gdb/
[deliverable/binutils-gdb.git] / gdb / amd64-tdep.c
1 /* Target-dependent code for AMD64.
2
3 Copyright (C) 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009, 2010
4 Free Software Foundation, Inc.
5
6 Contributed by Jiri Smid, SuSE Labs.
7
8 This file is part of GDB.
9
10 This program is free software; you can redistribute it and/or modify
11 it under the terms of the GNU General Public License as published by
12 the Free Software Foundation; either version 3 of the License, or
13 (at your option) any later version.
14
15 This program is distributed in the hope that it will be useful,
16 but WITHOUT ANY WARRANTY; without even the implied warranty of
17 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
18 GNU General Public License for more details.
19
20 You should have received a copy of the GNU General Public License
21 along with this program. If not, see <http://www.gnu.org/licenses/>. */
22
23 #include "defs.h"
24 #include "opcode/i386.h"
25 #include "dis-asm.h"
26 #include "arch-utils.h"
27 #include "block.h"
28 #include "dummy-frame.h"
29 #include "frame.h"
30 #include "frame-base.h"
31 #include "frame-unwind.h"
32 #include "inferior.h"
33 #include "gdbcmd.h"
34 #include "gdbcore.h"
35 #include "objfiles.h"
36 #include "regcache.h"
37 #include "regset.h"
38 #include "symfile.h"
39 #include "disasm.h"
40 #include "gdb_assert.h"
41
42 #include "amd64-tdep.h"
43 #include "i387-tdep.h"
44
45 #include "features/i386/amd64.c"
46 #include "features/i386/amd64-avx.c"
47
48 /* Note that the AMD64 architecture was previously known as x86-64.
49 The latter is (forever) engraved into the canonical system name as
50 returned by config.guess, and used as the name for the AMD64 port
51 of GNU/Linux. The BSD's have renamed their ports to amd64; they
52 don't like to shout. For GDB we prefer the amd64_-prefix over the
53 x86_64_-prefix since it's so much easier to type. */
54
55 /* Register information. */
56
57 static const char *amd64_register_names[] =
58 {
59 "rax", "rbx", "rcx", "rdx", "rsi", "rdi", "rbp", "rsp",
60
61 /* %r8 is indeed register number 8. */
62 "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15",
63 "rip", "eflags", "cs", "ss", "ds", "es", "fs", "gs",
64
65 /* %st0 is register number 24. */
66 "st0", "st1", "st2", "st3", "st4", "st5", "st6", "st7",
67 "fctrl", "fstat", "ftag", "fiseg", "fioff", "foseg", "fooff", "fop",
68
69 /* %xmm0 is register number 40. */
70 "xmm0", "xmm1", "xmm2", "xmm3", "xmm4", "xmm5", "xmm6", "xmm7",
71 "xmm8", "xmm9", "xmm10", "xmm11", "xmm12", "xmm13", "xmm14", "xmm15",
72 "mxcsr",
73 };
74
75 static const char *amd64_ymm_names[] =
76 {
77 "ymm0", "ymm1", "ymm2", "ymm3",
78 "ymm4", "ymm5", "ymm6", "ymm7",
79 "ymm8", "ymm9", "ymm10", "ymm11",
80 "ymm12", "ymm13", "ymm14", "ymm15"
81 };
82
83 static const char *amd64_ymmh_names[] =
84 {
85 "ymm0h", "ymm1h", "ymm2h", "ymm3h",
86 "ymm4h", "ymm5h", "ymm6h", "ymm7h",
87 "ymm8h", "ymm9h", "ymm10h", "ymm11h",
88 "ymm12h", "ymm13h", "ymm14h", "ymm15h"
89 };
90
91 /* The registers used to pass integer arguments during a function call. */
92 static int amd64_dummy_call_integer_regs[] =
93 {
94 AMD64_RDI_REGNUM, /* %rdi */
95 AMD64_RSI_REGNUM, /* %rsi */
96 AMD64_RDX_REGNUM, /* %rdx */
97 AMD64_RCX_REGNUM, /* %rcx */
98 8, /* %r8 */
99 9 /* %r9 */
100 };
101
102 /* DWARF Register Number Mapping as defined in the System V psABI,
103 section 3.6. */
104
105 static int amd64_dwarf_regmap[] =
106 {
107 /* General Purpose Registers RAX, RDX, RCX, RBX, RSI, RDI. */
108 AMD64_RAX_REGNUM, AMD64_RDX_REGNUM,
109 AMD64_RCX_REGNUM, AMD64_RBX_REGNUM,
110 AMD64_RSI_REGNUM, AMD64_RDI_REGNUM,
111
112 /* Frame Pointer Register RBP. */
113 AMD64_RBP_REGNUM,
114
115 /* Stack Pointer Register RSP. */
116 AMD64_RSP_REGNUM,
117
118 /* Extended Integer Registers 8 - 15. */
119 8, 9, 10, 11, 12, 13, 14, 15,
120
121 /* Return Address RA. Mapped to RIP. */
122 AMD64_RIP_REGNUM,
123
124 /* SSE Registers 0 - 7. */
125 AMD64_XMM0_REGNUM + 0, AMD64_XMM1_REGNUM,
126 AMD64_XMM0_REGNUM + 2, AMD64_XMM0_REGNUM + 3,
127 AMD64_XMM0_REGNUM + 4, AMD64_XMM0_REGNUM + 5,
128 AMD64_XMM0_REGNUM + 6, AMD64_XMM0_REGNUM + 7,
129
130 /* Extended SSE Registers 8 - 15. */
131 AMD64_XMM0_REGNUM + 8, AMD64_XMM0_REGNUM + 9,
132 AMD64_XMM0_REGNUM + 10, AMD64_XMM0_REGNUM + 11,
133 AMD64_XMM0_REGNUM + 12, AMD64_XMM0_REGNUM + 13,
134 AMD64_XMM0_REGNUM + 14, AMD64_XMM0_REGNUM + 15,
135
136 /* Floating Point Registers 0-7. */
137 AMD64_ST0_REGNUM + 0, AMD64_ST0_REGNUM + 1,
138 AMD64_ST0_REGNUM + 2, AMD64_ST0_REGNUM + 3,
139 AMD64_ST0_REGNUM + 4, AMD64_ST0_REGNUM + 5,
140 AMD64_ST0_REGNUM + 6, AMD64_ST0_REGNUM + 7,
141
142 /* Control and Status Flags Register. */
143 AMD64_EFLAGS_REGNUM,
144
145 /* Selector Registers. */
146 AMD64_ES_REGNUM,
147 AMD64_CS_REGNUM,
148 AMD64_SS_REGNUM,
149 AMD64_DS_REGNUM,
150 AMD64_FS_REGNUM,
151 AMD64_GS_REGNUM,
152 -1,
153 -1,
154
155 /* Segment Base Address Registers. */
156 -1,
157 -1,
158 -1,
159 -1,
160
161 /* Special Selector Registers. */
162 -1,
163 -1,
164
165 /* Floating Point Control Registers. */
166 AMD64_MXCSR_REGNUM,
167 AMD64_FCTRL_REGNUM,
168 AMD64_FSTAT_REGNUM
169 };
170
171 static const int amd64_dwarf_regmap_len =
172 (sizeof (amd64_dwarf_regmap) / sizeof (amd64_dwarf_regmap[0]));
173
174 /* Convert DWARF register number REG to the appropriate register
175 number used by GDB. */
176
177 static int
178 amd64_dwarf_reg_to_regnum (struct gdbarch *gdbarch, int reg)
179 {
180 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
181 int ymm0_regnum = tdep->ymm0_regnum;
182 int regnum = -1;
183
184 if (reg >= 0 && reg < amd64_dwarf_regmap_len)
185 regnum = amd64_dwarf_regmap[reg];
186
187 if (regnum == -1)
188 warning (_("Unmapped DWARF Register #%d encountered."), reg);
189 else if (ymm0_regnum >= 0
190 && i386_xmm_regnum_p (gdbarch, regnum))
191 regnum += ymm0_regnum - I387_XMM0_REGNUM (tdep);
192
193 return regnum;
194 }
195
196 /* Map architectural register numbers to gdb register numbers. */
197
198 static const int amd64_arch_regmap[16] =
199 {
200 AMD64_RAX_REGNUM, /* %rax */
201 AMD64_RCX_REGNUM, /* %rcx */
202 AMD64_RDX_REGNUM, /* %rdx */
203 AMD64_RBX_REGNUM, /* %rbx */
204 AMD64_RSP_REGNUM, /* %rsp */
205 AMD64_RBP_REGNUM, /* %rbp */
206 AMD64_RSI_REGNUM, /* %rsi */
207 AMD64_RDI_REGNUM, /* %rdi */
208 AMD64_R8_REGNUM, /* %r8 */
209 AMD64_R9_REGNUM, /* %r9 */
210 AMD64_R10_REGNUM, /* %r10 */
211 AMD64_R11_REGNUM, /* %r11 */
212 AMD64_R12_REGNUM, /* %r12 */
213 AMD64_R13_REGNUM, /* %r13 */
214 AMD64_R14_REGNUM, /* %r14 */
215 AMD64_R15_REGNUM /* %r15 */
216 };
217
218 static const int amd64_arch_regmap_len =
219 (sizeof (amd64_arch_regmap) / sizeof (amd64_arch_regmap[0]));
220
221 /* Convert architectural register number REG to the appropriate register
222 number used by GDB. */
223
224 static int
225 amd64_arch_reg_to_regnum (int reg)
226 {
227 gdb_assert (reg >= 0 && reg < amd64_arch_regmap_len);
228
229 return amd64_arch_regmap[reg];
230 }
231
232 /* Register names for byte pseudo-registers. */
233
234 static const char *amd64_byte_names[] =
235 {
236 "al", "bl", "cl", "dl", "sil", "dil", "bpl", "spl",
237 "r8l", "r9l", "r10l", "r11l", "r12l", "r13l", "r14l", "r15l",
238 "ah", "bh", "ch", "dh"
239 };
240
241 /* Number of lower byte registers. */
242 #define AMD64_NUM_LOWER_BYTE_REGS 16
243
244 /* Register names for word pseudo-registers. */
245
246 static const char *amd64_word_names[] =
247 {
248 "ax", "bx", "cx", "dx", "si", "di", "bp", "",
249 "r8w", "r9w", "r10w", "r11w", "r12w", "r13w", "r14w", "r15w"
250 };
251
252 /* Register names for dword pseudo-registers. */
253
254 static const char *amd64_dword_names[] =
255 {
256 "eax", "ebx", "ecx", "edx", "esi", "edi", "ebp", "esp",
257 "r8d", "r9d", "r10d", "r11d", "r12d", "r13d", "r14d", "r15d"
258 };
259
260 /* Return the name of register REGNUM, or the empty string if it is
261 an anonymous register. */
262
263 static const char *
264 amd64_register_name (struct gdbarch *gdbarch, int regnum)
265 {
266 /* Hide the upper YMM registers. */
267 if (i386_ymmh_regnum_p (gdbarch, regnum))
268 return "";
269
270 return tdesc_register_name (gdbarch, regnum);
271 }
272
273 /* Return the name of register REGNUM. */
274
275 static const char *
276 amd64_pseudo_register_name (struct gdbarch *gdbarch, int regnum)
277 {
278 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
279 if (i386_byte_regnum_p (gdbarch, regnum))
280 return amd64_byte_names[regnum - tdep->al_regnum];
281 else if (i386_ymm_regnum_p (gdbarch, regnum))
282 return amd64_ymm_names[regnum - tdep->ymm0_regnum];
283 else if (i386_word_regnum_p (gdbarch, regnum))
284 return amd64_word_names[regnum - tdep->ax_regnum];
285 else if (i386_dword_regnum_p (gdbarch, regnum))
286 return amd64_dword_names[regnum - tdep->eax_regnum];
287 else
288 return i386_pseudo_register_name (gdbarch, regnum);
289 }
290
291 static void
292 amd64_pseudo_register_read (struct gdbarch *gdbarch,
293 struct regcache *regcache,
294 int regnum, gdb_byte *buf)
295 {
296 gdb_byte raw_buf[MAX_REGISTER_SIZE];
297 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
298
299 if (i386_byte_regnum_p (gdbarch, regnum))
300 {
301 int gpnum = regnum - tdep->al_regnum;
302
303 /* Extract (always little endian). */
304 if (gpnum >= AMD64_NUM_LOWER_BYTE_REGS)
305 {
306 /* Special handling for AH, BH, CH, DH. */
307 regcache_raw_read (regcache,
308 gpnum - AMD64_NUM_LOWER_BYTE_REGS, raw_buf);
309 memcpy (buf, raw_buf + 1, 1);
310 }
311 else
312 {
313 regcache_raw_read (regcache, gpnum, raw_buf);
314 memcpy (buf, raw_buf, 1);
315 }
316 }
317 else if (i386_dword_regnum_p (gdbarch, regnum))
318 {
319 int gpnum = regnum - tdep->eax_regnum;
320 /* Extract (always little endian). */
321 regcache_raw_read (regcache, gpnum, raw_buf);
322 memcpy (buf, raw_buf, 4);
323 }
324 else
325 i386_pseudo_register_read (gdbarch, regcache, regnum, buf);
326 }
327
328 static void
329 amd64_pseudo_register_write (struct gdbarch *gdbarch,
330 struct regcache *regcache,
331 int regnum, const gdb_byte *buf)
332 {
333 gdb_byte raw_buf[MAX_REGISTER_SIZE];
334 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
335
336 if (i386_byte_regnum_p (gdbarch, regnum))
337 {
338 int gpnum = regnum - tdep->al_regnum;
339
340 if (gpnum >= AMD64_NUM_LOWER_BYTE_REGS)
341 {
342 /* Read ... AH, BH, CH, DH. */
343 regcache_raw_read (regcache,
344 gpnum - AMD64_NUM_LOWER_BYTE_REGS, raw_buf);
345 /* ... Modify ... (always little endian). */
346 memcpy (raw_buf + 1, buf, 1);
347 /* ... Write. */
348 regcache_raw_write (regcache,
349 gpnum - AMD64_NUM_LOWER_BYTE_REGS, raw_buf);
350 }
351 else
352 {
353 /* Read ... */
354 regcache_raw_read (regcache, gpnum, raw_buf);
355 /* ... Modify ... (always little endian). */
356 memcpy (raw_buf, buf, 1);
357 /* ... Write. */
358 regcache_raw_write (regcache, gpnum, raw_buf);
359 }
360 }
361 else if (i386_dword_regnum_p (gdbarch, regnum))
362 {
363 int gpnum = regnum - tdep->eax_regnum;
364
365 /* Read ... */
366 regcache_raw_read (regcache, gpnum, raw_buf);
367 /* ... Modify ... (always little endian). */
368 memcpy (raw_buf, buf, 4);
369 /* ... Write. */
370 regcache_raw_write (regcache, gpnum, raw_buf);
371 }
372 else
373 i386_pseudo_register_write (gdbarch, regcache, regnum, buf);
374 }
375
376 \f
377
378 /* Return the union class of CLASS1 and CLASS2. See the psABI for
379 details. */
380
381 static enum amd64_reg_class
382 amd64_merge_classes (enum amd64_reg_class class1, enum amd64_reg_class class2)
383 {
384 /* Rule (a): If both classes are equal, this is the resulting class. */
385 if (class1 == class2)
386 return class1;
387
388 /* Rule (b): If one of the classes is NO_CLASS, the resulting class
389 is the other class. */
390 if (class1 == AMD64_NO_CLASS)
391 return class2;
392 if (class2 == AMD64_NO_CLASS)
393 return class1;
394
395 /* Rule (c): If one of the classes is MEMORY, the result is MEMORY. */
396 if (class1 == AMD64_MEMORY || class2 == AMD64_MEMORY)
397 return AMD64_MEMORY;
398
399 /* Rule (d): If one of the classes is INTEGER, the result is INTEGER. */
400 if (class1 == AMD64_INTEGER || class2 == AMD64_INTEGER)
401 return AMD64_INTEGER;
402
403 /* Rule (e): If one of the classes is X87, X87UP, COMPLEX_X87 class,
404 MEMORY is used as class. */
405 if (class1 == AMD64_X87 || class1 == AMD64_X87UP
406 || class1 == AMD64_COMPLEX_X87 || class2 == AMD64_X87
407 || class2 == AMD64_X87UP || class2 == AMD64_COMPLEX_X87)
408 return AMD64_MEMORY;
409
410 /* Rule (f): Otherwise class SSE is used. */
411 return AMD64_SSE;
412 }
413
414 /* Return non-zero if TYPE is a non-POD structure or union type. */
415
416 static int
417 amd64_non_pod_p (struct type *type)
418 {
419 /* ??? A class with a base class certainly isn't POD, but does this
420 catch all non-POD structure types? */
421 if (TYPE_CODE (type) == TYPE_CODE_STRUCT && TYPE_N_BASECLASSES (type) > 0)
422 return 1;
423
424 return 0;
425 }
426
427 /* Classify TYPE according to the rules for aggregate (structures and
428 arrays) and union types, and store the result in CLASS. */
429
430 static void
431 amd64_classify_aggregate (struct type *type, enum amd64_reg_class class[2])
432 {
433 int len = TYPE_LENGTH (type);
434
435 /* 1. If the size of an object is larger than two eightbytes, or in
436 C++, is a non-POD structure or union type, or contains
437 unaligned fields, it has class memory. */
438 if (len > 16 || amd64_non_pod_p (type))
439 {
440 class[0] = class[1] = AMD64_MEMORY;
441 return;
442 }
443
444 /* 2. Both eightbytes get initialized to class NO_CLASS. */
445 class[0] = class[1] = AMD64_NO_CLASS;
446
447 /* 3. Each field of an object is classified recursively so that
448 always two fields are considered. The resulting class is
449 calculated according to the classes of the fields in the
450 eightbyte: */
451
452 if (TYPE_CODE (type) == TYPE_CODE_ARRAY)
453 {
454 struct type *subtype = check_typedef (TYPE_TARGET_TYPE (type));
455
456 /* All fields in an array have the same type. */
457 amd64_classify (subtype, class);
458 if (len > 8 && class[1] == AMD64_NO_CLASS)
459 class[1] = class[0];
460 }
461 else
462 {
463 int i;
464
465 /* Structure or union. */
466 gdb_assert (TYPE_CODE (type) == TYPE_CODE_STRUCT
467 || TYPE_CODE (type) == TYPE_CODE_UNION);
468
469 for (i = 0; i < TYPE_NFIELDS (type); i++)
470 {
471 struct type *subtype = check_typedef (TYPE_FIELD_TYPE (type, i));
472 int pos = TYPE_FIELD_BITPOS (type, i) / 64;
473 enum amd64_reg_class subclass[2];
474 int bitsize = TYPE_FIELD_BITSIZE (type, i);
475 int endpos;
476
477 if (bitsize == 0)
478 bitsize = TYPE_LENGTH (subtype) * 8;
479 endpos = (TYPE_FIELD_BITPOS (type, i) + bitsize - 1) / 64;
480
481 /* Ignore static fields. */
482 if (field_is_static (&TYPE_FIELD (type, i)))
483 continue;
484
485 gdb_assert (pos == 0 || pos == 1);
486
487 amd64_classify (subtype, subclass);
488 class[pos] = amd64_merge_classes (class[pos], subclass[0]);
489 if (bitsize <= 64 && pos == 0 && endpos == 1)
490 /* This is a bit of an odd case: We have a field that would
491 normally fit in one of the two eightbytes, except that
492 it is placed in a way that this field straddles them.
493 This has been seen with a structure containing an array.
494
495 The ABI is a bit unclear in this case, but we assume that
496 this field's class (stored in subclass[0]) must also be merged
497 into class[1]. In other words, our field has a piece stored
498 in the second eight-byte, and thus its class applies to
499 the second eight-byte as well.
500
501 In the case where the field length exceeds 8 bytes,
502 it should not be necessary to merge the field class
503 into class[1]. As LEN > 8, subclass[1] is necessarily
504 different from AMD64_NO_CLASS. If subclass[1] is equal
505 to subclass[0], then the normal class[1]/subclass[1]
506 merging will take care of everything. For subclass[1]
507 to be different from subclass[0], I can only see the case
508 where we have a SSE/SSEUP or X87/X87UP pair, which both
509 use up all 16 bytes of the aggregate, and are already
510 handled just fine (because each portion sits on its own
511 8-byte). */
512 class[1] = amd64_merge_classes (class[1], subclass[0]);
513 if (pos == 0)
514 class[1] = amd64_merge_classes (class[1], subclass[1]);
515 }
516 }
517
518 /* 4. Then a post merger cleanup is done: */
519
520 /* Rule (a): If one of the classes is MEMORY, the whole argument is
521 passed in memory. */
522 if (class[0] == AMD64_MEMORY || class[1] == AMD64_MEMORY)
523 class[0] = class[1] = AMD64_MEMORY;
524
525 /* Rule (b): If SSEUP is not preceeded by SSE, it is converted to
526 SSE. */
527 if (class[0] == AMD64_SSEUP)
528 class[0] = AMD64_SSE;
529 if (class[1] == AMD64_SSEUP && class[0] != AMD64_SSE)
530 class[1] = AMD64_SSE;
531 }
532
533 /* Classify TYPE, and store the result in CLASS. */
534
535 void
536 amd64_classify (struct type *type, enum amd64_reg_class class[2])
537 {
538 enum type_code code = TYPE_CODE (type);
539 int len = TYPE_LENGTH (type);
540
541 class[0] = class[1] = AMD64_NO_CLASS;
542
543 /* Arguments of types (signed and unsigned) _Bool, char, short, int,
544 long, long long, and pointers are in the INTEGER class. Similarly,
545 range types, used by languages such as Ada, are also in the INTEGER
546 class. */
547 if ((code == TYPE_CODE_INT || code == TYPE_CODE_ENUM
548 || code == TYPE_CODE_BOOL || code == TYPE_CODE_RANGE
549 || code == TYPE_CODE_CHAR
550 || code == TYPE_CODE_PTR || code == TYPE_CODE_REF)
551 && (len == 1 || len == 2 || len == 4 || len == 8))
552 class[0] = AMD64_INTEGER;
553
554 /* Arguments of types float, double, _Decimal32, _Decimal64 and __m64
555 are in class SSE. */
556 else if ((code == TYPE_CODE_FLT || code == TYPE_CODE_DECFLOAT)
557 && (len == 4 || len == 8))
558 /* FIXME: __m64 . */
559 class[0] = AMD64_SSE;
560
561 /* Arguments of types __float128, _Decimal128 and __m128 are split into
562 two halves. The least significant ones belong to class SSE, the most
563 significant one to class SSEUP. */
564 else if (code == TYPE_CODE_DECFLOAT && len == 16)
565 /* FIXME: __float128, __m128. */
566 class[0] = AMD64_SSE, class[1] = AMD64_SSEUP;
567
568 /* The 64-bit mantissa of arguments of type long double belongs to
569 class X87, the 16-bit exponent plus 6 bytes of padding belongs to
570 class X87UP. */
571 else if (code == TYPE_CODE_FLT && len == 16)
572 /* Class X87 and X87UP. */
573 class[0] = AMD64_X87, class[1] = AMD64_X87UP;
574
575 /* Aggregates. */
576 else if (code == TYPE_CODE_ARRAY || code == TYPE_CODE_STRUCT
577 || code == TYPE_CODE_UNION)
578 amd64_classify_aggregate (type, class);
579 }
580
581 static enum return_value_convention
582 amd64_return_value (struct gdbarch *gdbarch, struct type *func_type,
583 struct type *type, struct regcache *regcache,
584 gdb_byte *readbuf, const gdb_byte *writebuf)
585 {
586 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
587 enum amd64_reg_class class[2];
588 int len = TYPE_LENGTH (type);
589 static int integer_regnum[] = { AMD64_RAX_REGNUM, AMD64_RDX_REGNUM };
590 static int sse_regnum[] = { AMD64_XMM0_REGNUM, AMD64_XMM1_REGNUM };
591 int integer_reg = 0;
592 int sse_reg = 0;
593 int i;
594
595 gdb_assert (!(readbuf && writebuf));
596 gdb_assert (tdep->classify);
597
598 /* 1. Classify the return type with the classification algorithm. */
599 tdep->classify (type, class);
600
601 /* 2. If the type has class MEMORY, then the caller provides space
602 for the return value and passes the address of this storage in
603 %rdi as if it were the first argument to the function. In effect,
604 this address becomes a hidden first argument.
605
606 On return %rax will contain the address that has been passed in
607 by the caller in %rdi. */
608 if (class[0] == AMD64_MEMORY)
609 {
610 /* As indicated by the comment above, the ABI guarantees that we
611 can always find the return value just after the function has
612 returned. */
613
614 if (readbuf)
615 {
616 ULONGEST addr;
617
618 regcache_raw_read_unsigned (regcache, AMD64_RAX_REGNUM, &addr);
619 read_memory (addr, readbuf, TYPE_LENGTH (type));
620 }
621
622 return RETURN_VALUE_ABI_RETURNS_ADDRESS;
623 }
624
625 gdb_assert (class[1] != AMD64_MEMORY);
626 gdb_assert (len <= 16);
627
628 for (i = 0; len > 0; i++, len -= 8)
629 {
630 int regnum = -1;
631 int offset = 0;
632
633 switch (class[i])
634 {
635 case AMD64_INTEGER:
636 /* 3. If the class is INTEGER, the next available register
637 of the sequence %rax, %rdx is used. */
638 regnum = integer_regnum[integer_reg++];
639 break;
640
641 case AMD64_SSE:
642 /* 4. If the class is SSE, the next available SSE register
643 of the sequence %xmm0, %xmm1 is used. */
644 regnum = sse_regnum[sse_reg++];
645 break;
646
647 case AMD64_SSEUP:
648 /* 5. If the class is SSEUP, the eightbyte is passed in the
649 upper half of the last used SSE register. */
650 gdb_assert (sse_reg > 0);
651 regnum = sse_regnum[sse_reg - 1];
652 offset = 8;
653 break;
654
655 case AMD64_X87:
656 /* 6. If the class is X87, the value is returned on the X87
657 stack in %st0 as 80-bit x87 number. */
658 regnum = AMD64_ST0_REGNUM;
659 if (writebuf)
660 i387_return_value (gdbarch, regcache);
661 break;
662
663 case AMD64_X87UP:
664 /* 7. If the class is X87UP, the value is returned together
665 with the previous X87 value in %st0. */
666 gdb_assert (i > 0 && class[0] == AMD64_X87);
667 regnum = AMD64_ST0_REGNUM;
668 offset = 8;
669 len = 2;
670 break;
671
672 case AMD64_NO_CLASS:
673 continue;
674
675 default:
676 gdb_assert (!"Unexpected register class.");
677 }
678
679 gdb_assert (regnum != -1);
680
681 if (readbuf)
682 regcache_raw_read_part (regcache, regnum, offset, min (len, 8),
683 readbuf + i * 8);
684 if (writebuf)
685 regcache_raw_write_part (regcache, regnum, offset, min (len, 8),
686 writebuf + i * 8);
687 }
688
689 return RETURN_VALUE_REGISTER_CONVENTION;
690 }
691 \f
692
693 static CORE_ADDR
694 amd64_push_arguments (struct regcache *regcache, int nargs,
695 struct value **args, CORE_ADDR sp, int struct_return)
696 {
697 struct gdbarch *gdbarch = get_regcache_arch (regcache);
698 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
699 int *integer_regs = tdep->call_dummy_integer_regs;
700 int num_integer_regs = tdep->call_dummy_num_integer_regs;
701
702 static int sse_regnum[] =
703 {
704 /* %xmm0 ... %xmm7 */
705 AMD64_XMM0_REGNUM + 0, AMD64_XMM1_REGNUM,
706 AMD64_XMM0_REGNUM + 2, AMD64_XMM0_REGNUM + 3,
707 AMD64_XMM0_REGNUM + 4, AMD64_XMM0_REGNUM + 5,
708 AMD64_XMM0_REGNUM + 6, AMD64_XMM0_REGNUM + 7,
709 };
710 struct value **stack_args = alloca (nargs * sizeof (struct value *));
711 /* An array that mirrors the stack_args array. For all arguments
712 that are passed by MEMORY, if that argument's address also needs
713 to be stored in a register, the ARG_ADDR_REGNO array will contain
714 that register number (or a negative value otherwise). */
715 int *arg_addr_regno = alloca (nargs * sizeof (int));
716 int num_stack_args = 0;
717 int num_elements = 0;
718 int element = 0;
719 int integer_reg = 0;
720 int sse_reg = 0;
721 int i;
722
723 gdb_assert (tdep->classify);
724
725 /* Reserve a register for the "hidden" argument. */
726 if (struct_return)
727 integer_reg++;
728
729 for (i = 0; i < nargs; i++)
730 {
731 struct type *type = value_type (args[i]);
732 int len = TYPE_LENGTH (type);
733 enum amd64_reg_class class[2];
734 int needed_integer_regs = 0;
735 int needed_sse_regs = 0;
736 int j;
737
738 /* Classify argument. */
739 tdep->classify (type, class);
740
741 /* Calculate the number of integer and SSE registers needed for
742 this argument. */
743 for (j = 0; j < 2; j++)
744 {
745 if (class[j] == AMD64_INTEGER)
746 needed_integer_regs++;
747 else if (class[j] == AMD64_SSE)
748 needed_sse_regs++;
749 }
750
751 /* Check whether enough registers are available, and if the
752 argument should be passed in registers at all. */
753 if (integer_reg + needed_integer_regs > num_integer_regs
754 || sse_reg + needed_sse_regs > ARRAY_SIZE (sse_regnum)
755 || (needed_integer_regs == 0 && needed_sse_regs == 0))
756 {
757 /* The argument will be passed on the stack. */
758 num_elements += ((len + 7) / 8);
759 stack_args[num_stack_args] = args[i];
760 /* If this is an AMD64_MEMORY argument whose address must also
761 be passed in one of the integer registers, reserve that
762 register and associate this value to that register so that
763 we can store the argument address as soon as we know it. */
764 if (class[0] == AMD64_MEMORY
765 && tdep->memory_args_by_pointer
766 && integer_reg < tdep->call_dummy_num_integer_regs)
767 arg_addr_regno[num_stack_args] =
768 tdep->call_dummy_integer_regs[integer_reg++];
769 else
770 arg_addr_regno[num_stack_args] = -1;
771 num_stack_args++;
772 }
773 else
774 {
775 /* The argument will be passed in registers. */
776 const gdb_byte *valbuf = value_contents (args[i]);
777 gdb_byte buf[8];
778
779 gdb_assert (len <= 16);
780
781 for (j = 0; len > 0; j++, len -= 8)
782 {
783 int regnum = -1;
784 int offset = 0;
785
786 switch (class[j])
787 {
788 case AMD64_INTEGER:
789 regnum = integer_regs[integer_reg++];
790 break;
791
792 case AMD64_SSE:
793 regnum = sse_regnum[sse_reg++];
794 break;
795
796 case AMD64_SSEUP:
797 gdb_assert (sse_reg > 0);
798 regnum = sse_regnum[sse_reg - 1];
799 offset = 8;
800 break;
801
802 default:
803 gdb_assert (!"Unexpected register class.");
804 }
805
806 gdb_assert (regnum != -1);
807 memset (buf, 0, sizeof buf);
808 memcpy (buf, valbuf + j * 8, min (len, 8));
809 regcache_raw_write_part (regcache, regnum, offset, 8, buf);
810 }
811 }
812 }
813
814 /* Allocate space for the arguments on the stack. */
815 sp -= num_elements * 8;
816
817 /* The psABI says that "The end of the input argument area shall be
818 aligned on a 16 byte boundary." */
819 sp &= ~0xf;
820
821 /* Write out the arguments to the stack. */
822 for (i = 0; i < num_stack_args; i++)
823 {
824 struct type *type = value_type (stack_args[i]);
825 const gdb_byte *valbuf = value_contents (stack_args[i]);
826 int len = TYPE_LENGTH (type);
827 CORE_ADDR arg_addr = sp + element * 8;
828
829 write_memory (arg_addr, valbuf, len);
830 if (arg_addr_regno[i] >= 0)
831 {
832 /* We also need to store the address of that argument in
833 the given register. */
834 gdb_byte buf[8];
835 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
836
837 store_unsigned_integer (buf, 8, byte_order, arg_addr);
838 regcache_cooked_write (regcache, arg_addr_regno[i], buf);
839 }
840 element += ((len + 7) / 8);
841 }
842
843 /* The psABI says that "For calls that may call functions that use
844 varargs or stdargs (prototype-less calls or calls to functions
845 containing ellipsis (...) in the declaration) %al is used as
846 hidden argument to specify the number of SSE registers used. */
847 regcache_raw_write_unsigned (regcache, AMD64_RAX_REGNUM, sse_reg);
848 return sp;
849 }
850
851 static CORE_ADDR
852 amd64_push_dummy_call (struct gdbarch *gdbarch, struct value *function,
853 struct regcache *regcache, CORE_ADDR bp_addr,
854 int nargs, struct value **args, CORE_ADDR sp,
855 int struct_return, CORE_ADDR struct_addr)
856 {
857 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
858 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
859 gdb_byte buf[8];
860
861 /* Pass arguments. */
862 sp = amd64_push_arguments (regcache, nargs, args, sp, struct_return);
863
864 /* Pass "hidden" argument". */
865 if (struct_return)
866 {
867 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
868 /* The "hidden" argument is passed throught the first argument
869 register. */
870 const int arg_regnum = tdep->call_dummy_integer_regs[0];
871
872 store_unsigned_integer (buf, 8, byte_order, struct_addr);
873 regcache_cooked_write (regcache, arg_regnum, buf);
874 }
875
876 /* Reserve some memory on the stack for the integer-parameter registers,
877 if required by the ABI. */
878 if (tdep->integer_param_regs_saved_in_caller_frame)
879 sp -= tdep->call_dummy_num_integer_regs * 8;
880
881 /* Store return address. */
882 sp -= 8;
883 store_unsigned_integer (buf, 8, byte_order, bp_addr);
884 write_memory (sp, buf, 8);
885
886 /* Finally, update the stack pointer... */
887 store_unsigned_integer (buf, 8, byte_order, sp);
888 regcache_cooked_write (regcache, AMD64_RSP_REGNUM, buf);
889
890 /* ...and fake a frame pointer. */
891 regcache_cooked_write (regcache, AMD64_RBP_REGNUM, buf);
892
893 return sp + 16;
894 }
895 \f
896 /* Displaced instruction handling. */
897
898 /* A partially decoded instruction.
899 This contains enough details for displaced stepping purposes. */
900
901 struct amd64_insn
902 {
903 /* The number of opcode bytes. */
904 int opcode_len;
905 /* The offset of the rex prefix or -1 if not present. */
906 int rex_offset;
907 /* The offset to the first opcode byte. */
908 int opcode_offset;
909 /* The offset to the modrm byte or -1 if not present. */
910 int modrm_offset;
911
912 /* The raw instruction. */
913 gdb_byte *raw_insn;
914 };
915
916 struct displaced_step_closure
917 {
918 /* For rip-relative insns, saved copy of the reg we use instead of %rip. */
919 int tmp_used;
920 int tmp_regno;
921 ULONGEST tmp_save;
922
923 /* Details of the instruction. */
924 struct amd64_insn insn_details;
925
926 /* Amount of space allocated to insn_buf. */
927 int max_len;
928
929 /* The possibly modified insn.
930 This is a variable-length field. */
931 gdb_byte insn_buf[1];
932 };
933
934 /* WARNING: Keep onebyte_has_modrm, twobyte_has_modrm in sync with
935 ../opcodes/i386-dis.c (until libopcodes exports them, or an alternative,
936 at which point delete these in favor of libopcodes' versions). */
937
938 static const unsigned char onebyte_has_modrm[256] = {
939 /* 0 1 2 3 4 5 6 7 8 9 a b c d e f */
940 /* ------------------------------- */
941 /* 00 */ 1,1,1,1,0,0,0,0,1,1,1,1,0,0,0,0, /* 00 */
942 /* 10 */ 1,1,1,1,0,0,0,0,1,1,1,1,0,0,0,0, /* 10 */
943 /* 20 */ 1,1,1,1,0,0,0,0,1,1,1,1,0,0,0,0, /* 20 */
944 /* 30 */ 1,1,1,1,0,0,0,0,1,1,1,1,0,0,0,0, /* 30 */
945 /* 40 */ 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, /* 40 */
946 /* 50 */ 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, /* 50 */
947 /* 60 */ 0,0,1,1,0,0,0,0,0,1,0,1,0,0,0,0, /* 60 */
948 /* 70 */ 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, /* 70 */
949 /* 80 */ 1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1, /* 80 */
950 /* 90 */ 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, /* 90 */
951 /* a0 */ 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, /* a0 */
952 /* b0 */ 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, /* b0 */
953 /* c0 */ 1,1,0,0,1,1,1,1,0,0,0,0,0,0,0,0, /* c0 */
954 /* d0 */ 1,1,1,1,0,0,0,0,1,1,1,1,1,1,1,1, /* d0 */
955 /* e0 */ 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, /* e0 */
956 /* f0 */ 0,0,0,0,0,0,1,1,0,0,0,0,0,0,1,1 /* f0 */
957 /* ------------------------------- */
958 /* 0 1 2 3 4 5 6 7 8 9 a b c d e f */
959 };
960
961 static const unsigned char twobyte_has_modrm[256] = {
962 /* 0 1 2 3 4 5 6 7 8 9 a b c d e f */
963 /* ------------------------------- */
964 /* 00 */ 1,1,1,1,0,0,0,0,0,0,0,0,0,1,0,1, /* 0f */
965 /* 10 */ 1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1, /* 1f */
966 /* 20 */ 1,1,1,1,1,1,1,0,1,1,1,1,1,1,1,1, /* 2f */
967 /* 30 */ 0,0,0,0,0,0,0,0,1,0,1,0,0,0,0,0, /* 3f */
968 /* 40 */ 1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1, /* 4f */
969 /* 50 */ 1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1, /* 5f */
970 /* 60 */ 1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1, /* 6f */
971 /* 70 */ 1,1,1,1,1,1,1,0,1,1,1,1,1,1,1,1, /* 7f */
972 /* 80 */ 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, /* 8f */
973 /* 90 */ 1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1, /* 9f */
974 /* a0 */ 0,0,0,1,1,1,1,1,0,0,0,1,1,1,1,1, /* af */
975 /* b0 */ 1,1,1,1,1,1,1,1,1,0,1,1,1,1,1,1, /* bf */
976 /* c0 */ 1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0, /* cf */
977 /* d0 */ 1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1, /* df */
978 /* e0 */ 1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1, /* ef */
979 /* f0 */ 1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,0 /* ff */
980 /* ------------------------------- */
981 /* 0 1 2 3 4 5 6 7 8 9 a b c d e f */
982 };
983
984 static int amd64_syscall_p (const struct amd64_insn *insn, int *lengthp);
985
986 static int
987 rex_prefix_p (gdb_byte pfx)
988 {
989 return REX_PREFIX_P (pfx);
990 }
991
992 /* Skip the legacy instruction prefixes in INSN.
993 We assume INSN is properly sentineled so we don't have to worry
994 about falling off the end of the buffer. */
995
996 static gdb_byte *
997 amd64_skip_prefixes (gdb_byte *insn)
998 {
999 while (1)
1000 {
1001 switch (*insn)
1002 {
1003 case DATA_PREFIX_OPCODE:
1004 case ADDR_PREFIX_OPCODE:
1005 case CS_PREFIX_OPCODE:
1006 case DS_PREFIX_OPCODE:
1007 case ES_PREFIX_OPCODE:
1008 case FS_PREFIX_OPCODE:
1009 case GS_PREFIX_OPCODE:
1010 case SS_PREFIX_OPCODE:
1011 case LOCK_PREFIX_OPCODE:
1012 case REPE_PREFIX_OPCODE:
1013 case REPNE_PREFIX_OPCODE:
1014 ++insn;
1015 continue;
1016 default:
1017 break;
1018 }
1019 break;
1020 }
1021
1022 return insn;
1023 }
1024
1025 /* Return an integer register (other than RSP) that is unused as an input
1026 operand in INSN.
1027 In order to not require adding a rex prefix if the insn doesn't already
1028 have one, the result is restricted to RAX ... RDI, sans RSP.
1029 The register numbering of the result follows architecture ordering,
1030 e.g. RDI = 7. */
1031
1032 static int
1033 amd64_get_unused_input_int_reg (const struct amd64_insn *details)
1034 {
1035 /* 1 bit for each reg */
1036 int used_regs_mask = 0;
1037
1038 /* There can be at most 3 int regs used as inputs in an insn, and we have
1039 7 to choose from (RAX ... RDI, sans RSP).
1040 This allows us to take a conservative approach and keep things simple.
1041 E.g. By avoiding RAX, we don't have to specifically watch for opcodes
1042 that implicitly specify RAX. */
1043
1044 /* Avoid RAX. */
1045 used_regs_mask |= 1 << EAX_REG_NUM;
1046 /* Similarily avoid RDX, implicit operand in divides. */
1047 used_regs_mask |= 1 << EDX_REG_NUM;
1048 /* Avoid RSP. */
1049 used_regs_mask |= 1 << ESP_REG_NUM;
1050
1051 /* If the opcode is one byte long and there's no ModRM byte,
1052 assume the opcode specifies a register. */
1053 if (details->opcode_len == 1 && details->modrm_offset == -1)
1054 used_regs_mask |= 1 << (details->raw_insn[details->opcode_offset] & 7);
1055
1056 /* Mark used regs in the modrm/sib bytes. */
1057 if (details->modrm_offset != -1)
1058 {
1059 int modrm = details->raw_insn[details->modrm_offset];
1060 int mod = MODRM_MOD_FIELD (modrm);
1061 int reg = MODRM_REG_FIELD (modrm);
1062 int rm = MODRM_RM_FIELD (modrm);
1063 int have_sib = mod != 3 && rm == 4;
1064
1065 /* Assume the reg field of the modrm byte specifies a register. */
1066 used_regs_mask |= 1 << reg;
1067
1068 if (have_sib)
1069 {
1070 int base = SIB_BASE_FIELD (details->raw_insn[details->modrm_offset + 1]);
1071 int index = SIB_INDEX_FIELD (details->raw_insn[details->modrm_offset + 1]);
1072 used_regs_mask |= 1 << base;
1073 used_regs_mask |= 1 << index;
1074 }
1075 else
1076 {
1077 used_regs_mask |= 1 << rm;
1078 }
1079 }
1080
1081 gdb_assert (used_regs_mask < 256);
1082 gdb_assert (used_regs_mask != 255);
1083
1084 /* Finally, find a free reg. */
1085 {
1086 int i;
1087
1088 for (i = 0; i < 8; ++i)
1089 {
1090 if (! (used_regs_mask & (1 << i)))
1091 return i;
1092 }
1093
1094 /* We shouldn't get here. */
1095 internal_error (__FILE__, __LINE__, _("unable to find free reg"));
1096 }
1097 }
1098
1099 /* Extract the details of INSN that we need. */
1100
1101 static void
1102 amd64_get_insn_details (gdb_byte *insn, struct amd64_insn *details)
1103 {
1104 gdb_byte *start = insn;
1105 int need_modrm;
1106
1107 details->raw_insn = insn;
1108
1109 details->opcode_len = -1;
1110 details->rex_offset = -1;
1111 details->opcode_offset = -1;
1112 details->modrm_offset = -1;
1113
1114 /* Skip legacy instruction prefixes. */
1115 insn = amd64_skip_prefixes (insn);
1116
1117 /* Skip REX instruction prefix. */
1118 if (rex_prefix_p (*insn))
1119 {
1120 details->rex_offset = insn - start;
1121 ++insn;
1122 }
1123
1124 details->opcode_offset = insn - start;
1125
1126 if (*insn == TWO_BYTE_OPCODE_ESCAPE)
1127 {
1128 /* Two or three-byte opcode. */
1129 ++insn;
1130 need_modrm = twobyte_has_modrm[*insn];
1131
1132 /* Check for three-byte opcode. */
1133 switch (*insn)
1134 {
1135 case 0x24:
1136 case 0x25:
1137 case 0x38:
1138 case 0x3a:
1139 case 0x7a:
1140 case 0x7b:
1141 ++insn;
1142 details->opcode_len = 3;
1143 break;
1144 default:
1145 details->opcode_len = 2;
1146 break;
1147 }
1148 }
1149 else
1150 {
1151 /* One-byte opcode. */
1152 need_modrm = onebyte_has_modrm[*insn];
1153 details->opcode_len = 1;
1154 }
1155
1156 if (need_modrm)
1157 {
1158 ++insn;
1159 details->modrm_offset = insn - start;
1160 }
1161 }
1162
1163 /* Update %rip-relative addressing in INSN.
1164
1165 %rip-relative addressing only uses a 32-bit displacement.
1166 32 bits is not enough to be guaranteed to cover the distance between where
1167 the real instruction is and where its copy is.
1168 Convert the insn to use base+disp addressing.
1169 We set base = pc + insn_length so we can leave disp unchanged. */
1170
1171 static void
1172 fixup_riprel (struct gdbarch *gdbarch, struct displaced_step_closure *dsc,
1173 CORE_ADDR from, CORE_ADDR to, struct regcache *regs)
1174 {
1175 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1176 const struct amd64_insn *insn_details = &dsc->insn_details;
1177 int modrm_offset = insn_details->modrm_offset;
1178 gdb_byte *insn = insn_details->raw_insn + modrm_offset;
1179 CORE_ADDR rip_base;
1180 int32_t disp;
1181 int insn_length;
1182 int arch_tmp_regno, tmp_regno;
1183 ULONGEST orig_value;
1184
1185 /* %rip+disp32 addressing mode, displacement follows ModRM byte. */
1186 ++insn;
1187
1188 /* Compute the rip-relative address. */
1189 disp = extract_signed_integer (insn, sizeof (int32_t), byte_order);
1190 insn_length = gdb_buffered_insn_length (gdbarch, dsc->insn_buf,
1191 dsc->max_len, from);
1192 rip_base = from + insn_length;
1193
1194 /* We need a register to hold the address.
1195 Pick one not used in the insn.
1196 NOTE: arch_tmp_regno uses architecture ordering, e.g. RDI = 7. */
1197 arch_tmp_regno = amd64_get_unused_input_int_reg (insn_details);
1198 tmp_regno = amd64_arch_reg_to_regnum (arch_tmp_regno);
1199
1200 /* REX.B should be unset as we were using rip-relative addressing,
1201 but ensure it's unset anyway, tmp_regno is not r8-r15. */
1202 if (insn_details->rex_offset != -1)
1203 dsc->insn_buf[insn_details->rex_offset] &= ~REX_B;
1204
1205 regcache_cooked_read_unsigned (regs, tmp_regno, &orig_value);
1206 dsc->tmp_regno = tmp_regno;
1207 dsc->tmp_save = orig_value;
1208 dsc->tmp_used = 1;
1209
1210 /* Convert the ModRM field to be base+disp. */
1211 dsc->insn_buf[modrm_offset] &= ~0xc7;
1212 dsc->insn_buf[modrm_offset] |= 0x80 + arch_tmp_regno;
1213
1214 regcache_cooked_write_unsigned (regs, tmp_regno, rip_base);
1215
1216 if (debug_displaced)
1217 fprintf_unfiltered (gdb_stdlog, "displaced: %%rip-relative addressing used.\n"
1218 "displaced: using temp reg %d, old value %s, new value %s\n",
1219 dsc->tmp_regno, paddress (gdbarch, dsc->tmp_save),
1220 paddress (gdbarch, rip_base));
1221 }
1222
1223 static void
1224 fixup_displaced_copy (struct gdbarch *gdbarch,
1225 struct displaced_step_closure *dsc,
1226 CORE_ADDR from, CORE_ADDR to, struct regcache *regs)
1227 {
1228 const struct amd64_insn *details = &dsc->insn_details;
1229
1230 if (details->modrm_offset != -1)
1231 {
1232 gdb_byte modrm = details->raw_insn[details->modrm_offset];
1233
1234 if ((modrm & 0xc7) == 0x05)
1235 {
1236 /* The insn uses rip-relative addressing.
1237 Deal with it. */
1238 fixup_riprel (gdbarch, dsc, from, to, regs);
1239 }
1240 }
1241 }
1242
1243 struct displaced_step_closure *
1244 amd64_displaced_step_copy_insn (struct gdbarch *gdbarch,
1245 CORE_ADDR from, CORE_ADDR to,
1246 struct regcache *regs)
1247 {
1248 int len = gdbarch_max_insn_length (gdbarch);
1249 /* Extra space for sentinels so fixup_{riprel,displaced_copy don't have to
1250 continually watch for running off the end of the buffer. */
1251 int fixup_sentinel_space = len;
1252 struct displaced_step_closure *dsc =
1253 xmalloc (sizeof (*dsc) + len + fixup_sentinel_space);
1254 gdb_byte *buf = &dsc->insn_buf[0];
1255 struct amd64_insn *details = &dsc->insn_details;
1256
1257 dsc->tmp_used = 0;
1258 dsc->max_len = len + fixup_sentinel_space;
1259
1260 read_memory (from, buf, len);
1261
1262 /* Set up the sentinel space so we don't have to worry about running
1263 off the end of the buffer. An excessive number of leading prefixes
1264 could otherwise cause this. */
1265 memset (buf + len, 0, fixup_sentinel_space);
1266
1267 amd64_get_insn_details (buf, details);
1268
1269 /* GDB may get control back after the insn after the syscall.
1270 Presumably this is a kernel bug.
1271 If this is a syscall, make sure there's a nop afterwards. */
1272 {
1273 int syscall_length;
1274
1275 if (amd64_syscall_p (details, &syscall_length))
1276 buf[details->opcode_offset + syscall_length] = NOP_OPCODE;
1277 }
1278
1279 /* Modify the insn to cope with the address where it will be executed from.
1280 In particular, handle any rip-relative addressing. */
1281 fixup_displaced_copy (gdbarch, dsc, from, to, regs);
1282
1283 write_memory (to, buf, len);
1284
1285 if (debug_displaced)
1286 {
1287 fprintf_unfiltered (gdb_stdlog, "displaced: copy %s->%s: ",
1288 paddress (gdbarch, from), paddress (gdbarch, to));
1289 displaced_step_dump_bytes (gdb_stdlog, buf, len);
1290 }
1291
1292 return dsc;
1293 }
1294
1295 static int
1296 amd64_absolute_jmp_p (const struct amd64_insn *details)
1297 {
1298 const gdb_byte *insn = &details->raw_insn[details->opcode_offset];
1299
1300 if (insn[0] == 0xff)
1301 {
1302 /* jump near, absolute indirect (/4) */
1303 if ((insn[1] & 0x38) == 0x20)
1304 return 1;
1305
1306 /* jump far, absolute indirect (/5) */
1307 if ((insn[1] & 0x38) == 0x28)
1308 return 1;
1309 }
1310
1311 return 0;
1312 }
1313
1314 static int
1315 amd64_absolute_call_p (const struct amd64_insn *details)
1316 {
1317 const gdb_byte *insn = &details->raw_insn[details->opcode_offset];
1318
1319 if (insn[0] == 0xff)
1320 {
1321 /* Call near, absolute indirect (/2) */
1322 if ((insn[1] & 0x38) == 0x10)
1323 return 1;
1324
1325 /* Call far, absolute indirect (/3) */
1326 if ((insn[1] & 0x38) == 0x18)
1327 return 1;
1328 }
1329
1330 return 0;
1331 }
1332
1333 static int
1334 amd64_ret_p (const struct amd64_insn *details)
1335 {
1336 /* NOTE: gcc can emit "repz ; ret". */
1337 const gdb_byte *insn = &details->raw_insn[details->opcode_offset];
1338
1339 switch (insn[0])
1340 {
1341 case 0xc2: /* ret near, pop N bytes */
1342 case 0xc3: /* ret near */
1343 case 0xca: /* ret far, pop N bytes */
1344 case 0xcb: /* ret far */
1345 case 0xcf: /* iret */
1346 return 1;
1347
1348 default:
1349 return 0;
1350 }
1351 }
1352
1353 static int
1354 amd64_call_p (const struct amd64_insn *details)
1355 {
1356 const gdb_byte *insn = &details->raw_insn[details->opcode_offset];
1357
1358 if (amd64_absolute_call_p (details))
1359 return 1;
1360
1361 /* call near, relative */
1362 if (insn[0] == 0xe8)
1363 return 1;
1364
1365 return 0;
1366 }
1367
1368 /* Return non-zero if INSN is a system call, and set *LENGTHP to its
1369 length in bytes. Otherwise, return zero. */
1370
1371 static int
1372 amd64_syscall_p (const struct amd64_insn *details, int *lengthp)
1373 {
1374 const gdb_byte *insn = &details->raw_insn[details->opcode_offset];
1375
1376 if (insn[0] == 0x0f && insn[1] == 0x05)
1377 {
1378 *lengthp = 2;
1379 return 1;
1380 }
1381
1382 return 0;
1383 }
1384
1385 /* Fix up the state of registers and memory after having single-stepped
1386 a displaced instruction. */
1387
1388 void
1389 amd64_displaced_step_fixup (struct gdbarch *gdbarch,
1390 struct displaced_step_closure *dsc,
1391 CORE_ADDR from, CORE_ADDR to,
1392 struct regcache *regs)
1393 {
1394 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1395 /* The offset we applied to the instruction's address. */
1396 ULONGEST insn_offset = to - from;
1397 gdb_byte *insn = dsc->insn_buf;
1398 const struct amd64_insn *insn_details = &dsc->insn_details;
1399
1400 if (debug_displaced)
1401 fprintf_unfiltered (gdb_stdlog,
1402 "displaced: fixup (%s, %s), "
1403 "insn = 0x%02x 0x%02x ...\n",
1404 paddress (gdbarch, from), paddress (gdbarch, to),
1405 insn[0], insn[1]);
1406
1407 /* If we used a tmp reg, restore it. */
1408
1409 if (dsc->tmp_used)
1410 {
1411 if (debug_displaced)
1412 fprintf_unfiltered (gdb_stdlog, "displaced: restoring reg %d to %s\n",
1413 dsc->tmp_regno, paddress (gdbarch, dsc->tmp_save));
1414 regcache_cooked_write_unsigned (regs, dsc->tmp_regno, dsc->tmp_save);
1415 }
1416
1417 /* The list of issues to contend with here is taken from
1418 resume_execution in arch/x86/kernel/kprobes.c, Linux 2.6.28.
1419 Yay for Free Software! */
1420
1421 /* Relocate the %rip back to the program's instruction stream,
1422 if necessary. */
1423
1424 /* Except in the case of absolute or indirect jump or call
1425 instructions, or a return instruction, the new rip is relative to
1426 the displaced instruction; make it relative to the original insn.
1427 Well, signal handler returns don't need relocation either, but we use the
1428 value of %rip to recognize those; see below. */
1429 if (! amd64_absolute_jmp_p (insn_details)
1430 && ! amd64_absolute_call_p (insn_details)
1431 && ! amd64_ret_p (insn_details))
1432 {
1433 ULONGEST orig_rip;
1434 int insn_len;
1435
1436 regcache_cooked_read_unsigned (regs, AMD64_RIP_REGNUM, &orig_rip);
1437
1438 /* A signal trampoline system call changes the %rip, resuming
1439 execution of the main program after the signal handler has
1440 returned. That makes them like 'return' instructions; we
1441 shouldn't relocate %rip.
1442
1443 But most system calls don't, and we do need to relocate %rip.
1444
1445 Our heuristic for distinguishing these cases: if stepping
1446 over the system call instruction left control directly after
1447 the instruction, the we relocate --- control almost certainly
1448 doesn't belong in the displaced copy. Otherwise, we assume
1449 the instruction has put control where it belongs, and leave
1450 it unrelocated. Goodness help us if there are PC-relative
1451 system calls. */
1452 if (amd64_syscall_p (insn_details, &insn_len)
1453 && orig_rip != to + insn_len
1454 /* GDB can get control back after the insn after the syscall.
1455 Presumably this is a kernel bug.
1456 Fixup ensures its a nop, we add one to the length for it. */
1457 && orig_rip != to + insn_len + 1)
1458 {
1459 if (debug_displaced)
1460 fprintf_unfiltered (gdb_stdlog,
1461 "displaced: syscall changed %%rip; "
1462 "not relocating\n");
1463 }
1464 else
1465 {
1466 ULONGEST rip = orig_rip - insn_offset;
1467
1468 /* If we just stepped over a breakpoint insn, we don't backup
1469 the pc on purpose; this is to match behaviour without
1470 stepping. */
1471
1472 regcache_cooked_write_unsigned (regs, AMD64_RIP_REGNUM, rip);
1473
1474 if (debug_displaced)
1475 fprintf_unfiltered (gdb_stdlog,
1476 "displaced: "
1477 "relocated %%rip from %s to %s\n",
1478 paddress (gdbarch, orig_rip),
1479 paddress (gdbarch, rip));
1480 }
1481 }
1482
1483 /* If the instruction was PUSHFL, then the TF bit will be set in the
1484 pushed value, and should be cleared. We'll leave this for later,
1485 since GDB already messes up the TF flag when stepping over a
1486 pushfl. */
1487
1488 /* If the instruction was a call, the return address now atop the
1489 stack is the address following the copied instruction. We need
1490 to make it the address following the original instruction. */
1491 if (amd64_call_p (insn_details))
1492 {
1493 ULONGEST rsp;
1494 ULONGEST retaddr;
1495 const ULONGEST retaddr_len = 8;
1496
1497 regcache_cooked_read_unsigned (regs, AMD64_RSP_REGNUM, &rsp);
1498 retaddr = read_memory_unsigned_integer (rsp, retaddr_len, byte_order);
1499 retaddr = (retaddr - insn_offset) & 0xffffffffUL;
1500 write_memory_unsigned_integer (rsp, retaddr_len, byte_order, retaddr);
1501
1502 if (debug_displaced)
1503 fprintf_unfiltered (gdb_stdlog,
1504 "displaced: relocated return addr at %s "
1505 "to %s\n",
1506 paddress (gdbarch, rsp),
1507 paddress (gdbarch, retaddr));
1508 }
1509 }
1510
1511 /* If the instruction INSN uses RIP-relative addressing, return the
1512 offset into the raw INSN where the displacement to be adjusted is
1513 found. Returns 0 if the instruction doesn't use RIP-relative
1514 addressing. */
1515
1516 static int
1517 rip_relative_offset (struct amd64_insn *insn)
1518 {
1519 if (insn->modrm_offset != -1)
1520 {
1521 gdb_byte modrm = insn->raw_insn[insn->modrm_offset];
1522
1523 if ((modrm & 0xc7) == 0x05)
1524 {
1525 /* The displacement is found right after the ModRM byte. */
1526 return insn->modrm_offset + 1;
1527 }
1528 }
1529
1530 return 0;
1531 }
1532
1533 static void
1534 append_insns (CORE_ADDR *to, ULONGEST len, const gdb_byte *buf)
1535 {
1536 target_write_memory (*to, buf, len);
1537 *to += len;
1538 }
1539
1540 void
1541 amd64_relocate_instruction (struct gdbarch *gdbarch,
1542 CORE_ADDR *to, CORE_ADDR oldloc)
1543 {
1544 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1545 int len = gdbarch_max_insn_length (gdbarch);
1546 /* Extra space for sentinels. */
1547 int fixup_sentinel_space = len;
1548 gdb_byte *buf = xmalloc (len + fixup_sentinel_space);
1549 struct amd64_insn insn_details;
1550 int offset = 0;
1551 LONGEST rel32, newrel;
1552 gdb_byte *insn;
1553 int insn_length;
1554
1555 read_memory (oldloc, buf, len);
1556
1557 /* Set up the sentinel space so we don't have to worry about running
1558 off the end of the buffer. An excessive number of leading prefixes
1559 could otherwise cause this. */
1560 memset (buf + len, 0, fixup_sentinel_space);
1561
1562 insn = buf;
1563 amd64_get_insn_details (insn, &insn_details);
1564
1565 insn_length = gdb_buffered_insn_length (gdbarch, insn, len, oldloc);
1566
1567 /* Skip legacy instruction prefixes. */
1568 insn = amd64_skip_prefixes (insn);
1569
1570 /* Adjust calls with 32-bit relative addresses as push/jump, with
1571 the address pushed being the location where the original call in
1572 the user program would return to. */
1573 if (insn[0] == 0xe8)
1574 {
1575 gdb_byte push_buf[16];
1576 unsigned int ret_addr;
1577
1578 /* Where "ret" in the original code will return to. */
1579 ret_addr = oldloc + insn_length;
1580 push_buf[0] = 0x68; /* pushq $... */
1581 memcpy (&push_buf[1], &ret_addr, 4);
1582 /* Push the push. */
1583 append_insns (to, 5, push_buf);
1584
1585 /* Convert the relative call to a relative jump. */
1586 insn[0] = 0xe9;
1587
1588 /* Adjust the destination offset. */
1589 rel32 = extract_signed_integer (insn + 1, 4, byte_order);
1590 newrel = (oldloc - *to) + rel32;
1591 store_signed_integer (insn + 1, 4, newrel, byte_order);
1592
1593 /* Write the adjusted jump into its displaced location. */
1594 append_insns (to, 5, insn);
1595 return;
1596 }
1597
1598 offset = rip_relative_offset (&insn_details);
1599 if (!offset)
1600 {
1601 /* Adjust jumps with 32-bit relative addresses. Calls are
1602 already handled above. */
1603 if (insn[0] == 0xe9)
1604 offset = 1;
1605 /* Adjust conditional jumps. */
1606 else if (insn[0] == 0x0f && (insn[1] & 0xf0) == 0x80)
1607 offset = 2;
1608 }
1609
1610 if (offset)
1611 {
1612 rel32 = extract_signed_integer (insn + offset, 4, byte_order);
1613 newrel = (oldloc - *to) + rel32;
1614 store_signed_integer (insn + offset, 4, newrel, byte_order);
1615 if (debug_displaced)
1616 fprintf_unfiltered (gdb_stdlog,
1617 "Adjusted insn rel32=0x%s at 0x%s to"
1618 " rel32=0x%s at 0x%s\n",
1619 hex_string (rel32), paddress (gdbarch, oldloc),
1620 hex_string (newrel), paddress (gdbarch, *to));
1621 }
1622
1623 /* Write the adjusted instruction into its displaced location. */
1624 append_insns (to, insn_length, buf);
1625 }
1626
1627 \f
1628 /* The maximum number of saved registers. This should include %rip. */
1629 #define AMD64_NUM_SAVED_REGS AMD64_NUM_GREGS
1630
1631 struct amd64_frame_cache
1632 {
1633 /* Base address. */
1634 CORE_ADDR base;
1635 CORE_ADDR sp_offset;
1636 CORE_ADDR pc;
1637
1638 /* Saved registers. */
1639 CORE_ADDR saved_regs[AMD64_NUM_SAVED_REGS];
1640 CORE_ADDR saved_sp;
1641 int saved_sp_reg;
1642
1643 /* Do we have a frame? */
1644 int frameless_p;
1645 };
1646
1647 /* Initialize a frame cache. */
1648
1649 static void
1650 amd64_init_frame_cache (struct amd64_frame_cache *cache)
1651 {
1652 int i;
1653
1654 /* Base address. */
1655 cache->base = 0;
1656 cache->sp_offset = -8;
1657 cache->pc = 0;
1658
1659 /* Saved registers. We initialize these to -1 since zero is a valid
1660 offset (that's where %rbp is supposed to be stored).
1661 The values start out as being offsets, and are later converted to
1662 addresses (at which point -1 is interpreted as an address, still meaning
1663 "invalid"). */
1664 for (i = 0; i < AMD64_NUM_SAVED_REGS; i++)
1665 cache->saved_regs[i] = -1;
1666 cache->saved_sp = 0;
1667 cache->saved_sp_reg = -1;
1668
1669 /* Frameless until proven otherwise. */
1670 cache->frameless_p = 1;
1671 }
1672
1673 /* Allocate and initialize a frame cache. */
1674
1675 static struct amd64_frame_cache *
1676 amd64_alloc_frame_cache (void)
1677 {
1678 struct amd64_frame_cache *cache;
1679
1680 cache = FRAME_OBSTACK_ZALLOC (struct amd64_frame_cache);
1681 amd64_init_frame_cache (cache);
1682 return cache;
1683 }
1684
1685 /* GCC 4.4 and later, can put code in the prologue to realign the
1686 stack pointer. Check whether PC points to such code, and update
1687 CACHE accordingly. Return the first instruction after the code
1688 sequence or CURRENT_PC, whichever is smaller. If we don't
1689 recognize the code, return PC. */
1690
1691 static CORE_ADDR
1692 amd64_analyze_stack_align (CORE_ADDR pc, CORE_ADDR current_pc,
1693 struct amd64_frame_cache *cache)
1694 {
1695 /* There are 2 code sequences to re-align stack before the frame
1696 gets set up:
1697
1698 1. Use a caller-saved saved register:
1699
1700 leaq 8(%rsp), %reg
1701 andq $-XXX, %rsp
1702 pushq -8(%reg)
1703
1704 2. Use a callee-saved saved register:
1705
1706 pushq %reg
1707 leaq 16(%rsp), %reg
1708 andq $-XXX, %rsp
1709 pushq -8(%reg)
1710
1711 "andq $-XXX, %rsp" can be either 4 bytes or 7 bytes:
1712
1713 0x48 0x83 0xe4 0xf0 andq $-16, %rsp
1714 0x48 0x81 0xe4 0x00 0xff 0xff 0xff andq $-256, %rsp
1715 */
1716
1717 gdb_byte buf[18];
1718 int reg, r;
1719 int offset, offset_and;
1720
1721 if (target_read_memory (pc, buf, sizeof buf))
1722 return pc;
1723
1724 /* Check caller-saved saved register. The first instruction has
1725 to be "leaq 8(%rsp), %reg". */
1726 if ((buf[0] & 0xfb) == 0x48
1727 && buf[1] == 0x8d
1728 && buf[3] == 0x24
1729 && buf[4] == 0x8)
1730 {
1731 /* MOD must be binary 10 and R/M must be binary 100. */
1732 if ((buf[2] & 0xc7) != 0x44)
1733 return pc;
1734
1735 /* REG has register number. */
1736 reg = (buf[2] >> 3) & 7;
1737
1738 /* Check the REX.R bit. */
1739 if (buf[0] == 0x4c)
1740 reg += 8;
1741
1742 offset = 5;
1743 }
1744 else
1745 {
1746 /* Check callee-saved saved register. The first instruction
1747 has to be "pushq %reg". */
1748 reg = 0;
1749 if ((buf[0] & 0xf8) == 0x50)
1750 offset = 0;
1751 else if ((buf[0] & 0xf6) == 0x40
1752 && (buf[1] & 0xf8) == 0x50)
1753 {
1754 /* Check the REX.B bit. */
1755 if ((buf[0] & 1) != 0)
1756 reg = 8;
1757
1758 offset = 1;
1759 }
1760 else
1761 return pc;
1762
1763 /* Get register. */
1764 reg += buf[offset] & 0x7;
1765
1766 offset++;
1767
1768 /* The next instruction has to be "leaq 16(%rsp), %reg". */
1769 if ((buf[offset] & 0xfb) != 0x48
1770 || buf[offset + 1] != 0x8d
1771 || buf[offset + 3] != 0x24
1772 || buf[offset + 4] != 0x10)
1773 return pc;
1774
1775 /* MOD must be binary 10 and R/M must be binary 100. */
1776 if ((buf[offset + 2] & 0xc7) != 0x44)
1777 return pc;
1778
1779 /* REG has register number. */
1780 r = (buf[offset + 2] >> 3) & 7;
1781
1782 /* Check the REX.R bit. */
1783 if (buf[offset] == 0x4c)
1784 r += 8;
1785
1786 /* Registers in pushq and leaq have to be the same. */
1787 if (reg != r)
1788 return pc;
1789
1790 offset += 5;
1791 }
1792
1793 /* Rigister can't be %rsp nor %rbp. */
1794 if (reg == 4 || reg == 5)
1795 return pc;
1796
1797 /* The next instruction has to be "andq $-XXX, %rsp". */
1798 if (buf[offset] != 0x48
1799 || buf[offset + 2] != 0xe4
1800 || (buf[offset + 1] != 0x81 && buf[offset + 1] != 0x83))
1801 return pc;
1802
1803 offset_and = offset;
1804 offset += buf[offset + 1] == 0x81 ? 7 : 4;
1805
1806 /* The next instruction has to be "pushq -8(%reg)". */
1807 r = 0;
1808 if (buf[offset] == 0xff)
1809 offset++;
1810 else if ((buf[offset] & 0xf6) == 0x40
1811 && buf[offset + 1] == 0xff)
1812 {
1813 /* Check the REX.B bit. */
1814 if ((buf[offset] & 0x1) != 0)
1815 r = 8;
1816 offset += 2;
1817 }
1818 else
1819 return pc;
1820
1821 /* 8bit -8 is 0xf8. REG must be binary 110 and MOD must be binary
1822 01. */
1823 if (buf[offset + 1] != 0xf8
1824 || (buf[offset] & 0xf8) != 0x70)
1825 return pc;
1826
1827 /* R/M has register. */
1828 r += buf[offset] & 7;
1829
1830 /* Registers in leaq and pushq have to be the same. */
1831 if (reg != r)
1832 return pc;
1833
1834 if (current_pc > pc + offset_and)
1835 cache->saved_sp_reg = amd64_arch_reg_to_regnum (reg);
1836
1837 return min (pc + offset + 2, current_pc);
1838 }
1839
1840 /* Do a limited analysis of the prologue at PC and update CACHE
1841 accordingly. Bail out early if CURRENT_PC is reached. Return the
1842 address where the analysis stopped.
1843
1844 We will handle only functions beginning with:
1845
1846 pushq %rbp 0x55
1847 movq %rsp, %rbp 0x48 0x89 0xe5
1848
1849 Any function that doesn't start with this sequence will be assumed
1850 to have no prologue and thus no valid frame pointer in %rbp. */
1851
1852 static CORE_ADDR
1853 amd64_analyze_prologue (struct gdbarch *gdbarch,
1854 CORE_ADDR pc, CORE_ADDR current_pc,
1855 struct amd64_frame_cache *cache)
1856 {
1857 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1858 static gdb_byte proto[3] = { 0x48, 0x89, 0xe5 }; /* movq %rsp, %rbp */
1859 gdb_byte buf[3];
1860 gdb_byte op;
1861
1862 if (current_pc <= pc)
1863 return current_pc;
1864
1865 pc = amd64_analyze_stack_align (pc, current_pc, cache);
1866
1867 op = read_memory_unsigned_integer (pc, 1, byte_order);
1868
1869 if (op == 0x55) /* pushq %rbp */
1870 {
1871 /* Take into account that we've executed the `pushq %rbp' that
1872 starts this instruction sequence. */
1873 cache->saved_regs[AMD64_RBP_REGNUM] = 0;
1874 cache->sp_offset += 8;
1875
1876 /* If that's all, return now. */
1877 if (current_pc <= pc + 1)
1878 return current_pc;
1879
1880 /* Check for `movq %rsp, %rbp'. */
1881 read_memory (pc + 1, buf, 3);
1882 if (memcmp (buf, proto, 3) != 0)
1883 return pc + 1;
1884
1885 /* OK, we actually have a frame. */
1886 cache->frameless_p = 0;
1887 return pc + 4;
1888 }
1889
1890 return pc;
1891 }
1892
1893 /* Return PC of first real instruction. */
1894
1895 static CORE_ADDR
1896 amd64_skip_prologue (struct gdbarch *gdbarch, CORE_ADDR start_pc)
1897 {
1898 struct amd64_frame_cache cache;
1899 CORE_ADDR pc;
1900
1901 amd64_init_frame_cache (&cache);
1902 pc = amd64_analyze_prologue (gdbarch, start_pc, 0xffffffffffffffffLL,
1903 &cache);
1904 if (cache.frameless_p)
1905 return start_pc;
1906
1907 return pc;
1908 }
1909 \f
1910
1911 /* Normal frames. */
1912
1913 static struct amd64_frame_cache *
1914 amd64_frame_cache (struct frame_info *this_frame, void **this_cache)
1915 {
1916 struct gdbarch *gdbarch = get_frame_arch (this_frame);
1917 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1918 struct amd64_frame_cache *cache;
1919 gdb_byte buf[8];
1920 int i;
1921
1922 if (*this_cache)
1923 return *this_cache;
1924
1925 cache = amd64_alloc_frame_cache ();
1926 *this_cache = cache;
1927
1928 cache->pc = get_frame_func (this_frame);
1929 if (cache->pc != 0)
1930 amd64_analyze_prologue (gdbarch, cache->pc, get_frame_pc (this_frame),
1931 cache);
1932
1933 if (cache->saved_sp_reg != -1)
1934 {
1935 /* Stack pointer has been saved. */
1936 get_frame_register (this_frame, cache->saved_sp_reg, buf);
1937 cache->saved_sp = extract_unsigned_integer(buf, 8, byte_order);
1938 }
1939
1940 if (cache->frameless_p)
1941 {
1942 /* We didn't find a valid frame. If we're at the start of a
1943 function, or somewhere half-way its prologue, the function's
1944 frame probably hasn't been fully setup yet. Try to
1945 reconstruct the base address for the stack frame by looking
1946 at the stack pointer. For truly "frameless" functions this
1947 might work too. */
1948
1949 if (cache->saved_sp_reg != -1)
1950 {
1951 /* We're halfway aligning the stack. */
1952 cache->base = ((cache->saved_sp - 8) & 0xfffffffffffffff0LL) - 8;
1953 cache->saved_regs[AMD64_RIP_REGNUM] = cache->saved_sp - 8;
1954
1955 /* This will be added back below. */
1956 cache->saved_regs[AMD64_RIP_REGNUM] -= cache->base;
1957 }
1958 else
1959 {
1960 get_frame_register (this_frame, AMD64_RSP_REGNUM, buf);
1961 cache->base = extract_unsigned_integer (buf, 8, byte_order)
1962 + cache->sp_offset;
1963 }
1964 }
1965 else
1966 {
1967 get_frame_register (this_frame, AMD64_RBP_REGNUM, buf);
1968 cache->base = extract_unsigned_integer (buf, 8, byte_order);
1969 }
1970
1971 /* Now that we have the base address for the stack frame we can
1972 calculate the value of %rsp in the calling frame. */
1973 cache->saved_sp = cache->base + 16;
1974
1975 /* For normal frames, %rip is stored at 8(%rbp). If we don't have a
1976 frame we find it at the same offset from the reconstructed base
1977 address. If we're halfway aligning the stack, %rip is handled
1978 differently (see above). */
1979 if (!cache->frameless_p || cache->saved_sp_reg == -1)
1980 cache->saved_regs[AMD64_RIP_REGNUM] = 8;
1981
1982 /* Adjust all the saved registers such that they contain addresses
1983 instead of offsets. */
1984 for (i = 0; i < AMD64_NUM_SAVED_REGS; i++)
1985 if (cache->saved_regs[i] != -1)
1986 cache->saved_regs[i] += cache->base;
1987
1988 return cache;
1989 }
1990
1991 static void
1992 amd64_frame_this_id (struct frame_info *this_frame, void **this_cache,
1993 struct frame_id *this_id)
1994 {
1995 struct amd64_frame_cache *cache =
1996 amd64_frame_cache (this_frame, this_cache);
1997
1998 /* This marks the outermost frame. */
1999 if (cache->base == 0)
2000 return;
2001
2002 (*this_id) = frame_id_build (cache->base + 16, cache->pc);
2003 }
2004
2005 static struct value *
2006 amd64_frame_prev_register (struct frame_info *this_frame, void **this_cache,
2007 int regnum)
2008 {
2009 struct gdbarch *gdbarch = get_frame_arch (this_frame);
2010 struct amd64_frame_cache *cache =
2011 amd64_frame_cache (this_frame, this_cache);
2012
2013 gdb_assert (regnum >= 0);
2014
2015 if (regnum == gdbarch_sp_regnum (gdbarch) && cache->saved_sp)
2016 return frame_unwind_got_constant (this_frame, regnum, cache->saved_sp);
2017
2018 if (regnum < AMD64_NUM_SAVED_REGS && cache->saved_regs[regnum] != -1)
2019 return frame_unwind_got_memory (this_frame, regnum,
2020 cache->saved_regs[regnum]);
2021
2022 return frame_unwind_got_register (this_frame, regnum, regnum);
2023 }
2024
2025 static const struct frame_unwind amd64_frame_unwind =
2026 {
2027 NORMAL_FRAME,
2028 amd64_frame_this_id,
2029 amd64_frame_prev_register,
2030 NULL,
2031 default_frame_sniffer
2032 };
2033 \f
2034
2035 /* Signal trampolines. */
2036
2037 /* FIXME: kettenis/20030419: Perhaps, we can unify the 32-bit and
2038 64-bit variants. This would require using identical frame caches
2039 on both platforms. */
2040
2041 static struct amd64_frame_cache *
2042 amd64_sigtramp_frame_cache (struct frame_info *this_frame, void **this_cache)
2043 {
2044 struct gdbarch *gdbarch = get_frame_arch (this_frame);
2045 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2046 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
2047 struct amd64_frame_cache *cache;
2048 CORE_ADDR addr;
2049 gdb_byte buf[8];
2050 int i;
2051
2052 if (*this_cache)
2053 return *this_cache;
2054
2055 cache = amd64_alloc_frame_cache ();
2056
2057 get_frame_register (this_frame, AMD64_RSP_REGNUM, buf);
2058 cache->base = extract_unsigned_integer (buf, 8, byte_order) - 8;
2059
2060 addr = tdep->sigcontext_addr (this_frame);
2061 gdb_assert (tdep->sc_reg_offset);
2062 gdb_assert (tdep->sc_num_regs <= AMD64_NUM_SAVED_REGS);
2063 for (i = 0; i < tdep->sc_num_regs; i++)
2064 if (tdep->sc_reg_offset[i] != -1)
2065 cache->saved_regs[i] = addr + tdep->sc_reg_offset[i];
2066
2067 *this_cache = cache;
2068 return cache;
2069 }
2070
2071 static void
2072 amd64_sigtramp_frame_this_id (struct frame_info *this_frame,
2073 void **this_cache, struct frame_id *this_id)
2074 {
2075 struct amd64_frame_cache *cache =
2076 amd64_sigtramp_frame_cache (this_frame, this_cache);
2077
2078 (*this_id) = frame_id_build (cache->base + 16, get_frame_pc (this_frame));
2079 }
2080
2081 static struct value *
2082 amd64_sigtramp_frame_prev_register (struct frame_info *this_frame,
2083 void **this_cache, int regnum)
2084 {
2085 /* Make sure we've initialized the cache. */
2086 amd64_sigtramp_frame_cache (this_frame, this_cache);
2087
2088 return amd64_frame_prev_register (this_frame, this_cache, regnum);
2089 }
2090
2091 static int
2092 amd64_sigtramp_frame_sniffer (const struct frame_unwind *self,
2093 struct frame_info *this_frame,
2094 void **this_cache)
2095 {
2096 struct gdbarch_tdep *tdep = gdbarch_tdep (get_frame_arch (this_frame));
2097
2098 /* We shouldn't even bother if we don't have a sigcontext_addr
2099 handler. */
2100 if (tdep->sigcontext_addr == NULL)
2101 return 0;
2102
2103 if (tdep->sigtramp_p != NULL)
2104 {
2105 if (tdep->sigtramp_p (this_frame))
2106 return 1;
2107 }
2108
2109 if (tdep->sigtramp_start != 0)
2110 {
2111 CORE_ADDR pc = get_frame_pc (this_frame);
2112
2113 gdb_assert (tdep->sigtramp_end != 0);
2114 if (pc >= tdep->sigtramp_start && pc < tdep->sigtramp_end)
2115 return 1;
2116 }
2117
2118 return 0;
2119 }
2120
2121 static const struct frame_unwind amd64_sigtramp_frame_unwind =
2122 {
2123 SIGTRAMP_FRAME,
2124 amd64_sigtramp_frame_this_id,
2125 amd64_sigtramp_frame_prev_register,
2126 NULL,
2127 amd64_sigtramp_frame_sniffer
2128 };
2129 \f
2130
2131 static CORE_ADDR
2132 amd64_frame_base_address (struct frame_info *this_frame, void **this_cache)
2133 {
2134 struct amd64_frame_cache *cache =
2135 amd64_frame_cache (this_frame, this_cache);
2136
2137 return cache->base;
2138 }
2139
2140 static const struct frame_base amd64_frame_base =
2141 {
2142 &amd64_frame_unwind,
2143 amd64_frame_base_address,
2144 amd64_frame_base_address,
2145 amd64_frame_base_address
2146 };
2147
2148 /* Normal frames, but in a function epilogue. */
2149
2150 /* The epilogue is defined here as the 'ret' instruction, which will
2151 follow any instruction such as 'leave' or 'pop %ebp' that destroys
2152 the function's stack frame. */
2153
2154 static int
2155 amd64_in_function_epilogue_p (struct gdbarch *gdbarch, CORE_ADDR pc)
2156 {
2157 gdb_byte insn;
2158
2159 if (target_read_memory (pc, &insn, 1))
2160 return 0; /* Can't read memory at pc. */
2161
2162 if (insn != 0xc3) /* 'ret' instruction. */
2163 return 0;
2164
2165 return 1;
2166 }
2167
2168 static int
2169 amd64_epilogue_frame_sniffer (const struct frame_unwind *self,
2170 struct frame_info *this_frame,
2171 void **this_prologue_cache)
2172 {
2173 if (frame_relative_level (this_frame) == 0)
2174 return amd64_in_function_epilogue_p (get_frame_arch (this_frame),
2175 get_frame_pc (this_frame));
2176 else
2177 return 0;
2178 }
2179
2180 static struct amd64_frame_cache *
2181 amd64_epilogue_frame_cache (struct frame_info *this_frame, void **this_cache)
2182 {
2183 struct gdbarch *gdbarch = get_frame_arch (this_frame);
2184 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
2185 struct amd64_frame_cache *cache;
2186 gdb_byte buf[8];
2187
2188 if (*this_cache)
2189 return *this_cache;
2190
2191 cache = amd64_alloc_frame_cache ();
2192 *this_cache = cache;
2193
2194 /* Cache base will be %esp plus cache->sp_offset (-8). */
2195 get_frame_register (this_frame, AMD64_RSP_REGNUM, buf);
2196 cache->base = extract_unsigned_integer (buf, 8,
2197 byte_order) + cache->sp_offset;
2198
2199 /* Cache pc will be the frame func. */
2200 cache->pc = get_frame_pc (this_frame);
2201
2202 /* The saved %esp will be at cache->base plus 16. */
2203 cache->saved_sp = cache->base + 16;
2204
2205 /* The saved %eip will be at cache->base plus 8. */
2206 cache->saved_regs[AMD64_RIP_REGNUM] = cache->base + 8;
2207
2208 return cache;
2209 }
2210
2211 static void
2212 amd64_epilogue_frame_this_id (struct frame_info *this_frame,
2213 void **this_cache,
2214 struct frame_id *this_id)
2215 {
2216 struct amd64_frame_cache *cache = amd64_epilogue_frame_cache (this_frame,
2217 this_cache);
2218
2219 (*this_id) = frame_id_build (cache->base + 8, cache->pc);
2220 }
2221
2222 static const struct frame_unwind amd64_epilogue_frame_unwind =
2223 {
2224 NORMAL_FRAME,
2225 amd64_epilogue_frame_this_id,
2226 amd64_frame_prev_register,
2227 NULL,
2228 amd64_epilogue_frame_sniffer
2229 };
2230
2231 static struct frame_id
2232 amd64_dummy_id (struct gdbarch *gdbarch, struct frame_info *this_frame)
2233 {
2234 CORE_ADDR fp;
2235
2236 fp = get_frame_register_unsigned (this_frame, AMD64_RBP_REGNUM);
2237
2238 return frame_id_build (fp + 16, get_frame_pc (this_frame));
2239 }
2240
2241 /* 16 byte align the SP per frame requirements. */
2242
2243 static CORE_ADDR
2244 amd64_frame_align (struct gdbarch *gdbarch, CORE_ADDR sp)
2245 {
2246 return sp & -(CORE_ADDR)16;
2247 }
2248 \f
2249
2250 /* Supply register REGNUM from the buffer specified by FPREGS and LEN
2251 in the floating-point register set REGSET to register cache
2252 REGCACHE. If REGNUM is -1, do this for all registers in REGSET. */
2253
2254 static void
2255 amd64_supply_fpregset (const struct regset *regset, struct regcache *regcache,
2256 int regnum, const void *fpregs, size_t len)
2257 {
2258 const struct gdbarch_tdep *tdep = gdbarch_tdep (regset->arch);
2259
2260 gdb_assert (len == tdep->sizeof_fpregset);
2261 amd64_supply_fxsave (regcache, regnum, fpregs);
2262 }
2263
2264 /* Collect register REGNUM from the register cache REGCACHE and store
2265 it in the buffer specified by FPREGS and LEN as described by the
2266 floating-point register set REGSET. If REGNUM is -1, do this for
2267 all registers in REGSET. */
2268
2269 static void
2270 amd64_collect_fpregset (const struct regset *regset,
2271 const struct regcache *regcache,
2272 int regnum, void *fpregs, size_t len)
2273 {
2274 const struct gdbarch_tdep *tdep = gdbarch_tdep (regset->arch);
2275
2276 gdb_assert (len == tdep->sizeof_fpregset);
2277 amd64_collect_fxsave (regcache, regnum, fpregs);
2278 }
2279
2280 /* Similar to amd64_supply_fpregset, but use XSAVE extended state. */
2281
2282 static void
2283 amd64_supply_xstateregset (const struct regset *regset,
2284 struct regcache *regcache, int regnum,
2285 const void *xstateregs, size_t len)
2286 {
2287 amd64_supply_xsave (regcache, regnum, xstateregs);
2288 }
2289
2290 /* Similar to amd64_collect_fpregset, but use XSAVE extended state. */
2291
2292 static void
2293 amd64_collect_xstateregset (const struct regset *regset,
2294 const struct regcache *regcache,
2295 int regnum, void *xstateregs, size_t len)
2296 {
2297 amd64_collect_xsave (regcache, regnum, xstateregs, 1);
2298 }
2299
2300 /* Return the appropriate register set for the core section identified
2301 by SECT_NAME and SECT_SIZE. */
2302
2303 static const struct regset *
2304 amd64_regset_from_core_section (struct gdbarch *gdbarch,
2305 const char *sect_name, size_t sect_size)
2306 {
2307 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2308
2309 if (strcmp (sect_name, ".reg2") == 0 && sect_size == tdep->sizeof_fpregset)
2310 {
2311 if (tdep->fpregset == NULL)
2312 tdep->fpregset = regset_alloc (gdbarch, amd64_supply_fpregset,
2313 amd64_collect_fpregset);
2314
2315 return tdep->fpregset;
2316 }
2317
2318 if (strcmp (sect_name, ".reg-xstate") == 0)
2319 {
2320 if (tdep->xstateregset == NULL)
2321 tdep->xstateregset = regset_alloc (gdbarch,
2322 amd64_supply_xstateregset,
2323 amd64_collect_xstateregset);
2324
2325 return tdep->xstateregset;
2326 }
2327
2328 return i386_regset_from_core_section (gdbarch, sect_name, sect_size);
2329 }
2330 \f
2331
2332 /* Figure out where the longjmp will land. Slurp the jmp_buf out of
2333 %rdi. We expect its value to be a pointer to the jmp_buf structure
2334 from which we extract the address that we will land at. This
2335 address is copied into PC. This routine returns non-zero on
2336 success. */
2337
2338 static int
2339 amd64_get_longjmp_target (struct frame_info *frame, CORE_ADDR *pc)
2340 {
2341 gdb_byte buf[8];
2342 CORE_ADDR jb_addr;
2343 struct gdbarch *gdbarch = get_frame_arch (frame);
2344 int jb_pc_offset = gdbarch_tdep (gdbarch)->jb_pc_offset;
2345 int len = TYPE_LENGTH (builtin_type (gdbarch)->builtin_func_ptr);
2346
2347 /* If JB_PC_OFFSET is -1, we have no way to find out where the
2348 longjmp will land. */
2349 if (jb_pc_offset == -1)
2350 return 0;
2351
2352 get_frame_register (frame, AMD64_RDI_REGNUM, buf);
2353 jb_addr= extract_typed_address
2354 (buf, builtin_type (gdbarch)->builtin_data_ptr);
2355 if (target_read_memory (jb_addr + jb_pc_offset, buf, len))
2356 return 0;
2357
2358 *pc = extract_typed_address (buf, builtin_type (gdbarch)->builtin_func_ptr);
2359
2360 return 1;
2361 }
2362
2363 static const int amd64_record_regmap[] =
2364 {
2365 AMD64_RAX_REGNUM, AMD64_RCX_REGNUM, AMD64_RDX_REGNUM, AMD64_RBX_REGNUM,
2366 AMD64_RSP_REGNUM, AMD64_RBP_REGNUM, AMD64_RSI_REGNUM, AMD64_RDI_REGNUM,
2367 AMD64_R8_REGNUM, AMD64_R9_REGNUM, AMD64_R10_REGNUM, AMD64_R11_REGNUM,
2368 AMD64_R12_REGNUM, AMD64_R13_REGNUM, AMD64_R14_REGNUM, AMD64_R15_REGNUM,
2369 AMD64_RIP_REGNUM, AMD64_EFLAGS_REGNUM, AMD64_CS_REGNUM, AMD64_SS_REGNUM,
2370 AMD64_DS_REGNUM, AMD64_ES_REGNUM, AMD64_FS_REGNUM, AMD64_GS_REGNUM
2371 };
2372
2373 void
2374 amd64_init_abi (struct gdbarch_info info, struct gdbarch *gdbarch)
2375 {
2376 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2377 const struct target_desc *tdesc = info.target_desc;
2378
2379 /* AMD64 generally uses `fxsave' instead of `fsave' for saving its
2380 floating-point registers. */
2381 tdep->sizeof_fpregset = I387_SIZEOF_FXSAVE;
2382
2383 if (! tdesc_has_registers (tdesc))
2384 tdesc = tdesc_amd64;
2385 tdep->tdesc = tdesc;
2386
2387 tdep->num_core_regs = AMD64_NUM_GREGS + I387_NUM_REGS;
2388 tdep->register_names = amd64_register_names;
2389
2390 if (tdesc_find_feature (tdesc, "org.gnu.gdb.i386.avx") != NULL)
2391 {
2392 tdep->ymmh_register_names = amd64_ymmh_names;
2393 tdep->num_ymm_regs = 16;
2394 tdep->ymm0h_regnum = AMD64_YMM0H_REGNUM;
2395 }
2396
2397 tdep->num_byte_regs = 20;
2398 tdep->num_word_regs = 16;
2399 tdep->num_dword_regs = 16;
2400 /* Avoid wiring in the MMX registers for now. */
2401 tdep->num_mmx_regs = 0;
2402
2403 set_gdbarch_pseudo_register_read (gdbarch,
2404 amd64_pseudo_register_read);
2405 set_gdbarch_pseudo_register_write (gdbarch,
2406 amd64_pseudo_register_write);
2407
2408 set_tdesc_pseudo_register_name (gdbarch, amd64_pseudo_register_name);
2409
2410 set_gdbarch_register_name (gdbarch, amd64_register_name);
2411
2412 /* AMD64 has an FPU and 16 SSE registers. */
2413 tdep->st0_regnum = AMD64_ST0_REGNUM;
2414 tdep->num_xmm_regs = 16;
2415
2416 /* This is what all the fuss is about. */
2417 set_gdbarch_long_bit (gdbarch, 64);
2418 set_gdbarch_long_long_bit (gdbarch, 64);
2419 set_gdbarch_ptr_bit (gdbarch, 64);
2420
2421 /* In contrast to the i386, on AMD64 a `long double' actually takes
2422 up 128 bits, even though it's still based on the i387 extended
2423 floating-point format which has only 80 significant bits. */
2424 set_gdbarch_long_double_bit (gdbarch, 128);
2425
2426 set_gdbarch_num_regs (gdbarch, AMD64_NUM_REGS);
2427
2428 /* Register numbers of various important registers. */
2429 set_gdbarch_sp_regnum (gdbarch, AMD64_RSP_REGNUM); /* %rsp */
2430 set_gdbarch_pc_regnum (gdbarch, AMD64_RIP_REGNUM); /* %rip */
2431 set_gdbarch_ps_regnum (gdbarch, AMD64_EFLAGS_REGNUM); /* %eflags */
2432 set_gdbarch_fp0_regnum (gdbarch, AMD64_ST0_REGNUM); /* %st(0) */
2433
2434 /* The "default" register numbering scheme for AMD64 is referred to
2435 as the "DWARF Register Number Mapping" in the System V psABI.
2436 The preferred debugging format for all known AMD64 targets is
2437 actually DWARF2, and GCC doesn't seem to support DWARF (that is
2438 DWARF-1), but we provide the same mapping just in case. This
2439 mapping is also used for stabs, which GCC does support. */
2440 set_gdbarch_stab_reg_to_regnum (gdbarch, amd64_dwarf_reg_to_regnum);
2441 set_gdbarch_dwarf2_reg_to_regnum (gdbarch, amd64_dwarf_reg_to_regnum);
2442
2443 /* We don't override SDB_REG_RO_REGNUM, since COFF doesn't seem to
2444 be in use on any of the supported AMD64 targets. */
2445
2446 /* Call dummy code. */
2447 set_gdbarch_push_dummy_call (gdbarch, amd64_push_dummy_call);
2448 set_gdbarch_frame_align (gdbarch, amd64_frame_align);
2449 set_gdbarch_frame_red_zone_size (gdbarch, 128);
2450 tdep->call_dummy_num_integer_regs =
2451 ARRAY_SIZE (amd64_dummy_call_integer_regs);
2452 tdep->call_dummy_integer_regs = amd64_dummy_call_integer_regs;
2453 tdep->classify = amd64_classify;
2454
2455 set_gdbarch_convert_register_p (gdbarch, i387_convert_register_p);
2456 set_gdbarch_register_to_value (gdbarch, i387_register_to_value);
2457 set_gdbarch_value_to_register (gdbarch, i387_value_to_register);
2458
2459 set_gdbarch_return_value (gdbarch, amd64_return_value);
2460
2461 set_gdbarch_skip_prologue (gdbarch, amd64_skip_prologue);
2462
2463 tdep->record_regmap = amd64_record_regmap;
2464
2465 set_gdbarch_dummy_id (gdbarch, amd64_dummy_id);
2466
2467 /* Hook the function epilogue frame unwinder. This unwinder is
2468 appended to the list first, so that it supercedes the other
2469 unwinders in function epilogues. */
2470 frame_unwind_prepend_unwinder (gdbarch, &amd64_epilogue_frame_unwind);
2471
2472 /* Hook the prologue-based frame unwinders. */
2473 frame_unwind_append_unwinder (gdbarch, &amd64_sigtramp_frame_unwind);
2474 frame_unwind_append_unwinder (gdbarch, &amd64_frame_unwind);
2475 frame_base_set_default (gdbarch, &amd64_frame_base);
2476
2477 /* If we have a register mapping, enable the generic core file support. */
2478 if (tdep->gregset_reg_offset)
2479 set_gdbarch_regset_from_core_section (gdbarch,
2480 amd64_regset_from_core_section);
2481
2482 set_gdbarch_get_longjmp_target (gdbarch, amd64_get_longjmp_target);
2483
2484 set_gdbarch_relocate_instruction (gdbarch, amd64_relocate_instruction);
2485 }
2486
2487 /* Provide a prototype to silence -Wmissing-prototypes. */
2488 void _initialize_amd64_tdep (void);
2489
2490 void
2491 _initialize_amd64_tdep (void)
2492 {
2493 initialize_tdesc_amd64 ();
2494 initialize_tdesc_amd64_avx ();
2495 }
2496 \f
2497
2498 /* The 64-bit FXSAVE format differs from the 32-bit format in the
2499 sense that the instruction pointer and data pointer are simply
2500 64-bit offsets into the code segment and the data segment instead
2501 of a selector offset pair. The functions below store the upper 32
2502 bits of these pointers (instead of just the 16-bits of the segment
2503 selector). */
2504
2505 /* Fill register REGNUM in REGCACHE with the appropriate
2506 floating-point or SSE register value from *FXSAVE. If REGNUM is
2507 -1, do this for all registers. This function masks off any of the
2508 reserved bits in *FXSAVE. */
2509
2510 void
2511 amd64_supply_fxsave (struct regcache *regcache, int regnum,
2512 const void *fxsave)
2513 {
2514 struct gdbarch *gdbarch = get_regcache_arch (regcache);
2515 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2516
2517 i387_supply_fxsave (regcache, regnum, fxsave);
2518
2519 if (fxsave && gdbarch_ptr_bit (gdbarch) == 64)
2520 {
2521 const gdb_byte *regs = fxsave;
2522
2523 if (regnum == -1 || regnum == I387_FISEG_REGNUM (tdep))
2524 regcache_raw_supply (regcache, I387_FISEG_REGNUM (tdep), regs + 12);
2525 if (regnum == -1 || regnum == I387_FOSEG_REGNUM (tdep))
2526 regcache_raw_supply (regcache, I387_FOSEG_REGNUM (tdep), regs + 20);
2527 }
2528 }
2529
2530 /* Similar to amd64_supply_fxsave, but use XSAVE extended state. */
2531
2532 void
2533 amd64_supply_xsave (struct regcache *regcache, int regnum,
2534 const void *xsave)
2535 {
2536 struct gdbarch *gdbarch = get_regcache_arch (regcache);
2537 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2538
2539 i387_supply_xsave (regcache, regnum, xsave);
2540
2541 if (xsave && gdbarch_ptr_bit (gdbarch) == 64)
2542 {
2543 const gdb_byte *regs = xsave;
2544
2545 if (regnum == -1 || regnum == I387_FISEG_REGNUM (tdep))
2546 regcache_raw_supply (regcache, I387_FISEG_REGNUM (tdep),
2547 regs + 12);
2548 if (regnum == -1 || regnum == I387_FOSEG_REGNUM (tdep))
2549 regcache_raw_supply (regcache, I387_FOSEG_REGNUM (tdep),
2550 regs + 20);
2551 }
2552 }
2553
2554 /* Fill register REGNUM (if it is a floating-point or SSE register) in
2555 *FXSAVE with the value from REGCACHE. If REGNUM is -1, do this for
2556 all registers. This function doesn't touch any of the reserved
2557 bits in *FXSAVE. */
2558
2559 void
2560 amd64_collect_fxsave (const struct regcache *regcache, int regnum,
2561 void *fxsave)
2562 {
2563 struct gdbarch *gdbarch = get_regcache_arch (regcache);
2564 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2565 gdb_byte *regs = fxsave;
2566
2567 i387_collect_fxsave (regcache, regnum, fxsave);
2568
2569 if (gdbarch_ptr_bit (gdbarch) == 64)
2570 {
2571 if (regnum == -1 || regnum == I387_FISEG_REGNUM (tdep))
2572 regcache_raw_collect (regcache, I387_FISEG_REGNUM (tdep), regs + 12);
2573 if (regnum == -1 || regnum == I387_FOSEG_REGNUM (tdep))
2574 regcache_raw_collect (regcache, I387_FOSEG_REGNUM (tdep), regs + 20);
2575 }
2576 }
2577
2578 /* Similar to amd64_collect_fxsave, but but use XSAVE extended state. */
2579
2580 void
2581 amd64_collect_xsave (const struct regcache *regcache, int regnum,
2582 void *xsave, int gcore)
2583 {
2584 struct gdbarch *gdbarch = get_regcache_arch (regcache);
2585 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2586 gdb_byte *regs = xsave;
2587
2588 i387_collect_xsave (regcache, regnum, xsave, gcore);
2589
2590 if (gdbarch_ptr_bit (gdbarch) == 64)
2591 {
2592 if (regnum == -1 || regnum == I387_FISEG_REGNUM (tdep))
2593 regcache_raw_collect (regcache, I387_FISEG_REGNUM (tdep),
2594 regs + 12);
2595 if (regnum == -1 || regnum == I387_FOSEG_REGNUM (tdep))
2596 regcache_raw_collect (regcache, I387_FOSEG_REGNUM (tdep),
2597 regs + 20);
2598 }
2599 }
This page took 0.08331 seconds and 5 git commands to generate.