is the resulting class. */
401 if (class1 == class2)
402 return class1;
403
404 /* Rule (b): If one of the classes is NO_CLASS, the resulting class
405 is the other class. */
406 if (class1 == AMD64_NO_CLASS)
407 return class2;
408 if (class2 == AMD64_NO_CLASS)
409 return class1;
410
411 /* Rule (c): If one of the classes is MEMORY, the result is MEMORY. */
412 if (class1 == AMD64_MEMORY || class2 == AMD64_MEMORY)
413 return AMD64_MEMORY;
414
415 /* Rule (d): If one of the classes is INTEGER, the result is INTEGER. */
416 if (class1 == AMD64_INTEGER || class2 == AMD64_INTEGER)
417 return AMD64_INTEGER;
418
419 /* Rule (e): If one of the classes is X87, X87UP, COMPLEX_X87 class,
420 MEMORY is used as class. */
421 if (class1 == AMD64_X87 || class1 == AMD64_X87UP
422 || class1 == AMD64_COMPLEX_X87 || class2 == AMD64_X87
423 || class2 == AMD64_X87UP || class2 == AMD64_COMPLEX_X87)
424 return AMD64_MEMORY;
425
426 /* Rule (f): Otherwise class SSE is used. */
427 return AMD64_SSE;
428 }
429
430 /* Return non-zero if TYPE is a non-POD structure or union type. */
431
432 static int
433 amd64_non_pod_p (struct type *type)
434 {
435 /* ??? A class with a base class certainly isn't POD, but does this
436 catch all non-POD structure types? */
437 if (TYPE_CODE (type) == TYPE_CODE_STRUCT && TYPE_N_BASECLASSES (type) > 0)
438 return 1;
439
440 return 0;
441 }
442
443 /* Classify TYPE according to the rules for aggregate (structures and
444 arrays) and union types, and store the result in CLASS. */
445
446 static void
447 amd64_classify_aggregate (struct type *type, enum amd64_reg_class class[2])
448 {
449 /* 1. If the size of an object is larger than two eightbytes, or in
450 C++, is a non-POD structure or union type, or contains
451 unaligned fields, it has class memory. */
452 if (TYPE_LENGTH (type) > 16 || amd64_non_pod_p (type))
453 {
454 class[0] = class[1] = AMD64_MEMORY;
455 return;
456 }
457
458 /* 2. Both eightbytes get initialized to class NO_CLASS. */
459 class[0] = class[1] = AMD64_NO_CLASS;
460
461 /* 3. Each field of an object is classified recursively so that
462 always two fields are considered. The resulting class is
463 calculated according to the classes of the fields in the
464 eightbyte: */
465
466 if (TYPE_CODE (type) == TYPE_CODE_ARRAY)
467 {
468 struct type *subtype = check_typedef (TYPE_TARGET_TYPE (type));
469
470 /* All fields in an array have the same type. */
471 amd64_classify (subtype, class);
472 if (TYPE_LENGTH (type) > 8 && class[1] == AMD64_NO_CLASS)
473 class[1] = class[0];
474 }
475 else
476 {
477 int i;
478
479 /* Structure or union. */
480 gdb_assert (TYPE_CODE (type) == TYPE_CODE_STRUCT
481 || TYPE_CODE (type) == TYPE_CODE_UNION);
482
483 for (i = 0; i < TYPE_NFIELDS (type); i++)
484 {
485 struct type *subtype = check_typedef (TYPE_FIELD_TYPE (type, i));
486 int pos = TYPE_FIELD_BITPOS (type, i) / 64;
487 enum amd64_reg_class subclass[2];
488 int bitsize = TYPE_FIELD_BITSIZE (type, i);
489 int endpos;
490
491 if (bitsize == 0)
492 bitsize = TYPE_LENGTH (subtype) * 8;
493 endpos = (TYPE_FIELD_BITPOS (type, i) + bitsize - 1) / 64;
494
495 /* Ignore static fields. */
496 if (field_is_static (&TYPE_FIELD (type, i)))
497 continue;
498
499 gdb_assert (pos == 0 || pos == 1);
500
501 amd64_classify (subtype, subclass);
502 class[pos] = amd64_merge_classes (class[pos], subclass[0]);
503 if (bitsize <= 64 && pos == 0 && endpos == 1)
504 /* This is a bit of an odd case: We have a field that would
505 normally fit in one of the two eightbytes, except that
506 it is placed in a way that this field straddles them.
507 This has been seen with a structure containing an array.
508
509 The ABI is a bit unclear in this case, but we assume that
510 this field's class (stored in subclass[0]) must also be merged
511 into class[1]. In other words, our field has a piece stored
512 in the second eight-byte, and thus its class applies to
513 the second eight-byte as well.
514
515 In the case where the field length exceeds 8 bytes,
516 it should not be necessary to merge the field class
517 into class[1]. As LEN > 8, subclass[1] is necessarily
518 different from AMD64_NO_CLASS. If subclass[1] is equal
519 to subclass[0], then the normal class[1]/subclass[1]
520 merging will take care of everything. For subclass[1]
521 to be different from subclass[0], I can only see the case
522 where we have a SSE/SSEUP or X87/X87UP pair, which both
523 use up all 16 bytes of the aggregate, and are already
524 handled just fine (because each portion sits on its own
525 8-byte). */
526 class[1] = amd64_merge_classes (class[1], subclass[0]);
527 if (pos == 0)
528 class[1] = amd64_merge_classes (class[1], subclass[1]);
529 }
530 }
531
532 /* 4. Then a post merger cleanup is done: */
533
534 /* Rule (a): If one of the classes is MEMORY, the whole argument is
535 passed in memory. */
536 if (class[0] == AMD64_MEMORY || class[1] == AMD64_MEMORY)
537 class[0] = class[1] = AMD64_MEMORY;
538
539 /* Rule (b): If SSEUP is not preceded by SSE, it is converted to
540 SSE. */
541 if (class[0] == AMD64_SSEUP)
542 class[0] = AMD64_SSE;
543 if (class[1] == AMD64_SSEUP && class[0] != AMD64_SSE)
544 class[1] = AMD64_SSE;
545 }
546
547 /* Classify TYPE, and store the result in CLASS. */
548
549 void
550 amd64_classify (struct type *type, enum amd64_reg_class class[2])
551 {
552 enum type_code code = TYPE_CODE (type);
553 int len = TYPE_LENGTH (type);
554
555 class[0] = class[1] = AMD64_NO_CLASS;
556
557 /* Arguments of types (signed and unsigned) _Bool, char, short, int,
558 long, long long, and pointers are in the INTEGER class. Similarly,
559 range types, used by languages such as Ada, are also in the INTEGER
560 class. */
561 if ((code == TYPE_CODE_INT || code == TYPE_CODE_ENUM
562 || code == TYPE_CODE_BOOL || code == TYPE_CODE_RANGE
563 || code == TYPE_CODE_CHAR
564 || code == TYPE_CODE_PTR || code == TYPE_CODE_REF)
565 && (len == 1 || len == 2 || len == 4 || len == 8))
566 class[0] = AMD64_INTEGER;
567
568 /* Arguments of types float, double, _Decimal32, _Decimal64 and __m64
569 are in class SSE. */
570 else if ((code == TYPE_CODE_FLT || code == TYPE_CODE_DECFLOAT)
571 && (len == 4 || len == 8))
572 /* FIXME: __m64 . */
573 class[0] = AMD64_SSE;
574
575 /* Arguments of types __float128, _Decimal128 and __m128 are split into
576 two halves. The least significant ones belong to class SSE, the most
577 significant one to class SSEUP. */
578 else if (code == TYPE_CODE_DECFLOAT && len == 16)
579 /* FIXME: __float128, __m128. */
580 class[0] = AMD64_SSE, class[1] = AMD64_SSEUP;
581
582 /* The 64-bit mantissa of arguments of type long double belongs to
583 class X87, the 16-bit exponent plus 6 bytes of padding belongs to
584 class X87UP. */
585 else if (code == TYPE_CODE_FLT && len == 16)
586 /* Class X87 and X87UP. */
587 class[0] = AMD64_X87, class[1] = AMD64_X87UP;
588
589 /* Arguments of complex T where T is one of the types float or
590 double get treated as if they are implemented as:
591
592 struct complexT {
593 T real;
594 T imag;
595 }; */
596 else if (code == TYPE_CODE_COMPLEX && len == 8)
597 class[0] = AMD64_SSE;
598 else if (code == TYPE_CODE_COMPLEX && len == 16)
599 class[0] = class[1] = AMD64_SSE;
600
601 /* A variable of type complex long double is classified as type
602 COMPLEX_X87. */
603 else if (code == TYPE_CODE_COMPLEX && len == 32)
604 class[0] = AMD64_COMPLEX_X87;
605
606 /* Aggregates. */
607 else if (code == TYPE_CODE_ARRAY || code == TYPE_CODE_STRUCT
608 || code == TYPE_CODE_UNION)
609 amd64_classify_aggregate (type, class);
610 }
611
612 static enum return_value_convention
613 amd64_return_value (struct gdbarch *gdbarch, struct value *function,
614 struct type *type, struct regcache *regcache,
615 gdb_byte *readbuf, const gdb_byte *writebuf)
616 {
617 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
618 enum amd64_reg_class class[2];
619 int len = TYPE_LENGTH (type);
620 static int integer_regnum[] = { AMD64_RAX_REGNUM, AMD64_RDX_REGNUM };
621 static int sse_regnum[] = { AMD64_XMM0_REGNUM, AMD64_XMM1_REGNUM };
622 int integer_reg = 0;
623 int sse_reg = 0;
624 int i;
625
626 gdb_assert (!(readbuf && writebuf));
627 gdb_assert (tdep->classify);
628
629 /* 1. Classify the return type with the classification algorithm. */
630 tdep->classify (type, class);
631
632 /* 2. If the type has class MEMORY, then the caller provides space
633 for the return value and passes the address of this storage in
634 %rdi as if it were the first argument to the function. In effect,
635 this address becomes a hidden first argument.
636
637 On return %rax will contain the address that has been passed in
638 by the caller in %rdi. */
639 if (class[0] == AMD64_MEMORY)
640 {
641 /* As indicated by the comment above, the ABI guarantees that we
642 can always find the return value just after the function has
643 returned. */
644
645 if (readbuf)
646 {
647 ULONGEST addr;
648
649 regcache_raw_read_unsigned (regcache, AMD64_RAX_REGNUM, &addr);
650 read_memory (addr, readbuf, TYPE_LENGTH (type));
651 }
652
653 return RETURN_VALUE_ABI_RETURNS_ADDRESS;
654 }
655
656 /* 8. If the class is COMPLEX_X87, the real part of the value is
657 returned in %st0 and the imaginary part in %st1. */
658 if (class[0] == AMD64_COMPLEX_X87)
659 {
660 if (readbuf)
661 {
662 regcache_raw_read (regcache, AMD64_ST0_REGNUM, readbuf);
663 regcache_raw_read (regcache, AMD64_ST1_REGNUM, readbuf + 16);
664 }
665
666 if (writebuf)
667 {
668 i387_return_value (gdbarch, regcache);
669 regcache_raw_write (regcache, AMD64_ST0_REGNUM, writebuf);
670 regcache_raw_write (regcache, AMD64_ST1_REGNUM, writebuf + 16);
671
672 /* Fix up the tag word such that both %st(0) and %st(1) are
673 marked as valid. */
674 regcache_raw_write_unsigned (regcache, AMD64_FTAG_REGNUM, 0xfff);
675 }
676
677 return RETURN_VALUE_REGISTER_CONVENTION;
678 }
679
680 gdb_assert (class[1] != AMD64_MEMORY);
681 gdb_assert (len <= 16);
682
683 for (i = 0; len > 0; i++, len -= 8)
684 {
685 int regnum = -1;
686 int offset = 0;
687
688 switch (class[i])
689 {
690 case AMD64_INTEGER:
691 /* 3. If the class is INTEGER, the next available register
692 of the sequence %rax, %rdx is used. */
693 regnum = integer_regnum[integer_reg++];
694 break;
695
696 case AMD64_SSE:
697 /* 4. If the class is SSE, the next available SSE register
698 of the sequence %xmm0, %xmm1 is used. */
699 regnum = sse_regnum[sse_reg++];
700 break;
701
702 case AMD64_SSEUP:
703 /* 5. If the class is SSEUP, the eightbyte is passed in the
704 upper half of the last used SSE register. */
705 gdb_assert (sse_reg > 0);
706 regnum = sse_regnum[sse_reg - 1];
707 offset = 8;
708 break;
709
710 case AMD64_X87:
711 /* 6. If the class is X87, the value is returned on the X87
712 stack in %st0 as 80-bit x87 number. */
713 regnum = AMD64_ST0_REGNUM;
714 if (writebuf)
715 i387_return_value (gdbarch, regcache);
716 break;
717
718 case AMD64_X87UP:
719 /* 7. If the class is X87UP, the value is returned together
720 with the previous X87 value in %st0. */
721 gdb_assert (i > 0 && class[0] == AMD64_X87);
722 regnum = AMD64_ST0_REGNUM;
723 offset = 8;
724 len = 2;
725 break;
726
727 case AMD64_NO_CLASS:
728 continue;
729
730 default:
731 gdb_assert (!"Unexpected register class.");
732 }
733
734 gdb_assert (regnum != -1);
735
736 if (readbuf)
737 regcache_raw_read_part (regcache, regnum, offset, min (len, 8),
738 readbuf + i * 8);
739 if (writebuf)
740 regcache_raw_write_part (regcache, regnum, offset, min (len, 8),
741 writebuf + i * 8);
742 }
743
744 return RETURN_VALUE_REGISTER_CONVENTION;
745 }
746 \f
747
748 static CORE_ADDR
749 amd64_push_arguments (struct regcache *regcache, int nargs,
750 struct value **args, CORE_ADDR sp, int struct_return)
751 {
752 struct gdbarch_tdep *tdep = gdbarch_tdep (get_regcache_arch (regcache));
753 int *integer_regs = tdep->call_dummy_integer_regs;
754 int num_integer_regs = tdep->call_dummy_num_integer_regs;
755
756 static int sse_regnum[] =
757 {
758 /* %xmm0 ... %xmm7 */
759 AMD64_XMM0_REGNUM + 0, AMD64_XMM1_REGNUM,
760 AMD64_XMM0_REGNUM + 2, AMD64_XMM0_REGNUM + 3,
761 AMD64_XMM0_REGNUM + 4, AMD64_XMM0_REGNUM + 5,
762 AMD64_XMM0_REGNUM + 6, AMD64_XMM0_REGNUM + 7,
763 };
764 struct value **stack_args = alloca (nargs * sizeof (struct value *));
765 int num_stack_args = 0;
766 int num_elements = 0;
767 int element = 0;
768 int integer_reg = 0;
769 int sse_reg = 0;
770 int i;
771
772 gdb_assert (tdep->classify);
773
774 /* Reserve a register for the "hidden" argument. */
775 if (struct_return)
776 integer_reg++;
777
778 for (i = 0; i < nargs; i++)
779 {
780 struct type *type = value_type (args[i]);
781 int len = TYPE_LENGTH (type);
782 enum amd64_reg_class class[2];
783 int needed_integer_regs = 0;
784 int needed_sse_regs = 0;
785 int j;
786
787 /* Classify argument. */
788 tdep->classify (type, class);
789
790 /* Calculate the number of integer and SSE registers needed for
791 this argument. */
792 for (j = 0; j < 2; j++)
793 {
794 if (class[j] == AMD64_INTEGER)
795 needed_integer_regs++;
796 else if (class[j] == AMD64_SSE)
797 needed_sse_regs++;
798 }
799
800 /* Check whether enough registers are available, and if the
801 argument should be passed in registers at all. */
802 if (integer_reg + needed_integer_regs > num_integer_regs
803 || sse_reg + needed_sse_regs > ARRAY_SIZE (sse_regnum)
804 || (needed_integer_regs == 0 && needed_sse_regs == 0))
805 {
806 /* The argument will be passed on the stack. */
807 num_elements += ((len + 7) / 8);
808 stack_args[num_stack_args++] = args[i];
809 }
810 else
811 {
812 /* The argument will be passed in registers. */
813 const gdb_byte *valbuf = value_contents (args[i]);
814 gdb_byte buf[8];
815
816 gdb_assert (len <= 16);
817
818 for (j = 0; len > 0; j++, len -= 8)
819 {
820 int regnum = -1;
821 int offset = 0;
822
823 switch (class[j])
824 {
825 case AMD64_INTEGER:
826 regnum = integer_regs[integer_reg++];
827 break;
828
829 case AMD64_SSE:
830 regnum = sse_regnum[sse_reg++];
831 break;
832
833 case AMD64_SSEUP:
834 gdb_assert (sse_reg > 0);
835 regnum = sse_regnum[sse_reg - 1];
836 offset = 8;
837 break;
838
839 default:
840 gdb_assert (!"Unexpected register class.");
841 }
842
843 gdb_assert (regnum != -1);
844 memset (buf, 0, sizeof buf);
845 memcpy (buf, valbuf + j * 8, min (len, 8));
846 regcache_raw_write_part (regcache, regnum, offset, 8, buf);
847 }
848 }
849 }
850
851 /* Allocate space for the arguments on the stack. */
852 sp -= num_elements * 8;
853
854 /* The psABI says that "The end of the input argument area shall be
855 aligned on a 16 byte boundary." */
856 sp &= ~0xf;
857
858 /* Write out the arguments to the stack. */
859 for (i = 0; i < num_stack_args; i++)
860 {
861 struct type *type = value_type (stack_args[i]);
862 const gdb_byte *valbuf = value_contents (stack_args[i]);
863 int len = TYPE_LENGTH (type);
864
865 write_memory (sp + element * 8, valbuf, len);
866 element += ((len + 7) / 8);
867 }
868
869 /* The psABI says that "For calls that may call functions that use
870 varargs or stdargs (prototype-less calls or calls to functions
871 containing ellipsis (...) in the declaration) %al is used as
872 hidden argument to specify the number of SSE registers used. */
873 regcache_raw_write_unsigned (regcache, AMD64_RAX_REGNUM, sse_reg);
874 return sp;
875 }
876
877 static CORE_ADDR
878 amd64_push_dummy_call (struct gdbarch *gdbarch, struct value *function,
879 struct regcache *regcache, CORE_ADDR bp_addr,
880 int nargs, struct value **args, CORE_ADDR sp,
881 int struct_return, CORE_ADDR struct_addr)
882 {
883 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
884 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
885 gdb_byte buf[8];
886
887 /* Pass arguments. */
888 sp = amd64_push_arguments (regcache, nargs, args, sp, struct_return);
889
890 /* Pass "hidden" argument". */
891 if (struct_return)
892 {
893 /* The "hidden" argument is passed throught the first argument
894 register. */
895 const int arg_regnum = tdep->call_dummy_integer_regs[0];
896
897 store_unsigned_integer (buf, 8, byte_order, struct_addr);
898 regcache_cooked_write (regcache, arg_regnum, buf);
899 }
900
901 /* Store return address. */
902 sp -= 8;
903 store_unsigned_integer (buf, 8, byte_order, bp_addr);
904 write_memory (sp, buf, 8);
905
906 /* Finally, update the stack pointer... */
907 store_unsigned_integer (buf, 8, byte_order, sp);
908 regcache_cooked_write (regcache, AMD64_RSP_REGNUM, buf);
909
910 /* ...and fake a frame pointer. */
911 regcache_cooked_write (regcache, AMD64_RBP_REGNUM, buf);
912
913 return sp + 16;
914 }
915 \f
916 /* Displaced instruction handling. */
917
918 /* A partially decoded instruction.
919 This contains enough details for displaced stepping purposes. */
920
921 struct amd64_insn
922 {
923 /* The number of opcode bytes. */
924 int opcode_len;
925 /* The offset of the rex prefix or -1 if not present. */
926 int rex_offset;
927 /* The offset to the first opcode byte. */
928 int opcode_offset;
929 /* The offset to the modrm byte or -1 if not present. */
930 int modrm_offset;
931
932 /* The raw instruction. */
933 gdb_byte *raw_insn;
934 };
935
936 struct displaced_step_closure
937 {
938 /* For rip-relative insns, saved copy of the reg we use instead of %rip. */
939 int tmp_used;
940 int tmp_regno;
941 ULONGEST tmp_save;
942
943 /* Details of the instruction. */
944 struct amd64_insn insn_details;
945
946 /* Amount of space allocated to insn_buf. */
947 int max_len;
948
949 /* The possibly modified insn.
950 This is a variable-length field. */
951 gdb_byte insn_buf[1];
952 };
953
954 /* WARNING: Keep onebyte_has_modrm, twobyte_has_modrm in sync with
955 ../opcodes/i386-dis.c (until libopcodes exports them, or an alternative,
956 at which point delete these in favor of libopcodes' versions). */
957
958 static const unsigned char onebyte_has_modrm[256] = {
959 /* 0 1 2 3 4 5 6 7 8 9 a b c d e f */
960 /* ------------------------------- */
961 /* 00 */ 1,1,1,1,0,0,0,0,1,1,1,1,0,0,0,0, /* 00 */
962 /* 10 */ 1,1,1,1,0,0,0,0,1,1,1,1,0,0,0,0, /* 10 */
963 /* 20 */ 1,1,1,1,0,0,0,0,1,1,1,1,0,0,0,0, /* 20 */
964 /* 30 */ 1,1,1,1,0,0,0,0,1,1,1,1,0,0,0,0, /* 30 */
965 /* 40 */ 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, /* 40 */
966 /* 50 */ 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, /* 50 */
967 /* 60 */ 0,0,1,1,0,0,0,0,0,1,0,1,0,0,0,0, /* 60 */
968 /* 70 */ 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, /* 70 */
969 /* 80 */ 1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1, /* 80 */
970 /* 90 */ 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, /* 90 */
971 /* a0 */ 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, /* a0 */
972 /* b0 */ 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, /* b0 */
973 /* c0 */ 1,1,0,0,1,1,1,1,0,0,0,0,0,0,0,0, /* c0 */
974 /* d0 */ 1,1,1,1,0,0,0,0,1,1,1,1,1,1,1,1, /* d0 */
975 /* e0 */ 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, /* e0 */
976 /* f0 */ 0,0,0,0,0,0,1,1,0,0,0,0,0,0,1,1 /* f0 */
977 /* ------------------------------- */
978 /* 0 1 2 3 4 5 6 7 8 9 a b c d e f */
979 };
980
981 static const unsigned char twobyte_has_modrm[256] = {
982 /* 0 1 2 3 4 5 6 7 8 9 a b c d e f */
983 /* ------------------------------- */
984 /* 00 */ 1,1,1,1,0,0,0,0,0,0,0,0,0,1,0,1, /* 0f */
985 /* 10 */ 1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1, /* 1f */
986 /* 20 */ 1,1,1,1,1,1,1,0,1,1,1,1,1,1,1,1, /* 2f */
987 /* 30 */ 0,0,0,0,0,0,0,0,1,0,1,0,0,0,0,0, /* 3f */
988 /* 40 */ 1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1, /* 4f */
989 /* 50 */ 1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1, /* 5f */
990 /* 60 */ 1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1, /* 6f */
991 /* 70 */ 1,1,1,1,1,1,1,0,1,1,1,1,1,1,1,1, /* 7f */
992 /* 80 */ 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, /* 8f */
993 /* 90 */ 1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1, /* 9f */
994 /* a0 */ 0,0,0,1,1,1,1,1,0,0,0,1,1,1,1,1, /* af */
995 /* b0 */ 1,1,1,1,1,1,1,1,1,0,1,1,1,1,1,1, /* bf */
996 /* c0 */ 1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0, /* cf */
997 /* d0 */ 1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1, /* df */
998 /* e0 */ 1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1, /* ef */
999 /* f0 */ 1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,0 /* ff */
1000 /* ------------------------------- */
1001 /* 0 1 2 3 4 5 6 7 8 9 a b c d e f */
1002 };
1003
1004 static int amd64_syscall_p (const struct amd64_insn *insn, int *lengthp);
1005
1006 static int
1007 rex_prefix_p (gdb_byte pfx)
1008 {
1009 return REX_PREFIX_P (pfx);
1010 }
1011
1012 /* Skip the legacy instruction prefixes in INSN.
1013 We assume INSN is properly sentineled so we don't have to worry
1014 about falling off the end of the buffer. */
1015
1016 static gdb_byte *
1017 amd64_skip_prefixes (gdb_byte *insn)
1018 {
1019 while (1)
1020 {
1021 switch (*insn)
1022 {
1023 case DATA_PREFIX_OPCODE:
1024 case ADDR_PREFIX_OPCODE:
1025 case CS_PREFIX_OPCODE:
1026 case DS_PREFIX_OPCODE:
1027 case ES_PREFIX_OPCODE:
1028 case FS_PREFIX_OPCODE:
1029 case GS_PREFIX_OPCODE:
1030 case SS_PREFIX_OPCODE:
1031 case LOCK_PREFIX_OPCODE:
1032 case REPE_PREFIX_OPCODE:
1033 case REPNE_PREFIX_OPCODE:
1034 ++insn;
1035 continue;
1036 default:
1037 break;
1038 }
1039 break;
1040 }
1041
1042 return insn;
1043 }
1044
1045 /* Return an integer register (other than RSP) that is unused as an input
1046 operand in INSN.
1047 In order to not require adding a rex prefix if the insn doesn't already
1048 have one, the result is restricted to RAX ... RDI, sans RSP.
1049 The register numbering of the result follows architecture ordering,
1050 e.g. RDI = 7. */
1051
1052 static int
1053 amd64_get_unused_input_int_reg (const struct amd64_insn *details)
1054 {
1055 /* 1 bit for each reg */
1056 int used_regs_mask = 0;
1057
1058 /* There can be at most 3 int regs used as inputs in an insn, and we have
1059 7 to choose from (RAX ... RDI, sans RSP).
1060 This allows us to take a conservative approach and keep things simple.
1061 E.g. By avoiding RAX, we don't have to specifically watch for opcodes
1062 that implicitly specify RAX. */
1063
1064 /* Avoid RAX. */
1065 used_regs_mask |= 1 << EAX_REG_NUM;
1066 /* Similarily avoid RDX, implicit operand in divides. */
1067 used_regs_mask |= 1 << EDX_REG_NUM;
1068 /* Avoid RSP. */
1069 used_regs_mask |= 1 << ESP_REG_NUM;
1070
1071 /* If the opcode is one byte long and there's no ModRM byte,
1072 assume the opcode specifies a register. */
1073 if (details->opcode_len == 1 && details->modrm_offset == -1)
1074 used_regs_mask |= 1 << (details->raw_insn[details->opcode_offset] & 7);
1075
1076 /* Mark used regs in the modrm/sib bytes. */
1077 if (details->modrm_offset != -1)
1078 {
1079 int modrm = details->raw_insn[details->modrm_offset];
1080 int mod = MODRM_MOD_FIELD (modrm);
1081 int reg = MODRM_REG_FIELD (modrm);
1082 int rm = MODRM_RM_FIELD (modrm);
1083 int have_sib = mod != 3 && rm == 4;
1084
1085 /* Assume the reg field of the modrm byte specifies a register. */
1086 used_regs_mask |= 1 << reg;
1087
1088 if (have_sib)
1089 {
1090 int base = SIB_BASE_FIELD (details->raw_insn[details->modrm_offset + 1]);
1091 int idx = SIB_INDEX_FIELD (details->raw_insn[details->modrm_offset + 1]);
1092 used_regs_mask |= 1 << base;
1093 used_regs_mask |= 1 << idx;
1094 }
1095 else
1096 {
1097 used_regs_mask |= 1 << rm;
1098 }
1099 }
1100
1101 gdb_assert (used_regs_mask < 256);
1102 gdb_assert (used_regs_mask != 255);
1103
1104 /* Finally, find a free reg. */
1105 {
1106 int i;
1107
1108 for (i = 0; i < 8; ++i)
1109 {
1110 if (! (used_regs_mask & (1 << i)))
1111 return i;
1112 }
1113
1114 /* We shouldn't get here. */
1115 internal_error (__FILE__, __LINE__, _("unable to find free reg"));
1116 }
1117 }
1118
1119 /* Extract the details of INSN that we need. */
1120
1121 static void
1122 amd64_get_insn_details (gdb_byte *insn, struct amd64_insn *details)
1123 {
1124 gdb_byte *start = insn;
1125 int need_modrm;
1126
1127 details->raw_insn = insn;
1128
1129 details->opcode_len = -1;
1130 details->rex_offset = -1;
1131 details->opcode_offset = -1;
1132 details->modrm_offset = -1;
1133
1134 /* Skip legacy instruction prefixes. */
1135 insn = amd64_skip_prefixes (insn);
1136
1137 /* Skip REX instruction prefix. */
1138 if (rex_prefix_p (*insn))
1139 {
1140 details->rex_offset = insn - start;
1141 ++insn;
1142 }
1143
1144 details->opcode_offset = insn - start;
1145
1146 if (*insn == TWO_BYTE_OPCODE_ESCAPE)
1147 {
1148 /* Two or three-byte opcode. */
1149 ++insn;
1150 need_modrm = twobyte_has_modrm[*insn];
1151
1152 /* Check for three-byte opcode. */
1153 switch (*insn)
1154 {
1155 case 0x24:
1156 case 0x25:
1157 case 0x38:
1158 case 0x3a:
1159 case 0x7a:
1160 case 0x7b:
1161 ++insn;
1162 details->opcode_len = 3;
1163 break;
1164 default:
1165 details->opcode_len = 2;
1166 break;
1167 }
1168 }
1169 else
1170 {
1171 /* One-byte opcode. */
1172 need_modrm = onebyte_has_modrm[*insn];
1173 details->opcode_len = 1;
1174 }
1175
1176 if (need_modrm)
1177 {
1178 ++insn;
1179 details->modrm_offset = insn - start;
1180 }
1181 }
1182
1183 /* Update %rip-relative addressing in INSN.
1184
1185 %rip-relative addressing only uses a 32-bit displacement.
1186 32 bits is not enough to be guaranteed to cover the distance between where
1187 the real instruction is and where its copy is.
1188 Convert the insn to use base+disp addressing.
1189 We set base = pc + insn_length so we can leave disp unchanged. */
1190
1191 static void
1192 fixup_riprel (struct gdbarch *gdbarch, struct displaced_step_closure *dsc,
1193 CORE_ADDR from, CORE_ADDR to, struct regcache *regs)
1194 {
1195 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1196 const struct amd64_insn *insn_details = &dsc->insn_details;
1197 int modrm_offset = insn_details->modrm_offset;
1198 gdb_byte *insn = insn_details->raw_insn + modrm_offset;
1199 CORE_ADDR rip_base;
1200 int32_t disp;
1201 int insn_length;
1202 int arch_tmp_regno, tmp_regno;
1203 ULONGEST orig_value;
1204
1205 /* %rip+disp32 addressing mode, displacement follows ModRM byte. */
1206 ++insn;
1207
1208 /* Compute the rip-relative address. */
1209 disp = extract_signed_integer (insn, sizeof (int32_t), byte_order);
1210 insn_length = gdb_buffered_insn_length (gdbarch, dsc->insn_buf,
1211 dsc->max_len, from);
1212 rip_base = from + insn_length;
1213
1214 /* We need a register to hold the address.
1215 Pick one not used in the insn.
1216 NOTE: arch_tmp_regno uses architecture ordering, e.g. RDI = 7. */
1217 arch_tmp_regno = amd64_get_unused_input_int_reg (insn_details);
1218 tmp_regno = amd64_arch_reg_to_regnum (arch_tmp_regno);
1219
1220 /* REX.B should be unset as we were using rip-relative addressing,
1221 but ensure it's unset anyway, tmp_regno is not r8-r15. */
1222 if (insn_details->rex_offset != -1)
1223 dsc->insn_buf[insn_details->rex_offset] &= ~REX_B;
1224
1225 regcache_cooked_read_unsigned (regs, tmp_regno, &orig_value);
1226 dsc->tmp_regno = tmp_regno;
1227 dsc->tmp_save = orig_value;
1228 dsc->tmp_used = 1;
1229
1230 /* Convert the ModRM field to be base+disp. */
1231 dsc->insn_buf[modrm_offset] &= ~0xc7;
1232 dsc->insn_buf[modrm_offset] |= 0x80 + arch_tmp_regno;
1233
1234 regcache_cooked_write_unsigned (regs, tmp_regno, rip_base);
1235
1236 if (debug_displaced)
1237 fprintf_unfiltered (gdb_stdlog, "displaced: %%rip-relative addressing used.\n"
1238 "displaced: using temp reg %d, old value %s, new value %s\n",
1239 dsc->tmp_regno, paddress (gdbarch, dsc->tmp_save),
1240 paddress (gdbarch, rip_base));
1241 }
1242
1243 static void
1244 fixup_displaced_copy (struct gdbarch *gdbarch,
1245 struct displaced_step_closure *dsc,
1246 CORE_ADDR from, CORE_ADDR to, struct regcache *regs)
1247 {
1248 const struct amd64_insn *details = &dsc->insn_details;
1249
1250 if (details->modrm_offset != -1)
1251 {
1252 gdb_byte modrm = details->raw_insn[details->modrm_offset];
1253
1254 if ((modrm & 0xc7) == 0x05)
1255 {
1256 /* The insn uses rip-relative addressing.
1257 Deal with it. */
1258 fixup_riprel (gdbarch, dsc, from, to, regs);
1259 }
1260 }
1261 }
1262
1263 struct displaced_step_closure *
1264 amd64_displaced_step_copy_insn (struct gdbarch *gdbarch,
1265 CORE_ADDR from, CORE_ADDR to,
1266 struct regcache *regs)
1267 {
1268 int len = gdbarch_max_insn_length (gdbarch);
1269 /* Extra space for sentinels so fixup_{riprel,displaced_copy} don't have to
1270 continually watch for running off the end of the buffer. */
1271 int fixup_sentinel_space = len;
1272 struct displaced_step_closure *dsc =
1273 xmalloc (sizeof (*dsc) + len + fixup_sentinel_space);
1274 gdb_byte *buf = &dsc->insn_buf[0];
1275 struct amd64_insn *details = &dsc->insn_details;
1276
1277 dsc->tmp_used = 0;
1278 dsc->max_len = len + fixup_sentinel_space;
1279
1280 read_memory (from, buf, len);
1281
1282 /* Set up the sentinel space so we don't have to worry about running
1283 off the end of the buffer. An excessive number of leading prefixes
1284 could otherwise cause this. */
1285 memset (buf + len, 0, fixup_sentinel_space);
1286
1287 amd64_get_insn_details (buf, details);
1288
1289 /* GDB may get control back after the insn after the syscall.
1290 Presumably this is a kernel bug.
1291 If this is a syscall, make sure there's a nop afterwards. */
1292 {
1293 int syscall_length;
1294
1295 if (amd64_syscall_p (details, &syscall_length))
1296 buf[details->opcode_offset + syscall_length] = NOP_OPCODE;
1297 }
1298
1299 /* Modify the insn to cope with the address where it will be executed from.
1300 In particular, handle any rip-relative addressing. */
1301 fixup_displaced_copy (gdbarch, dsc, from, to, regs);
1302
1303 write_memory (to, buf, len);
1304
1305 if (debug_displaced)
1306 {
1307 fprintf_unfiltered (gdb_stdlog, "displaced: copy %s->%s: ",
1308 paddress (gdbarch, from), paddress (gdbarch, to));
1309 displaced_step_dump_bytes (gdb_stdlog, buf, len);
1310 }
1311
1312 return dsc;
1313 }
1314
1315 static int
1316 amd64_absolute_jmp_p (const struct amd64_insn *details)
1317 {
1318 const gdb_byte *insn = &details->raw_insn[details->opcode_offset];
1319
1320 if (insn[0] == 0xff)
1321 {
1322 /* jump near, absolute indirect (/4) */
1323 if ((insn[1] & 0x38) == 0x20)
1324 return 1;
1325
1326 /* jump far, absolute indirect (/5) */
1327 if ((insn[1] & 0x38) == 0x28)
1328 return 1;
1329 }
1330
1331 return 0;
1332 }
1333
1334 static int
1335 amd64_absolute_call_p (const struct amd64_insn *details)
1336 {
1337 const gdb_byte *insn = &details->raw_insn[details->opcode_offset];
1338
1339 if (insn[0] == 0xff)
1340 {
1341 /* Call near, absolute indirect (/2) */
1342 if ((insn[1] & 0x38) == 0x10)
1343 return 1;
1344
1345 /* Call far, absolute indirect (/3) */
1346 if ((insn[1] & 0x38) == 0x18)
1347 return 1;
1348 }
1349
1350 return 0;
1351 }
1352
1353 static int
1354 amd64_ret_p (const struct amd64_insn *details)
1355 {
1356 /* NOTE: gcc can emit "repz ; ret". */
1357 const gdb_byte *insn = &details->raw_insn[details->opcode_offset];
1358
1359 switch (insn[0])
1360 {
1361 case 0xc2: /* ret near, pop N bytes */
1362 case 0xc3: /* ret near */
1363 case 0xca: /* ret far, pop N bytes */
1364 case 0xcb: /* ret far */
1365 case 0xcf: /* iret */
1366 return 1;
1367
1368 default:
1369 return 0;
1370 }
1371 }
1372
1373 static int
1374 amd64_call_p (const struct amd64_insn *details)
1375 {
1376 const gdb_byte *insn = &details->raw_insn[details->opcode_offset];
1377
1378 if (amd64_absolute_call_p (details))
1379 return 1;
1380
1381 /* call near, relative */
1382 if (insn[0] == 0xe8)
1383 return 1;
1384
1385 return 0;
1386 }
1387
1388 /* Return non-zero if INSN is a system call, and set *LENGTHP to its
1389 length in bytes. Otherwise, return zero. */
1390
1391 static int
1392 amd64_syscall_p (const struct amd64_insn *details, int *lengthp)
1393 {
1394 const gdb_byte *insn = &details->raw_insn[details->opcode_offset];
1395
1396 if (insn[0] == 0x0f && insn[1] == 0x05)
1397 {
1398 *lengthp = 2;
1399 return 1;
1400 }
1401
1402 return 0;
1403 }
1404
1405 /* Fix up the state of registers and memory after having single-stepped
1406 a displaced instruction. */
1407
1408 void
1409 amd64_displaced_step_fixup (struct gdbarch *gdbarch,
1410 struct displaced_step_closure *dsc,
1411 CORE_ADDR from, CORE_ADDR to,
1412 struct regcache *regs)
1413 {
1414 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1415 /* The offset we applied to the instruction's address. */
1416 ULONGEST insn_offset = to - from;
1417 gdb_byte *insn = dsc->insn_buf;
1418 const struct amd64_insn *insn_details = &dsc->insn_details;
1419
1420 if (debug_displaced)
1421 fprintf_unfiltered (gdb_stdlog,
1422 "displaced: fixup (%s, %s), "
1423 "insn = 0x%02x 0x%02x ...\n",
1424 paddress (gdbarch, from), paddress (gdbarch, to),
1425 insn[0], insn[1]);
1426
1427 /* If we used a tmp reg, restore it. */
1428
1429 if (dsc->tmp_used)
1430 {
1431 if (debug_displaced)
1432 fprintf_unfiltered (gdb_stdlog, "displaced: restoring reg %d to %s\n",
1433 dsc->tmp_regno, paddress (gdbarch, dsc->tmp_save));
1434 regcache_cooked_write_unsigned (regs, dsc->tmp_regno, dsc->tmp_save);
1435 }
1436
1437 /* The list of issues to contend with here is taken from
1438 resume_execution in arch/x86/kernel/kprobes.c, Linux 2.6.28.
1439 Yay for Free Software! */
1440
1441 /* Relocate the %rip back to the program's instruction stream,
1442 if necessary. */
1443
1444 /* Except in the case of absolute or indirect jump or call
1445 instructions, or a return instruction, the new rip is relative to
1446 the displaced instruction; make it relative to the original insn.
1447 Well, signal handler returns don't need relocation either, but we use the
1448 value of %rip to recognize those; see below. */
1449 if (! amd64_absolute_jmp_p (insn_details)
1450 && ! amd64_absolute_call_p (insn_details)
1451 && ! amd64_ret_p (insn_details))
1452 {
1453 ULONGEST orig_rip;
1454 int insn_len;
1455
1456 regcache_cooked_read_unsigned (regs, AMD64_RIP_REGNUM, &orig_rip);
1457
1458 /* A signal trampoline system call changes the %rip, resuming
1459 execution of the main program after the signal handler has
1460 returned. That makes them like 'return' instructions; we
1461 shouldn't relocate %rip.
1462
1463 But most system calls don't, and we do need to relocate %rip.
1464
1465 Our heuristic for distinguishing these cases: if stepping
1466 over the system call instruction left control directly after
1467 the instruction, the we relocate --- control almost certainly
1468 doesn't belong in the displaced copy. Otherwise, we assume
1469 the instruction has put control where it belongs, and leave
1470 it unrelocated. Goodness help us if there are PC-relative
1471 system calls. */
1472 if (amd64_syscall_p (insn_details, &insn_len)
1473 && orig_rip != to + insn_len
1474 /* GDB can get control back after the insn after the syscall.
1475 Presumably this is a kernel bug.
1476 Fixup ensures its a nop, we add one to the length for it. */
1477 && orig_rip != to + insn_len + 1)
1478 {
1479 if (debug_displaced)
1480 fprintf_unfiltered (gdb_stdlog,
1481 "displaced: syscall changed %%rip; "
1482 "not relocating\n");
1483 }
1484 else
1485 {
1486 ULONGEST rip = orig_rip - insn_offset;
1487
1488 /* If we just stepped over a breakpoint insn, we don't backup
1489 the pc on purpose; this is to match behaviour without
1490 stepping. */
1491
1492 regcache_cooked_write_unsigned (regs, AMD64_RIP_REGNUM, rip);
1493
1494 if (debug_displaced)
1495 fprintf_unfiltered (gdb_stdlog,
1496 "displaced: "
1497 "relocated %%rip from %s to %s\n",
1498 paddress (gdbarch, orig_rip),
1499 paddress (gdbarch, rip));
1500 }
1501 }
1502
1503 /* If the instruction was PUSHFL, then the TF bit will be set in the
1504 pushed value, and should be cleared. We'll leave this for later,
1505 since GDB already messes up the TF flag when stepping over a
1506 pushfl. */
1507
1508 /* If the instruction was a call, the return address now atop the
1509 stack is the address following the copied instruction. We need
1510 to make it the address following the original instruction. */
1511 if (amd64_call_p (insn_details))
1512 {
1513 ULONGEST rsp;
1514 ULONGEST retaddr;
1515 const ULONGEST retaddr_len = 8;
1516
1517 regcache_cooked_read_unsigned (regs, AMD64_RSP_REGNUM, &rsp);
1518 retaddr = read_memory_unsigned_integer (rsp, retaddr_len, byte_order);
1519 retaddr = (retaddr - insn_offset) & 0xffffffffUL;
1520 write_memory_unsigned_integer (rsp, retaddr_len, byte_order, retaddr);
1521
1522 if (debug_displaced)
1523 fprintf_unfiltered (gdb_stdlog,
1524 "displaced: relocated return addr at %s "
1525 "to %s\n",
1526 paddress (gdbarch, rsp),
1527 paddress (gdbarch, retaddr));
1528 }
1529 }
1530
1531 /* If the instruction INSN uses RIP-relative addressing, return the
1532 offset into the raw INSN where the displacement to be adjusted is
1533 found. Returns 0 if the instruction doesn't use RIP-relative
1534 addressing. */
1535
1536 static int
1537 rip_relative_offset (struct amd64_insn *insn)
1538 {
1539 if (insn->modrm_offset != -1)
1540 {
1541 gdb_byte modrm = insn->raw_insn[insn->modrm_offset];
1542
1543 if ((modrm & 0xc7) == 0x05)
1544 {
1545 /* The displacement is found right after the ModRM byte. */
1546 return insn->modrm_offset + 1;
1547 }
1548 }
1549
1550 return 0;
1551 }
1552
1553 static void
1554 append_insns (CORE_ADDR *to, ULONGEST len, const gdb_byte *buf)
1555 {
1556 target_write_memory (*to, buf, len);
1557 *to += len;
1558 }
1559
1560 static void
1561 amd64_relocate_instruction (struct gdbarch *gdbarch,
1562 CORE_ADDR *to, CORE_ADDR oldloc)
1563 {
1564 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1565 int len = gdbarch_max_insn_length (gdbarch);
1566 /* Extra space for sentinels. */
1567 int fixup_sentinel_space = len;
1568 gdb_byte *buf = xmalloc (len + fixup_sentinel_space);
1569 struct amd64_insn insn_details;
1570 int offset = 0;
1571 LONGEST rel32, newrel;
1572 gdb_byte *insn;
1573 int insn_length;
1574
1575 read_memory (oldloc, buf, len);
1576
1577 /* Set up the sentinel space so we don't have to worry about running
1578 off the end of the buffer. An excessive number of leading prefixes
1579 could otherwise cause this. */
1580 memset (buf + len, 0, fixup_sentinel_space);
1581
1582 insn = buf;
1583 amd64_get_insn_details (insn, &insn_details);
1584
1585 insn_length = gdb_buffered_insn_length (gdbarch, insn, len, oldloc);
1586
1587 /* Skip legacy instruction prefixes. */
1588 insn = amd64_skip_prefixes (insn);
1589
1590 /* Adjust calls with 32-bit relative addresses as push/jump, with
1591 the address pushed being the location where the original call in
1592 the user program would return to. */
1593 if (insn[0] == 0xe8)
1594 {
1595 gdb_byte push_buf[16];
1596 unsigned int ret_addr;
1597
1598 /* Where "ret" in the original code will return to. */
1599 ret_addr = oldloc + insn_length;
1600 push_buf[0] = 0x68; /* pushq $... */
1601 store_unsigned_integer (&push_buf[1], 4, byte_order, ret_addr);
1602 /* Push the push. */
1603 append_insns (to, 5, push_buf);
1604
1605 /* Convert the relative call to a relative jump. */
1606 insn[0] = 0xe9;
1607
1608 /* Adjust the destination offset. */
1609 rel32 = extract_signed_integer (insn + 1, 4, byte_order);
1610 newrel = (oldloc - *to) + rel32;
1611 store_signed_integer (insn + 1, 4, byte_order, newrel);
1612
1613 if (debug_displaced)
1614 fprintf_unfiltered (gdb_stdlog,
1615 "Adjusted insn rel32=%s at %s to"
1616 " rel32=%s at %s\n",
1617 hex_string (rel32), paddress (gdbarch, oldloc),
1618 hex_string (newrel), paddress (gdbarch, *to));
1619
1620 /* Write the adjusted jump into its displaced location. */
1621 append_insns (to, 5, insn);
1622 return;
1623 }
1624
1625 offset = rip_relative_offset (&insn_details);
1626 if (!offset)
1627 {
1628 /* Adjust jumps with 32-bit relative addresses. Calls are
1629 already handled above. */
1630 if (insn[0] == 0xe9)
1631 offset = 1;
1632 /* Adjust conditional jumps. */
1633 else if (insn[0] == 0x0f && (insn[1] & 0xf0) == 0x80)
1634 offset = 2;
1635 }
1636
1637 if (offset)
1638 {
1639 rel32 = extract_signed_integer (insn + offset, 4, byte_order);
1640 newrel = (oldloc - *to) + rel32;
1641 store_signed_integer (insn + offset, 4, byte_order, newrel);
1642 if (debug_displaced)
1643 fprintf_unfiltered (gdb_stdlog,
1644 "Adjusted insn rel32=%s at %s to"
1645 " rel32=%s at %s\n",
1646 hex_string (rel32), paddress (gdbarch, oldloc),
1647 hex_string (newrel), paddress (gdbarch, *to));
1648 }
1649
1650 /* Write the adjusted instruction into its displaced location. */
1651 append_insns (to, insn_length, buf);
1652 }
1653
1654 \f
1655 /* The maximum number of saved registers. This should include %rip. */
1656 #define AMD64_NUM_SAVED_REGS AMD64_NUM_GREGS
1657
1658 struct amd64_frame_cache
1659 {
1660 /* Base address. */
1661 CORE_ADDR base;
1662 int base_p;
1663 CORE_ADDR sp_offset;
1664 CORE_ADDR pc;
1665
1666 /* Saved registers. */
1667 CORE_ADDR saved_regs[AMD64_NUM_SAVED_REGS];
1668 CORE_ADDR saved_sp;
1669 int saved_sp_reg;
1670
1671 /* Do we have a frame? */
1672 int frameless_p;
1673 };
1674
1675 /* Initialize a frame cache. */
1676
1677 static void
1678 amd64_init_frame_cache (struct amd64_frame_cache *cache)
1679 {
1680 int i;
1681
1682 /* Base address. */
1683 cache->base = 0;
1684 cache->base_p = 0;
1685 cache->sp_offset = -8;
1686 cache->pc = 0;
1687
1688 /* Saved registers. We initialize these to -1 since zero is a valid
1689 offset (that's where %rbp is supposed to be stored).
1690 The values start out as being offsets, and are later converted to
1691 addresses (at which point -1 is interpreted as an address, still meaning
1692 "invalid"). */
1693 for (i = 0; i < AMD64_NUM_SAVED_REGS; i++)
1694 cache->saved_regs[i] = -1;
1695 cache->saved_sp = 0;
1696 cache->saved_sp_reg = -1;
1697
1698 /* Frameless until proven otherwise. */
1699 cache->frameless_p = 1;
1700 }
1701
1702 /* Allocate and initialize a frame cache. */
1703
1704 static struct amd64_frame_cache *
1705 amd64_alloc_frame_cache (void)
1706 {
1707 struct amd64_frame_cache *cache;
1708
1709 cache = FRAME_OBSTACK_ZALLOC (struct amd64_frame_cache);
1710 amd64_init_frame_cache (cache);
1711 return cache;
1712 }
1713
1714 /* GCC 4.4 and later, can put code in the prologue to realign the
1715 stack pointer. Check whether PC points to such code, and update
1716 CACHE accordingly. Return the first instruction after the code
1717 sequence or CURRENT_PC, whichever is smaller. If we don't
1718 recognize the code, return PC. */
1719
1720 static CORE_ADDR
1721 amd64_analyze_stack_align (CORE_ADDR pc, CORE_ADDR current_pc,
1722 struct amd64_frame_cache *cache)
1723 {
1724 /* There are 2 code sequences to re-align stack before the frame
1725 gets set up:
1726
1727 1. Use a caller-saved saved register:
1728
1729 leaq 8(%rsp), %reg
1730 andq $-XXX, %rsp
1731 pushq -8(%reg)
1732
1733 2. Use a callee-saved saved register:
1734
1735 pushq %reg
1736 leaq 16(%rsp), %reg
1737 andq $-XXX, %rsp
1738 pushq -8(%reg)
1739
1740 "andq $-XXX, %rsp" can be either 4 bytes or 7 bytes:
1741
1742 0x48 0x83 0xe4 0xf0 andq $-16, %rsp
1743 0x48 0x81 0xe4 0x00 0xff 0xff 0xff andq $-256, %rsp
1744 */
1745
1746 gdb_byte buf[18];
1747 int reg, r;
1748 int offset, offset_and;
1749
1750 if (target_read_memory (pc, buf, sizeof buf))
1751 return pc;
1752
1753 /* Check caller-saved saved register. The first instruction has
1754 to be "leaq 8(%rsp), %reg". */
1755 if ((buf[0] & 0xfb) == 0x48
1756 && buf[1] == 0x8d
1757 && buf[3] == 0x24
1758 && buf[4] == 0x8)
1759 {
1760 /* MOD must be binary 10 and R/M must be binary 100. */
1761 if ((buf[2] & 0xc7) != 0x44)
1762 return pc;
1763
1764 /* REG has register number. */
1765 reg = (buf[2] >> 3) & 7;
1766
1767 /* Check the REX.R bit. */
1768 if (buf[0] == 0x4c)
1769 reg += 8;
1770
1771 offset = 5;
1772 }
1773 else
1774 {
1775 /* Check callee-saved saved register. The first instruction
1776 has to be "pushq %reg". */
1777 reg = 0;
1778 if ((buf[0] & 0xf8) == 0x50)
1779 offset = 0;
1780 else if ((buf[0] & 0xf6) == 0x40
1781 && (buf[1] & 0xf8) == 0x50)
1782 {
1783 /* Check the REX.B bit. */
1784 if ((buf[0] & 1) != 0)
1785 reg = 8;
1786
1787 offset = 1;
1788 }
1789 else
1790 return pc;
1791
1792 /* Get register. */
1793 reg += buf[offset] & 0x7;
1794
1795 offset++;
1796
1797 /* The next instruction has to be "leaq 16(%rsp), %reg". */
1798 if ((buf[offset] & 0xfb) != 0x48
1799 || buf[offset + 1] != 0x8d
1800 || buf[offset + 3] != 0x24
1801 || buf[offset + 4] != 0x10)
1802 return pc;
1803
1804 /* MOD must be binary 10 and R/M must be binary 100. */
1805 if ((buf[offset + 2] & 0xc7) != 0x44)
1806 return pc;
1807
1808 /* REG has register number. */
1809 r = (buf[offset + 2] >> 3) & 7;
1810
1811 /* Check the REX.R bit. */
1812 if (buf[offset] == 0x4c)
1813 r += 8;
1814
1815 /* Registers in pushq and leaq have to be the same. */
1816 if (reg != r)
1817 return pc;
1818
1819 offset += 5;
1820 }
1821
1822 /* Rigister can't be %rsp nor %rbp. */
1823 if (reg == 4 || reg == 5)
1824 return pc;
1825
1826 /* The next instruction has to be "andq $-XXX, %rsp". */
1827 if (buf[offset] != 0x48
1828 || buf[offset + 2] != 0xe4
1829 || (buf[offset + 1] != 0x81 && buf[offset + 1] != 0x83))
1830 return pc;
1831
1832 offset_and = offset;
1833 offset += buf[offset + 1] == 0x81 ? 7 : 4;
1834
1835 /* The next instruction has to be "pushq -8(%reg)". */
1836 r = 0;
1837 if (buf[offset] == 0xff)
1838 offset++;
1839 else if ((buf[offset] & 0xf6) == 0x40
1840 && buf[offset + 1] == 0xff)
1841 {
1842 /* Check the REX.B bit. */
1843 if ((buf[offset] & 0x1) != 0)
1844 r = 8;
1845 offset += 2;
1846 }
1847 else
1848 return pc;
1849
1850 /* 8bit -8 is 0xf8. REG must be binary 110 and MOD must be binary
1851 01. */
1852 if (buf[offset + 1] != 0xf8
1853 || (buf[offset] & 0xf8) != 0x70)
1854 return pc;
1855
1856 /* R/M has register. */
1857 r += buf[offset] & 7;
1858
1859 /* Registers in leaq and pushq have to be the same. */
1860 if (reg != r)
1861 return pc;
1862
1863 if (current_pc > pc + offset_and)
1864 cache->saved_sp_reg = amd64_arch_reg_to_regnum (reg);
1865
1866 return min (pc + offset + 2, current_pc);
1867 }
1868
1869 /* Similar to amd64_analyze_stack_align for x32. */
1870
1871 static CORE_ADDR
1872 amd64_x32_analyze_stack_align (CORE_ADDR pc, CORE_ADDR current_pc,
1873 struct amd64_frame_cache *cache)
1874 {
1875 /* There are 2 code sequences to re-align stack before the frame
1876 gets set up:
1877
1878 1. Use a caller-saved saved register:
1879
1880 leaq 8(%rsp), %reg
1881 andq $-XXX, %rsp
1882 pushq -8(%reg)
1883
1884 or
1885
1886 [addr32] leal 8(%rsp), %reg
1887 andl $-XXX, %esp
1888 [addr32] pushq -8(%reg)
1889
1890 2. Use a callee-saved saved register:
1891
1892 pushq %reg
1893 leaq 16(%rsp), %reg
1894 andq $-XXX, %rsp
1895 pushq -8(%reg)
1896
1897 or
1898
1899 pushq %reg
1900 [addr32] leal 16(%rsp), %reg
1901 andl $-XXX, %esp
1902 [addr32] pushq -8(%reg)
1903
1904 "andq $-XXX, %rsp" can be either 4 bytes or 7 bytes:
1905
1906 0x48 0x83 0xe4 0xf0 andq $-16, %rsp
1907 0x48 0x81 0xe4 0x00 0xff 0xff 0xff andq $-256, %rsp
1908
1909 "andl $-XXX, %esp" can be either 3 bytes or 6 bytes:
1910
1911 0x83 0xe4 0xf0 andl $-16, %esp
1912 0x81 0xe4 0x00 0xff 0xff 0xff andl $-256, %esp
1913 */
1914
1915 gdb_byte buf[19];
1916 int reg, r;
1917 int offset, offset_and;
1918
1919 if (target_read_memory (pc, buf, sizeof buf))
1920 return pc;
1921
1922 /* Skip optional addr32 prefix. */
1923 offset = buf[0] == 0x67 ? 1 : 0;
1924
1925 /* Check caller-saved saved register. The first instruction has
1926 to be "leaq 8(%rsp), %reg" or "leal 8(%rsp), %reg". */
1927 if (((buf[offset] & 0xfb) == 0x48 || (buf[offset] & 0xfb) == 0x40)
1928 && buf[offset + 1] == 0x8d
1929 && buf[offset + 3] == 0x24
1930 && buf[offset + 4] == 0x8)
1931 {
1932 /* MOD must be binary 10 and R/M must be binary 100. */
1933 if ((buf[offset + 2] & 0xc7) != 0x44)
1934 return pc;
1935
1936 /* REG has register number. */
1937 reg = (buf[offset + 2] >> 3) & 7;
1938
1939 /* Check the REX.R bit. */
1940 if ((buf[offset] & 0x4) != 0)
1941 reg += 8;
1942
1943 offset += 5;
1944 }
1945 else
1946 {
1947 /* Check callee-saved saved register. The first instruction
1948 has to be "pushq %reg". */
1949 reg = 0;
1950 if ((buf[offset] & 0xf6) == 0x40
1951 && (buf[offset + 1] & 0xf8) == 0x50)
1952 {
1953 /* Check the REX.B bit. */
1954 if ((buf[offset] & 1) != 0)
1955 reg = 8;
1956
1957 offset += 1;
1958 }
1959 else if ((buf[offset] & 0xf8) != 0x50)
1960 return pc;
1961
1962 /* Get register. */
1963 reg += buf[offset] & 0x7;
1964
1965 offset++;
1966
1967 /* Skip optional addr32 prefix. */
1968 if (buf[offset] == 0x67)
1969 offset++;
1970
1971 /* The next instruction has to be "leaq 16(%rsp), %reg" or
1972 "leal 16(%rsp), %reg". */
1973 if (((buf[offset] & 0xfb) != 0x48 && (buf[offset] & 0xfb) != 0x40)
1974 || buf[offset + 1] != 0x8d
1975 || buf[offset + 3] != 0x24
1976 || buf[offset + 4] != 0x10)
1977 return pc;
1978
1979 /* MOD must be binary 10 and R/M must be binary 100. */
1980 if ((buf[offset + 2] & 0xc7) != 0x44)
1981 return pc;
1982
1983 /* REG has register number. */
1984 r = (buf[offset + 2] >> 3) & 7;
1985
1986 /* Check the REX.R bit. */
1987 if ((buf[offset] & 0x4) != 0)
1988 r += 8;
1989
1990 /* Registers in pushq and leaq have to be the same. */
1991 if (reg != r)
1992 return pc;
1993
1994 offset += 5;
1995 }
1996
1997 /* Rigister can't be %rsp nor %rbp. */
1998 if (reg == 4 || reg == 5)
1999 return pc;
2000
2001 /* The next instruction may be "andq $-XXX, %rsp" or
2002 "andl $-XXX, %esp". */
2003 if (buf[offset] != 0x48)
2004 offset--;
2005
2006 if (buf[offset + 2] != 0xe4
2007 || (buf[offset + 1] != 0x81 && buf[offset + 1] != 0x83))
2008 return pc;
2009
2010 offset_and = offset;
2011 offset += buf[offset + 1] == 0x81 ? 7 : 4;
2012
2013 /* Skip optional addr32 prefix. */
2014 if (buf[offset] == 0x67)
2015 offset++;
2016
2017 /* The next instruction has to be "pushq -8(%reg)". */
2018 r = 0;
2019 if (buf[offset] == 0xff)
2020 offset++;
2021 else if ((buf[offset] & 0xf6) == 0x40
2022 && buf[offset + 1] == 0xff)
2023 {
2024 /* Check the REX.B bit. */
2025 if ((buf[offset] & 0x1) != 0)
2026 r = 8;
2027 offset += 2;
2028 }
2029 else
2030 return pc;
2031
2032 /* 8bit -8 is 0xf8. REG must be binary 110 and MOD must be binary
2033 01. */
2034 if (buf[offset + 1] != 0xf8
2035 || (buf[offset] & 0xf8) != 0x70)
2036 return pc;
2037
2038 /* R/M has register. */
2039 r += buf[offset] & 7;
2040
2041 /* Registers in leaq and pushq have to be the same. */
2042 if (reg != r)
2043 return pc;
2044
2045 if (current_pc > pc + offset_and)
2046 cache->saved_sp_reg = amd64_arch_reg_to_regnum (reg);
2047
2048 return min (pc + offset + 2, current_pc);
2049 }
2050
2051 /* Do a limited analysis of the prologue at PC and update CACHE
2052 accordingly. Bail out early if CURRENT_PC is reached. Return the
2053 address where the analysis stopped.
2054
2055 We will handle only functions beginning with:
2056
2057 pushq %rbp 0x55
2058 movq %rsp, %rbp 0x48 0x89 0xe5 (or 0x48 0x8b 0xec)
2059
2060 or (for the X32 ABI):
2061
2062 pushq %rbp 0x55
2063 movl %esp, %ebp 0x89 0xe5 (or 0x8b 0xec)
2064
2065 Any function that doesn't start with one of these sequences will be
2066 assumed to have no prologue and thus no valid frame pointer in
2067 %rbp. */
2068
2069 static CORE_ADDR
2070 amd64_analyze_prologue (struct gdbarch *gdbarch,
2071 CORE_ADDR pc, CORE_ADDR current_pc,
2072 struct amd64_frame_cache *cache)
2073 {
2074 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
2075 /* There are two variations of movq %rsp, %rbp. */
2076 static const gdb_byte mov_rsp_rbp_1[3] = { 0x48, 0x89, 0xe5 };
2077 static const gdb_byte mov_rsp_rbp_2[3] = { 0x48, 0x8b, 0xec };
2078 /* Ditto for movl %esp, %ebp. */
2079 static const gdb_byte mov_esp_ebp_1[2] = { 0x89, 0xe5 };
2080 static const gdb_byte mov_esp_ebp_2[2] = { 0x8b, 0xec };
2081
2082 gdb_byte buf[3];
2083 gdb_byte op;
2084
2085 if (current_pc <= pc)
2086 return current_pc;
2087
2088 if (gdbarch_ptr_bit (gdbarch) == 32)
2089 pc = amd64_x32_analyze_stack_align (pc, current_pc, cache);
2090 else
2091 pc = amd64_analyze_stack_align (pc, current_pc, cache);
2092
2093 op = read_memory_unsigned_integer (pc, 1, byte_order);
2094
2095 if (op == 0x55) /* pushq %rbp */
2096 {
2097 /* Take into account that we've executed the `pushq %rbp' that
2098 starts this instruction sequence. */
2099 cache->saved_regs[AMD64_RBP_REGNUM] = 0;
2100 cache->sp_offset += 8;
2101
2102 /* If that's all, return now. */
2103 if (current_pc <= pc + 1)
2104 return current_pc;
2105
2106 read_memory (pc + 1, buf, 3);
2107
2108 /* Check for `movq %rsp, %rbp'. */
2109 if (memcmp (buf, mov_rsp_rbp_1, 3) == 0
2110 || memcmp (buf, mov_rsp_rbp_2, 3) == 0)
2111 {
2112 /* OK, we actually have a frame. */
2113 cache->frameless_p = 0;
2114 return pc + 4;
2115 }
2116
2117 /* For X32, also check for `movq %esp, %ebp'. */
2118 if (gdbarch_ptr_bit (gdbarch) == 32)
2119 {
2120 if (memcmp (buf, mov_esp_ebp_1, 2) == 0
2121 || memcmp (buf, mov_esp_ebp_2, 2) == 0)
2122 {
2123 /* OK, we actually have a frame. */
2124 cache->frameless_p = 0;
2125 return pc + 3;
2126 }
2127 }
2128
2129 return pc + 1;
2130 }
2131
2132 return pc;
2133 }
2134
2135 /* Work around false termination of prologue - GCC PR debug/48827.
2136
2137 START_PC is the first instruction of a function, PC is its minimal already
2138 determined advanced address. Function returns PC if it has nothing to do.
2139
2140 84 c0 test %al,%al
2141 74 23 je after
2142 <-- here is 0 lines advance - the false prologue end marker.
2143 0f 29 85 70 ff ff ff movaps %xmm0,-0x90(%rbp)
2144 0f 29 4d 80 movaps %xmm1,-0x80(%rbp)
2145 0f 29 55 90 movaps %xmm2,-0x70(%rbp)
2146 0f 29 5d a0 movaps %xmm3,-0x60(%rbp)
2147 0f 29 65 b0 movaps %xmm4,-0x50(%rbp)
2148 0f 29 6d c0 movaps %xmm5,-0x40(%rbp)
2149 0f 29 75 d0 movaps %xmm6,-0x30(%rbp)
2150 0f 29 7d e0 movaps %xmm7,-0x20(%rbp)
2151 after: */
2152
2153 static CORE_ADDR
2154 amd64_skip_xmm_prologue (CORE_ADDR pc, CORE_ADDR start_pc)
2155 {
2156 struct symtab_and_line start_pc_sal, next_sal;
2157 gdb_byte buf[4 + 8 * 7];
2158 int offset, xmmreg;
2159
2160 if (pc == start_pc)
2161 return pc;
2162
2163 start_pc_sal = find_pc_sect_line (start_pc, NULL, 0);
2164 if (start_pc_sal.symtab == NULL
2165 || producer_is_gcc_ge_4 (start_pc_sal.symtab->producer) < 6
2166 || start_pc_sal.pc != start_pc || pc >= start_pc_sal.end)
2167 return pc;
2168
2169 next_sal = find_pc_sect_line (start_pc_sal.end, NULL, 0);
2170 if (next_sal.line != start_pc_sal.line)
2171 return pc;
2172
2173 /* START_PC can be from overlayed memory, ignored here. */
2174 if (target_read_memory (next_sal.pc - 4, buf, sizeof (buf)) != 0)
2175 return pc;
2176
2177 /* test %al,%al */
2178 if (buf[0] != 0x84 || buf[1] != 0xc0)
2179 return pc;
2180 /* je AFTER */
2181 if (buf[2] != 0x74)
2182 return pc;
2183
2184 offset = 4;
2185 for (xmmreg = 0; xmmreg < 8; xmmreg++)
2186 {
2187 /* 0x0f 0x29 0b??000101 movaps %xmmreg?,-0x??(%rbp) */
2188 if (buf[offset] != 0x0f || buf[offset + 1] != 0x29
2189 || (buf[offset + 2] & 0x3f) != (xmmreg << 3 | 0x5))
2190 return pc;
2191
2192 /* 0b01?????? */
2193 if ((buf[offset + 2] & 0xc0) == 0x40)
2194 {
2195 /* 8-bit displacement. */
2196 offset += 4;
2197 }
2198 /* 0b10?????? */
2199 else if ((buf[offset + 2] & 0xc0) == 0x80)
2200 {
2201 /* 32-bit displacement. */
2202 offset += 7;
2203 }
2204 else
2205 return pc;
2206 }
2207
2208 /* je AFTER */
2209 if (offset - 4 != buf[3])
2210 return pc;
2211
2212 return next_sal.end;
2213 }
2214
2215 /* Return PC of first real instruction. */
2216
2217 static CORE_ADDR
2218 amd64_skip_prologue (struct gdbarch *gdbarch, CORE_ADDR start_pc)
2219 {
2220 struct amd64_frame_cache cache;
2221 CORE_ADDR pc;
2222 CORE_ADDR func_addr;
2223
2224 if (find_pc_partial_function (start_pc, NULL, &func_addr, NULL))
2225 {
2226 CORE_ADDR post_prologue_pc
2227 = skip_prologue_using_sal (gdbarch, func_addr);
2228 struct symtab *s = find_pc_symtab (func_addr);
2229
2230 /* Clang always emits a line note before the prologue and another
2231 one after. We trust clang to emit usable line notes. */
2232 if (post_prologue_pc
2233 && (s != NULL
2234 && s->producer != NULL
2235 && strncmp (s->producer, "clang ", sizeof ("clang ") - 1) == 0))
2236 return max (start_pc, post_prologue_pc);
2237 }
2238
2239 amd64_init_frame_cache (&cache);
2240 pc = amd64_analyze_prologue (gdbarch, start_pc, 0xffffffffffffffffLL,
2241 &cache);
2242 if (cache.frameless_p)
2243 return start_pc;
2244
2245 return amd64_skip_xmm_prologue (pc, start_pc);
2246 }
2247 \f
2248
2249 /* Normal frames. */
2250
2251 static void
2252 amd64_frame_cache_1 (struct frame_info *this_frame,
2253 struct amd64_frame_cache *cache)
2254 {
2255 struct gdbarch *gdbarch = get_frame_arch (this_frame);
2256 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
2257 gdb_byte buf[8];
2258 int i;
2259
2260 cache->pc = get_frame_func (this_frame);
2261 if (cache->pc != 0)
2262 amd64_analyze_prologue (gdbarch, cache->pc, get_frame_pc (this_frame),
2263 cache);
2264
2265 if (cache->frameless_p)
2266 {
2267 /* We didn't find a valid frame. If we're at the start of a
2268 function, or somewhere half-way its prologue, the function's
2269 frame probably hasn't been fully setup yet. Try to
2270 reconstruct the base address for the stack frame by looking
2271 at the stack pointer. For truly "frameless" functions this
2272 might work too. */
2273
2274 if (cache->saved_sp_reg != -1)
2275 {
2276 /* Stack pointer has been saved. */
2277 get_frame_register (this_frame, cache->saved_sp_reg, buf);
2278 cache->saved_sp = extract_unsigned_integer (buf, 8, byte_order);
2279
2280 /* We're halfway aligning the stack. */
2281 cache->base = ((cache->saved_sp - 8) & 0xfffffffffffffff0LL) - 8;
2282 cache->saved_regs[AMD64_RIP_REGNUM] = cache->saved_sp - 8;
2283
2284 /* This will be added back below. */
2285 cache->saved_regs[AMD64_RIP_REGNUM] -= cache->base;
2286 }
2287 else
2288 {
2289 get_frame_register (this_frame, AMD64_RSP_REGNUM, buf);
2290 cache->base = extract_unsigned_integer (buf, 8, byte_order)
2291 + cache->sp_offset;
2292 }
2293 }
2294 else
2295 {
2296 get_frame_register (this_frame, AMD64_RBP_REGNUM, buf);
2297 cache->base = extract_unsigned_integer (buf, 8, byte_order);
2298 }
2299
2300 /* Now that we have the base address for the stack frame we can
2301 calculate the value of %rsp in the calling frame. */
2302 cache->saved_sp = cache->base + 16;
2303
2304 /* For normal frames, %rip is stored at 8(%rbp). If we don't have a
2305 frame we find it at the same offset from the reconstructed base
2306 address. If we're halfway aligning the stack, %rip is handled
2307 differently (see above). */
2308 if (!cache->frameless_p || cache->saved_sp_reg == -1)
2309 cache->saved_regs[AMD64_RIP_REGNUM] = 8;
2310
2311 /* Adjust all the saved registers such that they contain addresses
2312 instead of offsets. */
2313 for (i = 0; i < AMD64_NUM_SAVED_REGS; i++)
2314 if (cache->saved_regs[i] != -1)
2315 cache->saved_regs[i] += cache->base;
2316
2317 cache->base_p = 1;
2318 }
2319
2320 static struct amd64_frame_cache *
2321 amd64_frame_cache (struct frame_info *this_frame, void **this_cache)
2322 {
2323 volatile struct gdb_exception ex;
2324 struct amd64_frame_cache *cache;
2325
2326 if (*this_cache)
2327 return *this_cache;
2328
2329 cache = amd64_alloc_frame_cache ();
2330 *this_cache = cache;
2331
2332 TRY_CATCH (ex, RETURN_MASK_ERROR)
2333 {
2334 amd64_frame_cache_1 (this_frame, cache);
2335 }
2336 if (ex.reason < 0 && ex.error != NOT_AVAILABLE_ERROR)
2337 throw_exception (ex);
2338
2339 return cache;
2340 }
2341
2342 static enum unwind_stop_reason
2343 amd64_frame_unwind_stop_reason (struct frame_info *this_frame,
2344 void **this_cache)
2345 {
2346 struct amd64_frame_cache *cache =
2347 amd64_frame_cache (this_frame, this_cache);
2348
2349 if (!cache->base_p)
2350 return UNWIND_UNAVAILABLE;
2351
2352 /* This marks the outermost frame. */
2353 if (cache->base == 0)
2354 return UNWIND_OUTERMOST;
2355
2356 return UNWIND_NO_REASON;
2357 }
2358
2359 static void
2360 amd64_frame_this_id (struct frame_info *this_frame, void **this_cache,
2361 struct frame_id *this_id)
2362 {
2363 struct amd64_frame_cache *cache =
2364 amd64_frame_cache (this_frame, this_cache);
2365
2366 if (!cache->base_p)
2367 return;
2368
2369 /* This marks the outermost frame. */
2370 if (cache->base == 0)
2371 return;
2372
2373 (*this_id) = frame_id_build (cache->base + 16, cache->pc);
2374 }
2375
2376 static struct value *
2377 amd64_frame_prev_register (struct frame_info *this_frame, void **this_cache,
2378 int regnum)
2379 {
2380 struct gdbarch *gdbarch = get_frame_arch (this_frame);
2381 struct amd64_frame_cache *cache =
2382 amd64_frame_cache (this_frame, this_cache);
2383
2384 gdb_assert (regnum >= 0);
2385
2386 if (regnum == gdbarch_sp_regnum (gdbarch) && cache->saved_sp)
2387 return frame_unwind_got_constant (this_frame, regnum, cache->saved_sp);
2388
2389 if (regnum < AMD64_NUM_SAVED_REGS && cache->saved_regs[regnum] != -1)
2390 return frame_unwind_got_memory (this_frame, regnum,
2391 cache->saved_regs[regnum]);
2392
2393 return frame_unwind_got_register (this_frame, regnum, regnum);
2394 }
2395
2396 static const struct frame_unwind amd64_frame_unwind =
2397 {
2398 NORMAL_FRAME,
2399 amd64_frame_unwind_stop_reason,
2400 amd64_frame_this_id,
2401 amd64_frame_prev_register,
2402 NULL,
2403 default_frame_sniffer
2404 };
2405 \f
2406 /* Generate a bytecode expression to get the value of the saved PC. */
2407
2408 static void
2409 amd64_gen_return_address (struct gdbarch *gdbarch,
2410 struct agent_expr *ax, struct axs_value *value,
2411 CORE_ADDR scope)
2412 {
2413 /* The following sequence assumes the traditional use of the base
2414 register. */
2415 ax_reg (ax, AMD64_RBP_REGNUM);
2416 ax_const_l (ax, 8);
2417 ax_simple (ax, aop_add);
2418 value->type = register_type (gdbarch, AMD64_RIP_REGNUM);
2419 value->kind = axs_lvalue_memory;
2420 }
2421 \f
2422
2423 /* Signal trampolines. */
2424
2425 /* FIXME: kettenis/20030419: Perhaps, we can unify the 32-bit and
2426 64-bit variants. This would require using identical frame caches
2427 on both platforms. */
2428
2429 static struct amd64_frame_cache *
2430 amd64_sigtramp_frame_cache (struct frame_info *this_frame, void **this_cache)
2431 {
2432 struct gdbarch *gdbarch = get_frame_arch (this_frame);
2433 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2434 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
2435 volatile struct gdb_exception ex;
2436 struct amd64_frame_cache *cache;
2437 CORE_ADDR addr;
2438 gdb_byte buf[8];
2439 int i;
2440
2441 if (*this_cache)
2442 return *this_cache;
2443
2444 cache = amd64_alloc_frame_cache ();
2445
2446 TRY_CATCH (ex, RETURN_MASK_ERROR)
2447 {
2448 get_frame_register (this_frame, AMD64_RSP_REGNUM, buf);
2449 cache->base = extract_unsigned_integer (buf, 8, byte_order) - 8;
2450
2451 addr = tdep->sigcontext_addr (this_frame);
2452 gdb_assert (tdep->sc_reg_offset);
2453 gdb_assert (tdep->sc_num_regs <= AMD64_NUM_SAVED_REGS);
2454 for (i = 0; i < tdep->sc_num_regs; i++)
2455 if (tdep->sc_reg_offset[i] != -1)
2456 cache->saved_regs[i] = addr + tdep->sc_reg_offset[i];
2457
2458 cache->base_p = 1;
2459 }
2460 if (ex.reason < 0 && ex.error != NOT_AVAILABLE_ERROR)
2461 throw_exception (ex);
2462
2463 *this_cache = cache;
2464 return cache;
2465 }
2466
2467 static enum unwind_stop_reason
2468 amd64_sigtramp_frame_unwind_stop_reason (struct frame_info *this_frame,
2469 void **this_cache)
2470 {
2471 struct amd64_frame_cache *cache =
2472 amd64_sigtramp_frame_cache (this_frame, this_cache);
2473
2474 if (!cache->base_p)
2475 return UNWIND_UNAVAILABLE;
2476
2477 return UNWIND_NO_REASON;
2478 }
2479
2480 static void
2481 amd64_sigtramp_frame_this_id (struct frame_info *this_frame,
2482 void **this_cache, struct frame_id *this_id)
2483 {
2484 struct amd64_frame_cache *cache =
2485 amd64_sigtramp_frame_cache (this_frame, this_cache);
2486
2487 if (!cache->base_p)
2488 return;
2489
2490 (*this_id) = frame_id_build (cache->base + 16, get_frame_pc (this_frame));
2491 }
2492
2493 static struct value *
2494 amd64_sigtramp_frame_prev_register (struct frame_info *this_frame,
2495 void **this_cache, int regnum)
2496 {
2497 /* Make sure we've initialized the cache. */
2498 amd64_sigtramp_frame_cache (this_frame, this_cache);
2499
2500 return amd64_frame_prev_register (this_frame, this_cache, regnum);
2501 }
2502
2503 static int
2504 amd64_sigtramp_frame_sniffer (const struct frame_unwind *self,
2505 struct frame_info *this_frame,
2506 void **this_cache)
2507 {
2508 struct gdbarch_tdep *tdep = gdbarch_tdep (get_frame_arch (this_frame));
2509
2510 /* We shouldn't even bother if we don't have a sigcontext_addr
2511 handler. */
2512 if (tdep->sigcontext_addr == NULL)
2513 return 0;
2514
2515 if (tdep->sigtramp_p != NULL)
2516 {
2517 if (tdep->sigtramp_p (this_frame))
2518 return 1;
2519 }
2520
2521 if (tdep->sigtramp_start != 0)
2522 {
2523 CORE_ADDR pc = get_frame_pc (this_frame);
2524
2525 gdb_assert (tdep->sigtramp_end != 0);
2526 if (pc >= tdep->sigtramp_start && pc < tdep->sigtramp_end)
2527 return 1;
2528 }
2529
2530 return 0;
2531 }
2532
2533 static const struct frame_unwind amd64_sigtramp_frame_unwind =
2534 {
2535 SIGTRAMP_FRAME,
2536 amd64_sigtramp_frame_unwind_stop_reason,
2537 amd64_sigtramp_frame_this_id,
2538 amd64_sigtramp_frame_prev_register,
2539 NULL,
2540 amd64_sigtramp_frame_sniffer
2541 };
2542 \f
2543
2544 static CORE_ADDR
2545 amd64_frame_base_address (struct frame_info *this_frame, void **this_cache)
2546 {
2547 struct amd64_frame_cache *cache =
2548 amd64_frame_cache (this_frame, this_cache);
2549
2550 return cache->base;
2551 }
2552
2553 static const struct frame_base amd64_frame_base =
2554 {
2555 &amd64_frame_unwind,
2556 amd64_frame_base_address,
2557 amd64_frame_base_address,
2558 amd64_frame_base_address
2559 };
2560
2561 /* Normal frames, but in a function epilogue. */
2562
2563 /* The epilogue is defined here as the 'ret' instruction, which will
2564 follow any instruction such as 'leave' or 'pop %ebp' that destroys
2565 the function's stack frame. */
2566
2567 static int
2568 amd64_in_function_epilogue_p (struct gdbarch *gdbarch, CORE_ADDR pc)
2569 {
2570 gdb_byte insn;
2571 struct symtab *symtab;
2572
2573 symtab = find_pc_symtab (pc);
2574 if (symtab && symtab->epilogue_unwind_valid)
2575 return 0;
2576
2577 if (target_read_memory (pc, &insn, 1))
2578 return 0; /* Can't read memory at pc. */
2579
2580 if (insn != 0xc3) /* 'ret' instruction. */
2581 return 0;
2582
2583 return 1;
2584 }
2585
2586 static int
2587 amd64_epilogue_frame_sniffer (const struct frame_unwind *self,
2588 struct frame_info *this_frame,
2589 void **this_prologue_cache)
2590 {
2591 if (frame_relative_level (this_frame) == 0)
2592 return amd64_in_function_epilogue_p (get_frame_arch (this_frame),
2593 get_frame_pc (this_frame));
2594 else
2595 return 0;
2596 }
2597
2598 static struct amd64_frame_cache *
2599 amd64_epilogue_frame_cache (struct frame_info *this_frame, void **this_cache)
2600 {
2601 struct gdbarch *gdbarch = get_frame_arch (this_frame);
2602 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
2603 volatile struct gdb_exception ex;
2604 struct amd64_frame_cache *cache;
2605 gdb_byte buf[8];
2606
2607 if (*this_cache)
2608 return *this_cache;
2609
2610 cache = amd64_alloc_frame_cache ();
2611 *this_cache = cache;
2612
2613 TRY_CATCH (ex, RETURN_MASK_ERROR)
2614 {
2615 /* Cache base will be %esp plus cache->sp_offset (-8). */
2616 get_frame_register (this_frame, AMD64_RSP_REGNUM, buf);
2617 cache->base = extract_unsigned_integer (buf, 8,
2618 byte_order) + cache->sp_offset;
2619
2620 /* Cache pc will be the frame func. */
2621 cache->pc = get_frame_pc (this_frame);
2622
2623 /* The saved %esp will be at cache->base plus 16. */
2624 cache->saved_sp = cache->base + 16;
2625
2626 /* The saved %eip will be at cache->base plus 8. */
2627 cache->saved_regs[AMD64_RIP_REGNUM] = cache->base + 8;
2628
2629 cache->base_p = 1;
2630 }
2631 if (ex.reason < 0 && ex.error != NOT_AVAILABLE_ERROR)
2632 throw_exception (ex);
2633
2634 return cache;
2635 }
2636
2637 static enum unwind_stop_reason
2638 amd64_epilogue_frame_unwind_stop_reason (struct frame_info *this_frame,
2639 void **this_cache)
2640 {
2641 struct amd64_frame_cache *cache
2642 = amd64_epilogue_frame_cache (this_frame, this_cache);
2643
2644 if (!cache->base_p)
2645 return UNWIND_UNAVAILABLE;
2646
2647 return UNWIND_NO_REASON;
2648 }
2649
2650 static void
2651 amd64_epilogue_frame_this_id (struct frame_info *this_frame,
2652 void **this_cache,
2653 struct frame_id *this_id)
2654 {
2655 struct amd64_frame_cache *cache = amd64_epilogue_frame_cache (this_frame,
2656 this_cache);
2657
2658 if (!cache->base_p)
2659 return;
2660
2661 (*this_id) = frame_id_build (cache->base + 8, cache->pc);
2662 }
2663
2664 static const struct frame_unwind amd64_epilogue_frame_unwind =
2665 {
2666 NORMAL_FRAME,
2667 amd64_epilogue_frame_unwind_stop_reason,
2668 amd64_epilogue_frame_this_id,
2669 amd64_frame_prev_register,
2670 NULL,
2671 amd64_epilogue_frame_sniffer
2672 };
2673
2674 static struct frame_id
2675 amd64_dummy_id (struct gdbarch *gdbarch, struct frame_info *this_frame)
2676 {
2677 CORE_ADDR fp;
2678
2679 fp = get_frame_register_unsigned (this_frame, AMD64_RBP_REGNUM);
2680
2681 return frame_id_build (fp + 16, get_frame_pc (this_frame));
2682 }
2683
2684 /* 16 byte align the SP per frame requirements. */
2685
2686 static CORE_ADDR
2687 amd64_frame_align (struct gdbarch *gdbarch, CORE_ADDR sp)
2688 {
2689 return sp & -(CORE_ADDR)16;
2690 }
2691 \f
2692
2693 /* Supply register REGNUM from the buffer specified by FPREGS and LEN
2694 in the floating-point register set REGSET to register cache
2695 REGCACHE. If REGNUM is -1, do this for all registers in REGSET. */
2696
2697 static void
2698 amd64_supply_fpregset (const struct regset *regset, struct regcache *regcache,
2699 int regnum, const void *fpregs, size_t len)
2700 {
2701 const struct gdbarch_tdep *tdep = gdbarch_tdep (regset->arch);
2702
2703 gdb_assert (len == tdep->sizeof_fpregset);
2704 amd64_supply_fxsave (regcache, regnum, fpregs);
2705 }
2706
2707 /* Collect register REGNUM from the register cache REGCACHE and store
2708 it in the buffer specified by FPREGS and LEN as described by the
2709 floating-point register set REGSET. If REGNUM is -1, do this for
2710 all registers in REGSET. */
2711
2712 static void
2713 amd64_collect_fpregset (const struct regset *regset,
2714 const struct regcache *regcache,
2715 int regnum, void *fpregs, size_t len)
2716 {
2717 const struct gdbarch_tdep *tdep = gdbarch_tdep (regset->arch);
2718
2719 gdb_assert (len == tdep->sizeof_fpregset);
2720 amd64_collect_fxsave (regcache, regnum, fpregs);
2721 }
2722
2723 /* Similar to amd64_supply_fpregset, but use XSAVE extended state. */
2724
2725 static void
2726 amd64_supply_xstateregset (const struct regset *regset,
2727 struct regcache *regcache, int regnum,
2728 const void *xstateregs, size_t len)
2729 {
2730 amd64_supply_xsave (regcache, regnum, xstateregs);
2731 }
2732
2733 /* Similar to amd64_collect_fpregset, but use XSAVE extended state. */
2734
2735 static void
2736 amd64_collect_xstateregset (const struct regset *regset,
2737 const struct regcache *regcache,
2738 int regnum, void *xstateregs, size_t len)
2739 {
2740 amd64_collect_xsave (regcache, regnum, xstateregs, 1);
2741 }
2742
2743 /* Return the appropriate register set for the core section identified
2744 by SECT_NAME and SECT_SIZE. */
2745
2746 static const struct regset *
2747 amd64_regset_from_core_section (struct gdbarch *gdbarch,
2748 const char *sect_name, size_t sect_size)
2749 {
2750 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2751
2752 if (strcmp (sect_name, ".reg2") == 0 && sect_size == tdep->sizeof_fpregset)
2753 {
2754 if (tdep->fpregset == NULL)
2755 tdep->fpregset = regset_alloc (gdbarch, amd64_supply_fpregset,
2756 amd64_collect_fpregset);
2757
2758 return tdep->fpregset;
2759 }
2760
2761 if (strcmp (sect_name, ".reg-xstate") == 0)
2762 {
2763 if (tdep->xstateregset == NULL)
2764 tdep->xstateregset = regset_alloc (gdbarch,
2765 amd64_supply_xstateregset,
2766 amd64_collect_xstateregset);
2767
2768 return tdep->xstateregset;
2769 }
2770
2771 return i386_regset_from_core_section (gdbarch, sect_name, sect_size);
2772 }
2773 \f
2774
2775 /* Figure out where the longjmp will land. Slurp the jmp_buf out of
2776 %rdi. We expect its value to be a pointer to the jmp_buf structure
2777 from which we extract the address that we will land at. This
2778 address is copied into PC. This routine returns non-zero on
2779 success. */
2780
2781 static int
2782 amd64_get_longjmp_target (struct frame_info *frame, CORE_ADDR *pc)
2783 {
2784 gdb_byte buf[8];
2785 CORE_ADDR jb_addr;
2786 struct gdbarch *gdbarch = get_frame_arch (frame);
2787 int jb_pc_offset = gdbarch_tdep (gdbarch)->jb_pc_offset;
2788 int len = TYPE_LENGTH (builtin_type (gdbarch)->builtin_func_ptr);
2789
2790 /* If JB_PC_OFFSET is -1, we have no way to find out where the
2791 longjmp will land. */
2792 if (jb_pc_offset == -1)
2793 return 0;
2794
2795 get_frame_register (frame, AMD64_RDI_REGNUM, buf);
2796 jb_addr= extract_typed_address
2797 (buf, builtin_type (gdbarch)->builtin_data_ptr);
2798 if (target_read_memory (jb_addr + jb_pc_offset, buf, len))
2799 return 0;
2800
2801 *pc = extract_typed_address (buf, builtin_type (gdbarch)->builtin_func_ptr);
2802
2803 return 1;
2804 }
2805
2806 static const int amd64_record_regmap[] =
2807 {
2808 AMD64_RAX_REGNUM, AMD64_RCX_REGNUM, AMD64_RDX_REGNUM, AMD64_RBX_REGNUM,
2809 AMD64_RSP_REGNUM, AMD64_RBP_REGNUM, AMD64_RSI_REGNUM, AMD64_RDI_REGNUM,
2810 AMD64_R8_REGNUM, AMD64_R9_REGNUM, AMD64_R10_REGNUM, AMD64_R11_REGNUM,
2811 AMD64_R12_REGNUM, AMD64_R13_REGNUM, AMD64_R14_REGNUM, AMD64_R15_REGNUM,
2812 AMD64_RIP_REGNUM, AMD64_EFLAGS_REGNUM, AMD64_CS_REGNUM, AMD64_SS_REGNUM,
2813 AMD64_DS_REGNUM, AMD64_ES_REGNUM, AMD64_FS_REGNUM, AMD64_GS_REGNUM
2814 };
2815
2816 void
2817 amd64_init_abi (struct gdbarch_info info, struct gdbarch *gdbarch)
2818 {
2819 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2820 const struct target_desc *tdesc = info.target_desc;
2821
2822 /* AMD64 generally uses `fxsave' instead of `fsave' for saving its
2823 floating-point registers. */
2824 tdep->sizeof_fpregset = I387_SIZEOF_FXSAVE;
2825
2826 if (! tdesc_has_registers (tdesc))
2827 tdesc = tdesc_amd64;
2828 tdep->tdesc = tdesc;
2829
2830 tdep->num_core_regs = AMD64_NUM_GREGS + I387_NUM_REGS;
2831 tdep->register_names = amd64_register_names;
2832
2833 if (tdesc_find_feature (tdesc, "org.gnu.gdb.i386.avx") != NULL)
2834 {
2835 tdep->ymmh_register_names = amd64_ymmh_names;
2836 tdep->num_ymm_regs = 16;
2837 tdep->ymm0h_regnum = AMD64_YMM0H_REGNUM;
2838 }
2839
2840 tdep->num_byte_regs = 20;
2841 tdep->num_word_regs = 16;
2842 tdep->num_dword_regs = 16;
2843 /* Avoid wiring in the MMX registers for now. */
2844 tdep->num_mmx_regs = 0;
2845
2846 set_gdbarch_pseudo_register_read_value (gdbarch,
2847 amd64_pseudo_register_read_value);
2848 set_gdbarch_pseudo_register_write (gdbarch,
2849 amd64_pseudo_register_write);
2850
2851 set_tdesc_pseudo_register_name (gdbarch, amd64_pseudo_register_name);
2852
2853 /* AMD64 has an FPU and 16 SSE registers. */
2854 tdep->st0_regnum = AMD64_ST0_REGNUM;
2855 tdep->num_xmm_regs = 16;
2856
2857 /* This is what all the fuss is about. */
2858 set_gdbarch_long_bit (gdbarch, 64);
2859 set_gdbarch_long_long_bit (gdbarch, 64);
2860 set_gdbarch_ptr_bit (gdbarch, 64);
2861
2862 /* In contrast to the i386, on AMD64 a `long double' actually takes
2863 up 128 bits, even though it's still based on the i387 extended
2864 floating-point format which has only 80 significant bits. */
2865 set_gdbarch_long_double_bit (gdbarch, 128);
2866
2867 set_gdbarch_num_regs (gdbarch, AMD64_NUM_REGS);
2868
2869 /* Register numbers of various important registers. */
2870 set_gdbarch_sp_regnum (gdbarch, AMD64_RSP_REGNUM); /* %rsp */
2871 set_gdbarch_pc_regnum (gdbarch, AMD64_RIP_REGNUM); /* %rip */
2872 set_gdbarch_ps_regnum (gdbarch, AMD64_EFLAGS_REGNUM); /* %eflags */
2873 set_gdbarch_fp0_regnum (gdbarch, AMD64_ST0_REGNUM); /* %st(0) */
2874
2875 /* The "default" register numbering scheme for AMD64 is referred to
2876 as the "DWARF Register Number Mapping" in the System V psABI.
2877 The preferred debugging format for all known AMD64 targets is
2878 actually DWARF2, and GCC doesn't seem to support DWARF (that is
2879 DWARF-1), but we provide the same mapping just in case. This
2880 mapping is also used for stabs, which GCC does support. */
2881 set_gdbarch_stab_reg_to_regnum (gdbarch, amd64_dwarf_reg_to_regnum);
2882 set_gdbarch_dwarf2_reg_to_regnum (gdbarch, amd64_dwarf_reg_to_regnum);
2883
2884 /* We don't override SDB_REG_RO_REGNUM, since COFF doesn't seem to
2885 be in use on any of the supported AMD64 targets. */
2886
2887 /* Call dummy code. */
2888 set_gdbarch_push_dummy_call (gdbarch, amd64_push_dummy_call);
2889 set_gdbarch_frame_align (gdbarch, amd64_frame_align);
2890 set_gdbarch_frame_red_zone_size (gdbarch, 128);
2891 tdep->call_dummy_num_integer_regs =
2892 ARRAY_SIZE (amd64_dummy_call_integer_regs);
2893 tdep->call_dummy_integer_regs = amd64_dummy_call_integer_regs;
2894 tdep->classify = amd64_classify;
2895
2896 set_gdbarch_convert_register_p (gdbarch, i387_convert_register_p);
2897 set_gdbarch_register_to_value (gdbarch, i387_register_to_value);
2898 set_gdbarch_value_to_register (gdbarch, i387_value_to_register);
2899
2900 set_gdbarch_return_value (gdbarch, amd64_return_value);
2901
2902 set_gdbarch_skip_prologue (gdbarch, amd64_skip_prologue);
2903
2904 tdep->record_regmap = amd64_record_regmap;
2905
2906 set_gdbarch_dummy_id (gdbarch, amd64_dummy_id);
2907
2908 /* Hook the function epilogue frame unwinder. This unwinder is
2909 appended to the list first, so that it supercedes the other
2910 unwinders in function epilogues. */
2911 frame_unwind_prepend_unwinder (gdbarch, &amd64_epilogue_frame_unwind);
2912
2913 /* Hook the prologue-based frame unwinders. */
2914 frame_unwind_append_unwinder (gdbarch, &amd64_sigtramp_frame_unwind);
2915 frame_unwind_append_unwinder (gdbarch, &amd64_frame_unwind);
2916 frame_base_set_default (gdbarch, &amd64_frame_base);
2917
2918 /* If we have a register mapping, enable the generic core file support. */
2919 if (tdep->gregset_reg_offset)
2920 set_gdbarch_regset_from_core_section (gdbarch,
2921 amd64_regset_from_core_section);
2922
2923 set_gdbarch_get_longjmp_target (gdbarch, amd64_get_longjmp_target);
2924
2925 set_gdbarch_relocate_instruction (gdbarch, amd64_relocate_instruction);
2926
2927 set_gdbarch_gen_return_address (gdbarch, amd64_gen_return_address);
2928
2929 /* SystemTap variables and functions. */
2930 set_gdbarch_stap_integer_prefix (gdbarch, "$");
2931 set_gdbarch_stap_register_prefix (gdbarch, "%");
2932 set_gdbarch_stap_register_indirection_prefix (gdbarch, "(");
2933 set_gdbarch_stap_register_indirection_suffix (gdbarch, ")");
2934 set_gdbarch_stap_is_single_operand (gdbarch,
2935 i386_stap_is_single_operand);
2936 set_gdbarch_stap_parse_special_token (gdbarch,
2937 i386_stap_parse_special_token);
2938 }
2939 \f
2940
2941 static struct type *
2942 amd64_x32_pseudo_register_type (struct gdbarch *gdbarch, int regnum)
2943 {
2944 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2945
2946 switch (regnum - tdep->eax_regnum)
2947 {
2948 case AMD64_RBP_REGNUM: /* %ebp */
2949 case AMD64_RSP_REGNUM: /* %esp */
2950 return builtin_type (gdbarch)->builtin_data_ptr;
2951 case AMD64_RIP_REGNUM: /* %eip */
2952 return builtin_type (gdbarch)->builtin_func_ptr;
2953 }
2954
2955 return i386_pseudo_register_type (gdbarch, regnum);
2956 }
2957
2958 void
2959 amd64_x32_init_abi (struct gdbarch_info info, struct gdbarch *gdbarch)
2960 {
2961 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2962 const struct target_desc *tdesc = info.target_desc;
2963
2964 amd64_init_abi (info, gdbarch);
2965
2966 if (! tdesc_has_registers (tdesc))
2967 tdesc = tdesc_x32;
2968 tdep->tdesc = tdesc;
2969
2970 tdep->num_dword_regs = 17;
2971 set_tdesc_pseudo_register_type (gdbarch, amd64_x32_pseudo_register_type);
2972
2973 set_gdbarch_long_bit (gdbarch, 32);
2974 set_gdbarch_ptr_bit (gdbarch, 32);
2975 }
2976
2977 /* Provide a prototype to silence -Wmissing-prototypes. */
2978 void _initialize_amd64_tdep (void);
2979
2980 void
2981 _initialize_amd64_tdep (void)
2982 {
2983 initialize_tdesc_amd64 ();
2984 initialize_tdesc_amd64_avx ();
2985 initialize_tdesc_x32 ();
2986 initialize_tdesc_x32_avx ();
2987 }
2988 \f
2989
2990 /* The 64-bit FXSAVE format differs from the 32-bit format in the
2991 sense that the instruction pointer and data pointer are simply
2992 64-bit offsets into the code segment and the data segment instead
2993 of a selector offset pair. The functions below store the upper 32
2994 bits of these pointers (instead of just the 16-bits of the segment
2995 selector). */
2996
2997 /* Fill register REGNUM in REGCACHE with the appropriate
2998 floating-point or SSE register value from *FXSAVE. If REGNUM is
2999 -1, do this for all registers. This function masks off any of the
3000 reserved bits in *FXSAVE. */
3001
3002 void
3003 amd64_supply_fxsave (struct regcache *regcache, int regnum,
3004 const void *fxsave)
3005 {
3006 struct gdbarch *gdbarch = get_regcache_arch (regcache);
3007 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3008
3009 i387_supply_fxsave (regcache, regnum, fxsave);
3010
3011 if (fxsave
3012 && gdbarch_bfd_arch_info (gdbarch)->bits_per_word == 64)
3013 {
3014 const gdb_byte *regs = fxsave;
3015
3016 if (regnum == -1 || regnum == I387_FISEG_REGNUM (tdep))
3017 regcache_raw_supply (regcache, I387_FISEG_REGNUM (tdep), regs + 12);
3018 if (regnum == -1 || regnum == I387_FOSEG_REGNUM (tdep))
3019 regcache_raw_supply (regcache, I387_FOSEG_REGNUM (tdep), regs + 20);
3020 }
3021 }
3022
3023 /* Similar to amd64_supply_fxsave, but use XSAVE extended state. */
3024
3025 void
3026 amd64_supply_xsave (struct regcache *regcache, int regnum,
3027 const void *xsave)
3028 {
3029 struct gdbarch *gdbarch = get_regcache_arch (regcache);
3030 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3031
3032 i387_supply_xsave (regcache, regnum, xsave);
3033
3034 if (xsave
3035 && gdbarch_bfd_arch_info (gdbarch)->bits_per_word == 64)
3036 {
3037 const gdb_byte *regs = xsave;
3038
3039 if (regnum == -1 || regnum == I387_FISEG_REGNUM (tdep))
3040 regcache_raw_supply (regcache, I387_FISEG_REGNUM (tdep),
3041 regs + 12);
3042 if (regnum == -1 || regnum == I387_FOSEG_REGNUM (tdep))
3043 regcache_raw_supply (regcache, I387_FOSEG_REGNUM (tdep),
3044 regs + 20);
3045 }
3046 }
3047
3048 /* Fill register REGNUM (if it is a floating-point or SSE register) in
3049 *FXSAVE with the value from REGCACHE. If REGNUM is -1, do this for
3050 all registers. This function doesn't touch any of the reserved
3051 bits in *FXSAVE. */
3052
3053 void
3054 amd64_collect_fxsave (const struct regcache *regcache, int regnum,
3055 void *fxsave)
3056 {
3057 struct gdbarch *gdbarch = get_regcache_arch (regcache);
3058 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3059 gdb_byte *regs = fxsave;
3060
3061 i387_collect_fxsave (regcache, regnum, fxsave);
3062
3063 if (gdbarch_bfd_arch_info (gdbarch)->bits_per_word == 64)
3064 {
3065 if (regnum == -1 || regnum == I387_FISEG_REGNUM (tdep))
3066 regcache_raw_collect (regcache, I387_FISEG_REGNUM (tdep), regs + 12);
3067 if (regnum == -1 || regnum == I387_FOSEG_REGNUM (tdep))
3068 regcache_raw_collect (regcache, I387_FOSEG_REGNUM (tdep), regs + 20);
3069 }
3070 }
3071
3072 /* Similar to amd64_collect_fxsave, but use XSAVE extended state. */
3073
3074 void
3075 amd64_collect_xsave (const struct regcache *regcache, int regnum,
3076 void *xsave, int gcore)
3077 {
3078 struct gdbarch *gdbarch = get_regcache_arch (regcache);
3079 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3080 gdb_byte *regs = xsave;
3081
3082 i387_collect_xsave (regcache, regnum, xsave, gcore);
3083
3084 if (gdbarch_bfd_arch_info (gdbarch)->bits_per_word == 64)
3085 {
3086 if (regnum == -1 || regnum == I387_FISEG_REGNUM (tdep))
3087 regcache_raw_collect (regcache, I387_FISEG_REGNUM (tdep),
3088 regs + 12);
3089 if (regnum == -1 || regnum == I387_FOSEG_REGNUM (tdep))
3090 regcache_raw_collect (regcache, I387_FOSEG_REGNUM (tdep),
3091 regs + 20);
3092 }
3093 }
This page took 0.096242 seconds and 5 git commands to generate.