* amd64-tdep.c (amd64_get_unused_input_int_reg): Rename `index' to
[deliverable/binutils-gdb.git] / gdb / amd64-tdep.c
1 /* Target-dependent code for AMD64.
2
3 Copyright (C) 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009, 2010,
4 2011 Free Software Foundation, Inc.
5
6 Contributed by Jiri Smid, SuSE Labs.
7
8 This file is part of GDB.
9
10 This program is free software; you can redistribute it and/or modify
11 it under the terms of the GNU General Public License as published by
12 the Free Software Foundation; either version 3 of the License, or
13 (at your option) any later version.
14
15 This program is distributed in the hope that it will be useful,
16 but WITHOUT ANY WARRANTY; without even the implied warranty of
17 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
18 GNU General Public License for more details.
19
20 You should have received a copy of the GNU General Public License
21 along with this program. If not, see <http://www.gnu.org/licenses/>. */
22
23 #include "defs.h"
24 #include "opcode/i386.h"
25 #include "dis-asm.h"
26 #include "arch-utils.h"
27 #include "block.h"
28 #include "dummy-frame.h"
29 #include "frame.h"
30 #include "frame-base.h"
31 #include "frame-unwind.h"
32 #include "inferior.h"
33 #include "gdbcmd.h"
34 #include "gdbcore.h"
35 #include "objfiles.h"
36 #include "regcache.h"
37 #include "regset.h"
38 #include "symfile.h"
39 #include "disasm.h"
40 #include "gdb_assert.h"
41 #include "exceptions.h"
42 #include "amd64-tdep.h"
43 #include "i387-tdep.h"
44
45 #include "features/i386/amd64.c"
46 #include "features/i386/amd64-avx.c"
47
48 #include "ax.h"
49 #include "ax-gdb.h"
50
51 /* Note that the AMD64 architecture was previously known as x86-64.
52 The latter is (forever) engraved into the canonical system name as
53 returned by config.guess, and used as the name for the AMD64 port
54 of GNU/Linux. The BSD's have renamed their ports to amd64; they
55 don't like to shout. For GDB we prefer the amd64_-prefix over the
56 x86_64_-prefix since it's so much easier to type. */
57
58 /* Register information. */
59
60 static const char *amd64_register_names[] =
61 {
62 "rax", "rbx", "rcx", "rdx", "rsi", "rdi", "rbp", "rsp",
63
64 /* %r8 is indeed register number 8. */
65 "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15",
66 "rip", "eflags", "cs", "ss", "ds", "es", "fs", "gs",
67
68 /* %st0 is register number 24. */
69 "st0", "st1", "st2", "st3", "st4", "st5", "st6", "st7",
70 "fctrl", "fstat", "ftag", "fiseg", "fioff", "foseg", "fooff", "fop",
71
72 /* %xmm0 is register number 40. */
73 "xmm0", "xmm1", "xmm2", "xmm3", "xmm4", "xmm5", "xmm6", "xmm7",
74 "xmm8", "xmm9", "xmm10", "xmm11", "xmm12", "xmm13", "xmm14", "xmm15",
75 "mxcsr",
76 };
77
78 static const char *amd64_ymm_names[] =
79 {
80 "ymm0", "ymm1", "ymm2", "ymm3",
81 "ymm4", "ymm5", "ymm6", "ymm7",
82 "ymm8", "ymm9", "ymm10", "ymm11",
83 "ymm12", "ymm13", "ymm14", "ymm15"
84 };
85
86 static const char *amd64_ymmh_names[] =
87 {
88 "ymm0h", "ymm1h", "ymm2h", "ymm3h",
89 "ymm4h", "ymm5h", "ymm6h", "ymm7h",
90 "ymm8h", "ymm9h", "ymm10h", "ymm11h",
91 "ymm12h", "ymm13h", "ymm14h", "ymm15h"
92 };
93
94 /* The registers used to pass integer arguments during a function call. */
95 static int amd64_dummy_call_integer_regs[] =
96 {
97 AMD64_RDI_REGNUM, /* %rdi */
98 AMD64_RSI_REGNUM, /* %rsi */
99 AMD64_RDX_REGNUM, /* %rdx */
100 AMD64_RCX_REGNUM, /* %rcx */
101 8, /* %r8 */
102 9 /* %r9 */
103 };
104
105 /* DWARF Register Number Mapping as defined in the System V psABI,
106 section 3.6. */
107
108 static int amd64_dwarf_regmap[] =
109 {
110 /* General Purpose Registers RAX, RDX, RCX, RBX, RSI, RDI. */
111 AMD64_RAX_REGNUM, AMD64_RDX_REGNUM,
112 AMD64_RCX_REGNUM, AMD64_RBX_REGNUM,
113 AMD64_RSI_REGNUM, AMD64_RDI_REGNUM,
114
115 /* Frame Pointer Register RBP. */
116 AMD64_RBP_REGNUM,
117
118 /* Stack Pointer Register RSP. */
119 AMD64_RSP_REGNUM,
120
121 /* Extended Integer Registers 8 - 15. */
122 8, 9, 10, 11, 12, 13, 14, 15,
123
124 /* Return Address RA. Mapped to RIP. */
125 AMD64_RIP_REGNUM,
126
127 /* SSE Registers 0 - 7. */
128 AMD64_XMM0_REGNUM + 0, AMD64_XMM1_REGNUM,
129 AMD64_XMM0_REGNUM + 2, AMD64_XMM0_REGNUM + 3,
130 AMD64_XMM0_REGNUM + 4, AMD64_XMM0_REGNUM + 5,
131 AMD64_XMM0_REGNUM + 6, AMD64_XMM0_REGNUM + 7,
132
133 /* Extended SSE Registers 8 - 15. */
134 AMD64_XMM0_REGNUM + 8, AMD64_XMM0_REGNUM + 9,
135 AMD64_XMM0_REGNUM + 10, AMD64_XMM0_REGNUM + 11,
136 AMD64_XMM0_REGNUM + 12, AMD64_XMM0_REGNUM + 13,
137 AMD64_XMM0_REGNUM + 14, AMD64_XMM0_REGNUM + 15,
138
139 /* Floating Point Registers 0-7. */
140 AMD64_ST0_REGNUM + 0, AMD64_ST0_REGNUM + 1,
141 AMD64_ST0_REGNUM + 2, AMD64_ST0_REGNUM + 3,
142 AMD64_ST0_REGNUM + 4, AMD64_ST0_REGNUM + 5,
143 AMD64_ST0_REGNUM + 6, AMD64_ST0_REGNUM + 7,
144
145 /* Control and Status Flags Register. */
146 AMD64_EFLAGS_REGNUM,
147
148 /* Selector Registers. */
149 AMD64_ES_REGNUM,
150 AMD64_CS_REGNUM,
151 AMD64_SS_REGNUM,
152 AMD64_DS_REGNUM,
153 AMD64_FS_REGNUM,
154 AMD64_GS_REGNUM,
155 -1,
156 -1,
157
158 /* Segment Base Address Registers. */
159 -1,
160 -1,
161 -1,
162 -1,
163
164 /* Special Selector Registers. */
165 -1,
166 -1,
167
168 /* Floating Point Control Registers. */
169 AMD64_MXCSR_REGNUM,
170 AMD64_FCTRL_REGNUM,
171 AMD64_FSTAT_REGNUM
172 };
173
174 static const int amd64_dwarf_regmap_len =
175 (sizeof (amd64_dwarf_regmap) / sizeof (amd64_dwarf_regmap[0]));
176
177 /* Convert DWARF register number REG to the appropriate register
178 number used by GDB. */
179
180 static int
181 amd64_dwarf_reg_to_regnum (struct gdbarch *gdbarch, int reg)
182 {
183 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
184 int ymm0_regnum = tdep->ymm0_regnum;
185 int regnum = -1;
186
187 if (reg >= 0 && reg < amd64_dwarf_regmap_len)
188 regnum = amd64_dwarf_regmap[reg];
189
190 if (regnum == -1)
191 warning (_("Unmapped DWARF Register #%d encountered."), reg);
192 else if (ymm0_regnum >= 0
193 && i386_xmm_regnum_p (gdbarch, regnum))
194 regnum += ymm0_regnum - I387_XMM0_REGNUM (tdep);
195
196 return regnum;
197 }
198
199 /* Map architectural register numbers to gdb register numbers. */
200
201 static const int amd64_arch_regmap[16] =
202 {
203 AMD64_RAX_REGNUM, /* %rax */
204 AMD64_RCX_REGNUM, /* %rcx */
205 AMD64_RDX_REGNUM, /* %rdx */
206 AMD64_RBX_REGNUM, /* %rbx */
207 AMD64_RSP_REGNUM, /* %rsp */
208 AMD64_RBP_REGNUM, /* %rbp */
209 AMD64_RSI_REGNUM, /* %rsi */
210 AMD64_RDI_REGNUM, /* %rdi */
211 AMD64_R8_REGNUM, /* %r8 */
212 AMD64_R9_REGNUM, /* %r9 */
213 AMD64_R10_REGNUM, /* %r10 */
214 AMD64_R11_REGNUM, /* %r11 */
215 AMD64_R12_REGNUM, /* %r12 */
216 AMD64_R13_REGNUM, /* %r13 */
217 AMD64_R14_REGNUM, /* %r14 */
218 AMD64_R15_REGNUM /* %r15 */
219 };
220
221 static const int amd64_arch_regmap_len =
222 (sizeof (amd64_arch_regmap) / sizeof (amd64_arch_regmap[0]));
223
224 /* Convert architectural register number REG to the appropriate register
225 number used by GDB. */
226
227 static int
228 amd64_arch_reg_to_regnum (int reg)
229 {
230 gdb_assert (reg >= 0 && reg < amd64_arch_regmap_len);
231
232 return amd64_arch_regmap[reg];
233 }
234
235 /* Register names for byte pseudo-registers. */
236
237 static const char *amd64_byte_names[] =
238 {
239 "al", "bl", "cl", "dl", "sil", "dil", "bpl", "spl",
240 "r8l", "r9l", "r10l", "r11l", "r12l", "r13l", "r14l", "r15l",
241 "ah", "bh", "ch", "dh"
242 };
243
244 /* Number of lower byte registers. */
245 #define AMD64_NUM_LOWER_BYTE_REGS 16
246
247 /* Register names for word pseudo-registers. */
248
249 static const char *amd64_word_names[] =
250 {
251 "ax", "bx", "cx", "dx", "si", "di", "bp", "",
252 "r8w", "r9w", "r10w", "r11w", "r12w", "r13w", "r14w", "r15w"
253 };
254
255 /* Register names for dword pseudo-registers. */
256
257 static const char *amd64_dword_names[] =
258 {
259 "eax", "ebx", "ecx", "edx", "esi", "edi", "ebp", "esp",
260 "r8d", "r9d", "r10d", "r11d", "r12d", "r13d", "r14d", "r15d"
261 };
262
263 /* Return the name of register REGNUM. */
264
265 static const char *
266 amd64_pseudo_register_name (struct gdbarch *gdbarch, int regnum)
267 {
268 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
269 if (i386_byte_regnum_p (gdbarch, regnum))
270 return amd64_byte_names[regnum - tdep->al_regnum];
271 else if (i386_ymm_regnum_p (gdbarch, regnum))
272 return amd64_ymm_names[regnum - tdep->ymm0_regnum];
273 else if (i386_word_regnum_p (gdbarch, regnum))
274 return amd64_word_names[regnum - tdep->ax_regnum];
275 else if (i386_dword_regnum_p (gdbarch, regnum))
276 return amd64_dword_names[regnum - tdep->eax_regnum];
277 else
278 return i386_pseudo_register_name (gdbarch, regnum);
279 }
280
281 static struct value *
282 amd64_pseudo_register_read_value (struct gdbarch *gdbarch,
283 struct regcache *regcache,
284 int regnum)
285 {
286 gdb_byte raw_buf[MAX_REGISTER_SIZE];
287 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
288 enum register_status status;
289 struct value *result_value;
290 gdb_byte *buf;
291
292 result_value = allocate_value (register_type (gdbarch, regnum));
293 VALUE_LVAL (result_value) = lval_register;
294 VALUE_REGNUM (result_value) = regnum;
295 buf = value_contents_raw (result_value);
296
297 if (i386_byte_regnum_p (gdbarch, regnum))
298 {
299 int gpnum = regnum - tdep->al_regnum;
300
301 /* Extract (always little endian). */
302 if (gpnum >= AMD64_NUM_LOWER_BYTE_REGS)
303 {
304 /* Special handling for AH, BH, CH, DH. */
305 status = regcache_raw_read (regcache,
306 gpnum - AMD64_NUM_LOWER_BYTE_REGS,
307 raw_buf);
308 if (status == REG_VALID)
309 memcpy (buf, raw_buf + 1, 1);
310 else
311 mark_value_bytes_unavailable (result_value, 0,
312 TYPE_LENGTH (value_type (result_value)));
313 }
314 else
315 {
316 status = regcache_raw_read (regcache, gpnum, raw_buf);
317 if (status == REG_VALID)
318 memcpy (buf, raw_buf, 1);
319 else
320 mark_value_bytes_unavailable (result_value, 0,
321 TYPE_LENGTH (value_type (result_value)));
322 }
323 }
324 else if (i386_dword_regnum_p (gdbarch, regnum))
325 {
326 int gpnum = regnum - tdep->eax_regnum;
327 /* Extract (always little endian). */
328 status = regcache_raw_read (regcache, gpnum, raw_buf);
329 if (status == REG_VALID)
330 memcpy (buf, raw_buf, 4);
331 else
332 mark_value_bytes_unavailable (result_value, 0,
333 TYPE_LENGTH (value_type (result_value)));
334 }
335 else
336 i386_pseudo_register_read_into_value (gdbarch, regcache, regnum,
337 result_value);
338
339 return result_value;
340 }
341
342 static void
343 amd64_pseudo_register_write (struct gdbarch *gdbarch,
344 struct regcache *regcache,
345 int regnum, const gdb_byte *buf)
346 {
347 gdb_byte raw_buf[MAX_REGISTER_SIZE];
348 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
349
350 if (i386_byte_regnum_p (gdbarch, regnum))
351 {
352 int gpnum = regnum - tdep->al_regnum;
353
354 if (gpnum >= AMD64_NUM_LOWER_BYTE_REGS)
355 {
356 /* Read ... AH, BH, CH, DH. */
357 regcache_raw_read (regcache,
358 gpnum - AMD64_NUM_LOWER_BYTE_REGS, raw_buf);
359 /* ... Modify ... (always little endian). */
360 memcpy (raw_buf + 1, buf, 1);
361 /* ... Write. */
362 regcache_raw_write (regcache,
363 gpnum - AMD64_NUM_LOWER_BYTE_REGS, raw_buf);
364 }
365 else
366 {
367 /* Read ... */
368 regcache_raw_read (regcache, gpnum, raw_buf);
369 /* ... Modify ... (always little endian). */
370 memcpy (raw_buf, buf, 1);
371 /* ... Write. */
372 regcache_raw_write (regcache, gpnum, raw_buf);
373 }
374 }
375 else if (i386_dword_regnum_p (gdbarch, regnum))
376 {
377 int gpnum = regnum - tdep->eax_regnum;
378
379 /* Read ... */
380 regcache_raw_read (regcache, gpnum, raw_buf);
381 /* ... Modify ... (always little endian). */
382 memcpy (raw_buf, buf, 4);
383 /* ... Write. */
384 regcache_raw_write (regcache, gpnum, raw_buf);
385 }
386 else
387 i386_pseudo_register_write (gdbarch, regcache, regnum, buf);
388 }
389
390 \f
391
392 /* Return the union class of CLASS1 and CLASS2. See the psABI for
393 details. */
394
395 static enum amd64_reg_class
396 amd64_merge_classes (enum amd64_reg_class class1, enum amd64_reg_class class2)
397 {
398 /* Rule (a): If both classes are equal, this is the resulting class. */
399 if (class1 == class2)
400 return class1;
401
402 /* Rule (b): If one of the classes is NO_CLASS, the resulting class
403 is the other class. */
404 if (class1 == AMD64_NO_CLASS)
405 return class2;
406 if (class2 == AMD64_NO_CLASS)
407 return class1;
408
409 /* Rule (c): If one of the classes is MEMORY, the result is MEMORY. */
410 if (class1 == AMD64_MEMORY || class2 == AMD64_MEMORY)
411 return AMD64_MEMORY;
412
413 /* Rule (d): If one of the classes is INTEGER, the result is INTEGER. */
414 if (class1 == AMD64_INTEGER || class2 == AMD64_INTEGER)
415 return AMD64_INTEGER;
416
417 /* Rule (e): If one of the classes is X87, X87UP, COMPLEX_X87 class,
418 MEMORY is used as class. */
419 if (class1 == AMD64_X87 || class1 == AMD64_X87UP
420 || class1 == AMD64_COMPLEX_X87 || class2 == AMD64_X87
421 || class2 == AMD64_X87UP || class2 == AMD64_COMPLEX_X87)
422 return AMD64_MEMORY;
423
424 /* Rule (f): Otherwise class SSE is used. */
425 return AMD64_SSE;
426 }
427
428 /* Return non-zero if TYPE is a non-POD structure or union type. */
429
430 static int
431 amd64_non_pod_p (struct type *type)
432 {
433 /* ??? A class with a base class certainly isn't POD, but does this
434 catch all non-POD structure types? */
435 if (TYPE_CODE (type) == TYPE_CODE_STRUCT && TYPE_N_BASECLASSES (type) > 0)
436 return 1;
437
438 return 0;
439 }
440
441 /* Classify TYPE according to the rules for aggregate (structures and
442 arrays) and union types, and store the result in CLASS. */
443
444 static void
445 amd64_classify_aggregate (struct type *type, enum amd64_reg_class class[2])
446 {
447 int len = TYPE_LENGTH (type);
448
449 /* 1. If the size of an object is larger than two eightbytes, or in
450 C++, is a non-POD structure or union type, or contains
451 unaligned fields, it has class memory. */
452 if (len > 16 || amd64_non_pod_p (type))
453 {
454 class[0] = class[1] = AMD64_MEMORY;
455 return;
456 }
457
458 /* 2. Both eightbytes get initialized to class NO_CLASS. */
459 class[0] = class[1] = AMD64_NO_CLASS;
460
461 /* 3. Each field of an object is classified recursively so that
462 always two fields are considered. The resulting class is
463 calculated according to the classes of the fields in the
464 eightbyte: */
465
466 if (TYPE_CODE (type) == TYPE_CODE_ARRAY)
467 {
468 struct type *subtype = check_typedef (TYPE_TARGET_TYPE (type));
469
470 /* All fields in an array have the same type. */
471 amd64_classify (subtype, class);
472 if (len > 8 && class[1] == AMD64_NO_CLASS)
473 class[1] = class[0];
474 }
475 else
476 {
477 int i;
478
479 /* Structure or union. */
480 gdb_assert (TYPE_CODE (type) == TYPE_CODE_STRUCT
481 || TYPE_CODE (type) == TYPE_CODE_UNION);
482
483 for (i = 0; i < TYPE_NFIELDS (type); i++)
484 {
485 struct type *subtype = check_typedef (TYPE_FIELD_TYPE (type, i));
486 int pos = TYPE_FIELD_BITPOS (type, i) / 64;
487 enum amd64_reg_class subclass[2];
488 int bitsize = TYPE_FIELD_BITSIZE (type, i);
489 int endpos;
490
491 if (bitsize == 0)
492 bitsize = TYPE_LENGTH (subtype) * 8;
493 endpos = (TYPE_FIELD_BITPOS (type, i) + bitsize - 1) / 64;
494
495 /* Ignore static fields. */
496 if (field_is_static (&TYPE_FIELD (type, i)))
497 continue;
498
499 gdb_assert (pos == 0 || pos == 1);
500
501 amd64_classify (subtype, subclass);
502 class[pos] = amd64_merge_classes (class[pos], subclass[0]);
503 if (bitsize <= 64 && pos == 0 && endpos == 1)
504 /* This is a bit of an odd case: We have a field that would
505 normally fit in one of the two eightbytes, except that
506 it is placed in a way that this field straddles them.
507 This has been seen with a structure containing an array.
508
509 The ABI is a bit unclear in this case, but we assume that
510 this field's class (stored in subclass[0]) must also be merged
511 into class[1]. In other words, our field has a piece stored
512 in the second eight-byte, and thus its class applies to
513 the second eight-byte as well.
514
515 In the case where the field length exceeds 8 bytes,
516 it should not be necessary to merge the field class
517 into class[1]. As LEN > 8, subclass[1] is necessarily
518 different from AMD64_NO_CLASS. If subclass[1] is equal
519 to subclass[0], then the normal class[1]/subclass[1]
520 merging will take care of everything. For subclass[1]
521 to be different from subclass[0], I can only see the case
522 where we have a SSE/SSEUP or X87/X87UP pair, which both
523 use up all 16 bytes of the aggregate, and are already
524 handled just fine (because each portion sits on its own
525 8-byte). */
526 class[1] = amd64_merge_classes (class[1], subclass[0]);
527 if (pos == 0)
528 class[1] = amd64_merge_classes (class[1], subclass[1]);
529 }
530 }
531
532 /* 4. Then a post merger cleanup is done: */
533
534 /* Rule (a): If one of the classes is MEMORY, the whole argument is
535 passed in memory. */
536 if (class[0] == AMD64_MEMORY || class[1] == AMD64_MEMORY)
537 class[0] = class[1] = AMD64_MEMORY;
538
539 /* Rule (b): If SSEUP is not preceded by SSE, it is converted to
540 SSE. */
541 if (class[0] == AMD64_SSEUP)
542 class[0] = AMD64_SSE;
543 if (class[1] == AMD64_SSEUP && class[0] != AMD64_SSE)
544 class[1] = AMD64_SSE;
545 }
546
547 /* Classify TYPE, and store the result in CLASS. */
548
549 void
550 amd64_classify (struct type *type, enum amd64_reg_class class[2])
551 {
552 enum type_code code = TYPE_CODE (type);
553 int len = TYPE_LENGTH (type);
554
555 class[0] = class[1] = AMD64_NO_CLASS;
556
557 /* Arguments of types (signed and unsigned) _Bool, char, short, int,
558 long, long long, and pointers are in the INTEGER class. Similarly,
559 range types, used by languages such as Ada, are also in the INTEGER
560 class. */
561 if ((code == TYPE_CODE_INT || code == TYPE_CODE_ENUM
562 || code == TYPE_CODE_BOOL || code == TYPE_CODE_RANGE
563 || code == TYPE_CODE_CHAR
564 || code == TYPE_CODE_PTR || code == TYPE_CODE_REF)
565 && (len == 1 || len == 2 || len == 4 || len == 8))
566 class[0] = AMD64_INTEGER;
567
568 /* Arguments of types float, double, _Decimal32, _Decimal64 and __m64
569 are in class SSE. */
570 else if ((code == TYPE_CODE_FLT || code == TYPE_CODE_DECFLOAT)
571 && (len == 4 || len == 8))
572 /* FIXME: __m64 . */
573 class[0] = AMD64_SSE;
574
575 /* Arguments of types __float128, _Decimal128 and __m128 are split into
576 two halves. The least significant ones belong to class SSE, the most
577 significant one to class SSEUP. */
578 else if (code == TYPE_CODE_DECFLOAT && len == 16)
579 /* FIXME: __float128, __m128. */
580 class[0] = AMD64_SSE, class[1] = AMD64_SSEUP;
581
582 /* The 64-bit mantissa of arguments of type long double belongs to
583 class X87, the 16-bit exponent plus 6 bytes of padding belongs to
584 class X87UP. */
585 else if (code == TYPE_CODE_FLT && len == 16)
586 /* Class X87 and X87UP. */
587 class[0] = AMD64_X87, class[1] = AMD64_X87UP;
588
589 /* Aggregates. */
590 else if (code == TYPE_CODE_ARRAY || code == TYPE_CODE_STRUCT
591 || code == TYPE_CODE_UNION)
592 amd64_classify_aggregate (type, class);
593 }
594
595 static enum return_value_convention
596 amd64_return_value (struct gdbarch *gdbarch, struct type *func_type,
597 struct type *type, struct regcache *regcache,
598 gdb_byte *readbuf, const gdb_byte *writebuf)
599 {
600 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
601 enum amd64_reg_class class[2];
602 int len = TYPE_LENGTH (type);
603 static int integer_regnum[] = { AMD64_RAX_REGNUM, AMD64_RDX_REGNUM };
604 static int sse_regnum[] = { AMD64_XMM0_REGNUM, AMD64_XMM1_REGNUM };
605 int integer_reg = 0;
606 int sse_reg = 0;
607 int i;
608
609 gdb_assert (!(readbuf && writebuf));
610 gdb_assert (tdep->classify);
611
612 /* 1. Classify the return type with the classification algorithm. */
613 tdep->classify (type, class);
614
615 /* 2. If the type has class MEMORY, then the caller provides space
616 for the return value and passes the address of this storage in
617 %rdi as if it were the first argument to the function. In effect,
618 this address becomes a hidden first argument.
619
620 On return %rax will contain the address that has been passed in
621 by the caller in %rdi. */
622 if (class[0] == AMD64_MEMORY)
623 {
624 /* As indicated by the comment above, the ABI guarantees that we
625 can always find the return value just after the function has
626 returned. */
627
628 if (readbuf)
629 {
630 ULONGEST addr;
631
632 regcache_raw_read_unsigned (regcache, AMD64_RAX_REGNUM, &addr);
633 read_memory (addr, readbuf, TYPE_LENGTH (type));
634 }
635
636 return RETURN_VALUE_ABI_RETURNS_ADDRESS;
637 }
638
639 gdb_assert (class[1] != AMD64_MEMORY);
640 gdb_assert (len <= 16);
641
642 for (i = 0; len > 0; i++, len -= 8)
643 {
644 int regnum = -1;
645 int offset = 0;
646
647 switch (class[i])
648 {
649 case AMD64_INTEGER:
650 /* 3. If the class is INTEGER, the next available register
651 of the sequence %rax, %rdx is used. */
652 regnum = integer_regnum[integer_reg++];
653 break;
654
655 case AMD64_SSE:
656 /* 4. If the class is SSE, the next available SSE register
657 of the sequence %xmm0, %xmm1 is used. */
658 regnum = sse_regnum[sse_reg++];
659 break;
660
661 case AMD64_SSEUP:
662 /* 5. If the class is SSEUP, the eightbyte is passed in the
663 upper half of the last used SSE register. */
664 gdb_assert (sse_reg > 0);
665 regnum = sse_regnum[sse_reg - 1];
666 offset = 8;
667 break;
668
669 case AMD64_X87:
670 /* 6. If the class is X87, the value is returned on the X87
671 stack in %st0 as 80-bit x87 number. */
672 regnum = AMD64_ST0_REGNUM;
673 if (writebuf)
674 i387_return_value (gdbarch, regcache);
675 break;
676
677 case AMD64_X87UP:
678 /* 7. If the class is X87UP, the value is returned together
679 with the previous X87 value in %st0. */
680 gdb_assert (i > 0 && class[0] == AMD64_X87);
681 regnum = AMD64_ST0_REGNUM;
682 offset = 8;
683 len = 2;
684 break;
685
686 case AMD64_NO_CLASS:
687 continue;
688
689 default:
690 gdb_assert (!"Unexpected register class.");
691 }
692
693 gdb_assert (regnum != -1);
694
695 if (readbuf)
696 regcache_raw_read_part (regcache, regnum, offset, min (len, 8),
697 readbuf + i * 8);
698 if (writebuf)
699 regcache_raw_write_part (regcache, regnum, offset, min (len, 8),
700 writebuf + i * 8);
701 }
702
703 return RETURN_VALUE_REGISTER_CONVENTION;
704 }
705 \f
706
707 static CORE_ADDR
708 amd64_push_arguments (struct regcache *regcache, int nargs,
709 struct value **args, CORE_ADDR sp, int struct_return)
710 {
711 struct gdbarch *gdbarch = get_regcache_arch (regcache);
712 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
713 int *integer_regs = tdep->call_dummy_integer_regs;
714 int num_integer_regs = tdep->call_dummy_num_integer_regs;
715
716 static int sse_regnum[] =
717 {
718 /* %xmm0 ... %xmm7 */
719 AMD64_XMM0_REGNUM + 0, AMD64_XMM1_REGNUM,
720 AMD64_XMM0_REGNUM + 2, AMD64_XMM0_REGNUM + 3,
721 AMD64_XMM0_REGNUM + 4, AMD64_XMM0_REGNUM + 5,
722 AMD64_XMM0_REGNUM + 6, AMD64_XMM0_REGNUM + 7,
723 };
724 struct value **stack_args = alloca (nargs * sizeof (struct value *));
725 /* An array that mirrors the stack_args array. For all arguments
726 that are passed by MEMORY, if that argument's address also needs
727 to be stored in a register, the ARG_ADDR_REGNO array will contain
728 that register number (or a negative value otherwise). */
729 int *arg_addr_regno = alloca (nargs * sizeof (int));
730 int num_stack_args = 0;
731 int num_elements = 0;
732 int element = 0;
733 int integer_reg = 0;
734 int sse_reg = 0;
735 int i;
736
737 gdb_assert (tdep->classify);
738
739 /* Reserve a register for the "hidden" argument. */
740 if (struct_return)
741 integer_reg++;
742
743 for (i = 0; i < nargs; i++)
744 {
745 struct type *type = value_type (args[i]);
746 int len = TYPE_LENGTH (type);
747 enum amd64_reg_class class[2];
748 int needed_integer_regs = 0;
749 int needed_sse_regs = 0;
750 int j;
751
752 /* Classify argument. */
753 tdep->classify (type, class);
754
755 /* Calculate the number of integer and SSE registers needed for
756 this argument. */
757 for (j = 0; j < 2; j++)
758 {
759 if (class[j] == AMD64_INTEGER)
760 needed_integer_regs++;
761 else if (class[j] == AMD64_SSE)
762 needed_sse_regs++;
763 }
764
765 /* Check whether enough registers are available, and if the
766 argument should be passed in registers at all. */
767 if (integer_reg + needed_integer_regs > num_integer_regs
768 || sse_reg + needed_sse_regs > ARRAY_SIZE (sse_regnum)
769 || (needed_integer_regs == 0 && needed_sse_regs == 0))
770 {
771 /* The argument will be passed on the stack. */
772 num_elements += ((len + 7) / 8);
773 stack_args[num_stack_args] = args[i];
774 /* If this is an AMD64_MEMORY argument whose address must also
775 be passed in one of the integer registers, reserve that
776 register and associate this value to that register so that
777 we can store the argument address as soon as we know it. */
778 if (class[0] == AMD64_MEMORY
779 && tdep->memory_args_by_pointer
780 && integer_reg < tdep->call_dummy_num_integer_regs)
781 arg_addr_regno[num_stack_args] =
782 tdep->call_dummy_integer_regs[integer_reg++];
783 else
784 arg_addr_regno[num_stack_args] = -1;
785 num_stack_args++;
786 }
787 else
788 {
789 /* The argument will be passed in registers. */
790 const gdb_byte *valbuf = value_contents (args[i]);
791 gdb_byte buf[8];
792
793 gdb_assert (len <= 16);
794
795 for (j = 0; len > 0; j++, len -= 8)
796 {
797 int regnum = -1;
798 int offset = 0;
799
800 switch (class[j])
801 {
802 case AMD64_INTEGER:
803 regnum = integer_regs[integer_reg++];
804 break;
805
806 case AMD64_SSE:
807 regnum = sse_regnum[sse_reg++];
808 break;
809
810 case AMD64_SSEUP:
811 gdb_assert (sse_reg > 0);
812 regnum = sse_regnum[sse_reg - 1];
813 offset = 8;
814 break;
815
816 default:
817 gdb_assert (!"Unexpected register class.");
818 }
819
820 gdb_assert (regnum != -1);
821 memset (buf, 0, sizeof buf);
822 memcpy (buf, valbuf + j * 8, min (len, 8));
823 regcache_raw_write_part (regcache, regnum, offset, 8, buf);
824 }
825 }
826 }
827
828 /* Allocate space for the arguments on the stack. */
829 sp -= num_elements * 8;
830
831 /* The psABI says that "The end of the input argument area shall be
832 aligned on a 16 byte boundary." */
833 sp &= ~0xf;
834
835 /* Write out the arguments to the stack. */
836 for (i = 0; i < num_stack_args; i++)
837 {
838 struct type *type = value_type (stack_args[i]);
839 const gdb_byte *valbuf = value_contents (stack_args[i]);
840 int len = TYPE_LENGTH (type);
841 CORE_ADDR arg_addr = sp + element * 8;
842
843 write_memory (arg_addr, valbuf, len);
844 if (arg_addr_regno[i] >= 0)
845 {
846 /* We also need to store the address of that argument in
847 the given register. */
848 gdb_byte buf[8];
849 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
850
851 store_unsigned_integer (buf, 8, byte_order, arg_addr);
852 regcache_cooked_write (regcache, arg_addr_regno[i], buf);
853 }
854 element += ((len + 7) / 8);
855 }
856
857 /* The psABI says that "For calls that may call functions that use
858 varargs or stdargs (prototype-less calls or calls to functions
859 containing ellipsis (...) in the declaration) %al is used as
860 hidden argument to specify the number of SSE registers used. */
861 regcache_raw_write_unsigned (regcache, AMD64_RAX_REGNUM, sse_reg);
862 return sp;
863 }
864
865 static CORE_ADDR
866 amd64_push_dummy_call (struct gdbarch *gdbarch, struct value *function,
867 struct regcache *regcache, CORE_ADDR bp_addr,
868 int nargs, struct value **args, CORE_ADDR sp,
869 int struct_return, CORE_ADDR struct_addr)
870 {
871 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
872 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
873 gdb_byte buf[8];
874
875 /* Pass arguments. */
876 sp = amd64_push_arguments (regcache, nargs, args, sp, struct_return);
877
878 /* Pass "hidden" argument". */
879 if (struct_return)
880 {
881 /* The "hidden" argument is passed throught the first argument
882 register. */
883 const int arg_regnum = tdep->call_dummy_integer_regs[0];
884
885 store_unsigned_integer (buf, 8, byte_order, struct_addr);
886 regcache_cooked_write (regcache, arg_regnum, buf);
887 }
888
889 /* Reserve some memory on the stack for the integer-parameter registers,
890 if required by the ABI. */
891 if (tdep->integer_param_regs_saved_in_caller_frame)
892 sp -= tdep->call_dummy_num_integer_regs * 8;
893
894 /* Store return address. */
895 sp -= 8;
896 store_unsigned_integer (buf, 8, byte_order, bp_addr);
897 write_memory (sp, buf, 8);
898
899 /* Finally, update the stack pointer... */
900 store_unsigned_integer (buf, 8, byte_order, sp);
901 regcache_cooked_write (regcache, AMD64_RSP_REGNUM, buf);
902
903 /* ...and fake a frame pointer. */
904 regcache_cooked_write (regcache, AMD64_RBP_REGNUM, buf);
905
906 return sp + 16;
907 }
908 \f
909 /* Displaced instruction handling. */
910
911 /* A partially decoded instruction.
912 This contains enough details for displaced stepping purposes. */
913
914 struct amd64_insn
915 {
916 /* The number of opcode bytes. */
917 int opcode_len;
918 /* The offset of the rex prefix or -1 if not present. */
919 int rex_offset;
920 /* The offset to the first opcode byte. */
921 int opcode_offset;
922 /* The offset to the modrm byte or -1 if not present. */
923 int modrm_offset;
924
925 /* The raw instruction. */
926 gdb_byte *raw_insn;
927 };
928
929 struct displaced_step_closure
930 {
931 /* For rip-relative insns, saved copy of the reg we use instead of %rip. */
932 int tmp_used;
933 int tmp_regno;
934 ULONGEST tmp_save;
935
936 /* Details of the instruction. */
937 struct amd64_insn insn_details;
938
939 /* Amount of space allocated to insn_buf. */
940 int max_len;
941
942 /* The possibly modified insn.
943 This is a variable-length field. */
944 gdb_byte insn_buf[1];
945 };
946
947 /* WARNING: Keep onebyte_has_modrm, twobyte_has_modrm in sync with
948 ../opcodes/i386-dis.c (until libopcodes exports them, or an alternative,
949 at which point delete these in favor of libopcodes' versions). */
950
951 static const unsigned char onebyte_has_modrm[256] = {
952 /* 0 1 2 3 4 5 6 7 8 9 a b c d e f */
953 /* ------------------------------- */
954 /* 00 */ 1,1,1,1,0,0,0,0,1,1,1,1,0,0,0,0, /* 00 */
955 /* 10 */ 1,1,1,1,0,0,0,0,1,1,1,1,0,0,0,0, /* 10 */
956 /* 20 */ 1,1,1,1,0,0,0,0,1,1,1,1,0,0,0,0, /* 20 */
957 /* 30 */ 1,1,1,1,0,0,0,0,1,1,1,1,0,0,0,0, /* 30 */
958 /* 40 */ 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, /* 40 */
959 /* 50 */ 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, /* 50 */
960 /* 60 */ 0,0,1,1,0,0,0,0,0,1,0,1,0,0,0,0, /* 60 */
961 /* 70 */ 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, /* 70 */
962 /* 80 */ 1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1, /* 80 */
963 /* 90 */ 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, /* 90 */
964 /* a0 */ 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, /* a0 */
965 /* b0 */ 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, /* b0 */
966 /* c0 */ 1,1,0,0,1,1,1,1,0,0,0,0,0,0,0,0, /* c0 */
967 /* d0 */ 1,1,1,1,0,0,0,0,1,1,1,1,1,1,1,1, /* d0 */
968 /* e0 */ 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, /* e0 */
969 /* f0 */ 0,0,0,0,0,0,1,1,0,0,0,0,0,0,1,1 /* f0 */
970 /* ------------------------------- */
971 /* 0 1 2 3 4 5 6 7 8 9 a b c d e f */
972 };
973
974 static const unsigned char twobyte_has_modrm[256] = {
975 /* 0 1 2 3 4 5 6 7 8 9 a b c d e f */
976 /* ------------------------------- */
977 /* 00 */ 1,1,1,1,0,0,0,0,0,0,0,0,0,1,0,1, /* 0f */
978 /* 10 */ 1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1, /* 1f */
979 /* 20 */ 1,1,1,1,1,1,1,0,1,1,1,1,1,1,1,1, /* 2f */
980 /* 30 */ 0,0,0,0,0,0,0,0,1,0,1,0,0,0,0,0, /* 3f */
981 /* 40 */ 1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1, /* 4f */
982 /* 50 */ 1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1, /* 5f */
983 /* 60 */ 1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1, /* 6f */
984 /* 70 */ 1,1,1,1,1,1,1,0,1,1,1,1,1,1,1,1, /* 7f */
985 /* 80 */ 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, /* 8f */
986 /* 90 */ 1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1, /* 9f */
987 /* a0 */ 0,0,0,1,1,1,1,1,0,0,0,1,1,1,1,1, /* af */
988 /* b0 */ 1,1,1,1,1,1,1,1,1,0,1,1,1,1,1,1, /* bf */
989 /* c0 */ 1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0, /* cf */
990 /* d0 */ 1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1, /* df */
991 /* e0 */ 1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1, /* ef */
992 /* f0 */ 1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,0 /* ff */
993 /* ------------------------------- */
994 /* 0 1 2 3 4 5 6 7 8 9 a b c d e f */
995 };
996
997 static int amd64_syscall_p (const struct amd64_insn *insn, int *lengthp);
998
999 static int
1000 rex_prefix_p (gdb_byte pfx)
1001 {
1002 return REX_PREFIX_P (pfx);
1003 }
1004
1005 /* Skip the legacy instruction prefixes in INSN.
1006 We assume INSN is properly sentineled so we don't have to worry
1007 about falling off the end of the buffer. */
1008
1009 static gdb_byte *
1010 amd64_skip_prefixes (gdb_byte *insn)
1011 {
1012 while (1)
1013 {
1014 switch (*insn)
1015 {
1016 case DATA_PREFIX_OPCODE:
1017 case ADDR_PREFIX_OPCODE:
1018 case CS_PREFIX_OPCODE:
1019 case DS_PREFIX_OPCODE:
1020 case ES_PREFIX_OPCODE:
1021 case FS_PREFIX_OPCODE:
1022 case GS_PREFIX_OPCODE:
1023 case SS_PREFIX_OPCODE:
1024 case LOCK_PREFIX_OPCODE:
1025 case REPE_PREFIX_OPCODE:
1026 case REPNE_PREFIX_OPCODE:
1027 ++insn;
1028 continue;
1029 default:
1030 break;
1031 }
1032 break;
1033 }
1034
1035 return insn;
1036 }
1037
1038 /* Return an integer register (other than RSP) that is unused as an input
1039 operand in INSN.
1040 In order to not require adding a rex prefix if the insn doesn't already
1041 have one, the result is restricted to RAX ... RDI, sans RSP.
1042 The register numbering of the result follows architecture ordering,
1043 e.g. RDI = 7. */
1044
1045 static int
1046 amd64_get_unused_input_int_reg (const struct amd64_insn *details)
1047 {
1048 /* 1 bit for each reg */
1049 int used_regs_mask = 0;
1050
1051 /* There can be at most 3 int regs used as inputs in an insn, and we have
1052 7 to choose from (RAX ... RDI, sans RSP).
1053 This allows us to take a conservative approach and keep things simple.
1054 E.g. By avoiding RAX, we don't have to specifically watch for opcodes
1055 that implicitly specify RAX. */
1056
1057 /* Avoid RAX. */
1058 used_regs_mask |= 1 << EAX_REG_NUM;
1059 /* Similarily avoid RDX, implicit operand in divides. */
1060 used_regs_mask |= 1 << EDX_REG_NUM;
1061 /* Avoid RSP. */
1062 used_regs_mask |= 1 << ESP_REG_NUM;
1063
1064 /* If the opcode is one byte long and there's no ModRM byte,
1065 assume the opcode specifies a register. */
1066 if (details->opcode_len == 1 && details->modrm_offset == -1)
1067 used_regs_mask |= 1 << (details->raw_insn[details->opcode_offset] & 7);
1068
1069 /* Mark used regs in the modrm/sib bytes. */
1070 if (details->modrm_offset != -1)
1071 {
1072 int modrm = details->raw_insn[details->modrm_offset];
1073 int mod = MODRM_MOD_FIELD (modrm);
1074 int reg = MODRM_REG_FIELD (modrm);
1075 int rm = MODRM_RM_FIELD (modrm);
1076 int have_sib = mod != 3 && rm == 4;
1077
1078 /* Assume the reg field of the modrm byte specifies a register. */
1079 used_regs_mask |= 1 << reg;
1080
1081 if (have_sib)
1082 {
1083 int base = SIB_BASE_FIELD (details->raw_insn[details->modrm_offset + 1]);
1084 int idx = SIB_INDEX_FIELD (details->raw_insn[details->modrm_offset + 1]);
1085 used_regs_mask |= 1 << base;
1086 used_regs_mask |= 1 << idx;
1087 }
1088 else
1089 {
1090 used_regs_mask |= 1 << rm;
1091 }
1092 }
1093
1094 gdb_assert (used_regs_mask < 256);
1095 gdb_assert (used_regs_mask != 255);
1096
1097 /* Finally, find a free reg. */
1098 {
1099 int i;
1100
1101 for (i = 0; i < 8; ++i)
1102 {
1103 if (! (used_regs_mask & (1 << i)))
1104 return i;
1105 }
1106
1107 /* We shouldn't get here. */
1108 internal_error (__FILE__, __LINE__, _("unable to find free reg"));
1109 }
1110 }
1111
1112 /* Extract the details of INSN that we need. */
1113
1114 static void
1115 amd64_get_insn_details (gdb_byte *insn, struct amd64_insn *details)
1116 {
1117 gdb_byte *start = insn;
1118 int need_modrm;
1119
1120 details->raw_insn = insn;
1121
1122 details->opcode_len = -1;
1123 details->rex_offset = -1;
1124 details->opcode_offset = -1;
1125 details->modrm_offset = -1;
1126
1127 /* Skip legacy instruction prefixes. */
1128 insn = amd64_skip_prefixes (insn);
1129
1130 /* Skip REX instruction prefix. */
1131 if (rex_prefix_p (*insn))
1132 {
1133 details->rex_offset = insn - start;
1134 ++insn;
1135 }
1136
1137 details->opcode_offset = insn - start;
1138
1139 if (*insn == TWO_BYTE_OPCODE_ESCAPE)
1140 {
1141 /* Two or three-byte opcode. */
1142 ++insn;
1143 need_modrm = twobyte_has_modrm[*insn];
1144
1145 /* Check for three-byte opcode. */
1146 switch (*insn)
1147 {
1148 case 0x24:
1149 case 0x25:
1150 case 0x38:
1151 case 0x3a:
1152 case 0x7a:
1153 case 0x7b:
1154 ++insn;
1155 details->opcode_len = 3;
1156 break;
1157 default:
1158 details->opcode_len = 2;
1159 break;
1160 }
1161 }
1162 else
1163 {
1164 /* One-byte opcode. */
1165 need_modrm = onebyte_has_modrm[*insn];
1166 details->opcode_len = 1;
1167 }
1168
1169 if (need_modrm)
1170 {
1171 ++insn;
1172 details->modrm_offset = insn - start;
1173 }
1174 }
1175
1176 /* Update %rip-relative addressing in INSN.
1177
1178 %rip-relative addressing only uses a 32-bit displacement.
1179 32 bits is not enough to be guaranteed to cover the distance between where
1180 the real instruction is and where its copy is.
1181 Convert the insn to use base+disp addressing.
1182 We set base = pc + insn_length so we can leave disp unchanged. */
1183
1184 static void
1185 fixup_riprel (struct gdbarch *gdbarch, struct displaced_step_closure *dsc,
1186 CORE_ADDR from, CORE_ADDR to, struct regcache *regs)
1187 {
1188 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1189 const struct amd64_insn *insn_details = &dsc->insn_details;
1190 int modrm_offset = insn_details->modrm_offset;
1191 gdb_byte *insn = insn_details->raw_insn + modrm_offset;
1192 CORE_ADDR rip_base;
1193 int32_t disp;
1194 int insn_length;
1195 int arch_tmp_regno, tmp_regno;
1196 ULONGEST orig_value;
1197
1198 /* %rip+disp32 addressing mode, displacement follows ModRM byte. */
1199 ++insn;
1200
1201 /* Compute the rip-relative address. */
1202 disp = extract_signed_integer (insn, sizeof (int32_t), byte_order);
1203 insn_length = gdb_buffered_insn_length (gdbarch, dsc->insn_buf,
1204 dsc->max_len, from);
1205 rip_base = from + insn_length;
1206
1207 /* We need a register to hold the address.
1208 Pick one not used in the insn.
1209 NOTE: arch_tmp_regno uses architecture ordering, e.g. RDI = 7. */
1210 arch_tmp_regno = amd64_get_unused_input_int_reg (insn_details);
1211 tmp_regno = amd64_arch_reg_to_regnum (arch_tmp_regno);
1212
1213 /* REX.B should be unset as we were using rip-relative addressing,
1214 but ensure it's unset anyway, tmp_regno is not r8-r15. */
1215 if (insn_details->rex_offset != -1)
1216 dsc->insn_buf[insn_details->rex_offset] &= ~REX_B;
1217
1218 regcache_cooked_read_unsigned (regs, tmp_regno, &orig_value);
1219 dsc->tmp_regno = tmp_regno;
1220 dsc->tmp_save = orig_value;
1221 dsc->tmp_used = 1;
1222
1223 /* Convert the ModRM field to be base+disp. */
1224 dsc->insn_buf[modrm_offset] &= ~0xc7;
1225 dsc->insn_buf[modrm_offset] |= 0x80 + arch_tmp_regno;
1226
1227 regcache_cooked_write_unsigned (regs, tmp_regno, rip_base);
1228
1229 if (debug_displaced)
1230 fprintf_unfiltered (gdb_stdlog, "displaced: %%rip-relative addressing used.\n"
1231 "displaced: using temp reg %d, old value %s, new value %s\n",
1232 dsc->tmp_regno, paddress (gdbarch, dsc->tmp_save),
1233 paddress (gdbarch, rip_base));
1234 }
1235
1236 static void
1237 fixup_displaced_copy (struct gdbarch *gdbarch,
1238 struct displaced_step_closure *dsc,
1239 CORE_ADDR from, CORE_ADDR to, struct regcache *regs)
1240 {
1241 const struct amd64_insn *details = &dsc->insn_details;
1242
1243 if (details->modrm_offset != -1)
1244 {
1245 gdb_byte modrm = details->raw_insn[details->modrm_offset];
1246
1247 if ((modrm & 0xc7) == 0x05)
1248 {
1249 /* The insn uses rip-relative addressing.
1250 Deal with it. */
1251 fixup_riprel (gdbarch, dsc, from, to, regs);
1252 }
1253 }
1254 }
1255
1256 struct displaced_step_closure *
1257 amd64_displaced_step_copy_insn (struct gdbarch *gdbarch,
1258 CORE_ADDR from, CORE_ADDR to,
1259 struct regcache *regs)
1260 {
1261 int len = gdbarch_max_insn_length (gdbarch);
1262 /* Extra space for sentinels so fixup_{riprel,displaced_copy don't have to
1263 continually watch for running off the end of the buffer. */
1264 int fixup_sentinel_space = len;
1265 struct displaced_step_closure *dsc =
1266 xmalloc (sizeof (*dsc) + len + fixup_sentinel_space);
1267 gdb_byte *buf = &dsc->insn_buf[0];
1268 struct amd64_insn *details = &dsc->insn_details;
1269
1270 dsc->tmp_used = 0;
1271 dsc->max_len = len + fixup_sentinel_space;
1272
1273 read_memory (from, buf, len);
1274
1275 /* Set up the sentinel space so we don't have to worry about running
1276 off the end of the buffer. An excessive number of leading prefixes
1277 could otherwise cause this. */
1278 memset (buf + len, 0, fixup_sentinel_space);
1279
1280 amd64_get_insn_details (buf, details);
1281
1282 /* GDB may get control back after the insn after the syscall.
1283 Presumably this is a kernel bug.
1284 If this is a syscall, make sure there's a nop afterwards. */
1285 {
1286 int syscall_length;
1287
1288 if (amd64_syscall_p (details, &syscall_length))
1289 buf[details->opcode_offset + syscall_length] = NOP_OPCODE;
1290 }
1291
1292 /* Modify the insn to cope with the address where it will be executed from.
1293 In particular, handle any rip-relative addressing. */
1294 fixup_displaced_copy (gdbarch, dsc, from, to, regs);
1295
1296 write_memory (to, buf, len);
1297
1298 if (debug_displaced)
1299 {
1300 fprintf_unfiltered (gdb_stdlog, "displaced: copy %s->%s: ",
1301 paddress (gdbarch, from), paddress (gdbarch, to));
1302 displaced_step_dump_bytes (gdb_stdlog, buf, len);
1303 }
1304
1305 return dsc;
1306 }
1307
1308 static int
1309 amd64_absolute_jmp_p (const struct amd64_insn *details)
1310 {
1311 const gdb_byte *insn = &details->raw_insn[details->opcode_offset];
1312
1313 if (insn[0] == 0xff)
1314 {
1315 /* jump near, absolute indirect (/4) */
1316 if ((insn[1] & 0x38) == 0x20)
1317 return 1;
1318
1319 /* jump far, absolute indirect (/5) */
1320 if ((insn[1] & 0x38) == 0x28)
1321 return 1;
1322 }
1323
1324 return 0;
1325 }
1326
1327 static int
1328 amd64_absolute_call_p (const struct amd64_insn *details)
1329 {
1330 const gdb_byte *insn = &details->raw_insn[details->opcode_offset];
1331
1332 if (insn[0] == 0xff)
1333 {
1334 /* Call near, absolute indirect (/2) */
1335 if ((insn[1] & 0x38) == 0x10)
1336 return 1;
1337
1338 /* Call far, absolute indirect (/3) */
1339 if ((insn[1] & 0x38) == 0x18)
1340 return 1;
1341 }
1342
1343 return 0;
1344 }
1345
1346 static int
1347 amd64_ret_p (const struct amd64_insn *details)
1348 {
1349 /* NOTE: gcc can emit "repz ; ret". */
1350 const gdb_byte *insn = &details->raw_insn[details->opcode_offset];
1351
1352 switch (insn[0])
1353 {
1354 case 0xc2: /* ret near, pop N bytes */
1355 case 0xc3: /* ret near */
1356 case 0xca: /* ret far, pop N bytes */
1357 case 0xcb: /* ret far */
1358 case 0xcf: /* iret */
1359 return 1;
1360
1361 default:
1362 return 0;
1363 }
1364 }
1365
1366 static int
1367 amd64_call_p (const struct amd64_insn *details)
1368 {
1369 const gdb_byte *insn = &details->raw_insn[details->opcode_offset];
1370
1371 if (amd64_absolute_call_p (details))
1372 return 1;
1373
1374 /* call near, relative */
1375 if (insn[0] == 0xe8)
1376 return 1;
1377
1378 return 0;
1379 }
1380
1381 /* Return non-zero if INSN is a system call, and set *LENGTHP to its
1382 length in bytes. Otherwise, return zero. */
1383
1384 static int
1385 amd64_syscall_p (const struct amd64_insn *details, int *lengthp)
1386 {
1387 const gdb_byte *insn = &details->raw_insn[details->opcode_offset];
1388
1389 if (insn[0] == 0x0f && insn[1] == 0x05)
1390 {
1391 *lengthp = 2;
1392 return 1;
1393 }
1394
1395 return 0;
1396 }
1397
1398 /* Fix up the state of registers and memory after having single-stepped
1399 a displaced instruction. */
1400
1401 void
1402 amd64_displaced_step_fixup (struct gdbarch *gdbarch,
1403 struct displaced_step_closure *dsc,
1404 CORE_ADDR from, CORE_ADDR to,
1405 struct regcache *regs)
1406 {
1407 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1408 /* The offset we applied to the instruction's address. */
1409 ULONGEST insn_offset = to - from;
1410 gdb_byte *insn = dsc->insn_buf;
1411 const struct amd64_insn *insn_details = &dsc->insn_details;
1412
1413 if (debug_displaced)
1414 fprintf_unfiltered (gdb_stdlog,
1415 "displaced: fixup (%s, %s), "
1416 "insn = 0x%02x 0x%02x ...\n",
1417 paddress (gdbarch, from), paddress (gdbarch, to),
1418 insn[0], insn[1]);
1419
1420 /* If we used a tmp reg, restore it. */
1421
1422 if (dsc->tmp_used)
1423 {
1424 if (debug_displaced)
1425 fprintf_unfiltered (gdb_stdlog, "displaced: restoring reg %d to %s\n",
1426 dsc->tmp_regno, paddress (gdbarch, dsc->tmp_save));
1427 regcache_cooked_write_unsigned (regs, dsc->tmp_regno, dsc->tmp_save);
1428 }
1429
1430 /* The list of issues to contend with here is taken from
1431 resume_execution in arch/x86/kernel/kprobes.c, Linux 2.6.28.
1432 Yay for Free Software! */
1433
1434 /* Relocate the %rip back to the program's instruction stream,
1435 if necessary. */
1436
1437 /* Except in the case of absolute or indirect jump or call
1438 instructions, or a return instruction, the new rip is relative to
1439 the displaced instruction; make it relative to the original insn.
1440 Well, signal handler returns don't need relocation either, but we use the
1441 value of %rip to recognize those; see below. */
1442 if (! amd64_absolute_jmp_p (insn_details)
1443 && ! amd64_absolute_call_p (insn_details)
1444 && ! amd64_ret_p (insn_details))
1445 {
1446 ULONGEST orig_rip;
1447 int insn_len;
1448
1449 regcache_cooked_read_unsigned (regs, AMD64_RIP_REGNUM, &orig_rip);
1450
1451 /* A signal trampoline system call changes the %rip, resuming
1452 execution of the main program after the signal handler has
1453 returned. That makes them like 'return' instructions; we
1454 shouldn't relocate %rip.
1455
1456 But most system calls don't, and we do need to relocate %rip.
1457
1458 Our heuristic for distinguishing these cases: if stepping
1459 over the system call instruction left control directly after
1460 the instruction, the we relocate --- control almost certainly
1461 doesn't belong in the displaced copy. Otherwise, we assume
1462 the instruction has put control where it belongs, and leave
1463 it unrelocated. Goodness help us if there are PC-relative
1464 system calls. */
1465 if (amd64_syscall_p (insn_details, &insn_len)
1466 && orig_rip != to + insn_len
1467 /* GDB can get control back after the insn after the syscall.
1468 Presumably this is a kernel bug.
1469 Fixup ensures its a nop, we add one to the length for it. */
1470 && orig_rip != to + insn_len + 1)
1471 {
1472 if (debug_displaced)
1473 fprintf_unfiltered (gdb_stdlog,
1474 "displaced: syscall changed %%rip; "
1475 "not relocating\n");
1476 }
1477 else
1478 {
1479 ULONGEST rip = orig_rip - insn_offset;
1480
1481 /* If we just stepped over a breakpoint insn, we don't backup
1482 the pc on purpose; this is to match behaviour without
1483 stepping. */
1484
1485 regcache_cooked_write_unsigned (regs, AMD64_RIP_REGNUM, rip);
1486
1487 if (debug_displaced)
1488 fprintf_unfiltered (gdb_stdlog,
1489 "displaced: "
1490 "relocated %%rip from %s to %s\n",
1491 paddress (gdbarch, orig_rip),
1492 paddress (gdbarch, rip));
1493 }
1494 }
1495
1496 /* If the instruction was PUSHFL, then the TF bit will be set in the
1497 pushed value, and should be cleared. We'll leave this for later,
1498 since GDB already messes up the TF flag when stepping over a
1499 pushfl. */
1500
1501 /* If the instruction was a call, the return address now atop the
1502 stack is the address following the copied instruction. We need
1503 to make it the address following the original instruction. */
1504 if (amd64_call_p (insn_details))
1505 {
1506 ULONGEST rsp;
1507 ULONGEST retaddr;
1508 const ULONGEST retaddr_len = 8;
1509
1510 regcache_cooked_read_unsigned (regs, AMD64_RSP_REGNUM, &rsp);
1511 retaddr = read_memory_unsigned_integer (rsp, retaddr_len, byte_order);
1512 retaddr = (retaddr - insn_offset) & 0xffffffffUL;
1513 write_memory_unsigned_integer (rsp, retaddr_len, byte_order, retaddr);
1514
1515 if (debug_displaced)
1516 fprintf_unfiltered (gdb_stdlog,
1517 "displaced: relocated return addr at %s "
1518 "to %s\n",
1519 paddress (gdbarch, rsp),
1520 paddress (gdbarch, retaddr));
1521 }
1522 }
1523
1524 /* If the instruction INSN uses RIP-relative addressing, return the
1525 offset into the raw INSN where the displacement to be adjusted is
1526 found. Returns 0 if the instruction doesn't use RIP-relative
1527 addressing. */
1528
1529 static int
1530 rip_relative_offset (struct amd64_insn *insn)
1531 {
1532 if (insn->modrm_offset != -1)
1533 {
1534 gdb_byte modrm = insn->raw_insn[insn->modrm_offset];
1535
1536 if ((modrm & 0xc7) == 0x05)
1537 {
1538 /* The displacement is found right after the ModRM byte. */
1539 return insn->modrm_offset + 1;
1540 }
1541 }
1542
1543 return 0;
1544 }
1545
1546 static void
1547 append_insns (CORE_ADDR *to, ULONGEST len, const gdb_byte *buf)
1548 {
1549 target_write_memory (*to, buf, len);
1550 *to += len;
1551 }
1552
1553 static void
1554 amd64_relocate_instruction (struct gdbarch *gdbarch,
1555 CORE_ADDR *to, CORE_ADDR oldloc)
1556 {
1557 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1558 int len = gdbarch_max_insn_length (gdbarch);
1559 /* Extra space for sentinels. */
1560 int fixup_sentinel_space = len;
1561 gdb_byte *buf = xmalloc (len + fixup_sentinel_space);
1562 struct amd64_insn insn_details;
1563 int offset = 0;
1564 LONGEST rel32, newrel;
1565 gdb_byte *insn;
1566 int insn_length;
1567
1568 read_memory (oldloc, buf, len);
1569
1570 /* Set up the sentinel space so we don't have to worry about running
1571 off the end of the buffer. An excessive number of leading prefixes
1572 could otherwise cause this. */
1573 memset (buf + len, 0, fixup_sentinel_space);
1574
1575 insn = buf;
1576 amd64_get_insn_details (insn, &insn_details);
1577
1578 insn_length = gdb_buffered_insn_length (gdbarch, insn, len, oldloc);
1579
1580 /* Skip legacy instruction prefixes. */
1581 insn = amd64_skip_prefixes (insn);
1582
1583 /* Adjust calls with 32-bit relative addresses as push/jump, with
1584 the address pushed being the location where the original call in
1585 the user program would return to. */
1586 if (insn[0] == 0xe8)
1587 {
1588 gdb_byte push_buf[16];
1589 unsigned int ret_addr;
1590
1591 /* Where "ret" in the original code will return to. */
1592 ret_addr = oldloc + insn_length;
1593 push_buf[0] = 0x68; /* pushq $... */
1594 memcpy (&push_buf[1], &ret_addr, 4);
1595 /* Push the push. */
1596 append_insns (to, 5, push_buf);
1597
1598 /* Convert the relative call to a relative jump. */
1599 insn[0] = 0xe9;
1600
1601 /* Adjust the destination offset. */
1602 rel32 = extract_signed_integer (insn + 1, 4, byte_order);
1603 newrel = (oldloc - *to) + rel32;
1604 store_signed_integer (insn + 1, 4, byte_order, newrel);
1605
1606 if (debug_displaced)
1607 fprintf_unfiltered (gdb_stdlog,
1608 "Adjusted insn rel32=%s at %s to"
1609 " rel32=%s at %s\n",
1610 hex_string (rel32), paddress (gdbarch, oldloc),
1611 hex_string (newrel), paddress (gdbarch, *to));
1612
1613 /* Write the adjusted jump into its displaced location. */
1614 append_insns (to, 5, insn);
1615 return;
1616 }
1617
1618 offset = rip_relative_offset (&insn_details);
1619 if (!offset)
1620 {
1621 /* Adjust jumps with 32-bit relative addresses. Calls are
1622 already handled above. */
1623 if (insn[0] == 0xe9)
1624 offset = 1;
1625 /* Adjust conditional jumps. */
1626 else if (insn[0] == 0x0f && (insn[1] & 0xf0) == 0x80)
1627 offset = 2;
1628 }
1629
1630 if (offset)
1631 {
1632 rel32 = extract_signed_integer (insn + offset, 4, byte_order);
1633 newrel = (oldloc - *to) + rel32;
1634 store_signed_integer (insn + offset, 4, byte_order, newrel);
1635 if (debug_displaced)
1636 fprintf_unfiltered (gdb_stdlog,
1637 "Adjusted insn rel32=%s at %s to"
1638 " rel32=%s at %s\n",
1639 hex_string (rel32), paddress (gdbarch, oldloc),
1640 hex_string (newrel), paddress (gdbarch, *to));
1641 }
1642
1643 /* Write the adjusted instruction into its displaced location. */
1644 append_insns (to, insn_length, buf);
1645 }
1646
1647 \f
1648 /* The maximum number of saved registers. This should include %rip. */
1649 #define AMD64_NUM_SAVED_REGS AMD64_NUM_GREGS
1650
1651 struct amd64_frame_cache
1652 {
1653 /* Base address. */
1654 CORE_ADDR base;
1655 int base_p;
1656 CORE_ADDR sp_offset;
1657 CORE_ADDR pc;
1658
1659 /* Saved registers. */
1660 CORE_ADDR saved_regs[AMD64_NUM_SAVED_REGS];
1661 CORE_ADDR saved_sp;
1662 int saved_sp_reg;
1663
1664 /* Do we have a frame? */
1665 int frameless_p;
1666 };
1667
1668 /* Initialize a frame cache. */
1669
1670 static void
1671 amd64_init_frame_cache (struct amd64_frame_cache *cache)
1672 {
1673 int i;
1674
1675 /* Base address. */
1676 cache->base = 0;
1677 cache->base_p = 0;
1678 cache->sp_offset = -8;
1679 cache->pc = 0;
1680
1681 /* Saved registers. We initialize these to -1 since zero is a valid
1682 offset (that's where %rbp is supposed to be stored).
1683 The values start out as being offsets, and are later converted to
1684 addresses (at which point -1 is interpreted as an address, still meaning
1685 "invalid"). */
1686 for (i = 0; i < AMD64_NUM_SAVED_REGS; i++)
1687 cache->saved_regs[i] = -1;
1688 cache->saved_sp = 0;
1689 cache->saved_sp_reg = -1;
1690
1691 /* Frameless until proven otherwise. */
1692 cache->frameless_p = 1;
1693 }
1694
1695 /* Allocate and initialize a frame cache. */
1696
1697 static struct amd64_frame_cache *
1698 amd64_alloc_frame_cache (void)
1699 {
1700 struct amd64_frame_cache *cache;
1701
1702 cache = FRAME_OBSTACK_ZALLOC (struct amd64_frame_cache);
1703 amd64_init_frame_cache (cache);
1704 return cache;
1705 }
1706
1707 /* GCC 4.4 and later, can put code in the prologue to realign the
1708 stack pointer. Check whether PC points to such code, and update
1709 CACHE accordingly. Return the first instruction after the code
1710 sequence or CURRENT_PC, whichever is smaller. If we don't
1711 recognize the code, return PC. */
1712
1713 static CORE_ADDR
1714 amd64_analyze_stack_align (CORE_ADDR pc, CORE_ADDR current_pc,
1715 struct amd64_frame_cache *cache)
1716 {
1717 /* There are 2 code sequences to re-align stack before the frame
1718 gets set up:
1719
1720 1. Use a caller-saved saved register:
1721
1722 leaq 8(%rsp), %reg
1723 andq $-XXX, %rsp
1724 pushq -8(%reg)
1725
1726 2. Use a callee-saved saved register:
1727
1728 pushq %reg
1729 leaq 16(%rsp), %reg
1730 andq $-XXX, %rsp
1731 pushq -8(%reg)
1732
1733 "andq $-XXX, %rsp" can be either 4 bytes or 7 bytes:
1734
1735 0x48 0x83 0xe4 0xf0 andq $-16, %rsp
1736 0x48 0x81 0xe4 0x00 0xff 0xff 0xff andq $-256, %rsp
1737 */
1738
1739 gdb_byte buf[18];
1740 int reg, r;
1741 int offset, offset_and;
1742
1743 if (target_read_memory (pc, buf, sizeof buf))
1744 return pc;
1745
1746 /* Check caller-saved saved register. The first instruction has
1747 to be "leaq 8(%rsp), %reg". */
1748 if ((buf[0] & 0xfb) == 0x48
1749 && buf[1] == 0x8d
1750 && buf[3] == 0x24
1751 && buf[4] == 0x8)
1752 {
1753 /* MOD must be binary 10 and R/M must be binary 100. */
1754 if ((buf[2] & 0xc7) != 0x44)
1755 return pc;
1756
1757 /* REG has register number. */
1758 reg = (buf[2] >> 3) & 7;
1759
1760 /* Check the REX.R bit. */
1761 if (buf[0] == 0x4c)
1762 reg += 8;
1763
1764 offset = 5;
1765 }
1766 else
1767 {
1768 /* Check callee-saved saved register. The first instruction
1769 has to be "pushq %reg". */
1770 reg = 0;
1771 if ((buf[0] & 0xf8) == 0x50)
1772 offset = 0;
1773 else if ((buf[0] & 0xf6) == 0x40
1774 && (buf[1] & 0xf8) == 0x50)
1775 {
1776 /* Check the REX.B bit. */
1777 if ((buf[0] & 1) != 0)
1778 reg = 8;
1779
1780 offset = 1;
1781 }
1782 else
1783 return pc;
1784
1785 /* Get register. */
1786 reg += buf[offset] & 0x7;
1787
1788 offset++;
1789
1790 /* The next instruction has to be "leaq 16(%rsp), %reg". */
1791 if ((buf[offset] & 0xfb) != 0x48
1792 || buf[offset + 1] != 0x8d
1793 || buf[offset + 3] != 0x24
1794 || buf[offset + 4] != 0x10)
1795 return pc;
1796
1797 /* MOD must be binary 10 and R/M must be binary 100. */
1798 if ((buf[offset + 2] & 0xc7) != 0x44)
1799 return pc;
1800
1801 /* REG has register number. */
1802 r = (buf[offset + 2] >> 3) & 7;
1803
1804 /* Check the REX.R bit. */
1805 if (buf[offset] == 0x4c)
1806 r += 8;
1807
1808 /* Registers in pushq and leaq have to be the same. */
1809 if (reg != r)
1810 return pc;
1811
1812 offset += 5;
1813 }
1814
1815 /* Rigister can't be %rsp nor %rbp. */
1816 if (reg == 4 || reg == 5)
1817 return pc;
1818
1819 /* The next instruction has to be "andq $-XXX, %rsp". */
1820 if (buf[offset] != 0x48
1821 || buf[offset + 2] != 0xe4
1822 || (buf[offset + 1] != 0x81 && buf[offset + 1] != 0x83))
1823 return pc;
1824
1825 offset_and = offset;
1826 offset += buf[offset + 1] == 0x81 ? 7 : 4;
1827
1828 /* The next instruction has to be "pushq -8(%reg)". */
1829 r = 0;
1830 if (buf[offset] == 0xff)
1831 offset++;
1832 else if ((buf[offset] & 0xf6) == 0x40
1833 && buf[offset + 1] == 0xff)
1834 {
1835 /* Check the REX.B bit. */
1836 if ((buf[offset] & 0x1) != 0)
1837 r = 8;
1838 offset += 2;
1839 }
1840 else
1841 return pc;
1842
1843 /* 8bit -8 is 0xf8. REG must be binary 110 and MOD must be binary
1844 01. */
1845 if (buf[offset + 1] != 0xf8
1846 || (buf[offset] & 0xf8) != 0x70)
1847 return pc;
1848
1849 /* R/M has register. */
1850 r += buf[offset] & 7;
1851
1852 /* Registers in leaq and pushq have to be the same. */
1853 if (reg != r)
1854 return pc;
1855
1856 if (current_pc > pc + offset_and)
1857 cache->saved_sp_reg = amd64_arch_reg_to_regnum (reg);
1858
1859 return min (pc + offset + 2, current_pc);
1860 }
1861
1862 /* Do a limited analysis of the prologue at PC and update CACHE
1863 accordingly. Bail out early if CURRENT_PC is reached. Return the
1864 address where the analysis stopped.
1865
1866 We will handle only functions beginning with:
1867
1868 pushq %rbp 0x55
1869 movq %rsp, %rbp 0x48 0x89 0xe5
1870
1871 Any function that doesn't start with this sequence will be assumed
1872 to have no prologue and thus no valid frame pointer in %rbp. */
1873
1874 static CORE_ADDR
1875 amd64_analyze_prologue (struct gdbarch *gdbarch,
1876 CORE_ADDR pc, CORE_ADDR current_pc,
1877 struct amd64_frame_cache *cache)
1878 {
1879 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1880 static gdb_byte proto[3] = { 0x48, 0x89, 0xe5 }; /* movq %rsp, %rbp */
1881 gdb_byte buf[3];
1882 gdb_byte op;
1883
1884 if (current_pc <= pc)
1885 return current_pc;
1886
1887 pc = amd64_analyze_stack_align (pc, current_pc, cache);
1888
1889 op = read_memory_unsigned_integer (pc, 1, byte_order);
1890
1891 if (op == 0x55) /* pushq %rbp */
1892 {
1893 /* Take into account that we've executed the `pushq %rbp' that
1894 starts this instruction sequence. */
1895 cache->saved_regs[AMD64_RBP_REGNUM] = 0;
1896 cache->sp_offset += 8;
1897
1898 /* If that's all, return now. */
1899 if (current_pc <= pc + 1)
1900 return current_pc;
1901
1902 /* Check for `movq %rsp, %rbp'. */
1903 read_memory (pc + 1, buf, 3);
1904 if (memcmp (buf, proto, 3) != 0)
1905 return pc + 1;
1906
1907 /* OK, we actually have a frame. */
1908 cache->frameless_p = 0;
1909 return pc + 4;
1910 }
1911
1912 return pc;
1913 }
1914
1915 /* Work around false termination of prologue - GCC PR debug/48827.
1916
1917 START_PC is the first instruction of a function, PC is its minimal already
1918 determined advanced address. Function returns PC if it has nothing to do.
1919
1920 84 c0 test %al,%al
1921 74 23 je after
1922 <-- here is 0 lines advance - the false prologue end marker.
1923 0f 29 85 70 ff ff ff movaps %xmm0,-0x90(%rbp)
1924 0f 29 4d 80 movaps %xmm1,-0x80(%rbp)
1925 0f 29 55 90 movaps %xmm2,-0x70(%rbp)
1926 0f 29 5d a0 movaps %xmm3,-0x60(%rbp)
1927 0f 29 65 b0 movaps %xmm4,-0x50(%rbp)
1928 0f 29 6d c0 movaps %xmm5,-0x40(%rbp)
1929 0f 29 75 d0 movaps %xmm6,-0x30(%rbp)
1930 0f 29 7d e0 movaps %xmm7,-0x20(%rbp)
1931 after: */
1932
1933 static CORE_ADDR
1934 amd64_skip_xmm_prologue (CORE_ADDR pc, CORE_ADDR start_pc)
1935 {
1936 struct symtab_and_line start_pc_sal, next_sal;
1937 gdb_byte buf[4 + 8 * 7];
1938 int offset, xmmreg;
1939
1940 if (pc == start_pc)
1941 return pc;
1942
1943 start_pc_sal = find_pc_sect_line (start_pc, NULL, 0);
1944 if (start_pc_sal.symtab == NULL
1945 || producer_is_gcc_ge_4 (start_pc_sal.symtab->producer) < 6
1946 || start_pc_sal.pc != start_pc || pc >= start_pc_sal.end)
1947 return pc;
1948
1949 next_sal = find_pc_sect_line (start_pc_sal.end, NULL, 0);
1950 if (next_sal.line != start_pc_sal.line)
1951 return pc;
1952
1953 /* START_PC can be from overlayed memory, ignored here. */
1954 if (target_read_memory (next_sal.pc - 4, buf, sizeof (buf)) != 0)
1955 return pc;
1956
1957 /* test %al,%al */
1958 if (buf[0] != 0x84 || buf[1] != 0xc0)
1959 return pc;
1960 /* je AFTER */
1961 if (buf[2] != 0x74)
1962 return pc;
1963
1964 offset = 4;
1965 for (xmmreg = 0; xmmreg < 8; xmmreg++)
1966 {
1967 /* 0x0f 0x29 0b??000101 movaps %xmmreg?,-0x??(%rbp) */
1968 if (buf[offset] != 0x0f || buf[offset + 1] != 0x29
1969 || (buf[offset + 2] & 0x3f) != (xmmreg << 3 | 0x5))
1970 return pc;
1971
1972 /* 0b01?????? */
1973 if ((buf[offset + 2] & 0xc0) == 0x40)
1974 {
1975 /* 8-bit displacement. */
1976 offset += 4;
1977 }
1978 /* 0b10?????? */
1979 else if ((buf[offset + 2] & 0xc0) == 0x80)
1980 {
1981 /* 32-bit displacement. */
1982 offset += 7;
1983 }
1984 else
1985 return pc;
1986 }
1987
1988 /* je AFTER */
1989 if (offset - 4 != buf[3])
1990 return pc;
1991
1992 return next_sal.end;
1993 }
1994
1995 /* Return PC of first real instruction. */
1996
1997 static CORE_ADDR
1998 amd64_skip_prologue (struct gdbarch *gdbarch, CORE_ADDR start_pc)
1999 {
2000 struct amd64_frame_cache cache;
2001 CORE_ADDR pc;
2002
2003 amd64_init_frame_cache (&cache);
2004 pc = amd64_analyze_prologue (gdbarch, start_pc, 0xffffffffffffffffLL,
2005 &cache);
2006 if (cache.frameless_p)
2007 return start_pc;
2008
2009 return amd64_skip_xmm_prologue (pc, start_pc);
2010 }
2011 \f
2012
2013 /* Normal frames. */
2014
2015 static void
2016 amd64_frame_cache_1 (struct frame_info *this_frame,
2017 struct amd64_frame_cache *cache)
2018 {
2019 struct gdbarch *gdbarch = get_frame_arch (this_frame);
2020 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
2021 gdb_byte buf[8];
2022 int i;
2023
2024 cache->pc = get_frame_func (this_frame);
2025 if (cache->pc != 0)
2026 amd64_analyze_prologue (gdbarch, cache->pc, get_frame_pc (this_frame),
2027 cache);
2028
2029 if (cache->frameless_p)
2030 {
2031 /* We didn't find a valid frame. If we're at the start of a
2032 function, or somewhere half-way its prologue, the function's
2033 frame probably hasn't been fully setup yet. Try to
2034 reconstruct the base address for the stack frame by looking
2035 at the stack pointer. For truly "frameless" functions this
2036 might work too. */
2037
2038 if (cache->saved_sp_reg != -1)
2039 {
2040 /* Stack pointer has been saved. */
2041 get_frame_register (this_frame, cache->saved_sp_reg, buf);
2042 cache->saved_sp = extract_unsigned_integer (buf, 8, byte_order);
2043
2044 /* We're halfway aligning the stack. */
2045 cache->base = ((cache->saved_sp - 8) & 0xfffffffffffffff0LL) - 8;
2046 cache->saved_regs[AMD64_RIP_REGNUM] = cache->saved_sp - 8;
2047
2048 /* This will be added back below. */
2049 cache->saved_regs[AMD64_RIP_REGNUM] -= cache->base;
2050 }
2051 else
2052 {
2053 get_frame_register (this_frame, AMD64_RSP_REGNUM, buf);
2054 cache->base = extract_unsigned_integer (buf, 8, byte_order)
2055 + cache->sp_offset;
2056 }
2057 }
2058 else
2059 {
2060 get_frame_register (this_frame, AMD64_RBP_REGNUM, buf);
2061 cache->base = extract_unsigned_integer (buf, 8, byte_order);
2062 }
2063
2064 /* Now that we have the base address for the stack frame we can
2065 calculate the value of %rsp in the calling frame. */
2066 cache->saved_sp = cache->base + 16;
2067
2068 /* For normal frames, %rip is stored at 8(%rbp). If we don't have a
2069 frame we find it at the same offset from the reconstructed base
2070 address. If we're halfway aligning the stack, %rip is handled
2071 differently (see above). */
2072 if (!cache->frameless_p || cache->saved_sp_reg == -1)
2073 cache->saved_regs[AMD64_RIP_REGNUM] = 8;
2074
2075 /* Adjust all the saved registers such that they contain addresses
2076 instead of offsets. */
2077 for (i = 0; i < AMD64_NUM_SAVED_REGS; i++)
2078 if (cache->saved_regs[i] != -1)
2079 cache->saved_regs[i] += cache->base;
2080
2081 cache->base_p = 1;
2082 }
2083
2084 static struct amd64_frame_cache *
2085 amd64_frame_cache (struct frame_info *this_frame, void **this_cache)
2086 {
2087 volatile struct gdb_exception ex;
2088 struct amd64_frame_cache *cache;
2089
2090 if (*this_cache)
2091 return *this_cache;
2092
2093 cache = amd64_alloc_frame_cache ();
2094 *this_cache = cache;
2095
2096 TRY_CATCH (ex, RETURN_MASK_ERROR)
2097 {
2098 amd64_frame_cache_1 (this_frame, cache);
2099 }
2100 if (ex.reason < 0 && ex.error != NOT_AVAILABLE_ERROR)
2101 throw_exception (ex);
2102
2103 return cache;
2104 }
2105
2106 static enum unwind_stop_reason
2107 amd64_frame_unwind_stop_reason (struct frame_info *this_frame,
2108 void **this_cache)
2109 {
2110 struct amd64_frame_cache *cache =
2111 amd64_frame_cache (this_frame, this_cache);
2112
2113 if (!cache->base_p)
2114 return UNWIND_UNAVAILABLE;
2115
2116 /* This marks the outermost frame. */
2117 if (cache->base == 0)
2118 return UNWIND_OUTERMOST;
2119
2120 return UNWIND_NO_REASON;
2121 }
2122
2123 static void
2124 amd64_frame_this_id (struct frame_info *this_frame, void **this_cache,
2125 struct frame_id *this_id)
2126 {
2127 struct amd64_frame_cache *cache =
2128 amd64_frame_cache (this_frame, this_cache);
2129
2130 if (!cache->base_p)
2131 return;
2132
2133 /* This marks the outermost frame. */
2134 if (cache->base == 0)
2135 return;
2136
2137 (*this_id) = frame_id_build (cache->base + 16, cache->pc);
2138 }
2139
2140 static struct value *
2141 amd64_frame_prev_register (struct frame_info *this_frame, void **this_cache,
2142 int regnum)
2143 {
2144 struct gdbarch *gdbarch = get_frame_arch (this_frame);
2145 struct amd64_frame_cache *cache =
2146 amd64_frame_cache (this_frame, this_cache);
2147
2148 gdb_assert (regnum >= 0);
2149
2150 if (regnum == gdbarch_sp_regnum (gdbarch) && cache->saved_sp)
2151 return frame_unwind_got_constant (this_frame, regnum, cache->saved_sp);
2152
2153 if (regnum < AMD64_NUM_SAVED_REGS && cache->saved_regs[regnum] != -1)
2154 return frame_unwind_got_memory (this_frame, regnum,
2155 cache->saved_regs[regnum]);
2156
2157 return frame_unwind_got_register (this_frame, regnum, regnum);
2158 }
2159
2160 static const struct frame_unwind amd64_frame_unwind =
2161 {
2162 NORMAL_FRAME,
2163 amd64_frame_unwind_stop_reason,
2164 amd64_frame_this_id,
2165 amd64_frame_prev_register,
2166 NULL,
2167 default_frame_sniffer
2168 };
2169 \f
2170 /* Generate a bytecode expression to get the value of the saved PC. */
2171
2172 static void
2173 amd64_gen_return_address (struct gdbarch *gdbarch,
2174 struct agent_expr *ax, struct axs_value *value,
2175 CORE_ADDR scope)
2176 {
2177 /* The following sequence assumes the traditional use of the base
2178 register. */
2179 ax_reg (ax, AMD64_RBP_REGNUM);
2180 ax_const_l (ax, 8);
2181 ax_simple (ax, aop_add);
2182 value->type = register_type (gdbarch, AMD64_RIP_REGNUM);
2183 value->kind = axs_lvalue_memory;
2184 }
2185 \f
2186
2187 /* Signal trampolines. */
2188
2189 /* FIXME: kettenis/20030419: Perhaps, we can unify the 32-bit and
2190 64-bit variants. This would require using identical frame caches
2191 on both platforms. */
2192
2193 static struct amd64_frame_cache *
2194 amd64_sigtramp_frame_cache (struct frame_info *this_frame, void **this_cache)
2195 {
2196 struct gdbarch *gdbarch = get_frame_arch (this_frame);
2197 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2198 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
2199 volatile struct gdb_exception ex;
2200 struct amd64_frame_cache *cache;
2201 CORE_ADDR addr;
2202 gdb_byte buf[8];
2203 int i;
2204
2205 if (*this_cache)
2206 return *this_cache;
2207
2208 cache = amd64_alloc_frame_cache ();
2209
2210 TRY_CATCH (ex, RETURN_MASK_ERROR)
2211 {
2212 get_frame_register (this_frame, AMD64_RSP_REGNUM, buf);
2213 cache->base = extract_unsigned_integer (buf, 8, byte_order) - 8;
2214
2215 addr = tdep->sigcontext_addr (this_frame);
2216 gdb_assert (tdep->sc_reg_offset);
2217 gdb_assert (tdep->sc_num_regs <= AMD64_NUM_SAVED_REGS);
2218 for (i = 0; i < tdep->sc_num_regs; i++)
2219 if (tdep->sc_reg_offset[i] != -1)
2220 cache->saved_regs[i] = addr + tdep->sc_reg_offset[i];
2221
2222 cache->base_p = 1;
2223 }
2224 if (ex.reason < 0 && ex.error != NOT_AVAILABLE_ERROR)
2225 throw_exception (ex);
2226
2227 *this_cache = cache;
2228 return cache;
2229 }
2230
2231 static enum unwind_stop_reason
2232 amd64_sigtramp_frame_unwind_stop_reason (struct frame_info *this_frame,
2233 void **this_cache)
2234 {
2235 struct amd64_frame_cache *cache =
2236 amd64_sigtramp_frame_cache (this_frame, this_cache);
2237
2238 if (!cache->base_p)
2239 return UNWIND_UNAVAILABLE;
2240
2241 return UNWIND_NO_REASON;
2242 }
2243
2244 static void
2245 amd64_sigtramp_frame_this_id (struct frame_info *this_frame,
2246 void **this_cache, struct frame_id *this_id)
2247 {
2248 struct amd64_frame_cache *cache =
2249 amd64_sigtramp_frame_cache (this_frame, this_cache);
2250
2251 if (!cache->base_p)
2252 return;
2253
2254 (*this_id) = frame_id_build (cache->base + 16, get_frame_pc (this_frame));
2255 }
2256
2257 static struct value *
2258 amd64_sigtramp_frame_prev_register (struct frame_info *this_frame,
2259 void **this_cache, int regnum)
2260 {
2261 /* Make sure we've initialized the cache. */
2262 amd64_sigtramp_frame_cache (this_frame, this_cache);
2263
2264 return amd64_frame_prev_register (this_frame, this_cache, regnum);
2265 }
2266
2267 static int
2268 amd64_sigtramp_frame_sniffer (const struct frame_unwind *self,
2269 struct frame_info *this_frame,
2270 void **this_cache)
2271 {
2272 struct gdbarch_tdep *tdep = gdbarch_tdep (get_frame_arch (this_frame));
2273
2274 /* We shouldn't even bother if we don't have a sigcontext_addr
2275 handler. */
2276 if (tdep->sigcontext_addr == NULL)
2277 return 0;
2278
2279 if (tdep->sigtramp_p != NULL)
2280 {
2281 if (tdep->sigtramp_p (this_frame))
2282 return 1;
2283 }
2284
2285 if (tdep->sigtramp_start != 0)
2286 {
2287 CORE_ADDR pc = get_frame_pc (this_frame);
2288
2289 gdb_assert (tdep->sigtramp_end != 0);
2290 if (pc >= tdep->sigtramp_start && pc < tdep->sigtramp_end)
2291 return 1;
2292 }
2293
2294 return 0;
2295 }
2296
2297 static const struct frame_unwind amd64_sigtramp_frame_unwind =
2298 {
2299 SIGTRAMP_FRAME,
2300 amd64_sigtramp_frame_unwind_stop_reason,
2301 amd64_sigtramp_frame_this_id,
2302 amd64_sigtramp_frame_prev_register,
2303 NULL,
2304 amd64_sigtramp_frame_sniffer
2305 };
2306 \f
2307
2308 static CORE_ADDR
2309 amd64_frame_base_address (struct frame_info *this_frame, void **this_cache)
2310 {
2311 struct amd64_frame_cache *cache =
2312 amd64_frame_cache (this_frame, this_cache);
2313
2314 return cache->base;
2315 }
2316
2317 static const struct frame_base amd64_frame_base =
2318 {
2319 &amd64_frame_unwind,
2320 amd64_frame_base_address,
2321 amd64_frame_base_address,
2322 amd64_frame_base_address
2323 };
2324
2325 /* Normal frames, but in a function epilogue. */
2326
2327 /* The epilogue is defined here as the 'ret' instruction, which will
2328 follow any instruction such as 'leave' or 'pop %ebp' that destroys
2329 the function's stack frame. */
2330
2331 static int
2332 amd64_in_function_epilogue_p (struct gdbarch *gdbarch, CORE_ADDR pc)
2333 {
2334 gdb_byte insn;
2335 struct symtab *symtab;
2336
2337 symtab = find_pc_symtab (pc);
2338 if (symtab && symtab->epilogue_unwind_valid)
2339 return 0;
2340
2341 if (target_read_memory (pc, &insn, 1))
2342 return 0; /* Can't read memory at pc. */
2343
2344 if (insn != 0xc3) /* 'ret' instruction. */
2345 return 0;
2346
2347 return 1;
2348 }
2349
2350 static int
2351 amd64_epilogue_frame_sniffer (const struct frame_unwind *self,
2352 struct frame_info *this_frame,
2353 void **this_prologue_cache)
2354 {
2355 if (frame_relative_level (this_frame) == 0)
2356 return amd64_in_function_epilogue_p (get_frame_arch (this_frame),
2357 get_frame_pc (this_frame));
2358 else
2359 return 0;
2360 }
2361
2362 static struct amd64_frame_cache *
2363 amd64_epilogue_frame_cache (struct frame_info *this_frame, void **this_cache)
2364 {
2365 struct gdbarch *gdbarch = get_frame_arch (this_frame);
2366 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
2367 volatile struct gdb_exception ex;
2368 struct amd64_frame_cache *cache;
2369 gdb_byte buf[8];
2370
2371 if (*this_cache)
2372 return *this_cache;
2373
2374 cache = amd64_alloc_frame_cache ();
2375 *this_cache = cache;
2376
2377 TRY_CATCH (ex, RETURN_MASK_ERROR)
2378 {
2379 /* Cache base will be %esp plus cache->sp_offset (-8). */
2380 get_frame_register (this_frame, AMD64_RSP_REGNUM, buf);
2381 cache->base = extract_unsigned_integer (buf, 8,
2382 byte_order) + cache->sp_offset;
2383
2384 /* Cache pc will be the frame func. */
2385 cache->pc = get_frame_pc (this_frame);
2386
2387 /* The saved %esp will be at cache->base plus 16. */
2388 cache->saved_sp = cache->base + 16;
2389
2390 /* The saved %eip will be at cache->base plus 8. */
2391 cache->saved_regs[AMD64_RIP_REGNUM] = cache->base + 8;
2392
2393 cache->base_p = 1;
2394 }
2395 if (ex.reason < 0 && ex.error != NOT_AVAILABLE_ERROR)
2396 throw_exception (ex);
2397
2398 return cache;
2399 }
2400
2401 static enum unwind_stop_reason
2402 amd64_epilogue_frame_unwind_stop_reason (struct frame_info *this_frame,
2403 void **this_cache)
2404 {
2405 struct amd64_frame_cache *cache
2406 = amd64_epilogue_frame_cache (this_frame, this_cache);
2407
2408 if (!cache->base_p)
2409 return UNWIND_UNAVAILABLE;
2410
2411 return UNWIND_NO_REASON;
2412 }
2413
2414 static void
2415 amd64_epilogue_frame_this_id (struct frame_info *this_frame,
2416 void **this_cache,
2417 struct frame_id *this_id)
2418 {
2419 struct amd64_frame_cache *cache = amd64_epilogue_frame_cache (this_frame,
2420 this_cache);
2421
2422 if (!cache->base_p)
2423 return;
2424
2425 (*this_id) = frame_id_build (cache->base + 8, cache->pc);
2426 }
2427
2428 static const struct frame_unwind amd64_epilogue_frame_unwind =
2429 {
2430 NORMAL_FRAME,
2431 amd64_epilogue_frame_unwind_stop_reason,
2432 amd64_epilogue_frame_this_id,
2433 amd64_frame_prev_register,
2434 NULL,
2435 amd64_epilogue_frame_sniffer
2436 };
2437
2438 static struct frame_id
2439 amd64_dummy_id (struct gdbarch *gdbarch, struct frame_info *this_frame)
2440 {
2441 CORE_ADDR fp;
2442
2443 fp = get_frame_register_unsigned (this_frame, AMD64_RBP_REGNUM);
2444
2445 return frame_id_build (fp + 16, get_frame_pc (this_frame));
2446 }
2447
2448 /* 16 byte align the SP per frame requirements. */
2449
2450 static CORE_ADDR
2451 amd64_frame_align (struct gdbarch *gdbarch, CORE_ADDR sp)
2452 {
2453 return sp & -(CORE_ADDR)16;
2454 }
2455 \f
2456
2457 /* Supply register REGNUM from the buffer specified by FPREGS and LEN
2458 in the floating-point register set REGSET to register cache
2459 REGCACHE. If REGNUM is -1, do this for all registers in REGSET. */
2460
2461 static void
2462 amd64_supply_fpregset (const struct regset *regset, struct regcache *regcache,
2463 int regnum, const void *fpregs, size_t len)
2464 {
2465 const struct gdbarch_tdep *tdep = gdbarch_tdep (regset->arch);
2466
2467 gdb_assert (len == tdep->sizeof_fpregset);
2468 amd64_supply_fxsave (regcache, regnum, fpregs);
2469 }
2470
2471 /* Collect register REGNUM from the register cache REGCACHE and store
2472 it in the buffer specified by FPREGS and LEN as described by the
2473 floating-point register set REGSET. If REGNUM is -1, do this for
2474 all registers in REGSET. */
2475
2476 static void
2477 amd64_collect_fpregset (const struct regset *regset,
2478 const struct regcache *regcache,
2479 int regnum, void *fpregs, size_t len)
2480 {
2481 const struct gdbarch_tdep *tdep = gdbarch_tdep (regset->arch);
2482
2483 gdb_assert (len == tdep->sizeof_fpregset);
2484 amd64_collect_fxsave (regcache, regnum, fpregs);
2485 }
2486
2487 /* Similar to amd64_supply_fpregset, but use XSAVE extended state. */
2488
2489 static void
2490 amd64_supply_xstateregset (const struct regset *regset,
2491 struct regcache *regcache, int regnum,
2492 const void *xstateregs, size_t len)
2493 {
2494 amd64_supply_xsave (regcache, regnum, xstateregs);
2495 }
2496
2497 /* Similar to amd64_collect_fpregset, but use XSAVE extended state. */
2498
2499 static void
2500 amd64_collect_xstateregset (const struct regset *regset,
2501 const struct regcache *regcache,
2502 int regnum, void *xstateregs, size_t len)
2503 {
2504 amd64_collect_xsave (regcache, regnum, xstateregs, 1);
2505 }
2506
2507 /* Return the appropriate register set for the core section identified
2508 by SECT_NAME and SECT_SIZE. */
2509
2510 static const struct regset *
2511 amd64_regset_from_core_section (struct gdbarch *gdbarch,
2512 const char *sect_name, size_t sect_size)
2513 {
2514 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2515
2516 if (strcmp (sect_name, ".reg2") == 0 && sect_size == tdep->sizeof_fpregset)
2517 {
2518 if (tdep->fpregset == NULL)
2519 tdep->fpregset = regset_alloc (gdbarch, amd64_supply_fpregset,
2520 amd64_collect_fpregset);
2521
2522 return tdep->fpregset;
2523 }
2524
2525 if (strcmp (sect_name, ".reg-xstate") == 0)
2526 {
2527 if (tdep->xstateregset == NULL)
2528 tdep->xstateregset = regset_alloc (gdbarch,
2529 amd64_supply_xstateregset,
2530 amd64_collect_xstateregset);
2531
2532 return tdep->xstateregset;
2533 }
2534
2535 return i386_regset_from_core_section (gdbarch, sect_name, sect_size);
2536 }
2537 \f
2538
2539 /* Figure out where the longjmp will land. Slurp the jmp_buf out of
2540 %rdi. We expect its value to be a pointer to the jmp_buf structure
2541 from which we extract the address that we will land at. This
2542 address is copied into PC. This routine returns non-zero on
2543 success. */
2544
2545 static int
2546 amd64_get_longjmp_target (struct frame_info *frame, CORE_ADDR *pc)
2547 {
2548 gdb_byte buf[8];
2549 CORE_ADDR jb_addr;
2550 struct gdbarch *gdbarch = get_frame_arch (frame);
2551 int jb_pc_offset = gdbarch_tdep (gdbarch)->jb_pc_offset;
2552 int len = TYPE_LENGTH (builtin_type (gdbarch)->builtin_func_ptr);
2553
2554 /* If JB_PC_OFFSET is -1, we have no way to find out where the
2555 longjmp will land. */
2556 if (jb_pc_offset == -1)
2557 return 0;
2558
2559 get_frame_register (frame, AMD64_RDI_REGNUM, buf);
2560 jb_addr= extract_typed_address
2561 (buf, builtin_type (gdbarch)->builtin_data_ptr);
2562 if (target_read_memory (jb_addr + jb_pc_offset, buf, len))
2563 return 0;
2564
2565 *pc = extract_typed_address (buf, builtin_type (gdbarch)->builtin_func_ptr);
2566
2567 return 1;
2568 }
2569
2570 static const int amd64_record_regmap[] =
2571 {
2572 AMD64_RAX_REGNUM, AMD64_RCX_REGNUM, AMD64_RDX_REGNUM, AMD64_RBX_REGNUM,
2573 AMD64_RSP_REGNUM, AMD64_RBP_REGNUM, AMD64_RSI_REGNUM, AMD64_RDI_REGNUM,
2574 AMD64_R8_REGNUM, AMD64_R9_REGNUM, AMD64_R10_REGNUM, AMD64_R11_REGNUM,
2575 AMD64_R12_REGNUM, AMD64_R13_REGNUM, AMD64_R14_REGNUM, AMD64_R15_REGNUM,
2576 AMD64_RIP_REGNUM, AMD64_EFLAGS_REGNUM, AMD64_CS_REGNUM, AMD64_SS_REGNUM,
2577 AMD64_DS_REGNUM, AMD64_ES_REGNUM, AMD64_FS_REGNUM, AMD64_GS_REGNUM
2578 };
2579
2580 void
2581 amd64_init_abi (struct gdbarch_info info, struct gdbarch *gdbarch)
2582 {
2583 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2584 const struct target_desc *tdesc = info.target_desc;
2585
2586 /* AMD64 generally uses `fxsave' instead of `fsave' for saving its
2587 floating-point registers. */
2588 tdep->sizeof_fpregset = I387_SIZEOF_FXSAVE;
2589
2590 if (! tdesc_has_registers (tdesc))
2591 tdesc = tdesc_amd64;
2592 tdep->tdesc = tdesc;
2593
2594 tdep->num_core_regs = AMD64_NUM_GREGS + I387_NUM_REGS;
2595 tdep->register_names = amd64_register_names;
2596
2597 if (tdesc_find_feature (tdesc, "org.gnu.gdb.i386.avx") != NULL)
2598 {
2599 tdep->ymmh_register_names = amd64_ymmh_names;
2600 tdep->num_ymm_regs = 16;
2601 tdep->ymm0h_regnum = AMD64_YMM0H_REGNUM;
2602 }
2603
2604 tdep->num_byte_regs = 20;
2605 tdep->num_word_regs = 16;
2606 tdep->num_dword_regs = 16;
2607 /* Avoid wiring in the MMX registers for now. */
2608 tdep->num_mmx_regs = 0;
2609
2610 set_gdbarch_pseudo_register_read_value (gdbarch,
2611 amd64_pseudo_register_read_value);
2612 set_gdbarch_pseudo_register_write (gdbarch,
2613 amd64_pseudo_register_write);
2614
2615 set_tdesc_pseudo_register_name (gdbarch, amd64_pseudo_register_name);
2616
2617 /* AMD64 has an FPU and 16 SSE registers. */
2618 tdep->st0_regnum = AMD64_ST0_REGNUM;
2619 tdep->num_xmm_regs = 16;
2620
2621 /* This is what all the fuss is about. */
2622 set_gdbarch_long_bit (gdbarch, 64);
2623 set_gdbarch_long_long_bit (gdbarch, 64);
2624 set_gdbarch_ptr_bit (gdbarch, 64);
2625
2626 /* In contrast to the i386, on AMD64 a `long double' actually takes
2627 up 128 bits, even though it's still based on the i387 extended
2628 floating-point format which has only 80 significant bits. */
2629 set_gdbarch_long_double_bit (gdbarch, 128);
2630
2631 set_gdbarch_num_regs (gdbarch, AMD64_NUM_REGS);
2632
2633 /* Register numbers of various important registers. */
2634 set_gdbarch_sp_regnum (gdbarch, AMD64_RSP_REGNUM); /* %rsp */
2635 set_gdbarch_pc_regnum (gdbarch, AMD64_RIP_REGNUM); /* %rip */
2636 set_gdbarch_ps_regnum (gdbarch, AMD64_EFLAGS_REGNUM); /* %eflags */
2637 set_gdbarch_fp0_regnum (gdbarch, AMD64_ST0_REGNUM); /* %st(0) */
2638
2639 /* The "default" register numbering scheme for AMD64 is referred to
2640 as the "DWARF Register Number Mapping" in the System V psABI.
2641 The preferred debugging format for all known AMD64 targets is
2642 actually DWARF2, and GCC doesn't seem to support DWARF (that is
2643 DWARF-1), but we provide the same mapping just in case. This
2644 mapping is also used for stabs, which GCC does support. */
2645 set_gdbarch_stab_reg_to_regnum (gdbarch, amd64_dwarf_reg_to_regnum);
2646 set_gdbarch_dwarf2_reg_to_regnum (gdbarch, amd64_dwarf_reg_to_regnum);
2647
2648 /* We don't override SDB_REG_RO_REGNUM, since COFF doesn't seem to
2649 be in use on any of the supported AMD64 targets. */
2650
2651 /* Call dummy code. */
2652 set_gdbarch_push_dummy_call (gdbarch, amd64_push_dummy_call);
2653 set_gdbarch_frame_align (gdbarch, amd64_frame_align);
2654 set_gdbarch_frame_red_zone_size (gdbarch, 128);
2655 tdep->call_dummy_num_integer_regs =
2656 ARRAY_SIZE (amd64_dummy_call_integer_regs);
2657 tdep->call_dummy_integer_regs = amd64_dummy_call_integer_regs;
2658 tdep->classify = amd64_classify;
2659
2660 set_gdbarch_convert_register_p (gdbarch, i387_convert_register_p);
2661 set_gdbarch_register_to_value (gdbarch, i387_register_to_value);
2662 set_gdbarch_value_to_register (gdbarch, i387_value_to_register);
2663
2664 set_gdbarch_return_value (gdbarch, amd64_return_value);
2665
2666 set_gdbarch_skip_prologue (gdbarch, amd64_skip_prologue);
2667
2668 tdep->record_regmap = amd64_record_regmap;
2669
2670 set_gdbarch_dummy_id (gdbarch, amd64_dummy_id);
2671
2672 /* Hook the function epilogue frame unwinder. This unwinder is
2673 appended to the list first, so that it supercedes the other
2674 unwinders in function epilogues. */
2675 frame_unwind_prepend_unwinder (gdbarch, &amd64_epilogue_frame_unwind);
2676
2677 /* Hook the prologue-based frame unwinders. */
2678 frame_unwind_append_unwinder (gdbarch, &amd64_sigtramp_frame_unwind);
2679 frame_unwind_append_unwinder (gdbarch, &amd64_frame_unwind);
2680 frame_base_set_default (gdbarch, &amd64_frame_base);
2681
2682 /* If we have a register mapping, enable the generic core file support. */
2683 if (tdep->gregset_reg_offset)
2684 set_gdbarch_regset_from_core_section (gdbarch,
2685 amd64_regset_from_core_section);
2686
2687 set_gdbarch_get_longjmp_target (gdbarch, amd64_get_longjmp_target);
2688
2689 set_gdbarch_relocate_instruction (gdbarch, amd64_relocate_instruction);
2690
2691 set_gdbarch_gen_return_address (gdbarch, amd64_gen_return_address);
2692 }
2693
2694 /* Provide a prototype to silence -Wmissing-prototypes. */
2695 void _initialize_amd64_tdep (void);
2696
2697 void
2698 _initialize_amd64_tdep (void)
2699 {
2700 initialize_tdesc_amd64 ();
2701 initialize_tdesc_amd64_avx ();
2702 }
2703 \f
2704
2705 /* The 64-bit FXSAVE format differs from the 32-bit format in the
2706 sense that the instruction pointer and data pointer are simply
2707 64-bit offsets into the code segment and the data segment instead
2708 of a selector offset pair. The functions below store the upper 32
2709 bits of these pointers (instead of just the 16-bits of the segment
2710 selector). */
2711
2712 /* Fill register REGNUM in REGCACHE with the appropriate
2713 floating-point or SSE register value from *FXSAVE. If REGNUM is
2714 -1, do this for all registers. This function masks off any of the
2715 reserved bits in *FXSAVE. */
2716
2717 void
2718 amd64_supply_fxsave (struct regcache *regcache, int regnum,
2719 const void *fxsave)
2720 {
2721 struct gdbarch *gdbarch = get_regcache_arch (regcache);
2722 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2723
2724 i387_supply_fxsave (regcache, regnum, fxsave);
2725
2726 if (fxsave && gdbarch_ptr_bit (gdbarch) == 64)
2727 {
2728 const gdb_byte *regs = fxsave;
2729
2730 if (regnum == -1 || regnum == I387_FISEG_REGNUM (tdep))
2731 regcache_raw_supply (regcache, I387_FISEG_REGNUM (tdep), regs + 12);
2732 if (regnum == -1 || regnum == I387_FOSEG_REGNUM (tdep))
2733 regcache_raw_supply (regcache, I387_FOSEG_REGNUM (tdep), regs + 20);
2734 }
2735 }
2736
2737 /* Similar to amd64_supply_fxsave, but use XSAVE extended state. */
2738
2739 void
2740 amd64_supply_xsave (struct regcache *regcache, int regnum,
2741 const void *xsave)
2742 {
2743 struct gdbarch *gdbarch = get_regcache_arch (regcache);
2744 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2745
2746 i387_supply_xsave (regcache, regnum, xsave);
2747
2748 if (xsave && gdbarch_ptr_bit (gdbarch) == 64)
2749 {
2750 const gdb_byte *regs = xsave;
2751
2752 if (regnum == -1 || regnum == I387_FISEG_REGNUM (tdep))
2753 regcache_raw_supply (regcache, I387_FISEG_REGNUM (tdep),
2754 regs + 12);
2755 if (regnum == -1 || regnum == I387_FOSEG_REGNUM (tdep))
2756 regcache_raw_supply (regcache, I387_FOSEG_REGNUM (tdep),
2757 regs + 20);
2758 }
2759 }
2760
2761 /* Fill register REGNUM (if it is a floating-point or SSE register) in
2762 *FXSAVE with the value from REGCACHE. If REGNUM is -1, do this for
2763 all registers. This function doesn't touch any of the reserved
2764 bits in *FXSAVE. */
2765
2766 void
2767 amd64_collect_fxsave (const struct regcache *regcache, int regnum,
2768 void *fxsave)
2769 {
2770 struct gdbarch *gdbarch = get_regcache_arch (regcache);
2771 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2772 gdb_byte *regs = fxsave;
2773
2774 i387_collect_fxsave (regcache, regnum, fxsave);
2775
2776 if (gdbarch_ptr_bit (gdbarch) == 64)
2777 {
2778 if (regnum == -1 || regnum == I387_FISEG_REGNUM (tdep))
2779 regcache_raw_collect (regcache, I387_FISEG_REGNUM (tdep), regs + 12);
2780 if (regnum == -1 || regnum == I387_FOSEG_REGNUM (tdep))
2781 regcache_raw_collect (regcache, I387_FOSEG_REGNUM (tdep), regs + 20);
2782 }
2783 }
2784
2785 /* Similar to amd64_collect_fxsave, but use XSAVE extended state. */
2786
2787 void
2788 amd64_collect_xsave (const struct regcache *regcache, int regnum,
2789 void *xsave, int gcore)
2790 {
2791 struct gdbarch *gdbarch = get_regcache_arch (regcache);
2792 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2793 gdb_byte *regs = xsave;
2794
2795 i387_collect_xsave (regcache, regnum, xsave, gcore);
2796
2797 if (gdbarch_ptr_bit (gdbarch) == 64)
2798 {
2799 if (regnum == -1 || regnum == I387_FISEG_REGNUM (tdep))
2800 regcache_raw_collect (regcache, I387_FISEG_REGNUM (tdep),
2801 regs + 12);
2802 if (regnum == -1 || regnum == I387_FOSEG_REGNUM (tdep))
2803 regcache_raw_collect (regcache, I387_FOSEG_REGNUM (tdep),
2804 regs + 20);
2805 }
2806 }
This page took 0.087227 seconds and 5 git commands to generate.