Support x32 siginfo
[deliverable/binutils-gdb.git] / gdb / amd64-tdep.c
1 /* Target-dependent code for AMD64.
2
3 Copyright (C) 2001-2012 Free Software Foundation, Inc.
4
5 Contributed by Jiri Smid, SuSE Labs.
6
7 This file is part of GDB.
8
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 3 of the License, or
12 (at your option) any later version.
13
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
18
19 You should have received a copy of the GNU General Public License
20 along with this program. If not, see <http://www.gnu.org/licenses/>. */
21
22 #include "defs.h"
23 #include "opcode/i386.h"
24 #include "dis-asm.h"
25 #include "arch-utils.h"
26 #include "block.h"
27 #include "dummy-frame.h"
28 #include "frame.h"
29 #include "frame-base.h"
30 #include "frame-unwind.h"
31 #include "inferior.h"
32 #include "gdbcmd.h"
33 #include "gdbcore.h"
34 #include "objfiles.h"
35 #include "regcache.h"
36 #include "regset.h"
37 #include "symfile.h"
38 #include "disasm.h"
39 #include "gdb_assert.h"
40 #include "exceptions.h"
41 #include "amd64-tdep.h"
42 #include "i387-tdep.h"
43
44 #include "features/i386/amd64.c"
45 #include "features/i386/amd64-avx.c"
46 #include "features/i386/x32.c"
47 #include "features/i386/x32-avx.c"
48
49 #include "ax.h"
50 #include "ax-gdb.h"
51
52 /* Note that the AMD64 architecture was previously known as x86-64.
53 The latter is (forever) engraved into the canonical system name as
54 returned by config.guess, and used as the name for the AMD64 port
55 of GNU/Linux. The BSD's have renamed their ports to amd64; they
56 don't like to shout. For GDB we prefer the amd64_-prefix over the
57 x86_64_-prefix since it's so much easier to type. */
58
59 /* Register information. */
60
61 static const char *amd64_register_names[] =
62 {
63 "rax", "rbx", "rcx", "rdx", "rsi", "rdi", "rbp", "rsp",
64
65 /* %r8 is indeed register number 8. */
66 "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15",
67 "rip", "eflags", "cs", "ss", "ds", "es", "fs", "gs",
68
69 /* %st0 is register number 24. */
70 "st0", "st1", "st2", "st3", "st4", "st5", "st6", "st7",
71 "fctrl", "fstat", "ftag", "fiseg", "fioff", "foseg", "fooff", "fop",
72
73 /* %xmm0 is register number 40. */
74 "xmm0", "xmm1", "xmm2", "xmm3", "xmm4", "xmm5", "xmm6", "xmm7",
75 "xmm8", "xmm9", "xmm10", "xmm11", "xmm12", "xmm13", "xmm14", "xmm15",
76 "mxcsr",
77 };
78
79 static const char *amd64_ymm_names[] =
80 {
81 "ymm0", "ymm1", "ymm2", "ymm3",
82 "ymm4", "ymm5", "ymm6", "ymm7",
83 "ymm8", "ymm9", "ymm10", "ymm11",
84 "ymm12", "ymm13", "ymm14", "ymm15"
85 };
86
87 static const char *amd64_ymmh_names[] =
88 {
89 "ymm0h", "ymm1h", "ymm2h", "ymm3h",
90 "ymm4h", "ymm5h", "ymm6h", "ymm7h",
91 "ymm8h", "ymm9h", "ymm10h", "ymm11h",
92 "ymm12h", "ymm13h", "ymm14h", "ymm15h"
93 };
94
95 /* The registers used to pass integer arguments during a function call. */
96 static int amd64_dummy_call_integer_regs[] =
97 {
98 AMD64_RDI_REGNUM, /* %rdi */
99 AMD64_RSI_REGNUM, /* %rsi */
100 AMD64_RDX_REGNUM, /* %rdx */
101 AMD64_RCX_REGNUM, /* %rcx */
102 8, /* %r8 */
103 9 /* %r9 */
104 };
105
106 /* DWARF Register Number Mapping as defined in the System V psABI,
107 section 3.6. */
108
109 static int amd64_dwarf_regmap[] =
110 {
111 /* General Purpose Registers RAX, RDX, RCX, RBX, RSI, RDI. */
112 AMD64_RAX_REGNUM, AMD64_RDX_REGNUM,
113 AMD64_RCX_REGNUM, AMD64_RBX_REGNUM,
114 AMD64_RSI_REGNUM, AMD64_RDI_REGNUM,
115
116 /* Frame Pointer Register RBP. */
117 AMD64_RBP_REGNUM,
118
119 /* Stack Pointer Register RSP. */
120 AMD64_RSP_REGNUM,
121
122 /* Extended Integer Registers 8 - 15. */
123 8, 9, 10, 11, 12, 13, 14, 15,
124
125 /* Return Address RA. Mapped to RIP. */
126 AMD64_RIP_REGNUM,
127
128 /* SSE Registers 0 - 7. */
129 AMD64_XMM0_REGNUM + 0, AMD64_XMM1_REGNUM,
130 AMD64_XMM0_REGNUM + 2, AMD64_XMM0_REGNUM + 3,
131 AMD64_XMM0_REGNUM + 4, AMD64_XMM0_REGNUM + 5,
132 AMD64_XMM0_REGNUM + 6, AMD64_XMM0_REGNUM + 7,
133
134 /* Extended SSE Registers 8 - 15. */
135 AMD64_XMM0_REGNUM + 8, AMD64_XMM0_REGNUM + 9,
136 AMD64_XMM0_REGNUM + 10, AMD64_XMM0_REGNUM + 11,
137 AMD64_XMM0_REGNUM + 12, AMD64_XMM0_REGNUM + 13,
138 AMD64_XMM0_REGNUM + 14, AMD64_XMM0_REGNUM + 15,
139
140 /* Floating Point Registers 0-7. */
141 AMD64_ST0_REGNUM + 0, AMD64_ST0_REGNUM + 1,
142 AMD64_ST0_REGNUM + 2, AMD64_ST0_REGNUM + 3,
143 AMD64_ST0_REGNUM + 4, AMD64_ST0_REGNUM + 5,
144 AMD64_ST0_REGNUM + 6, AMD64_ST0_REGNUM + 7,
145
146 /* Control and Status Flags Register. */
147 AMD64_EFLAGS_REGNUM,
148
149 /* Selector Registers. */
150 AMD64_ES_REGNUM,
151 AMD64_CS_REGNUM,
152 AMD64_SS_REGNUM,
153 AMD64_DS_REGNUM,
154 AMD64_FS_REGNUM,
155 AMD64_GS_REGNUM,
156 -1,
157 -1,
158
159 /* Segment Base Address Registers. */
160 -1,
161 -1,
162 -1,
163 -1,
164
165 /* Special Selector Registers. */
166 -1,
167 -1,
168
169 /* Floating Point Control Registers. */
170 AMD64_MXCSR_REGNUM,
171 AMD64_FCTRL_REGNUM,
172 AMD64_FSTAT_REGNUM
173 };
174
175 static const int amd64_dwarf_regmap_len =
176 (sizeof (amd64_dwarf_regmap) / sizeof (amd64_dwarf_regmap[0]));
177
178 /* Convert DWARF register number REG to the appropriate register
179 number used by GDB. */
180
181 static int
182 amd64_dwarf_reg_to_regnum (struct gdbarch *gdbarch, int reg)
183 {
184 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
185 int ymm0_regnum = tdep->ymm0_regnum;
186 int regnum = -1;
187
188 if (reg >= 0 && reg < amd64_dwarf_regmap_len)
189 regnum = amd64_dwarf_regmap[reg];
190
191 if (regnum == -1)
192 warning (_("Unmapped DWARF Register #%d encountered."), reg);
193 else if (ymm0_regnum >= 0
194 && i386_xmm_regnum_p (gdbarch, regnum))
195 regnum += ymm0_regnum - I387_XMM0_REGNUM (tdep);
196
197 return regnum;
198 }
199
200 /* Map architectural register numbers to gdb register numbers. */
201
202 static const int amd64_arch_regmap[16] =
203 {
204 AMD64_RAX_REGNUM, /* %rax */
205 AMD64_RCX_REGNUM, /* %rcx */
206 AMD64_RDX_REGNUM, /* %rdx */
207 AMD64_RBX_REGNUM, /* %rbx */
208 AMD64_RSP_REGNUM, /* %rsp */
209 AMD64_RBP_REGNUM, /* %rbp */
210 AMD64_RSI_REGNUM, /* %rsi */
211 AMD64_RDI_REGNUM, /* %rdi */
212 AMD64_R8_REGNUM, /* %r8 */
213 AMD64_R9_REGNUM, /* %r9 */
214 AMD64_R10_REGNUM, /* %r10 */
215 AMD64_R11_REGNUM, /* %r11 */
216 AMD64_R12_REGNUM, /* %r12 */
217 AMD64_R13_REGNUM, /* %r13 */
218 AMD64_R14_REGNUM, /* %r14 */
219 AMD64_R15_REGNUM /* %r15 */
220 };
221
222 static const int amd64_arch_regmap_len =
223 (sizeof (amd64_arch_regmap) / sizeof (amd64_arch_regmap[0]));
224
225 /* Convert architectural register number REG to the appropriate register
226 number used by GDB. */
227
228 static int
229 amd64_arch_reg_to_regnum (int reg)
230 {
231 gdb_assert (reg >= 0 && reg < amd64_arch_regmap_len);
232
233 return amd64_arch_regmap[reg];
234 }
235
236 /* Register names for byte pseudo-registers. */
237
238 static const char *amd64_byte_names[] =
239 {
240 "al", "bl", "cl", "dl", "sil", "dil", "bpl", "spl",
241 "r8l", "r9l", "r10l", "r11l", "r12l", "r13l", "r14l", "r15l",
242 "ah", "bh", "ch", "dh"
243 };
244
245 /* Number of lower byte registers. */
246 #define AMD64_NUM_LOWER_BYTE_REGS 16
247
248 /* Register names for word pseudo-registers. */
249
250 static const char *amd64_word_names[] =
251 {
252 "ax", "bx", "cx", "dx", "si", "di", "bp", "",
253 "r8w", "r9w", "r10w", "r11w", "r12w", "r13w", "r14w", "r15w"
254 };
255
256 /* Register names for dword pseudo-registers. */
257
258 static const char *amd64_dword_names[] =
259 {
260 "eax", "ebx", "ecx", "edx", "esi", "edi", "ebp", "esp",
261 "r8d", "r9d", "r10d", "r11d", "r12d", "r13d", "r14d", "r15d",
262 "eip"
263 };
264
265 /* Return the name of register REGNUM. */
266
267 static const char *
268 amd64_pseudo_register_name (struct gdbarch *gdbarch, int regnum)
269 {
270 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
271 if (i386_byte_regnum_p (gdbarch, regnum))
272 return amd64_byte_names[regnum - tdep->al_regnum];
273 else if (i386_ymm_regnum_p (gdbarch, regnum))
274 return amd64_ymm_names[regnum - tdep->ymm0_regnum];
275 else if (i386_word_regnum_p (gdbarch, regnum))
276 return amd64_word_names[regnum - tdep->ax_regnum];
277 else if (i386_dword_regnum_p (gdbarch, regnum))
278 return amd64_dword_names[regnum - tdep->eax_regnum];
279 else
280 return i386_pseudo_register_name (gdbarch, regnum);
281 }
282
283 static struct value *
284 amd64_pseudo_register_read_value (struct gdbarch *gdbarch,
285 struct regcache *regcache,
286 int regnum)
287 {
288 gdb_byte raw_buf[MAX_REGISTER_SIZE];
289 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
290 enum register_status status;
291 struct value *result_value;
292 gdb_byte *buf;
293
294 result_value = allocate_value (register_type (gdbarch, regnum));
295 VALUE_LVAL (result_value) = lval_register;
296 VALUE_REGNUM (result_value) = regnum;
297 buf = value_contents_raw (result_value);
298
299 if (i386_byte_regnum_p (gdbarch, regnum))
300 {
301 int gpnum = regnum - tdep->al_regnum;
302
303 /* Extract (always little endian). */
304 if (gpnum >= AMD64_NUM_LOWER_BYTE_REGS)
305 {
306 /* Special handling for AH, BH, CH, DH. */
307 status = regcache_raw_read (regcache,
308 gpnum - AMD64_NUM_LOWER_BYTE_REGS,
309 raw_buf);
310 if (status == REG_VALID)
311 memcpy (buf, raw_buf + 1, 1);
312 else
313 mark_value_bytes_unavailable (result_value, 0,
314 TYPE_LENGTH (value_type (result_value)));
315 }
316 else
317 {
318 status = regcache_raw_read (regcache, gpnum, raw_buf);
319 if (status == REG_VALID)
320 memcpy (buf, raw_buf, 1);
321 else
322 mark_value_bytes_unavailable (result_value, 0,
323 TYPE_LENGTH (value_type (result_value)));
324 }
325 }
326 else if (i386_dword_regnum_p (gdbarch, regnum))
327 {
328 int gpnum = regnum - tdep->eax_regnum;
329 /* Extract (always little endian). */
330 status = regcache_raw_read (regcache, gpnum, raw_buf);
331 if (status == REG_VALID)
332 memcpy (buf, raw_buf, 4);
333 else
334 mark_value_bytes_unavailable (result_value, 0,
335 TYPE_LENGTH (value_type (result_value)));
336 }
337 else
338 i386_pseudo_register_read_into_value (gdbarch, regcache, regnum,
339 result_value);
340
341 return result_value;
342 }
343
344 static void
345 amd64_pseudo_register_write (struct gdbarch *gdbarch,
346 struct regcache *regcache,
347 int regnum, const gdb_byte *buf)
348 {
349 gdb_byte raw_buf[MAX_REGISTER_SIZE];
350 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
351
352 if (i386_byte_regnum_p (gdbarch, regnum))
353 {
354 int gpnum = regnum - tdep->al_regnum;
355
356 if (gpnum >= AMD64_NUM_LOWER_BYTE_REGS)
357 {
358 /* Read ... AH, BH, CH, DH. */
359 regcache_raw_read (regcache,
360 gpnum - AMD64_NUM_LOWER_BYTE_REGS, raw_buf);
361 /* ... Modify ... (always little endian). */
362 memcpy (raw_buf + 1, buf, 1);
363 /* ... Write. */
364 regcache_raw_write (regcache,
365 gpnum - AMD64_NUM_LOWER_BYTE_REGS, raw_buf);
366 }
367 else
368 {
369 /* Read ... */
370 regcache_raw_read (regcache, gpnum, raw_buf);
371 /* ... Modify ... (always little endian). */
372 memcpy (raw_buf, buf, 1);
373 /* ... Write. */
374 regcache_raw_write (regcache, gpnum, raw_buf);
375 }
376 }
377 else if (i386_dword_regnum_p (gdbarch, regnum))
378 {
379 int gpnum = regnum - tdep->eax_regnum;
380
381 /* Read ... */
382 regcache_raw_read (regcache, gpnum, raw_buf);
383 /* ... Modify ... (always little endian). */
384 memcpy (raw_buf, buf, 4);
385 /* ... Write. */
386 regcache_raw_write (regcache, gpnum, raw_buf);
387 }
388 else
389 i386_pseudo_register_write (gdbarch, regcache, regnum, buf);
390 }
391
392 \f
393
394 /* Return the union class of CLASS1 and CLASS2. See the psABI for
395 details. */
396
397 static enum amd64_reg_class
398 amd64_merge_classes (enum amd64_reg_class class1, enum amd64_reg_class class2)
399 {
400 /* Rule (a): If both classes are equal, this is the resulting class. */
401 if (class1 == class2)
402 return class1;
403
404 /* Rule (b): If one of the classes is NO_CLASS, the resulting class
405 is the other class. */
406 if (class1 == AMD64_NO_CLASS)
407 return class2;
408 if (class2 == AMD64_NO_CLASS)
409 return class1;
410
411 /* Rule (c): If one of the classes is MEMORY, the result is MEMORY. */
412 if (class1 == AMD64_MEMORY || class2 == AMD64_MEMORY)
413 return AMD64_MEMORY;
414
415 /* Rule (d): If one of the classes is INTEGER, the result is INTEGER. */
416 if (class1 == AMD64_INTEGER || class2 == AMD64_INTEGER)
417 return AMD64_INTEGER;
418
419 /* Rule (e): If one of the classes is X87, X87UP, COMPLEX_X87 class,
420 MEMORY is used as class. */
421 if (class1 == AMD64_X87 || class1 == AMD64_X87UP
422 || class1 == AMD64_COMPLEX_X87 || class2 == AMD64_X87
423 || class2 == AMD64_X87UP || class2 == AMD64_COMPLEX_X87)
424 return AMD64_MEMORY;
425
426 /* Rule (f): Otherwise class SSE is used. */
427 return AMD64_SSE;
428 }
429
430 /* Return non-zero if TYPE is a non-POD structure or union type. */
431
432 static int
433 amd64_non_pod_p (struct type *type)
434 {
435 /* ??? A class with a base class certainly isn't POD, but does this
436 catch all non-POD structure types? */
437 if (TYPE_CODE (type) == TYPE_CODE_STRUCT && TYPE_N_BASECLASSES (type) > 0)
438 return 1;
439
440 return 0;
441 }
442
443 /* Classify TYPE according to the rules for aggregate (structures and
444 arrays) and union types, and store the result in CLASS. */
445
446 static void
447 amd64_classify_aggregate (struct type *type, enum amd64_reg_class class[2])
448 {
449 int len = TYPE_LENGTH (type);
450
451 /* 1. If the size of an object is larger than two eightbytes, or in
452 C++, is a non-POD structure or union type, or contains
453 unaligned fields, it has class memory. */
454 if (len > 16 || amd64_non_pod_p (type))
455 {
456 class[0] = class[1] = AMD64_MEMORY;
457 return;
458 }
459
460 /* 2. Both eightbytes get initialized to class NO_CLASS. */
461 class[0] = class[1] = AMD64_NO_CLASS;
462
463 /* 3. Each field of an object is classified recursively so that
464 always two fields are considered. The resulting class is
465 calculated according to the classes of the fields in the
466 eightbyte: */
467
468 if (TYPE_CODE (type) == TYPE_CODE_ARRAY)
469 {
470 struct type *subtype = check_typedef (TYPE_TARGET_TYPE (type));
471
472 /* All fields in an array have the same type. */
473 amd64_classify (subtype, class);
474 if (len > 8 && class[1] == AMD64_NO_CLASS)
475 class[1] = class[0];
476 }
477 else
478 {
479 int i;
480
481 /* Structure or union. */
482 gdb_assert (TYPE_CODE (type) == TYPE_CODE_STRUCT
483 || TYPE_CODE (type) == TYPE_CODE_UNION);
484
485 for (i = 0; i < TYPE_NFIELDS (type); i++)
486 {
487 struct type *subtype = check_typedef (TYPE_FIELD_TYPE (type, i));
488 int pos = TYPE_FIELD_BITPOS (type, i) / 64;
489 enum amd64_reg_class subclass[2];
490 int bitsize = TYPE_FIELD_BITSIZE (type, i);
491 int endpos;
492
493 if (bitsize == 0)
494 bitsize = TYPE_LENGTH (subtype) * 8;
495 endpos = (TYPE_FIELD_BITPOS (type, i) + bitsize - 1) / 64;
496
497 /* Ignore static fields. */
498 if (field_is_static (&TYPE_FIELD (type, i)))
499 continue;
500
501 gdb_assert (pos == 0 || pos == 1);
502
503 amd64_classify (subtype, subclass);
504 class[pos] = amd64_merge_classes (class[pos], subclass[0]);
505 if (bitsize <= 64 && pos == 0 && endpos == 1)
506 /* This is a bit of an odd case: We have a field that would
507 normally fit in one of the two eightbytes, except that
508 it is placed in a way that this field straddles them.
509 This has been seen with a structure containing an array.
510
511 The ABI is a bit unclear in this case, but we assume that
512 this field's class (stored in subclass[0]) must also be merged
513 into class[1]. In other words, our field has a piece stored
514 in the second eight-byte, and thus its class applies to
515 the second eight-byte as well.
516
517 In the case where the field length exceeds 8 bytes,
518 it should not be necessary to merge the field class
519 into class[1]. As LEN > 8, subclass[1] is necessarily
520 different from AMD64_NO_CLASS. If subclass[1] is equal
521 to subclass[0], then the normal class[1]/subclass[1]
522 merging will take care of everything. For subclass[1]
523 to be different from subclass[0], I can only see the case
524 where we have a SSE/SSEUP or X87/X87UP pair, which both
525 use up all 16 bytes of the aggregate, and are already
526 handled just fine (because each portion sits on its own
527 8-byte). */
528 class[1] = amd64_merge_classes (class[1], subclass[0]);
529 if (pos == 0)
530 class[1] = amd64_merge_classes (class[1], subclass[1]);
531 }
532 }
533
534 /* 4. Then a post merger cleanup is done: */
535
536 /* Rule (a): If one of the classes is MEMORY, the whole argument is
537 passed in memory. */
538 if (class[0] == AMD64_MEMORY || class[1] == AMD64_MEMORY)
539 class[0] = class[1] = AMD64_MEMORY;
540
541 /* Rule (b): If SSEUP is not preceded by SSE, it is converted to
542 SSE. */
543 if (class[0] == AMD64_SSEUP)
544 class[0] = AMD64_SSE;
545 if (class[1] == AMD64_SSEUP && class[0] != AMD64_SSE)
546 class[1] = AMD64_SSE;
547 }
548
549 /* Classify TYPE, and store the result in CLASS. */
550
551 void
552 amd64_classify (struct type *type, enum amd64_reg_class class[2])
553 {
554 enum type_code code = TYPE_CODE (type);
555 int len = TYPE_LENGTH (type);
556
557 class[0] = class[1] = AMD64_NO_CLASS;
558
559 /* Arguments of types (signed and unsigned) _Bool, char, short, int,
560 long, long long, and pointers are in the INTEGER class. Similarly,
561 range types, used by languages such as Ada, are also in the INTEGER
562 class. */
563 if ((code == TYPE_CODE_INT || code == TYPE_CODE_ENUM
564 || code == TYPE_CODE_BOOL || code == TYPE_CODE_RANGE
565 || code == TYPE_CODE_CHAR
566 || code == TYPE_CODE_PTR || code == TYPE_CODE_REF)
567 && (len == 1 || len == 2 || len == 4 || len == 8))
568 class[0] = AMD64_INTEGER;
569
570 /* Arguments of types float, double, _Decimal32, _Decimal64 and __m64
571 are in class SSE. */
572 else if ((code == TYPE_CODE_FLT || code == TYPE_CODE_DECFLOAT)
573 && (len == 4 || len == 8))
574 /* FIXME: __m64 . */
575 class[0] = AMD64_SSE;
576
577 /* Arguments of types __float128, _Decimal128 and __m128 are split into
578 two halves. The least significant ones belong to class SSE, the most
579 significant one to class SSEUP. */
580 else if (code == TYPE_CODE_DECFLOAT && len == 16)
581 /* FIXME: __float128, __m128. */
582 class[0] = AMD64_SSE, class[1] = AMD64_SSEUP;
583
584 /* The 64-bit mantissa of arguments of type long double belongs to
585 class X87, the 16-bit exponent plus 6 bytes of padding belongs to
586 class X87UP. */
587 else if (code == TYPE_CODE_FLT && len == 16)
588 /* Class X87 and X87UP. */
589 class[0] = AMD64_X87, class[1] = AMD64_X87UP;
590
591 /* Aggregates. */
592 else if (code == TYPE_CODE_ARRAY || code == TYPE_CODE_STRUCT
593 || code == TYPE_CODE_UNION)
594 amd64_classify_aggregate (type, class);
595 }
596
597 static enum return_value_convention
598 amd64_return_value (struct gdbarch *gdbarch, struct value *function,
599 struct type *type, struct regcache *regcache,
600 gdb_byte *readbuf, const gdb_byte *writebuf)
601 {
602 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
603 enum amd64_reg_class class[2];
604 int len = TYPE_LENGTH (type);
605 static int integer_regnum[] = { AMD64_RAX_REGNUM, AMD64_RDX_REGNUM };
606 static int sse_regnum[] = { AMD64_XMM0_REGNUM, AMD64_XMM1_REGNUM };
607 int integer_reg = 0;
608 int sse_reg = 0;
609 int i;
610
611 gdb_assert (!(readbuf && writebuf));
612 gdb_assert (tdep->classify);
613
614 /* 1. Classify the return type with the classification algorithm. */
615 tdep->classify (type, class);
616
617 /* 2. If the type has class MEMORY, then the caller provides space
618 for the return value and passes the address of this storage in
619 %rdi as if it were the first argument to the function. In effect,
620 this address becomes a hidden first argument.
621
622 On return %rax will contain the address that has been passed in
623 by the caller in %rdi. */
624 if (class[0] == AMD64_MEMORY)
625 {
626 /* As indicated by the comment above, the ABI guarantees that we
627 can always find the return value just after the function has
628 returned. */
629
630 if (readbuf)
631 {
632 ULONGEST addr;
633
634 regcache_raw_read_unsigned (regcache, AMD64_RAX_REGNUM, &addr);
635 read_memory (addr, readbuf, TYPE_LENGTH (type));
636 }
637
638 return RETURN_VALUE_ABI_RETURNS_ADDRESS;
639 }
640
641 gdb_assert (class[1] != AMD64_MEMORY);
642 gdb_assert (len <= 16);
643
644 for (i = 0; len > 0; i++, len -= 8)
645 {
646 int regnum = -1;
647 int offset = 0;
648
649 switch (class[i])
650 {
651 case AMD64_INTEGER:
652 /* 3. If the class is INTEGER, the next available register
653 of the sequence %rax, %rdx is used. */
654 regnum = integer_regnum[integer_reg++];
655 break;
656
657 case AMD64_SSE:
658 /* 4. If the class is SSE, the next available SSE register
659 of the sequence %xmm0, %xmm1 is used. */
660 regnum = sse_regnum[sse_reg++];
661 break;
662
663 case AMD64_SSEUP:
664 /* 5. If the class is SSEUP, the eightbyte is passed in the
665 upper half of the last used SSE register. */
666 gdb_assert (sse_reg > 0);
667 regnum = sse_regnum[sse_reg - 1];
668 offset = 8;
669 break;
670
671 case AMD64_X87:
672 /* 6. If the class is X87, the value is returned on the X87
673 stack in %st0 as 80-bit x87 number. */
674 regnum = AMD64_ST0_REGNUM;
675 if (writebuf)
676 i387_return_value (gdbarch, regcache);
677 break;
678
679 case AMD64_X87UP:
680 /* 7. If the class is X87UP, the value is returned together
681 with the previous X87 value in %st0. */
682 gdb_assert (i > 0 && class[0] == AMD64_X87);
683 regnum = AMD64_ST0_REGNUM;
684 offset = 8;
685 len = 2;
686 break;
687
688 case AMD64_NO_CLASS:
689 continue;
690
691 default:
692 gdb_assert (!"Unexpected register class.");
693 }
694
695 gdb_assert (regnum != -1);
696
697 if (readbuf)
698 regcache_raw_read_part (regcache, regnum, offset, min (len, 8),
699 readbuf + i * 8);
700 if (writebuf)
701 regcache_raw_write_part (regcache, regnum, offset, min (len, 8),
702 writebuf + i * 8);
703 }
704
705 return RETURN_VALUE_REGISTER_CONVENTION;
706 }
707 \f
708
709 static CORE_ADDR
710 amd64_push_arguments (struct regcache *regcache, int nargs,
711 struct value **args, CORE_ADDR sp, int struct_return)
712 {
713 struct gdbarch *gdbarch = get_regcache_arch (regcache);
714 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
715 int *integer_regs = tdep->call_dummy_integer_regs;
716 int num_integer_regs = tdep->call_dummy_num_integer_regs;
717
718 static int sse_regnum[] =
719 {
720 /* %xmm0 ... %xmm7 */
721 AMD64_XMM0_REGNUM + 0, AMD64_XMM1_REGNUM,
722 AMD64_XMM0_REGNUM + 2, AMD64_XMM0_REGNUM + 3,
723 AMD64_XMM0_REGNUM + 4, AMD64_XMM0_REGNUM + 5,
724 AMD64_XMM0_REGNUM + 6, AMD64_XMM0_REGNUM + 7,
725 };
726 struct value **stack_args = alloca (nargs * sizeof (struct value *));
727 /* An array that mirrors the stack_args array. For all arguments
728 that are passed by MEMORY, if that argument's address also needs
729 to be stored in a register, the ARG_ADDR_REGNO array will contain
730 that register number (or a negative value otherwise). */
731 int *arg_addr_regno = alloca (nargs * sizeof (int));
732 int num_stack_args = 0;
733 int num_elements = 0;
734 int element = 0;
735 int integer_reg = 0;
736 int sse_reg = 0;
737 int i;
738
739 gdb_assert (tdep->classify);
740
741 /* Reserve a register for the "hidden" argument. */
742 if (struct_return)
743 integer_reg++;
744
745 for (i = 0; i < nargs; i++)
746 {
747 struct type *type = value_type (args[i]);
748 int len = TYPE_LENGTH (type);
749 enum amd64_reg_class class[2];
750 int needed_integer_regs = 0;
751 int needed_sse_regs = 0;
752 int j;
753
754 /* Classify argument. */
755 tdep->classify (type, class);
756
757 /* Calculate the number of integer and SSE registers needed for
758 this argument. */
759 for (j = 0; j < 2; j++)
760 {
761 if (class[j] == AMD64_INTEGER)
762 needed_integer_regs++;
763 else if (class[j] == AMD64_SSE)
764 needed_sse_regs++;
765 }
766
767 /* Check whether enough registers are available, and if the
768 argument should be passed in registers at all. */
769 if (integer_reg + needed_integer_regs > num_integer_regs
770 || sse_reg + needed_sse_regs > ARRAY_SIZE (sse_regnum)
771 || (needed_integer_regs == 0 && needed_sse_regs == 0))
772 {
773 /* The argument will be passed on the stack. */
774 num_elements += ((len + 7) / 8);
775 stack_args[num_stack_args] = args[i];
776 /* If this is an AMD64_MEMORY argument whose address must also
777 be passed in one of the integer registers, reserve that
778 register and associate this value to that register so that
779 we can store the argument address as soon as we know it. */
780 if (class[0] == AMD64_MEMORY
781 && tdep->memory_args_by_pointer
782 && integer_reg < tdep->call_dummy_num_integer_regs)
783 arg_addr_regno[num_stack_args] =
784 tdep->call_dummy_integer_regs[integer_reg++];
785 else
786 arg_addr_regno[num_stack_args] = -1;
787 num_stack_args++;
788 }
789 else
790 {
791 /* The argument will be passed in registers. */
792 const gdb_byte *valbuf = value_contents (args[i]);
793 gdb_byte buf[8];
794
795 gdb_assert (len <= 16);
796
797 for (j = 0; len > 0; j++, len -= 8)
798 {
799 int regnum = -1;
800 int offset = 0;
801
802 switch (class[j])
803 {
804 case AMD64_INTEGER:
805 regnum = integer_regs[integer_reg++];
806 break;
807
808 case AMD64_SSE:
809 regnum = sse_regnum[sse_reg++];
810 break;
811
812 case AMD64_SSEUP:
813 gdb_assert (sse_reg > 0);
814 regnum = sse_regnum[sse_reg - 1];
815 offset = 8;
816 break;
817
818 default:
819 gdb_assert (!"Unexpected register class.");
820 }
821
822 gdb_assert (regnum != -1);
823 memset (buf, 0, sizeof buf);
824 memcpy (buf, valbuf + j * 8, min (len, 8));
825 regcache_raw_write_part (regcache, regnum, offset, 8, buf);
826 }
827 }
828 }
829
830 /* Allocate space for the arguments on the stack. */
831 sp -= num_elements * 8;
832
833 /* The psABI says that "The end of the input argument area shall be
834 aligned on a 16 byte boundary." */
835 sp &= ~0xf;
836
837 /* Write out the arguments to the stack. */
838 for (i = 0; i < num_stack_args; i++)
839 {
840 struct type *type = value_type (stack_args[i]);
841 const gdb_byte *valbuf = value_contents (stack_args[i]);
842 int len = TYPE_LENGTH (type);
843 CORE_ADDR arg_addr = sp + element * 8;
844
845 write_memory (arg_addr, valbuf, len);
846 if (arg_addr_regno[i] >= 0)
847 {
848 /* We also need to store the address of that argument in
849 the given register. */
850 gdb_byte buf[8];
851 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
852
853 store_unsigned_integer (buf, 8, byte_order, arg_addr);
854 regcache_cooked_write (regcache, arg_addr_regno[i], buf);
855 }
856 element += ((len + 7) / 8);
857 }
858
859 /* The psABI says that "For calls that may call functions that use
860 varargs or stdargs (prototype-less calls or calls to functions
861 containing ellipsis (...) in the declaration) %al is used as
862 hidden argument to specify the number of SSE registers used. */
863 regcache_raw_write_unsigned (regcache, AMD64_RAX_REGNUM, sse_reg);
864 return sp;
865 }
866
867 static CORE_ADDR
868 amd64_push_dummy_call (struct gdbarch *gdbarch, struct value *function,
869 struct regcache *regcache, CORE_ADDR bp_addr,
870 int nargs, struct value **args, CORE_ADDR sp,
871 int struct_return, CORE_ADDR struct_addr)
872 {
873 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
874 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
875 gdb_byte buf[8];
876
877 /* Pass arguments. */
878 sp = amd64_push_arguments (regcache, nargs, args, sp, struct_return);
879
880 /* Pass "hidden" argument". */
881 if (struct_return)
882 {
883 /* The "hidden" argument is passed throught the first argument
884 register. */
885 const int arg_regnum = tdep->call_dummy_integer_regs[0];
886
887 store_unsigned_integer (buf, 8, byte_order, struct_addr);
888 regcache_cooked_write (regcache, arg_regnum, buf);
889 }
890
891 /* Reserve some memory on the stack for the integer-parameter registers,
892 if required by the ABI. */
893 if (tdep->integer_param_regs_saved_in_caller_frame)
894 sp -= tdep->call_dummy_num_integer_regs * 8;
895
896 /* Store return address. */
897 sp -= 8;
898 store_unsigned_integer (buf, 8, byte_order, bp_addr);
899 write_memory (sp, buf, 8);
900
901 /* Finally, update the stack pointer... */
902 store_unsigned_integer (buf, 8, byte_order, sp);
903 regcache_cooked_write (regcache, AMD64_RSP_REGNUM, buf);
904
905 /* ...and fake a frame pointer. */
906 regcache_cooked_write (regcache, AMD64_RBP_REGNUM, buf);
907
908 return sp + 16;
909 }
910 \f
911 /* Displaced instruction handling. */
912
913 /* A partially decoded instruction.
914 This contains enough details for displaced stepping purposes. */
915
916 struct amd64_insn
917 {
918 /* The number of opcode bytes. */
919 int opcode_len;
920 /* The offset of the rex prefix or -1 if not present. */
921 int rex_offset;
922 /* The offset to the first opcode byte. */
923 int opcode_offset;
924 /* The offset to the modrm byte or -1 if not present. */
925 int modrm_offset;
926
927 /* The raw instruction. */
928 gdb_byte *raw_insn;
929 };
930
931 struct displaced_step_closure
932 {
933 /* For rip-relative insns, saved copy of the reg we use instead of %rip. */
934 int tmp_used;
935 int tmp_regno;
936 ULONGEST tmp_save;
937
938 /* Details of the instruction. */
939 struct amd64_insn insn_details;
940
941 /* Amount of space allocated to insn_buf. */
942 int max_len;
943
944 /* The possibly modified insn.
945 This is a variable-length field. */
946 gdb_byte insn_buf[1];
947 };
948
949 /* WARNING: Keep onebyte_has_modrm, twobyte_has_modrm in sync with
950 ../opcodes/i386-dis.c (until libopcodes exports them, or an alternative,
951 at which point delete these in favor of libopcodes' versions). */
952
953 static const unsigned char onebyte_has_modrm[256] = {
954 /* 0 1 2 3 4 5 6 7 8 9 a b c d e f */
955 /* ------------------------------- */
956 /* 00 */ 1,1,1,1,0,0,0,0,1,1,1,1,0,0,0,0, /* 00 */
957 /* 10 */ 1,1,1,1,0,0,0,0,1,1,1,1,0,0,0,0, /* 10 */
958 /* 20 */ 1,1,1,1,0,0,0,0,1,1,1,1,0,0,0,0, /* 20 */
959 /* 30 */ 1,1,1,1,0,0,0,0,1,1,1,1,0,0,0,0, /* 30 */
960 /* 40 */ 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, /* 40 */
961 /* 50 */ 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, /* 50 */
962 /* 60 */ 0,0,1,1,0,0,0,0,0,1,0,1,0,0,0,0, /* 60 */
963 /* 70 */ 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, /* 70 */
964 /* 80 */ 1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1, /* 80 */
965 /* 90 */ 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, /* 90 */
966 /* a0 */ 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, /* a0 */
967 /* b0 */ 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, /* b0 */
968 /* c0 */ 1,1,0,0,1,1,1,1,0,0,0,0,0,0,0,0, /* c0 */
969 /* d0 */ 1,1,1,1,0,0,0,0,1,1,1,1,1,1,1,1, /* d0 */
970 /* e0 */ 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, /* e0 */
971 /* f0 */ 0,0,0,0,0,0,1,1,0,0,0,0,0,0,1,1 /* f0 */
972 /* ------------------------------- */
973 /* 0 1 2 3 4 5 6 7 8 9 a b c d e f */
974 };
975
976 static const unsigned char twobyte_has_modrm[256] = {
977 /* 0 1 2 3 4 5 6 7 8 9 a b c d e f */
978 /* ------------------------------- */
979 /* 00 */ 1,1,1,1,0,0,0,0,0,0,0,0,0,1,0,1, /* 0f */
980 /* 10 */ 1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1, /* 1f */
981 /* 20 */ 1,1,1,1,1,1,1,0,1,1,1,1,1,1,1,1, /* 2f */
982 /* 30 */ 0,0,0,0,0,0,0,0,1,0,1,0,0,0,0,0, /* 3f */
983 /* 40 */ 1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1, /* 4f */
984 /* 50 */ 1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1, /* 5f */
985 /* 60 */ 1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1, /* 6f */
986 /* 70 */ 1,1,1,1,1,1,1,0,1,1,1,1,1,1,1,1, /* 7f */
987 /* 80 */ 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, /* 8f */
988 /* 90 */ 1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1, /* 9f */
989 /* a0 */ 0,0,0,1,1,1,1,1,0,0,0,1,1,1,1,1, /* af */
990 /* b0 */ 1,1,1,1,1,1,1,1,1,0,1,1,1,1,1,1, /* bf */
991 /* c0 */ 1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0, /* cf */
992 /* d0 */ 1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1, /* df */
993 /* e0 */ 1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1, /* ef */
994 /* f0 */ 1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,0 /* ff */
995 /* ------------------------------- */
996 /* 0 1 2 3 4 5 6 7 8 9 a b c d e f */
997 };
998
999 static int amd64_syscall_p (const struct amd64_insn *insn, int *lengthp);
1000
1001 static int
1002 rex_prefix_p (gdb_byte pfx)
1003 {
1004 return REX_PREFIX_P (pfx);
1005 }
1006
1007 /* Skip the legacy instruction prefixes in INSN.
1008 We assume INSN is properly sentineled so we don't have to worry
1009 about falling off the end of the buffer. */
1010
1011 static gdb_byte *
1012 amd64_skip_prefixes (gdb_byte *insn)
1013 {
1014 while (1)
1015 {
1016 switch (*insn)
1017 {
1018 case DATA_PREFIX_OPCODE:
1019 case ADDR_PREFIX_OPCODE:
1020 case CS_PREFIX_OPCODE:
1021 case DS_PREFIX_OPCODE:
1022 case ES_PREFIX_OPCODE:
1023 case FS_PREFIX_OPCODE:
1024 case GS_PREFIX_OPCODE:
1025 case SS_PREFIX_OPCODE:
1026 case LOCK_PREFIX_OPCODE:
1027 case REPE_PREFIX_OPCODE:
1028 case REPNE_PREFIX_OPCODE:
1029 ++insn;
1030 continue;
1031 default:
1032 break;
1033 }
1034 break;
1035 }
1036
1037 return insn;
1038 }
1039
1040 /* Return an integer register (other than RSP) that is unused as an input
1041 operand in INSN.
1042 In order to not require adding a rex prefix if the insn doesn't already
1043 have one, the result is restricted to RAX ... RDI, sans RSP.
1044 The register numbering of the result follows architecture ordering,
1045 e.g. RDI = 7. */
1046
1047 static int
1048 amd64_get_unused_input_int_reg (const struct amd64_insn *details)
1049 {
1050 /* 1 bit for each reg */
1051 int used_regs_mask = 0;
1052
1053 /* There can be at most 3 int regs used as inputs in an insn, and we have
1054 7 to choose from (RAX ... RDI, sans RSP).
1055 This allows us to take a conservative approach and keep things simple.
1056 E.g. By avoiding RAX, we don't have to specifically watch for opcodes
1057 that implicitly specify RAX. */
1058
1059 /* Avoid RAX. */
1060 used_regs_mask |= 1 << EAX_REG_NUM;
1061 /* Similarily avoid RDX, implicit operand in divides. */
1062 used_regs_mask |= 1 << EDX_REG_NUM;
1063 /* Avoid RSP. */
1064 used_regs_mask |= 1 << ESP_REG_NUM;
1065
1066 /* If the opcode is one byte long and there's no ModRM byte,
1067 assume the opcode specifies a register. */
1068 if (details->opcode_len == 1 && details->modrm_offset == -1)
1069 used_regs_mask |= 1 << (details->raw_insn[details->opcode_offset] & 7);
1070
1071 /* Mark used regs in the modrm/sib bytes. */
1072 if (details->modrm_offset != -1)
1073 {
1074 int modrm = details->raw_insn[details->modrm_offset];
1075 int mod = MODRM_MOD_FIELD (modrm);
1076 int reg = MODRM_REG_FIELD (modrm);
1077 int rm = MODRM_RM_FIELD (modrm);
1078 int have_sib = mod != 3 && rm == 4;
1079
1080 /* Assume the reg field of the modrm byte specifies a register. */
1081 used_regs_mask |= 1 << reg;
1082
1083 if (have_sib)
1084 {
1085 int base = SIB_BASE_FIELD (details->raw_insn[details->modrm_offset + 1]);
1086 int idx = SIB_INDEX_FIELD (details->raw_insn[details->modrm_offset + 1]);
1087 used_regs_mask |= 1 << base;
1088 used_regs_mask |= 1 << idx;
1089 }
1090 else
1091 {
1092 used_regs_mask |= 1 << rm;
1093 }
1094 }
1095
1096 gdb_assert (used_regs_mask < 256);
1097 gdb_assert (used_regs_mask != 255);
1098
1099 /* Finally, find a free reg. */
1100 {
1101 int i;
1102
1103 for (i = 0; i < 8; ++i)
1104 {
1105 if (! (used_regs_mask & (1 << i)))
1106 return i;
1107 }
1108
1109 /* We shouldn't get here. */
1110 internal_error (__FILE__, __LINE__, _("unable to find free reg"));
1111 }
1112 }
1113
1114 /* Extract the details of INSN that we need. */
1115
1116 static void
1117 amd64_get_insn_details (gdb_byte *insn, struct amd64_insn *details)
1118 {
1119 gdb_byte *start = insn;
1120 int need_modrm;
1121
1122 details->raw_insn = insn;
1123
1124 details->opcode_len = -1;
1125 details->rex_offset = -1;
1126 details->opcode_offset = -1;
1127 details->modrm_offset = -1;
1128
1129 /* Skip legacy instruction prefixes. */
1130 insn = amd64_skip_prefixes (insn);
1131
1132 /* Skip REX instruction prefix. */
1133 if (rex_prefix_p (*insn))
1134 {
1135 details->rex_offset = insn - start;
1136 ++insn;
1137 }
1138
1139 details->opcode_offset = insn - start;
1140
1141 if (*insn == TWO_BYTE_OPCODE_ESCAPE)
1142 {
1143 /* Two or three-byte opcode. */
1144 ++insn;
1145 need_modrm = twobyte_has_modrm[*insn];
1146
1147 /* Check for three-byte opcode. */
1148 switch (*insn)
1149 {
1150 case 0x24:
1151 case 0x25:
1152 case 0x38:
1153 case 0x3a:
1154 case 0x7a:
1155 case 0x7b:
1156 ++insn;
1157 details->opcode_len = 3;
1158 break;
1159 default:
1160 details->opcode_len = 2;
1161 break;
1162 }
1163 }
1164 else
1165 {
1166 /* One-byte opcode. */
1167 need_modrm = onebyte_has_modrm[*insn];
1168 details->opcode_len = 1;
1169 }
1170
1171 if (need_modrm)
1172 {
1173 ++insn;
1174 details->modrm_offset = insn - start;
1175 }
1176 }
1177
1178 /* Update %rip-relative addressing in INSN.
1179
1180 %rip-relative addressing only uses a 32-bit displacement.
1181 32 bits is not enough to be guaranteed to cover the distance between where
1182 the real instruction is and where its copy is.
1183 Convert the insn to use base+disp addressing.
1184 We set base = pc + insn_length so we can leave disp unchanged. */
1185
1186 static void
1187 fixup_riprel (struct gdbarch *gdbarch, struct displaced_step_closure *dsc,
1188 CORE_ADDR from, CORE_ADDR to, struct regcache *regs)
1189 {
1190 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1191 const struct amd64_insn *insn_details = &dsc->insn_details;
1192 int modrm_offset = insn_details->modrm_offset;
1193 gdb_byte *insn = insn_details->raw_insn + modrm_offset;
1194 CORE_ADDR rip_base;
1195 int32_t disp;
1196 int insn_length;
1197 int arch_tmp_regno, tmp_regno;
1198 ULONGEST orig_value;
1199
1200 /* %rip+disp32 addressing mode, displacement follows ModRM byte. */
1201 ++insn;
1202
1203 /* Compute the rip-relative address. */
1204 disp = extract_signed_integer (insn, sizeof (int32_t), byte_order);
1205 insn_length = gdb_buffered_insn_length (gdbarch, dsc->insn_buf,
1206 dsc->max_len, from);
1207 rip_base = from + insn_length;
1208
1209 /* We need a register to hold the address.
1210 Pick one not used in the insn.
1211 NOTE: arch_tmp_regno uses architecture ordering, e.g. RDI = 7. */
1212 arch_tmp_regno = amd64_get_unused_input_int_reg (insn_details);
1213 tmp_regno = amd64_arch_reg_to_regnum (arch_tmp_regno);
1214
1215 /* REX.B should be unset as we were using rip-relative addressing,
1216 but ensure it's unset anyway, tmp_regno is not r8-r15. */
1217 if (insn_details->rex_offset != -1)
1218 dsc->insn_buf[insn_details->rex_offset] &= ~REX_B;
1219
1220 regcache_cooked_read_unsigned (regs, tmp_regno, &orig_value);
1221 dsc->tmp_regno = tmp_regno;
1222 dsc->tmp_save = orig_value;
1223 dsc->tmp_used = 1;
1224
1225 /* Convert the ModRM field to be base+disp. */
1226 dsc->insn_buf[modrm_offset] &= ~0xc7;
1227 dsc->insn_buf[modrm_offset] |= 0x80 + arch_tmp_regno;
1228
1229 regcache_cooked_write_unsigned (regs, tmp_regno, rip_base);
1230
1231 if (debug_displaced)
1232 fprintf_unfiltered (gdb_stdlog, "displaced: %%rip-relative addressing used.\n"
1233 "displaced: using temp reg %d, old value %s, new value %s\n",
1234 dsc->tmp_regno, paddress (gdbarch, dsc->tmp_save),
1235 paddress (gdbarch, rip_base));
1236 }
1237
1238 static void
1239 fixup_displaced_copy (struct gdbarch *gdbarch,
1240 struct displaced_step_closure *dsc,
1241 CORE_ADDR from, CORE_ADDR to, struct regcache *regs)
1242 {
1243 const struct amd64_insn *details = &dsc->insn_details;
1244
1245 if (details->modrm_offset != -1)
1246 {
1247 gdb_byte modrm = details->raw_insn[details->modrm_offset];
1248
1249 if ((modrm & 0xc7) == 0x05)
1250 {
1251 /* The insn uses rip-relative addressing.
1252 Deal with it. */
1253 fixup_riprel (gdbarch, dsc, from, to, regs);
1254 }
1255 }
1256 }
1257
1258 struct displaced_step_closure *
1259 amd64_displaced_step_copy_insn (struct gdbarch *gdbarch,
1260 CORE_ADDR from, CORE_ADDR to,
1261 struct regcache *regs)
1262 {
1263 int len = gdbarch_max_insn_length (gdbarch);
1264 /* Extra space for sentinels so fixup_{riprel,displaced_copy} don't have to
1265 continually watch for running off the end of the buffer. */
1266 int fixup_sentinel_space = len;
1267 struct displaced_step_closure *dsc =
1268 xmalloc (sizeof (*dsc) + len + fixup_sentinel_space);
1269 gdb_byte *buf = &dsc->insn_buf[0];
1270 struct amd64_insn *details = &dsc->insn_details;
1271
1272 dsc->tmp_used = 0;
1273 dsc->max_len = len + fixup_sentinel_space;
1274
1275 read_memory (from, buf, len);
1276
1277 /* Set up the sentinel space so we don't have to worry about running
1278 off the end of the buffer. An excessive number of leading prefixes
1279 could otherwise cause this. */
1280 memset (buf + len, 0, fixup_sentinel_space);
1281
1282 amd64_get_insn_details (buf, details);
1283
1284 /* GDB may get control back after the insn after the syscall.
1285 Presumably this is a kernel bug.
1286 If this is a syscall, make sure there's a nop afterwards. */
1287 {
1288 int syscall_length;
1289
1290 if (amd64_syscall_p (details, &syscall_length))
1291 buf[details->opcode_offset + syscall_length] = NOP_OPCODE;
1292 }
1293
1294 /* Modify the insn to cope with the address where it will be executed from.
1295 In particular, handle any rip-relative addressing. */
1296 fixup_displaced_copy (gdbarch, dsc, from, to, regs);
1297
1298 write_memory (to, buf, len);
1299
1300 if (debug_displaced)
1301 {
1302 fprintf_unfiltered (gdb_stdlog, "displaced: copy %s->%s: ",
1303 paddress (gdbarch, from), paddress (gdbarch, to));
1304 displaced_step_dump_bytes (gdb_stdlog, buf, len);
1305 }
1306
1307 return dsc;
1308 }
1309
1310 static int
1311 amd64_absolute_jmp_p (const struct amd64_insn *details)
1312 {
1313 const gdb_byte *insn = &details->raw_insn[details->opcode_offset];
1314
1315 if (insn[0] == 0xff)
1316 {
1317 /* jump near, absolute indirect (/4) */
1318 if ((insn[1] & 0x38) == 0x20)
1319 return 1;
1320
1321 /* jump far, absolute indirect (/5) */
1322 if ((insn[1] & 0x38) == 0x28)
1323 return 1;
1324 }
1325
1326 return 0;
1327 }
1328
1329 static int
1330 amd64_absolute_call_p (const struct amd64_insn *details)
1331 {
1332 const gdb_byte *insn = &details->raw_insn[details->opcode_offset];
1333
1334 if (insn[0] == 0xff)
1335 {
1336 /* Call near, absolute indirect (/2) */
1337 if ((insn[1] & 0x38) == 0x10)
1338 return 1;
1339
1340 /* Call far, absolute indirect (/3) */
1341 if ((insn[1] & 0x38) == 0x18)
1342 return 1;
1343 }
1344
1345 return 0;
1346 }
1347
1348 static int
1349 amd64_ret_p (const struct amd64_insn *details)
1350 {
1351 /* NOTE: gcc can emit "repz ; ret". */
1352 const gdb_byte *insn = &details->raw_insn[details->opcode_offset];
1353
1354 switch (insn[0])
1355 {
1356 case 0xc2: /* ret near, pop N bytes */
1357 case 0xc3: /* ret near */
1358 case 0xca: /* ret far, pop N bytes */
1359 case 0xcb: /* ret far */
1360 case 0xcf: /* iret */
1361 return 1;
1362
1363 default:
1364 return 0;
1365 }
1366 }
1367
1368 static int
1369 amd64_call_p (const struct amd64_insn *details)
1370 {
1371 const gdb_byte *insn = &details->raw_insn[details->opcode_offset];
1372
1373 if (amd64_absolute_call_p (details))
1374 return 1;
1375
1376 /* call near, relative */
1377 if (insn[0] == 0xe8)
1378 return 1;
1379
1380 return 0;
1381 }
1382
1383 /* Return non-zero if INSN is a system call, and set *LENGTHP to its
1384 length in bytes. Otherwise, return zero. */
1385
1386 static int
1387 amd64_syscall_p (const struct amd64_insn *details, int *lengthp)
1388 {
1389 const gdb_byte *insn = &details->raw_insn[details->opcode_offset];
1390
1391 if (insn[0] == 0x0f && insn[1] == 0x05)
1392 {
1393 *lengthp = 2;
1394 return 1;
1395 }
1396
1397 return 0;
1398 }
1399
1400 /* Fix up the state of registers and memory after having single-stepped
1401 a displaced instruction. */
1402
1403 void
1404 amd64_displaced_step_fixup (struct gdbarch *gdbarch,
1405 struct displaced_step_closure *dsc,
1406 CORE_ADDR from, CORE_ADDR to,
1407 struct regcache *regs)
1408 {
1409 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1410 /* The offset we applied to the instruction's address. */
1411 ULONGEST insn_offset = to - from;
1412 gdb_byte *insn = dsc->insn_buf;
1413 const struct amd64_insn *insn_details = &dsc->insn_details;
1414
1415 if (debug_displaced)
1416 fprintf_unfiltered (gdb_stdlog,
1417 "displaced: fixup (%s, %s), "
1418 "insn = 0x%02x 0x%02x ...\n",
1419 paddress (gdbarch, from), paddress (gdbarch, to),
1420 insn[0], insn[1]);
1421
1422 /* If we used a tmp reg, restore it. */
1423
1424 if (dsc->tmp_used)
1425 {
1426 if (debug_displaced)
1427 fprintf_unfiltered (gdb_stdlog, "displaced: restoring reg %d to %s\n",
1428 dsc->tmp_regno, paddress (gdbarch, dsc->tmp_save));
1429 regcache_cooked_write_unsigned (regs, dsc->tmp_regno, dsc->tmp_save);
1430 }
1431
1432 /* The list of issues to contend with here is taken from
1433 resume_execution in arch/x86/kernel/kprobes.c, Linux 2.6.28.
1434 Yay for Free Software! */
1435
1436 /* Relocate the %rip back to the program's instruction stream,
1437 if necessary. */
1438
1439 /* Except in the case of absolute or indirect jump or call
1440 instructions, or a return instruction, the new rip is relative to
1441 the displaced instruction; make it relative to the original insn.
1442 Well, signal handler returns don't need relocation either, but we use the
1443 value of %rip to recognize those; see below. */
1444 if (! amd64_absolute_jmp_p (insn_details)
1445 && ! amd64_absolute_call_p (insn_details)
1446 && ! amd64_ret_p (insn_details))
1447 {
1448 ULONGEST orig_rip;
1449 int insn_len;
1450
1451 regcache_cooked_read_unsigned (regs, AMD64_RIP_REGNUM, &orig_rip);
1452
1453 /* A signal trampoline system call changes the %rip, resuming
1454 execution of the main program after the signal handler has
1455 returned. That makes them like 'return' instructions; we
1456 shouldn't relocate %rip.
1457
1458 But most system calls don't, and we do need to relocate %rip.
1459
1460 Our heuristic for distinguishing these cases: if stepping
1461 over the system call instruction left control directly after
1462 the instruction, the we relocate --- control almost certainly
1463 doesn't belong in the displaced copy. Otherwise, we assume
1464 the instruction has put control where it belongs, and leave
1465 it unrelocated. Goodness help us if there are PC-relative
1466 system calls. */
1467 if (amd64_syscall_p (insn_details, &insn_len)
1468 && orig_rip != to + insn_len
1469 /* GDB can get control back after the insn after the syscall.
1470 Presumably this is a kernel bug.
1471 Fixup ensures its a nop, we add one to the length for it. */
1472 && orig_rip != to + insn_len + 1)
1473 {
1474 if (debug_displaced)
1475 fprintf_unfiltered (gdb_stdlog,
1476 "displaced: syscall changed %%rip; "
1477 "not relocating\n");
1478 }
1479 else
1480 {
1481 ULONGEST rip = orig_rip - insn_offset;
1482
1483 /* If we just stepped over a breakpoint insn, we don't backup
1484 the pc on purpose; this is to match behaviour without
1485 stepping. */
1486
1487 regcache_cooked_write_unsigned (regs, AMD64_RIP_REGNUM, rip);
1488
1489 if (debug_displaced)
1490 fprintf_unfiltered (gdb_stdlog,
1491 "displaced: "
1492 "relocated %%rip from %s to %s\n",
1493 paddress (gdbarch, orig_rip),
1494 paddress (gdbarch, rip));
1495 }
1496 }
1497
1498 /* If the instruction was PUSHFL, then the TF bit will be set in the
1499 pushed value, and should be cleared. We'll leave this for later,
1500 since GDB already messes up the TF flag when stepping over a
1501 pushfl. */
1502
1503 /* If the instruction was a call, the return address now atop the
1504 stack is the address following the copied instruction. We need
1505 to make it the address following the original instruction. */
1506 if (amd64_call_p (insn_details))
1507 {
1508 ULONGEST rsp;
1509 ULONGEST retaddr;
1510 const ULONGEST retaddr_len = 8;
1511
1512 regcache_cooked_read_unsigned (regs, AMD64_RSP_REGNUM, &rsp);
1513 retaddr = read_memory_unsigned_integer (rsp, retaddr_len, byte_order);
1514 retaddr = (retaddr - insn_offset) & 0xffffffffUL;
1515 write_memory_unsigned_integer (rsp, retaddr_len, byte_order, retaddr);
1516
1517 if (debug_displaced)
1518 fprintf_unfiltered (gdb_stdlog,
1519 "displaced: relocated return addr at %s "
1520 "to %s\n",
1521 paddress (gdbarch, rsp),
1522 paddress (gdbarch, retaddr));
1523 }
1524 }
1525
1526 /* If the instruction INSN uses RIP-relative addressing, return the
1527 offset into the raw INSN where the displacement to be adjusted is
1528 found. Returns 0 if the instruction doesn't use RIP-relative
1529 addressing. */
1530
1531 static int
1532 rip_relative_offset (struct amd64_insn *insn)
1533 {
1534 if (insn->modrm_offset != -1)
1535 {
1536 gdb_byte modrm = insn->raw_insn[insn->modrm_offset];
1537
1538 if ((modrm & 0xc7) == 0x05)
1539 {
1540 /* The displacement is found right after the ModRM byte. */
1541 return insn->modrm_offset + 1;
1542 }
1543 }
1544
1545 return 0;
1546 }
1547
1548 static void
1549 append_insns (CORE_ADDR *to, ULONGEST len, const gdb_byte *buf)
1550 {
1551 target_write_memory (*to, buf, len);
1552 *to += len;
1553 }
1554
1555 static void
1556 amd64_relocate_instruction (struct gdbarch *gdbarch,
1557 CORE_ADDR *to, CORE_ADDR oldloc)
1558 {
1559 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1560 int len = gdbarch_max_insn_length (gdbarch);
1561 /* Extra space for sentinels. */
1562 int fixup_sentinel_space = len;
1563 gdb_byte *buf = xmalloc (len + fixup_sentinel_space);
1564 struct amd64_insn insn_details;
1565 int offset = 0;
1566 LONGEST rel32, newrel;
1567 gdb_byte *insn;
1568 int insn_length;
1569
1570 read_memory (oldloc, buf, len);
1571
1572 /* Set up the sentinel space so we don't have to worry about running
1573 off the end of the buffer. An excessive number of leading prefixes
1574 could otherwise cause this. */
1575 memset (buf + len, 0, fixup_sentinel_space);
1576
1577 insn = buf;
1578 amd64_get_insn_details (insn, &insn_details);
1579
1580 insn_length = gdb_buffered_insn_length (gdbarch, insn, len, oldloc);
1581
1582 /* Skip legacy instruction prefixes. */
1583 insn = amd64_skip_prefixes (insn);
1584
1585 /* Adjust calls with 32-bit relative addresses as push/jump, with
1586 the address pushed being the location where the original call in
1587 the user program would return to. */
1588 if (insn[0] == 0xe8)
1589 {
1590 gdb_byte push_buf[16];
1591 unsigned int ret_addr;
1592
1593 /* Where "ret" in the original code will return to. */
1594 ret_addr = oldloc + insn_length;
1595 push_buf[0] = 0x68; /* pushq $... */
1596 memcpy (&push_buf[1], &ret_addr, 4);
1597 /* Push the push. */
1598 append_insns (to, 5, push_buf);
1599
1600 /* Convert the relative call to a relative jump. */
1601 insn[0] = 0xe9;
1602
1603 /* Adjust the destination offset. */
1604 rel32 = extract_signed_integer (insn + 1, 4, byte_order);
1605 newrel = (oldloc - *to) + rel32;
1606 store_signed_integer (insn + 1, 4, byte_order, newrel);
1607
1608 if (debug_displaced)
1609 fprintf_unfiltered (gdb_stdlog,
1610 "Adjusted insn rel32=%s at %s to"
1611 " rel32=%s at %s\n",
1612 hex_string (rel32), paddress (gdbarch, oldloc),
1613 hex_string (newrel), paddress (gdbarch, *to));
1614
1615 /* Write the adjusted jump into its displaced location. */
1616 append_insns (to, 5, insn);
1617 return;
1618 }
1619
1620 offset = rip_relative_offset (&insn_details);
1621 if (!offset)
1622 {
1623 /* Adjust jumps with 32-bit relative addresses. Calls are
1624 already handled above. */
1625 if (insn[0] == 0xe9)
1626 offset = 1;
1627 /* Adjust conditional jumps. */
1628 else if (insn[0] == 0x0f && (insn[1] & 0xf0) == 0x80)
1629 offset = 2;
1630 }
1631
1632 if (offset)
1633 {
1634 rel32 = extract_signed_integer (insn + offset, 4, byte_order);
1635 newrel = (oldloc - *to) + rel32;
1636 store_signed_integer (insn + offset, 4, byte_order, newrel);
1637 if (debug_displaced)
1638 fprintf_unfiltered (gdb_stdlog,
1639 "Adjusted insn rel32=%s at %s to"
1640 " rel32=%s at %s\n",
1641 hex_string (rel32), paddress (gdbarch, oldloc),
1642 hex_string (newrel), paddress (gdbarch, *to));
1643 }
1644
1645 /* Write the adjusted instruction into its displaced location. */
1646 append_insns (to, insn_length, buf);
1647 }
1648
1649 \f
1650 /* The maximum number of saved registers. This should include %rip. */
1651 #define AMD64_NUM_SAVED_REGS AMD64_NUM_GREGS
1652
1653 struct amd64_frame_cache
1654 {
1655 /* Base address. */
1656 CORE_ADDR base;
1657 int base_p;
1658 CORE_ADDR sp_offset;
1659 CORE_ADDR pc;
1660
1661 /* Saved registers. */
1662 CORE_ADDR saved_regs[AMD64_NUM_SAVED_REGS];
1663 CORE_ADDR saved_sp;
1664 int saved_sp_reg;
1665
1666 /* Do we have a frame? */
1667 int frameless_p;
1668 };
1669
1670 /* Initialize a frame cache. */
1671
1672 static void
1673 amd64_init_frame_cache (struct amd64_frame_cache *cache)
1674 {
1675 int i;
1676
1677 /* Base address. */
1678 cache->base = 0;
1679 cache->base_p = 0;
1680 cache->sp_offset = -8;
1681 cache->pc = 0;
1682
1683 /* Saved registers. We initialize these to -1 since zero is a valid
1684 offset (that's where %rbp is supposed to be stored).
1685 The values start out as being offsets, and are later converted to
1686 addresses (at which point -1 is interpreted as an address, still meaning
1687 "invalid"). */
1688 for (i = 0; i < AMD64_NUM_SAVED_REGS; i++)
1689 cache->saved_regs[i] = -1;
1690 cache->saved_sp = 0;
1691 cache->saved_sp_reg = -1;
1692
1693 /* Frameless until proven otherwise. */
1694 cache->frameless_p = 1;
1695 }
1696
1697 /* Allocate and initialize a frame cache. */
1698
1699 static struct amd64_frame_cache *
1700 amd64_alloc_frame_cache (void)
1701 {
1702 struct amd64_frame_cache *cache;
1703
1704 cache = FRAME_OBSTACK_ZALLOC (struct amd64_frame_cache);
1705 amd64_init_frame_cache (cache);
1706 return cache;
1707 }
1708
1709 /* GCC 4.4 and later, can put code in the prologue to realign the
1710 stack pointer. Check whether PC points to such code, and update
1711 CACHE accordingly. Return the first instruction after the code
1712 sequence or CURRENT_PC, whichever is smaller. If we don't
1713 recognize the code, return PC. */
1714
1715 static CORE_ADDR
1716 amd64_analyze_stack_align (CORE_ADDR pc, CORE_ADDR current_pc,
1717 struct amd64_frame_cache *cache)
1718 {
1719 /* There are 2 code sequences to re-align stack before the frame
1720 gets set up:
1721
1722 1. Use a caller-saved saved register:
1723
1724 leaq 8(%rsp), %reg
1725 andq $-XXX, %rsp
1726 pushq -8(%reg)
1727
1728 2. Use a callee-saved saved register:
1729
1730 pushq %reg
1731 leaq 16(%rsp), %reg
1732 andq $-XXX, %rsp
1733 pushq -8(%reg)
1734
1735 "andq $-XXX, %rsp" can be either 4 bytes or 7 bytes:
1736
1737 0x48 0x83 0xe4 0xf0 andq $-16, %rsp
1738 0x48 0x81 0xe4 0x00 0xff 0xff 0xff andq $-256, %rsp
1739 */
1740
1741 gdb_byte buf[18];
1742 int reg, r;
1743 int offset, offset_and;
1744
1745 if (target_read_memory (pc, buf, sizeof buf))
1746 return pc;
1747
1748 /* Check caller-saved saved register. The first instruction has
1749 to be "leaq 8(%rsp), %reg". */
1750 if ((buf[0] & 0xfb) == 0x48
1751 && buf[1] == 0x8d
1752 && buf[3] == 0x24
1753 && buf[4] == 0x8)
1754 {
1755 /* MOD must be binary 10 and R/M must be binary 100. */
1756 if ((buf[2] & 0xc7) != 0x44)
1757 return pc;
1758
1759 /* REG has register number. */
1760 reg = (buf[2] >> 3) & 7;
1761
1762 /* Check the REX.R bit. */
1763 if (buf[0] == 0x4c)
1764 reg += 8;
1765
1766 offset = 5;
1767 }
1768 else
1769 {
1770 /* Check callee-saved saved register. The first instruction
1771 has to be "pushq %reg". */
1772 reg = 0;
1773 if ((buf[0] & 0xf8) == 0x50)
1774 offset = 0;
1775 else if ((buf[0] & 0xf6) == 0x40
1776 && (buf[1] & 0xf8) == 0x50)
1777 {
1778 /* Check the REX.B bit. */
1779 if ((buf[0] & 1) != 0)
1780 reg = 8;
1781
1782 offset = 1;
1783 }
1784 else
1785 return pc;
1786
1787 /* Get register. */
1788 reg += buf[offset] & 0x7;
1789
1790 offset++;
1791
1792 /* The next instruction has to be "leaq 16(%rsp), %reg". */
1793 if ((buf[offset] & 0xfb) != 0x48
1794 || buf[offset + 1] != 0x8d
1795 || buf[offset + 3] != 0x24
1796 || buf[offset + 4] != 0x10)
1797 return pc;
1798
1799 /* MOD must be binary 10 and R/M must be binary 100. */
1800 if ((buf[offset + 2] & 0xc7) != 0x44)
1801 return pc;
1802
1803 /* REG has register number. */
1804 r = (buf[offset + 2] >> 3) & 7;
1805
1806 /* Check the REX.R bit. */
1807 if (buf[offset] == 0x4c)
1808 r += 8;
1809
1810 /* Registers in pushq and leaq have to be the same. */
1811 if (reg != r)
1812 return pc;
1813
1814 offset += 5;
1815 }
1816
1817 /* Rigister can't be %rsp nor %rbp. */
1818 if (reg == 4 || reg == 5)
1819 return pc;
1820
1821 /* The next instruction has to be "andq $-XXX, %rsp". */
1822 if (buf[offset] != 0x48
1823 || buf[offset + 2] != 0xe4
1824 || (buf[offset + 1] != 0x81 && buf[offset + 1] != 0x83))
1825 return pc;
1826
1827 offset_and = offset;
1828 offset += buf[offset + 1] == 0x81 ? 7 : 4;
1829
1830 /* The next instruction has to be "pushq -8(%reg)". */
1831 r = 0;
1832 if (buf[offset] == 0xff)
1833 offset++;
1834 else if ((buf[offset] & 0xf6) == 0x40
1835 && buf[offset + 1] == 0xff)
1836 {
1837 /* Check the REX.B bit. */
1838 if ((buf[offset] & 0x1) != 0)
1839 r = 8;
1840 offset += 2;
1841 }
1842 else
1843 return pc;
1844
1845 /* 8bit -8 is 0xf8. REG must be binary 110 and MOD must be binary
1846 01. */
1847 if (buf[offset + 1] != 0xf8
1848 || (buf[offset] & 0xf8) != 0x70)
1849 return pc;
1850
1851 /* R/M has register. */
1852 r += buf[offset] & 7;
1853
1854 /* Registers in leaq and pushq have to be the same. */
1855 if (reg != r)
1856 return pc;
1857
1858 if (current_pc > pc + offset_and)
1859 cache->saved_sp_reg = amd64_arch_reg_to_regnum (reg);
1860
1861 return min (pc + offset + 2, current_pc);
1862 }
1863
1864 /* Do a limited analysis of the prologue at PC and update CACHE
1865 accordingly. Bail out early if CURRENT_PC is reached. Return the
1866 address where the analysis stopped.
1867
1868 We will handle only functions beginning with:
1869
1870 pushq %rbp 0x55
1871 movq %rsp, %rbp 0x48 0x89 0xe5 (or 0x48 0x8b 0xec)
1872
1873 or (for the X32 ABI):
1874
1875 pushq %rbp 0x55
1876 movl %esp, %ebp 0x89 0xe5 (or 0x8b 0xec)
1877
1878 Any function that doesn't start with one of these sequences will be
1879 assumed to have no prologue and thus no valid frame pointer in
1880 %rbp. */
1881
1882 static CORE_ADDR
1883 amd64_analyze_prologue (struct gdbarch *gdbarch,
1884 CORE_ADDR pc, CORE_ADDR current_pc,
1885 struct amd64_frame_cache *cache)
1886 {
1887 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1888 /* There are two variations of movq %rsp, %rbp. */
1889 static const gdb_byte mov_rsp_rbp_1[3] = { 0x48, 0x89, 0xe5 };
1890 static const gdb_byte mov_rsp_rbp_2[3] = { 0x48, 0x8b, 0xec };
1891 /* Ditto for movl %esp, %ebp. */
1892 static const gdb_byte mov_esp_ebp_1[2] = { 0x89, 0xe5 };
1893 static const gdb_byte mov_esp_ebp_2[2] = { 0x8b, 0xec };
1894
1895 gdb_byte buf[3];
1896 gdb_byte op;
1897
1898 if (current_pc <= pc)
1899 return current_pc;
1900
1901 pc = amd64_analyze_stack_align (pc, current_pc, cache);
1902
1903 op = read_memory_unsigned_integer (pc, 1, byte_order);
1904
1905 if (op == 0x55) /* pushq %rbp */
1906 {
1907 /* Take into account that we've executed the `pushq %rbp' that
1908 starts this instruction sequence. */
1909 cache->saved_regs[AMD64_RBP_REGNUM] = 0;
1910 cache->sp_offset += 8;
1911
1912 /* If that's all, return now. */
1913 if (current_pc <= pc + 1)
1914 return current_pc;
1915
1916 read_memory (pc + 1, buf, 3);
1917
1918 /* Check for `movq %rsp, %rbp'. */
1919 if (memcmp (buf, mov_rsp_rbp_1, 3) == 0
1920 || memcmp (buf, mov_rsp_rbp_2, 3) == 0)
1921 {
1922 /* OK, we actually have a frame. */
1923 cache->frameless_p = 0;
1924 return pc + 4;
1925 }
1926
1927 /* For X32, also check for `movq %esp, %ebp'. */
1928 if (gdbarch_ptr_bit (gdbarch) == 32)
1929 {
1930 if (memcmp (buf, mov_esp_ebp_1, 2) == 0
1931 || memcmp (buf, mov_esp_ebp_2, 2) == 0)
1932 {
1933 /* OK, we actually have a frame. */
1934 cache->frameless_p = 0;
1935 return pc + 3;
1936 }
1937 }
1938
1939 return pc + 1;
1940 }
1941
1942 return pc;
1943 }
1944
1945 /* Work around false termination of prologue - GCC PR debug/48827.
1946
1947 START_PC is the first instruction of a function, PC is its minimal already
1948 determined advanced address. Function returns PC if it has nothing to do.
1949
1950 84 c0 test %al,%al
1951 74 23 je after
1952 <-- here is 0 lines advance - the false prologue end marker.
1953 0f 29 85 70 ff ff ff movaps %xmm0,-0x90(%rbp)
1954 0f 29 4d 80 movaps %xmm1,-0x80(%rbp)
1955 0f 29 55 90 movaps %xmm2,-0x70(%rbp)
1956 0f 29 5d a0 movaps %xmm3,-0x60(%rbp)
1957 0f 29 65 b0 movaps %xmm4,-0x50(%rbp)
1958 0f 29 6d c0 movaps %xmm5,-0x40(%rbp)
1959 0f 29 75 d0 movaps %xmm6,-0x30(%rbp)
1960 0f 29 7d e0 movaps %xmm7,-0x20(%rbp)
1961 after: */
1962
1963 static CORE_ADDR
1964 amd64_skip_xmm_prologue (CORE_ADDR pc, CORE_ADDR start_pc)
1965 {
1966 struct symtab_and_line start_pc_sal, next_sal;
1967 gdb_byte buf[4 + 8 * 7];
1968 int offset, xmmreg;
1969
1970 if (pc == start_pc)
1971 return pc;
1972
1973 start_pc_sal = find_pc_sect_line (start_pc, NULL, 0);
1974 if (start_pc_sal.symtab == NULL
1975 || producer_is_gcc_ge_4 (start_pc_sal.symtab->producer) < 6
1976 || start_pc_sal.pc != start_pc || pc >= start_pc_sal.end)
1977 return pc;
1978
1979 next_sal = find_pc_sect_line (start_pc_sal.end, NULL, 0);
1980 if (next_sal.line != start_pc_sal.line)
1981 return pc;
1982
1983 /* START_PC can be from overlayed memory, ignored here. */
1984 if (target_read_memory (next_sal.pc - 4, buf, sizeof (buf)) != 0)
1985 return pc;
1986
1987 /* test %al,%al */
1988 if (buf[0] != 0x84 || buf[1] != 0xc0)
1989 return pc;
1990 /* je AFTER */
1991 if (buf[2] != 0x74)
1992 return pc;
1993
1994 offset = 4;
1995 for (xmmreg = 0; xmmreg < 8; xmmreg++)
1996 {
1997 /* 0x0f 0x29 0b??000101 movaps %xmmreg?,-0x??(%rbp) */
1998 if (buf[offset] != 0x0f || buf[offset + 1] != 0x29
1999 || (buf[offset + 2] & 0x3f) != (xmmreg << 3 | 0x5))
2000 return pc;
2001
2002 /* 0b01?????? */
2003 if ((buf[offset + 2] & 0xc0) == 0x40)
2004 {
2005 /* 8-bit displacement. */
2006 offset += 4;
2007 }
2008 /* 0b10?????? */
2009 else if ((buf[offset + 2] & 0xc0) == 0x80)
2010 {
2011 /* 32-bit displacement. */
2012 offset += 7;
2013 }
2014 else
2015 return pc;
2016 }
2017
2018 /* je AFTER */
2019 if (offset - 4 != buf[3])
2020 return pc;
2021
2022 return next_sal.end;
2023 }
2024
2025 /* Return PC of first real instruction. */
2026
2027 static CORE_ADDR
2028 amd64_skip_prologue (struct gdbarch *gdbarch, CORE_ADDR start_pc)
2029 {
2030 struct amd64_frame_cache cache;
2031 CORE_ADDR pc;
2032
2033 amd64_init_frame_cache (&cache);
2034 pc = amd64_analyze_prologue (gdbarch, start_pc, 0xffffffffffffffffLL,
2035 &cache);
2036 if (cache.frameless_p)
2037 return start_pc;
2038
2039 return amd64_skip_xmm_prologue (pc, start_pc);
2040 }
2041 \f
2042
2043 /* Normal frames. */
2044
2045 static void
2046 amd64_frame_cache_1 (struct frame_info *this_frame,
2047 struct amd64_frame_cache *cache)
2048 {
2049 struct gdbarch *gdbarch = get_frame_arch (this_frame);
2050 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
2051 gdb_byte buf[8];
2052 int i;
2053
2054 cache->pc = get_frame_func (this_frame);
2055 if (cache->pc != 0)
2056 amd64_analyze_prologue (gdbarch, cache->pc, get_frame_pc (this_frame),
2057 cache);
2058
2059 if (cache->frameless_p)
2060 {
2061 /* We didn't find a valid frame. If we're at the start of a
2062 function, or somewhere half-way its prologue, the function's
2063 frame probably hasn't been fully setup yet. Try to
2064 reconstruct the base address for the stack frame by looking
2065 at the stack pointer. For truly "frameless" functions this
2066 might work too. */
2067
2068 if (cache->saved_sp_reg != -1)
2069 {
2070 /* Stack pointer has been saved. */
2071 get_frame_register (this_frame, cache->saved_sp_reg, buf);
2072 cache->saved_sp = extract_unsigned_integer (buf, 8, byte_order);
2073
2074 /* We're halfway aligning the stack. */
2075 cache->base = ((cache->saved_sp - 8) & 0xfffffffffffffff0LL) - 8;
2076 cache->saved_regs[AMD64_RIP_REGNUM] = cache->saved_sp - 8;
2077
2078 /* This will be added back below. */
2079 cache->saved_regs[AMD64_RIP_REGNUM] -= cache->base;
2080 }
2081 else
2082 {
2083 get_frame_register (this_frame, AMD64_RSP_REGNUM, buf);
2084 cache->base = extract_unsigned_integer (buf, 8, byte_order)
2085 + cache->sp_offset;
2086 }
2087 }
2088 else
2089 {
2090 get_frame_register (this_frame, AMD64_RBP_REGNUM, buf);
2091 cache->base = extract_unsigned_integer (buf, 8, byte_order);
2092 }
2093
2094 /* Now that we have the base address for the stack frame we can
2095 calculate the value of %rsp in the calling frame. */
2096 cache->saved_sp = cache->base + 16;
2097
2098 /* For normal frames, %rip is stored at 8(%rbp). If we don't have a
2099 frame we find it at the same offset from the reconstructed base
2100 address. If we're halfway aligning the stack, %rip is handled
2101 differently (see above). */
2102 if (!cache->frameless_p || cache->saved_sp_reg == -1)
2103 cache->saved_regs[AMD64_RIP_REGNUM] = 8;
2104
2105 /* Adjust all the saved registers such that they contain addresses
2106 instead of offsets. */
2107 for (i = 0; i < AMD64_NUM_SAVED_REGS; i++)
2108 if (cache->saved_regs[i] != -1)
2109 cache->saved_regs[i] += cache->base;
2110
2111 cache->base_p = 1;
2112 }
2113
2114 static struct amd64_frame_cache *
2115 amd64_frame_cache (struct frame_info *this_frame, void **this_cache)
2116 {
2117 volatile struct gdb_exception ex;
2118 struct amd64_frame_cache *cache;
2119
2120 if (*this_cache)
2121 return *this_cache;
2122
2123 cache = amd64_alloc_frame_cache ();
2124 *this_cache = cache;
2125
2126 TRY_CATCH (ex, RETURN_MASK_ERROR)
2127 {
2128 amd64_frame_cache_1 (this_frame, cache);
2129 }
2130 if (ex.reason < 0 && ex.error != NOT_AVAILABLE_ERROR)
2131 throw_exception (ex);
2132
2133 return cache;
2134 }
2135
2136 static enum unwind_stop_reason
2137 amd64_frame_unwind_stop_reason (struct frame_info *this_frame,
2138 void **this_cache)
2139 {
2140 struct amd64_frame_cache *cache =
2141 amd64_frame_cache (this_frame, this_cache);
2142
2143 if (!cache->base_p)
2144 return UNWIND_UNAVAILABLE;
2145
2146 /* This marks the outermost frame. */
2147 if (cache->base == 0)
2148 return UNWIND_OUTERMOST;
2149
2150 return UNWIND_NO_REASON;
2151 }
2152
2153 static void
2154 amd64_frame_this_id (struct frame_info *this_frame, void **this_cache,
2155 struct frame_id *this_id)
2156 {
2157 struct amd64_frame_cache *cache =
2158 amd64_frame_cache (this_frame, this_cache);
2159
2160 if (!cache->base_p)
2161 return;
2162
2163 /* This marks the outermost frame. */
2164 if (cache->base == 0)
2165 return;
2166
2167 (*this_id) = frame_id_build (cache->base + 16, cache->pc);
2168 }
2169
2170 static struct value *
2171 amd64_frame_prev_register (struct frame_info *this_frame, void **this_cache,
2172 int regnum)
2173 {
2174 struct gdbarch *gdbarch = get_frame_arch (this_frame);
2175 struct amd64_frame_cache *cache =
2176 amd64_frame_cache (this_frame, this_cache);
2177
2178 gdb_assert (regnum >= 0);
2179
2180 if (regnum == gdbarch_sp_regnum (gdbarch) && cache->saved_sp)
2181 return frame_unwind_got_constant (this_frame, regnum, cache->saved_sp);
2182
2183 if (regnum < AMD64_NUM_SAVED_REGS && cache->saved_regs[regnum] != -1)
2184 return frame_unwind_got_memory (this_frame, regnum,
2185 cache->saved_regs[regnum]);
2186
2187 return frame_unwind_got_register (this_frame, regnum, regnum);
2188 }
2189
2190 static const struct frame_unwind amd64_frame_unwind =
2191 {
2192 NORMAL_FRAME,
2193 amd64_frame_unwind_stop_reason,
2194 amd64_frame_this_id,
2195 amd64_frame_prev_register,
2196 NULL,
2197 default_frame_sniffer
2198 };
2199 \f
2200 /* Generate a bytecode expression to get the value of the saved PC. */
2201
2202 static void
2203 amd64_gen_return_address (struct gdbarch *gdbarch,
2204 struct agent_expr *ax, struct axs_value *value,
2205 CORE_ADDR scope)
2206 {
2207 /* The following sequence assumes the traditional use of the base
2208 register. */
2209 ax_reg (ax, AMD64_RBP_REGNUM);
2210 ax_const_l (ax, 8);
2211 ax_simple (ax, aop_add);
2212 value->type = register_type (gdbarch, AMD64_RIP_REGNUM);
2213 value->kind = axs_lvalue_memory;
2214 }
2215 \f
2216
2217 /* Signal trampolines. */
2218
2219 /* FIXME: kettenis/20030419: Perhaps, we can unify the 32-bit and
2220 64-bit variants. This would require using identical frame caches
2221 on both platforms. */
2222
2223 static struct amd64_frame_cache *
2224 amd64_sigtramp_frame_cache (struct frame_info *this_frame, void **this_cache)
2225 {
2226 struct gdbarch *gdbarch = get_frame_arch (this_frame);
2227 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2228 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
2229 volatile struct gdb_exception ex;
2230 struct amd64_frame_cache *cache;
2231 CORE_ADDR addr;
2232 gdb_byte buf[8];
2233 int i;
2234
2235 if (*this_cache)
2236 return *this_cache;
2237
2238 cache = amd64_alloc_frame_cache ();
2239
2240 TRY_CATCH (ex, RETURN_MASK_ERROR)
2241 {
2242 get_frame_register (this_frame, AMD64_RSP_REGNUM, buf);
2243 cache->base = extract_unsigned_integer (buf, 8, byte_order) - 8;
2244
2245 addr = tdep->sigcontext_addr (this_frame);
2246 gdb_assert (tdep->sc_reg_offset);
2247 gdb_assert (tdep->sc_num_regs <= AMD64_NUM_SAVED_REGS);
2248 for (i = 0; i < tdep->sc_num_regs; i++)
2249 if (tdep->sc_reg_offset[i] != -1)
2250 cache->saved_regs[i] = addr + tdep->sc_reg_offset[i];
2251
2252 cache->base_p = 1;
2253 }
2254 if (ex.reason < 0 && ex.error != NOT_AVAILABLE_ERROR)
2255 throw_exception (ex);
2256
2257 *this_cache = cache;
2258 return cache;
2259 }
2260
2261 static enum unwind_stop_reason
2262 amd64_sigtramp_frame_unwind_stop_reason (struct frame_info *this_frame,
2263 void **this_cache)
2264 {
2265 struct amd64_frame_cache *cache =
2266 amd64_sigtramp_frame_cache (this_frame, this_cache);
2267
2268 if (!cache->base_p)
2269 return UNWIND_UNAVAILABLE;
2270
2271 return UNWIND_NO_REASON;
2272 }
2273
2274 static void
2275 amd64_sigtramp_frame_this_id (struct frame_info *this_frame,
2276 void **this_cache, struct frame_id *this_id)
2277 {
2278 struct amd64_frame_cache *cache =
2279 amd64_sigtramp_frame_cache (this_frame, this_cache);
2280
2281 if (!cache->base_p)
2282 return;
2283
2284 (*this_id) = frame_id_build (cache->base + 16, get_frame_pc (this_frame));
2285 }
2286
2287 static struct value *
2288 amd64_sigtramp_frame_prev_register (struct frame_info *this_frame,
2289 void **this_cache, int regnum)
2290 {
2291 /* Make sure we've initialized the cache. */
2292 amd64_sigtramp_frame_cache (this_frame, this_cache);
2293
2294 return amd64_frame_prev_register (this_frame, this_cache, regnum);
2295 }
2296
2297 static int
2298 amd64_sigtramp_frame_sniffer (const struct frame_unwind *self,
2299 struct frame_info *this_frame,
2300 void **this_cache)
2301 {
2302 struct gdbarch_tdep *tdep = gdbarch_tdep (get_frame_arch (this_frame));
2303
2304 /* We shouldn't even bother if we don't have a sigcontext_addr
2305 handler. */
2306 if (tdep->sigcontext_addr == NULL)
2307 return 0;
2308
2309 if (tdep->sigtramp_p != NULL)
2310 {
2311 if (tdep->sigtramp_p (this_frame))
2312 return 1;
2313 }
2314
2315 if (tdep->sigtramp_start != 0)
2316 {
2317 CORE_ADDR pc = get_frame_pc (this_frame);
2318
2319 gdb_assert (tdep->sigtramp_end != 0);
2320 if (pc >= tdep->sigtramp_start && pc < tdep->sigtramp_end)
2321 return 1;
2322 }
2323
2324 return 0;
2325 }
2326
2327 static const struct frame_unwind amd64_sigtramp_frame_unwind =
2328 {
2329 SIGTRAMP_FRAME,
2330 amd64_sigtramp_frame_unwind_stop_reason,
2331 amd64_sigtramp_frame_this_id,
2332 amd64_sigtramp_frame_prev_register,
2333 NULL,
2334 amd64_sigtramp_frame_sniffer
2335 };
2336 \f
2337
2338 static CORE_ADDR
2339 amd64_frame_base_address (struct frame_info *this_frame, void **this_cache)
2340 {
2341 struct amd64_frame_cache *cache =
2342 amd64_frame_cache (this_frame, this_cache);
2343
2344 return cache->base;
2345 }
2346
2347 static const struct frame_base amd64_frame_base =
2348 {
2349 &amd64_frame_unwind,
2350 amd64_frame_base_address,
2351 amd64_frame_base_address,
2352 amd64_frame_base_address
2353 };
2354
2355 /* Normal frames, but in a function epilogue. */
2356
2357 /* The epilogue is defined here as the 'ret' instruction, which will
2358 follow any instruction such as 'leave' or 'pop %ebp' that destroys
2359 the function's stack frame. */
2360
2361 static int
2362 amd64_in_function_epilogue_p (struct gdbarch *gdbarch, CORE_ADDR pc)
2363 {
2364 gdb_byte insn;
2365 struct symtab *symtab;
2366
2367 symtab = find_pc_symtab (pc);
2368 if (symtab && symtab->epilogue_unwind_valid)
2369 return 0;
2370
2371 if (target_read_memory (pc, &insn, 1))
2372 return 0; /* Can't read memory at pc. */
2373
2374 if (insn != 0xc3) /* 'ret' instruction. */
2375 return 0;
2376
2377 return 1;
2378 }
2379
2380 static int
2381 amd64_epilogue_frame_sniffer (const struct frame_unwind *self,
2382 struct frame_info *this_frame,
2383 void **this_prologue_cache)
2384 {
2385 if (frame_relative_level (this_frame) == 0)
2386 return amd64_in_function_epilogue_p (get_frame_arch (this_frame),
2387 get_frame_pc (this_frame));
2388 else
2389 return 0;
2390 }
2391
2392 static struct amd64_frame_cache *
2393 amd64_epilogue_frame_cache (struct frame_info *this_frame, void **this_cache)
2394 {
2395 struct gdbarch *gdbarch = get_frame_arch (this_frame);
2396 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
2397 volatile struct gdb_exception ex;
2398 struct amd64_frame_cache *cache;
2399 gdb_byte buf[8];
2400
2401 if (*this_cache)
2402 return *this_cache;
2403
2404 cache = amd64_alloc_frame_cache ();
2405 *this_cache = cache;
2406
2407 TRY_CATCH (ex, RETURN_MASK_ERROR)
2408 {
2409 /* Cache base will be %esp plus cache->sp_offset (-8). */
2410 get_frame_register (this_frame, AMD64_RSP_REGNUM, buf);
2411 cache->base = extract_unsigned_integer (buf, 8,
2412 byte_order) + cache->sp_offset;
2413
2414 /* Cache pc will be the frame func. */
2415 cache->pc = get_frame_pc (this_frame);
2416
2417 /* The saved %esp will be at cache->base plus 16. */
2418 cache->saved_sp = cache->base + 16;
2419
2420 /* The saved %eip will be at cache->base plus 8. */
2421 cache->saved_regs[AMD64_RIP_REGNUM] = cache->base + 8;
2422
2423 cache->base_p = 1;
2424 }
2425 if (ex.reason < 0 && ex.error != NOT_AVAILABLE_ERROR)
2426 throw_exception (ex);
2427
2428 return cache;
2429 }
2430
2431 static enum unwind_stop_reason
2432 amd64_epilogue_frame_unwind_stop_reason (struct frame_info *this_frame,
2433 void **this_cache)
2434 {
2435 struct amd64_frame_cache *cache
2436 = amd64_epilogue_frame_cache (this_frame, this_cache);
2437
2438 if (!cache->base_p)
2439 return UNWIND_UNAVAILABLE;
2440
2441 return UNWIND_NO_REASON;
2442 }
2443
2444 static void
2445 amd64_epilogue_frame_this_id (struct frame_info *this_frame,
2446 void **this_cache,
2447 struct frame_id *this_id)
2448 {
2449 struct amd64_frame_cache *cache = amd64_epilogue_frame_cache (this_frame,
2450 this_cache);
2451
2452 if (!cache->base_p)
2453 return;
2454
2455 (*this_id) = frame_id_build (cache->base + 8, cache->pc);
2456 }
2457
2458 static const struct frame_unwind amd64_epilogue_frame_unwind =
2459 {
2460 NORMAL_FRAME,
2461 amd64_epilogue_frame_unwind_stop_reason,
2462 amd64_epilogue_frame_this_id,
2463 amd64_frame_prev_register,
2464 NULL,
2465 amd64_epilogue_frame_sniffer
2466 };
2467
2468 static struct frame_id
2469 amd64_dummy_id (struct gdbarch *gdbarch, struct frame_info *this_frame)
2470 {
2471 CORE_ADDR fp;
2472
2473 fp = get_frame_register_unsigned (this_frame, AMD64_RBP_REGNUM);
2474
2475 return frame_id_build (fp + 16, get_frame_pc (this_frame));
2476 }
2477
2478 /* 16 byte align the SP per frame requirements. */
2479
2480 static CORE_ADDR
2481 amd64_frame_align (struct gdbarch *gdbarch, CORE_ADDR sp)
2482 {
2483 return sp & -(CORE_ADDR)16;
2484 }
2485 \f
2486
2487 /* Supply register REGNUM from the buffer specified by FPREGS and LEN
2488 in the floating-point register set REGSET to register cache
2489 REGCACHE. If REGNUM is -1, do this for all registers in REGSET. */
2490
2491 static void
2492 amd64_supply_fpregset (const struct regset *regset, struct regcache *regcache,
2493 int regnum, const void *fpregs, size_t len)
2494 {
2495 const struct gdbarch_tdep *tdep = gdbarch_tdep (regset->arch);
2496
2497 gdb_assert (len == tdep->sizeof_fpregset);
2498 amd64_supply_fxsave (regcache, regnum, fpregs);
2499 }
2500
2501 /* Collect register REGNUM from the register cache REGCACHE and store
2502 it in the buffer specified by FPREGS and LEN as described by the
2503 floating-point register set REGSET. If REGNUM is -1, do this for
2504 all registers in REGSET. */
2505
2506 static void
2507 amd64_collect_fpregset (const struct regset *regset,
2508 const struct regcache *regcache,
2509 int regnum, void *fpregs, size_t len)
2510 {
2511 const struct gdbarch_tdep *tdep = gdbarch_tdep (regset->arch);
2512
2513 gdb_assert (len == tdep->sizeof_fpregset);
2514 amd64_collect_fxsave (regcache, regnum, fpregs);
2515 }
2516
2517 /* Similar to amd64_supply_fpregset, but use XSAVE extended state. */
2518
2519 static void
2520 amd64_supply_xstateregset (const struct regset *regset,
2521 struct regcache *regcache, int regnum,
2522 const void *xstateregs, size_t len)
2523 {
2524 amd64_supply_xsave (regcache, regnum, xstateregs);
2525 }
2526
2527 /* Similar to amd64_collect_fpregset, but use XSAVE extended state. */
2528
2529 static void
2530 amd64_collect_xstateregset (const struct regset *regset,
2531 const struct regcache *regcache,
2532 int regnum, void *xstateregs, size_t len)
2533 {
2534 amd64_collect_xsave (regcache, regnum, xstateregs, 1);
2535 }
2536
2537 /* Return the appropriate register set for the core section identified
2538 by SECT_NAME and SECT_SIZE. */
2539
2540 static const struct regset *
2541 amd64_regset_from_core_section (struct gdbarch *gdbarch,
2542 const char *sect_name, size_t sect_size)
2543 {
2544 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2545
2546 if (strcmp (sect_name, ".reg2") == 0 && sect_size == tdep->sizeof_fpregset)
2547 {
2548 if (tdep->fpregset == NULL)
2549 tdep->fpregset = regset_alloc (gdbarch, amd64_supply_fpregset,
2550 amd64_collect_fpregset);
2551
2552 return tdep->fpregset;
2553 }
2554
2555 if (strcmp (sect_name, ".reg-xstate") == 0)
2556 {
2557 if (tdep->xstateregset == NULL)
2558 tdep->xstateregset = regset_alloc (gdbarch,
2559 amd64_supply_xstateregset,
2560 amd64_collect_xstateregset);
2561
2562 return tdep->xstateregset;
2563 }
2564
2565 return i386_regset_from_core_section (gdbarch, sect_name, sect_size);
2566 }
2567 \f
2568
2569 /* Figure out where the longjmp will land. Slurp the jmp_buf out of
2570 %rdi. We expect its value to be a pointer to the jmp_buf structure
2571 from which we extract the address that we will land at. This
2572 address is copied into PC. This routine returns non-zero on
2573 success. */
2574
2575 static int
2576 amd64_get_longjmp_target (struct frame_info *frame, CORE_ADDR *pc)
2577 {
2578 gdb_byte buf[8];
2579 CORE_ADDR jb_addr;
2580 struct gdbarch *gdbarch = get_frame_arch (frame);
2581 int jb_pc_offset = gdbarch_tdep (gdbarch)->jb_pc_offset;
2582 int len = TYPE_LENGTH (builtin_type (gdbarch)->builtin_func_ptr);
2583
2584 /* If JB_PC_OFFSET is -1, we have no way to find out where the
2585 longjmp will land. */
2586 if (jb_pc_offset == -1)
2587 return 0;
2588
2589 get_frame_register (frame, AMD64_RDI_REGNUM, buf);
2590 jb_addr= extract_typed_address
2591 (buf, builtin_type (gdbarch)->builtin_data_ptr);
2592 if (target_read_memory (jb_addr + jb_pc_offset, buf, len))
2593 return 0;
2594
2595 *pc = extract_typed_address (buf, builtin_type (gdbarch)->builtin_func_ptr);
2596
2597 return 1;
2598 }
2599
2600 static const int amd64_record_regmap[] =
2601 {
2602 AMD64_RAX_REGNUM, AMD64_RCX_REGNUM, AMD64_RDX_REGNUM, AMD64_RBX_REGNUM,
2603 AMD64_RSP_REGNUM, AMD64_RBP_REGNUM, AMD64_RSI_REGNUM, AMD64_RDI_REGNUM,
2604 AMD64_R8_REGNUM, AMD64_R9_REGNUM, AMD64_R10_REGNUM, AMD64_R11_REGNUM,
2605 AMD64_R12_REGNUM, AMD64_R13_REGNUM, AMD64_R14_REGNUM, AMD64_R15_REGNUM,
2606 AMD64_RIP_REGNUM, AMD64_EFLAGS_REGNUM, AMD64_CS_REGNUM, AMD64_SS_REGNUM,
2607 AMD64_DS_REGNUM, AMD64_ES_REGNUM, AMD64_FS_REGNUM, AMD64_GS_REGNUM
2608 };
2609
2610 void
2611 amd64_init_abi (struct gdbarch_info info, struct gdbarch *gdbarch)
2612 {
2613 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2614 const struct target_desc *tdesc = info.target_desc;
2615
2616 /* AMD64 generally uses `fxsave' instead of `fsave' for saving its
2617 floating-point registers. */
2618 tdep->sizeof_fpregset = I387_SIZEOF_FXSAVE;
2619
2620 if (! tdesc_has_registers (tdesc))
2621 tdesc = tdesc_amd64;
2622 tdep->tdesc = tdesc;
2623
2624 tdep->num_core_regs = AMD64_NUM_GREGS + I387_NUM_REGS;
2625 tdep->register_names = amd64_register_names;
2626
2627 if (tdesc_find_feature (tdesc, "org.gnu.gdb.i386.avx") != NULL)
2628 {
2629 tdep->ymmh_register_names = amd64_ymmh_names;
2630 tdep->num_ymm_regs = 16;
2631 tdep->ymm0h_regnum = AMD64_YMM0H_REGNUM;
2632 }
2633
2634 tdep->num_byte_regs = 20;
2635 tdep->num_word_regs = 16;
2636 tdep->num_dword_regs = 16;
2637 /* Avoid wiring in the MMX registers for now. */
2638 tdep->num_mmx_regs = 0;
2639
2640 set_gdbarch_pseudo_register_read_value (gdbarch,
2641 amd64_pseudo_register_read_value);
2642 set_gdbarch_pseudo_register_write (gdbarch,
2643 amd64_pseudo_register_write);
2644
2645 set_tdesc_pseudo_register_name (gdbarch, amd64_pseudo_register_name);
2646
2647 /* AMD64 has an FPU and 16 SSE registers. */
2648 tdep->st0_regnum = AMD64_ST0_REGNUM;
2649 tdep->num_xmm_regs = 16;
2650
2651 /* This is what all the fuss is about. */
2652 set_gdbarch_long_bit (gdbarch, 64);
2653 set_gdbarch_long_long_bit (gdbarch, 64);
2654 set_gdbarch_ptr_bit (gdbarch, 64);
2655
2656 /* In contrast to the i386, on AMD64 a `long double' actually takes
2657 up 128 bits, even though it's still based on the i387 extended
2658 floating-point format which has only 80 significant bits. */
2659 set_gdbarch_long_double_bit (gdbarch, 128);
2660
2661 set_gdbarch_num_regs (gdbarch, AMD64_NUM_REGS);
2662
2663 /* Register numbers of various important registers. */
2664 set_gdbarch_sp_regnum (gdbarch, AMD64_RSP_REGNUM); /* %rsp */
2665 set_gdbarch_pc_regnum (gdbarch, AMD64_RIP_REGNUM); /* %rip */
2666 set_gdbarch_ps_regnum (gdbarch, AMD64_EFLAGS_REGNUM); /* %eflags */
2667 set_gdbarch_fp0_regnum (gdbarch, AMD64_ST0_REGNUM); /* %st(0) */
2668
2669 /* The "default" register numbering scheme for AMD64 is referred to
2670 as the "DWARF Register Number Mapping" in the System V psABI.
2671 The preferred debugging format for all known AMD64 targets is
2672 actually DWARF2, and GCC doesn't seem to support DWARF (that is
2673 DWARF-1), but we provide the same mapping just in case. This
2674 mapping is also used for stabs, which GCC does support. */
2675 set_gdbarch_stab_reg_to_regnum (gdbarch, amd64_dwarf_reg_to_regnum);
2676 set_gdbarch_dwarf2_reg_to_regnum (gdbarch, amd64_dwarf_reg_to_regnum);
2677
2678 /* We don't override SDB_REG_RO_REGNUM, since COFF doesn't seem to
2679 be in use on any of the supported AMD64 targets. */
2680
2681 /* Call dummy code. */
2682 set_gdbarch_push_dummy_call (gdbarch, amd64_push_dummy_call);
2683 set_gdbarch_frame_align (gdbarch, amd64_frame_align);
2684 set_gdbarch_frame_red_zone_size (gdbarch, 128);
2685 tdep->call_dummy_num_integer_regs =
2686 ARRAY_SIZE (amd64_dummy_call_integer_regs);
2687 tdep->call_dummy_integer_regs = amd64_dummy_call_integer_regs;
2688 tdep->classify = amd64_classify;
2689
2690 set_gdbarch_convert_register_p (gdbarch, i387_convert_register_p);
2691 set_gdbarch_register_to_value (gdbarch, i387_register_to_value);
2692 set_gdbarch_value_to_register (gdbarch, i387_value_to_register);
2693
2694 set_gdbarch_return_value (gdbarch, amd64_return_value);
2695
2696 set_gdbarch_skip_prologue (gdbarch, amd64_skip_prologue);
2697
2698 tdep->record_regmap = amd64_record_regmap;
2699
2700 set_gdbarch_dummy_id (gdbarch, amd64_dummy_id);
2701
2702 /* Hook the function epilogue frame unwinder. This unwinder is
2703 appended to the list first, so that it supercedes the other
2704 unwinders in function epilogues. */
2705 frame_unwind_prepend_unwinder (gdbarch, &amd64_epilogue_frame_unwind);
2706
2707 /* Hook the prologue-based frame unwinders. */
2708 frame_unwind_append_unwinder (gdbarch, &amd64_sigtramp_frame_unwind);
2709 frame_unwind_append_unwinder (gdbarch, &amd64_frame_unwind);
2710 frame_base_set_default (gdbarch, &amd64_frame_base);
2711
2712 /* If we have a register mapping, enable the generic core file support. */
2713 if (tdep->gregset_reg_offset)
2714 set_gdbarch_regset_from_core_section (gdbarch,
2715 amd64_regset_from_core_section);
2716
2717 set_gdbarch_get_longjmp_target (gdbarch, amd64_get_longjmp_target);
2718
2719 set_gdbarch_relocate_instruction (gdbarch, amd64_relocate_instruction);
2720
2721 set_gdbarch_gen_return_address (gdbarch, amd64_gen_return_address);
2722
2723 /* SystemTap variables and functions. */
2724 set_gdbarch_stap_integer_prefix (gdbarch, "$");
2725 set_gdbarch_stap_register_prefix (gdbarch, "%");
2726 set_gdbarch_stap_register_indirection_prefix (gdbarch, "(");
2727 set_gdbarch_stap_register_indirection_suffix (gdbarch, ")");
2728 set_gdbarch_stap_is_single_operand (gdbarch,
2729 i386_stap_is_single_operand);
2730 set_gdbarch_stap_parse_special_token (gdbarch,
2731 i386_stap_parse_special_token);
2732 }
2733 \f
2734
2735 static struct type *
2736 amd64_x32_pseudo_register_type (struct gdbarch *gdbarch, int regnum)
2737 {
2738 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2739
2740 switch (regnum - tdep->eax_regnum)
2741 {
2742 case AMD64_RBP_REGNUM: /* %ebp */
2743 case AMD64_RSP_REGNUM: /* %esp */
2744 return builtin_type (gdbarch)->builtin_data_ptr;
2745 case AMD64_RIP_REGNUM: /* %eip */
2746 return builtin_type (gdbarch)->builtin_func_ptr;
2747 }
2748
2749 return i386_pseudo_register_type (gdbarch, regnum);
2750 }
2751
2752 void
2753 amd64_x32_init_abi (struct gdbarch_info info, struct gdbarch *gdbarch)
2754 {
2755 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2756 const struct target_desc *tdesc = info.target_desc;
2757
2758 amd64_init_abi (info, gdbarch);
2759
2760 if (! tdesc_has_registers (tdesc))
2761 tdesc = tdesc_x32;
2762 tdep->tdesc = tdesc;
2763
2764 tdep->num_dword_regs = 17;
2765 set_tdesc_pseudo_register_type (gdbarch, amd64_x32_pseudo_register_type);
2766
2767 set_gdbarch_long_bit (gdbarch, 32);
2768 set_gdbarch_ptr_bit (gdbarch, 32);
2769 }
2770
2771 /* Provide a prototype to silence -Wmissing-prototypes. */
2772 void _initialize_amd64_tdep (void);
2773
2774 void
2775 _initialize_amd64_tdep (void)
2776 {
2777 initialize_tdesc_amd64 ();
2778 initialize_tdesc_amd64_avx ();
2779 initialize_tdesc_x32 ();
2780 initialize_tdesc_x32_avx ();
2781 }
2782 \f
2783
2784 /* The 64-bit FXSAVE format differs from the 32-bit format in the
2785 sense that the instruction pointer and data pointer are simply
2786 64-bit offsets into the code segment and the data segment instead
2787 of a selector offset pair. The functions below store the upper 32
2788 bits of these pointers (instead of just the 16-bits of the segment
2789 selector). */
2790
2791 /* Fill register REGNUM in REGCACHE with the appropriate
2792 floating-point or SSE register value from *FXSAVE. If REGNUM is
2793 -1, do this for all registers. This function masks off any of the
2794 reserved bits in *FXSAVE. */
2795
2796 void
2797 amd64_supply_fxsave (struct regcache *regcache, int regnum,
2798 const void *fxsave)
2799 {
2800 struct gdbarch *gdbarch = get_regcache_arch (regcache);
2801 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2802
2803 i387_supply_fxsave (regcache, regnum, fxsave);
2804
2805 if (fxsave
2806 && gdbarch_bfd_arch_info (gdbarch)->bits_per_word == 64)
2807 {
2808 const gdb_byte *regs = fxsave;
2809
2810 if (regnum == -1 || regnum == I387_FISEG_REGNUM (tdep))
2811 regcache_raw_supply (regcache, I387_FISEG_REGNUM (tdep), regs + 12);
2812 if (regnum == -1 || regnum == I387_FOSEG_REGNUM (tdep))
2813 regcache_raw_supply (regcache, I387_FOSEG_REGNUM (tdep), regs + 20);
2814 }
2815 }
2816
2817 /* Similar to amd64_supply_fxsave, but use XSAVE extended state. */
2818
2819 void
2820 amd64_supply_xsave (struct regcache *regcache, int regnum,
2821 const void *xsave)
2822 {
2823 struct gdbarch *gdbarch = get_regcache_arch (regcache);
2824 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2825
2826 i387_supply_xsave (regcache, regnum, xsave);
2827
2828 if (xsave
2829 && gdbarch_bfd_arch_info (gdbarch)->bits_per_word == 64)
2830 {
2831 const gdb_byte *regs = xsave;
2832
2833 if (regnum == -1 || regnum == I387_FISEG_REGNUM (tdep))
2834 regcache_raw_supply (regcache, I387_FISEG_REGNUM (tdep),
2835 regs + 12);
2836 if (regnum == -1 || regnum == I387_FOSEG_REGNUM (tdep))
2837 regcache_raw_supply (regcache, I387_FOSEG_REGNUM (tdep),
2838 regs + 20);
2839 }
2840 }
2841
2842 /* Fill register REGNUM (if it is a floating-point or SSE register) in
2843 *FXSAVE with the value from REGCACHE. If REGNUM is -1, do this for
2844 all registers. This function doesn't touch any of the reserved
2845 bits in *FXSAVE. */
2846
2847 void
2848 amd64_collect_fxsave (const struct regcache *regcache, int regnum,
2849 void *fxsave)
2850 {
2851 struct gdbarch *gdbarch = get_regcache_arch (regcache);
2852 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2853 gdb_byte *regs = fxsave;
2854
2855 i387_collect_fxsave (regcache, regnum, fxsave);
2856
2857 if (gdbarch_bfd_arch_info (gdbarch)->bits_per_word == 64)
2858 {
2859 if (regnum == -1 || regnum == I387_FISEG_REGNUM (tdep))
2860 regcache_raw_collect (regcache, I387_FISEG_REGNUM (tdep), regs + 12);
2861 if (regnum == -1 || regnum == I387_FOSEG_REGNUM (tdep))
2862 regcache_raw_collect (regcache, I387_FOSEG_REGNUM (tdep), regs + 20);
2863 }
2864 }
2865
2866 /* Similar to amd64_collect_fxsave, but use XSAVE extended state. */
2867
2868 void
2869 amd64_collect_xsave (const struct regcache *regcache, int regnum,
2870 void *xsave, int gcore)
2871 {
2872 struct gdbarch *gdbarch = get_regcache_arch (regcache);
2873 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2874 gdb_byte *regs = xsave;
2875
2876 i387_collect_xsave (regcache, regnum, xsave, gcore);
2877
2878 if (gdbarch_bfd_arch_info (gdbarch)->bits_per_word == 64)
2879 {
2880 if (regnum == -1 || regnum == I387_FISEG_REGNUM (tdep))
2881 regcache_raw_collect (regcache, I387_FISEG_REGNUM (tdep),
2882 regs + 12);
2883 if (regnum == -1 || regnum == I387_FOSEG_REGNUM (tdep))
2884 regcache_raw_collect (regcache, I387_FOSEG_REGNUM (tdep),
2885 regs + 20);
2886 }
2887 }
This page took 0.086039 seconds and 5 git commands to generate.