[ARC] Fix typo in extension instruction name.
[deliverable/binutils-gdb.git] / gdb / amd64-windows-tdep.c
1 /* Copyright (C) 2009-2016 Free Software Foundation, Inc.
2
3 This file is part of GDB.
4
5 This program is free software; you can redistribute it and/or modify
6 it under the terms of the GNU General Public License as published by
7 the Free Software Foundation; either version 3 of the License, or
8 (at your option) any later version.
9
10 This program is distributed in the hope that it will be useful,
11 but WITHOUT ANY WARRANTY; without even the implied warranty of
12 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
13 GNU General Public License for more details.
14
15 You should have received a copy of the GNU General Public License
16 along with this program. If not, see <http://www.gnu.org/licenses/>. */
17
18 #include "defs.h"
19 #include "osabi.h"
20 #include "amd64-tdep.h"
21 #include "gdbtypes.h"
22 #include "gdbcore.h"
23 #include "regcache.h"
24 #include "windows-tdep.h"
25 #include "frame.h"
26 #include "objfiles.h"
27 #include "frame-unwind.h"
28 #include "coff/internal.h"
29 #include "coff/i386.h"
30 #include "coff/pe.h"
31 #include "libcoff.h"
32 #include "value.h"
33
34 /* The registers used to pass integer arguments during a function call. */
35 static int amd64_windows_dummy_call_integer_regs[] =
36 {
37 AMD64_RCX_REGNUM, /* %rcx */
38 AMD64_RDX_REGNUM, /* %rdx */
39 AMD64_R8_REGNUM, /* %r8 */
40 AMD64_R9_REGNUM /* %r9 */
41 };
42
43 /* Return nonzero if an argument of type TYPE should be passed
44 via one of the integer registers. */
45
46 static int
47 amd64_windows_passed_by_integer_register (struct type *type)
48 {
49 switch (TYPE_CODE (type))
50 {
51 case TYPE_CODE_INT:
52 case TYPE_CODE_ENUM:
53 case TYPE_CODE_BOOL:
54 case TYPE_CODE_RANGE:
55 case TYPE_CODE_CHAR:
56 case TYPE_CODE_PTR:
57 case TYPE_CODE_REF:
58 case TYPE_CODE_STRUCT:
59 case TYPE_CODE_UNION:
60 return (TYPE_LENGTH (type) == 1
61 || TYPE_LENGTH (type) == 2
62 || TYPE_LENGTH (type) == 4
63 || TYPE_LENGTH (type) == 8);
64
65 default:
66 return 0;
67 }
68 }
69
70 /* Return nonzero if an argument of type TYPE should be passed
71 via one of the XMM registers. */
72
73 static int
74 amd64_windows_passed_by_xmm_register (struct type *type)
75 {
76 return ((TYPE_CODE (type) == TYPE_CODE_FLT
77 || TYPE_CODE (type) == TYPE_CODE_DECFLOAT)
78 && (TYPE_LENGTH (type) == 4 || TYPE_LENGTH (type) == 8));
79 }
80
81 /* Return non-zero iff an argument of the given TYPE should be passed
82 by pointer. */
83
84 static int
85 amd64_windows_passed_by_pointer (struct type *type)
86 {
87 if (amd64_windows_passed_by_integer_register (type))
88 return 0;
89
90 if (amd64_windows_passed_by_xmm_register (type))
91 return 0;
92
93 return 1;
94 }
95
96 /* For each argument that should be passed by pointer, reserve some
97 stack space, store a copy of the argument on the stack, and replace
98 the argument by its address. Return the new Stack Pointer value.
99
100 NARGS is the number of arguments. ARGS is the array containing
101 the value of each argument. SP is value of the Stack Pointer. */
102
103 static CORE_ADDR
104 amd64_windows_adjust_args_passed_by_pointer (struct value **args,
105 int nargs, CORE_ADDR sp)
106 {
107 int i;
108
109 for (i = 0; i < nargs; i++)
110 if (amd64_windows_passed_by_pointer (value_type (args[i])))
111 {
112 struct type *type = value_type (args[i]);
113 const gdb_byte *valbuf = value_contents (args[i]);
114 const int len = TYPE_LENGTH (type);
115
116 /* Store a copy of that argument on the stack, aligned to
117 a 16 bytes boundary, and then use the copy's address as
118 the argument. */
119
120 sp -= len;
121 sp &= ~0xf;
122 write_memory (sp, valbuf, len);
123
124 args[i]
125 = value_addr (value_from_contents_and_address (type, valbuf, sp));
126 }
127
128 return sp;
129 }
130
131 /* Store the value of ARG in register REGNO (right-justified).
132 REGCACHE is the register cache. */
133
134 static void
135 amd64_windows_store_arg_in_reg (struct regcache *regcache,
136 struct value *arg, int regno)
137 {
138 struct type *type = value_type (arg);
139 const gdb_byte *valbuf = value_contents (arg);
140 gdb_byte buf[8];
141
142 gdb_assert (TYPE_LENGTH (type) <= 8);
143 memset (buf, 0, sizeof buf);
144 memcpy (buf, valbuf, min (TYPE_LENGTH (type), 8));
145 regcache_cooked_write (regcache, regno, buf);
146 }
147
148 /* Push the arguments for an inferior function call, and return
149 the updated value of the SP (Stack Pointer).
150
151 All arguments are identical to the arguments used in
152 amd64_windows_push_dummy_call. */
153
154 static CORE_ADDR
155 amd64_windows_push_arguments (struct regcache *regcache, int nargs,
156 struct value **args, CORE_ADDR sp,
157 int struct_return)
158 {
159 int reg_idx = 0;
160 int i;
161 struct value **stack_args = XALLOCAVEC (struct value *, nargs);
162 int num_stack_args = 0;
163 int num_elements = 0;
164 int element = 0;
165
166 /* First, handle the arguments passed by pointer.
167
168 These arguments are replaced by pointers to a copy we are making
169 in inferior memory. So use a copy of the ARGS table, to avoid
170 modifying the original one. */
171 {
172 struct value **args1 = XALLOCAVEC (struct value *, nargs);
173
174 memcpy (args1, args, nargs * sizeof (struct value *));
175 sp = amd64_windows_adjust_args_passed_by_pointer (args1, nargs, sp);
176 args = args1;
177 }
178
179 /* Reserve a register for the "hidden" argument. */
180 if (struct_return)
181 reg_idx++;
182
183 for (i = 0; i < nargs; i++)
184 {
185 struct type *type = value_type (args[i]);
186 int len = TYPE_LENGTH (type);
187 int on_stack_p = 1;
188
189 if (reg_idx < ARRAY_SIZE (amd64_windows_dummy_call_integer_regs))
190 {
191 if (amd64_windows_passed_by_integer_register (type))
192 {
193 amd64_windows_store_arg_in_reg
194 (regcache, args[i],
195 amd64_windows_dummy_call_integer_regs[reg_idx]);
196 on_stack_p = 0;
197 reg_idx++;
198 }
199 else if (amd64_windows_passed_by_xmm_register (type))
200 {
201 amd64_windows_store_arg_in_reg
202 (regcache, args[i], AMD64_XMM0_REGNUM + reg_idx);
203 /* In case of varargs, these parameters must also be
204 passed via the integer registers. */
205 amd64_windows_store_arg_in_reg
206 (regcache, args[i],
207 amd64_windows_dummy_call_integer_regs[reg_idx]);
208 on_stack_p = 0;
209 reg_idx++;
210 }
211 }
212
213 if (on_stack_p)
214 {
215 num_elements += ((len + 7) / 8);
216 stack_args[num_stack_args++] = args[i];
217 }
218 }
219
220 /* Allocate space for the arguments on the stack, keeping it
221 aligned on a 16 byte boundary. */
222 sp -= num_elements * 8;
223 sp &= ~0xf;
224
225 /* Write out the arguments to the stack. */
226 for (i = 0; i < num_stack_args; i++)
227 {
228 struct type *type = value_type (stack_args[i]);
229 const gdb_byte *valbuf = value_contents (stack_args[i]);
230
231 write_memory (sp + element * 8, valbuf, TYPE_LENGTH (type));
232 element += ((TYPE_LENGTH (type) + 7) / 8);
233 }
234
235 return sp;
236 }
237
238 /* Implement the "push_dummy_call" gdbarch method. */
239
240 static CORE_ADDR
241 amd64_windows_push_dummy_call
242 (struct gdbarch *gdbarch, struct value *function,
243 struct regcache *regcache, CORE_ADDR bp_addr,
244 int nargs, struct value **args,
245 CORE_ADDR sp, int struct_return, CORE_ADDR struct_addr)
246 {
247 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
248 gdb_byte buf[8];
249
250 /* Pass arguments. */
251 sp = amd64_windows_push_arguments (regcache, nargs, args, sp,
252 struct_return);
253
254 /* Pass "hidden" argument". */
255 if (struct_return)
256 {
257 /* The "hidden" argument is passed throught the first argument
258 register. */
259 const int arg_regnum = amd64_windows_dummy_call_integer_regs[0];
260
261 store_unsigned_integer (buf, 8, byte_order, struct_addr);
262 regcache_cooked_write (regcache, arg_regnum, buf);
263 }
264
265 /* Reserve some memory on the stack for the integer-parameter
266 registers, as required by the ABI. */
267 sp -= ARRAY_SIZE (amd64_windows_dummy_call_integer_regs) * 8;
268
269 /* Store return address. */
270 sp -= 8;
271 store_unsigned_integer (buf, 8, byte_order, bp_addr);
272 write_memory (sp, buf, 8);
273
274 /* Update the stack pointer... */
275 store_unsigned_integer (buf, 8, byte_order, sp);
276 regcache_cooked_write (regcache, AMD64_RSP_REGNUM, buf);
277
278 /* ...and fake a frame pointer. */
279 regcache_cooked_write (regcache, AMD64_RBP_REGNUM, buf);
280
281 return sp + 16;
282 }
283
284 /* Implement the "return_value" gdbarch method for amd64-windows. */
285
286 static enum return_value_convention
287 amd64_windows_return_value (struct gdbarch *gdbarch, struct value *function,
288 struct type *type, struct regcache *regcache,
289 gdb_byte *readbuf, const gdb_byte *writebuf)
290 {
291 int len = TYPE_LENGTH (type);
292 int regnum = -1;
293
294 /* See if our value is returned through a register. If it is, then
295 store the associated register number in REGNUM. */
296 switch (TYPE_CODE (type))
297 {
298 case TYPE_CODE_FLT:
299 case TYPE_CODE_DECFLOAT:
300 /* __m128, __m128i, __m128d, floats, and doubles are returned
301 via XMM0. */
302 if (len == 4 || len == 8 || len == 16)
303 regnum = AMD64_XMM0_REGNUM;
304 break;
305 default:
306 /* All other values that are 1, 2, 4 or 8 bytes long are returned
307 via RAX. */
308 if (len == 1 || len == 2 || len == 4 || len == 8)
309 regnum = AMD64_RAX_REGNUM;
310 break;
311 }
312
313 if (regnum < 0)
314 {
315 /* RAX contains the address where the return value has been stored. */
316 if (readbuf)
317 {
318 ULONGEST addr;
319
320 regcache_raw_read_unsigned (regcache, AMD64_RAX_REGNUM, &addr);
321 read_memory (addr, readbuf, TYPE_LENGTH (type));
322 }
323 return RETURN_VALUE_ABI_RETURNS_ADDRESS;
324 }
325 else
326 {
327 /* Extract the return value from the register where it was stored. */
328 if (readbuf)
329 regcache_raw_read_part (regcache, regnum, 0, len, readbuf);
330 if (writebuf)
331 regcache_raw_write_part (regcache, regnum, 0, len, writebuf);
332 return RETURN_VALUE_REGISTER_CONVENTION;
333 }
334 }
335
336 /* Check that the code pointed to by PC corresponds to a call to
337 __main, skip it if so. Return PC otherwise. */
338
339 static CORE_ADDR
340 amd64_skip_main_prologue (struct gdbarch *gdbarch, CORE_ADDR pc)
341 {
342 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
343 gdb_byte op;
344
345 target_read_memory (pc, &op, 1);
346 if (op == 0xe8)
347 {
348 gdb_byte buf[4];
349
350 if (target_read_memory (pc + 1, buf, sizeof buf) == 0)
351 {
352 struct bound_minimal_symbol s;
353 CORE_ADDR call_dest;
354
355 call_dest = pc + 5 + extract_signed_integer (buf, 4, byte_order);
356 s = lookup_minimal_symbol_by_pc (call_dest);
357 if (s.minsym != NULL
358 && MSYMBOL_LINKAGE_NAME (s.minsym) != NULL
359 && strcmp (MSYMBOL_LINKAGE_NAME (s.minsym), "__main") == 0)
360 pc += 5;
361 }
362 }
363
364 return pc;
365 }
366
367 struct amd64_windows_frame_cache
368 {
369 /* ImageBase for the module. */
370 CORE_ADDR image_base;
371
372 /* Function start and end rva. */
373 CORE_ADDR start_rva;
374 CORE_ADDR end_rva;
375
376 /* Next instruction to be executed. */
377 CORE_ADDR pc;
378
379 /* Current sp. */
380 CORE_ADDR sp;
381
382 /* Address of saved integer and xmm registers. */
383 CORE_ADDR prev_reg_addr[16];
384 CORE_ADDR prev_xmm_addr[16];
385
386 /* These two next fields are set only for machine info frames. */
387
388 /* Likewise for RIP. */
389 CORE_ADDR prev_rip_addr;
390
391 /* Likewise for RSP. */
392 CORE_ADDR prev_rsp_addr;
393
394 /* Address of the previous frame. */
395 CORE_ADDR prev_sp;
396 };
397
398 /* Convert a Windows register number to gdb. */
399 static const enum amd64_regnum amd64_windows_w2gdb_regnum[] =
400 {
401 AMD64_RAX_REGNUM,
402 AMD64_RCX_REGNUM,
403 AMD64_RDX_REGNUM,
404 AMD64_RBX_REGNUM,
405 AMD64_RSP_REGNUM,
406 AMD64_RBP_REGNUM,
407 AMD64_RSI_REGNUM,
408 AMD64_RDI_REGNUM,
409 AMD64_R8_REGNUM,
410 AMD64_R9_REGNUM,
411 AMD64_R10_REGNUM,
412 AMD64_R11_REGNUM,
413 AMD64_R12_REGNUM,
414 AMD64_R13_REGNUM,
415 AMD64_R14_REGNUM,
416 AMD64_R15_REGNUM
417 };
418
419 /* Return TRUE iff PC is the the range of the function corresponding to
420 CACHE. */
421
422 static int
423 pc_in_range (CORE_ADDR pc, const struct amd64_windows_frame_cache *cache)
424 {
425 return (pc >= cache->image_base + cache->start_rva
426 && pc < cache->image_base + cache->end_rva);
427 }
428
429 /* Try to recognize and decode an epilogue sequence.
430
431 Return -1 if we fail to read the instructions for any reason.
432 Return 1 if an epilogue sequence was recognized, 0 otherwise. */
433
434 static int
435 amd64_windows_frame_decode_epilogue (struct frame_info *this_frame,
436 struct amd64_windows_frame_cache *cache)
437 {
438 /* According to MSDN an epilogue "must consist of either an add RSP,constant
439 or lea RSP,constant[FPReg], followed by a series of zero or more 8-byte
440 register pops and a return or a jmp".
441
442 Furthermore, according to RtlVirtualUnwind, the complete list of
443 epilog marker is:
444 - ret [c3]
445 - ret n [c2 imm16]
446 - rep ret [f3 c3]
447 - jmp imm8 | imm32 [eb rel8] or [e9 rel32]
448 - jmp qword ptr imm32 - not handled
449 - rex.w jmp reg [4X ff eY]
450 */
451
452 CORE_ADDR pc = cache->pc;
453 CORE_ADDR cur_sp = cache->sp;
454 struct gdbarch *gdbarch = get_frame_arch (this_frame);
455 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
456 gdb_byte op;
457 gdb_byte rex;
458
459 /* We don't care about the instruction deallocating the frame:
460 if it hasn't been executed, the pc is still in the body,
461 if it has been executed, the following epilog decoding will work. */
462
463 /* First decode:
464 - pop reg [41 58-5f] or [58-5f]. */
465
466 while (1)
467 {
468 /* Read opcode. */
469 if (target_read_memory (pc, &op, 1) != 0)
470 return -1;
471
472 if (op >= 0x40 && op <= 0x4f)
473 {
474 /* REX prefix. */
475 rex = op;
476
477 /* Read opcode. */
478 if (target_read_memory (pc + 1, &op, 1) != 0)
479 return -1;
480 }
481 else
482 rex = 0;
483
484 if (op >= 0x58 && op <= 0x5f)
485 {
486 /* pop reg */
487 gdb_byte reg = (op & 0x0f) | ((rex & 1) << 3);
488
489 cache->prev_reg_addr[amd64_windows_w2gdb_regnum[reg]] = cur_sp;
490 cur_sp += 8;
491 pc += rex ? 2 : 1;
492 }
493 else
494 break;
495
496 /* Allow the user to break this loop. This shouldn't happen as the
497 number of consecutive pop should be small. */
498 QUIT;
499 }
500
501 /* Then decode the marker. */
502
503 /* Read opcode. */
504 if (target_read_memory (pc, &op, 1) != 0)
505 return -1;
506
507 switch (op)
508 {
509 case 0xc3:
510 /* Ret. */
511 cache->prev_rip_addr = cur_sp;
512 cache->prev_sp = cur_sp + 8;
513 return 1;
514
515 case 0xeb:
516 {
517 /* jmp rel8 */
518 gdb_byte rel8;
519 CORE_ADDR npc;
520
521 if (target_read_memory (pc + 1, &rel8, 1) != 0)
522 return -1;
523 npc = pc + 2 + (signed char) rel8;
524
525 /* If the jump is within the function, then this is not a marker,
526 otherwise this is a tail-call. */
527 return !pc_in_range (npc, cache);
528 }
529
530 case 0xec:
531 {
532 /* jmp rel32 */
533 gdb_byte rel32[4];
534 CORE_ADDR npc;
535
536 if (target_read_memory (pc + 1, rel32, 4) != 0)
537 return -1;
538 npc = pc + 5 + extract_signed_integer (rel32, 4, byte_order);
539
540 /* If the jump is within the function, then this is not a marker,
541 otherwise this is a tail-call. */
542 return !pc_in_range (npc, cache);
543 }
544
545 case 0xc2:
546 {
547 /* ret n */
548 gdb_byte imm16[2];
549
550 if (target_read_memory (pc + 1, imm16, 2) != 0)
551 return -1;
552 cache->prev_rip_addr = cur_sp;
553 cache->prev_sp = cur_sp
554 + extract_unsigned_integer (imm16, 4, byte_order);
555 return 1;
556 }
557
558 case 0xf3:
559 {
560 /* rep; ret */
561 gdb_byte op1;
562
563 if (target_read_memory (pc + 2, &op1, 1) != 0)
564 return -1;
565 if (op1 != 0xc3)
566 return 0;
567
568 cache->prev_rip_addr = cur_sp;
569 cache->prev_sp = cur_sp + 8;
570 return 1;
571 }
572
573 case 0x40:
574 case 0x41:
575 case 0x42:
576 case 0x43:
577 case 0x44:
578 case 0x45:
579 case 0x46:
580 case 0x47:
581 case 0x48:
582 case 0x49:
583 case 0x4a:
584 case 0x4b:
585 case 0x4c:
586 case 0x4d:
587 case 0x4e:
588 case 0x4f:
589 /* Got a REX prefix, read next byte. */
590 rex = op;
591 if (target_read_memory (pc + 1, &op, 1) != 0)
592 return -1;
593
594 if (op == 0xff)
595 {
596 /* rex jmp reg */
597 gdb_byte op1;
598 unsigned int reg;
599 gdb_byte buf[8];
600
601 if (target_read_memory (pc + 2, &op1, 1) != 0)
602 return -1;
603 return (op1 & 0xf8) == 0xe0;
604 }
605 else
606 return 0;
607
608 default:
609 /* Not REX, so unknown. */
610 return 0;
611 }
612 }
613
614 /* Decode and execute unwind insns at UNWIND_INFO. */
615
616 static void
617 amd64_windows_frame_decode_insns (struct frame_info *this_frame,
618 struct amd64_windows_frame_cache *cache,
619 CORE_ADDR unwind_info)
620 {
621 CORE_ADDR save_addr = 0;
622 CORE_ADDR cur_sp = cache->sp;
623 struct gdbarch *gdbarch = get_frame_arch (this_frame);
624 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
625 int first = 1;
626
627 /* There are at least 3 possibilities to share an unwind info entry:
628 1. Two different runtime_function entries (in .pdata) can point to the
629 same unwind info entry. There is no such indication while unwinding,
630 so we don't really care about that case. We suppose this scheme is
631 used to save memory when the unwind entries are exactly the same.
632 2. Chained unwind_info entries, with no unwind codes (no prologue).
633 There is a major difference with the previous case: the pc range for
634 the function is different (in case 1, the pc range comes from the
635 runtime_function entry; in case 2, the pc range for the chained entry
636 comes from the first unwind entry). Case 1 cannot be used instead as
637 the pc is not in the prologue. This case is officially documented.
638 (There might be unwind code in the first unwind entry to handle
639 additional unwinding). GCC (at least until gcc 5.0) doesn't chain
640 entries.
641 3. Undocumented unwind info redirection. Hard to know the exact purpose,
642 so it is considered as a memory optimization of case 2.
643 */
644
645 if (unwind_info & 1)
646 {
647 /* Unofficially documented unwind info redirection, when UNWIND_INFO
648 address is odd (http://www.codemachine.com/article_x64deepdive.html).
649 */
650 struct external_pex64_runtime_function d;
651 CORE_ADDR sa, ea;
652
653 if (target_read_memory (cache->image_base + (unwind_info & ~1),
654 (gdb_byte *) &d, sizeof (d)) != 0)
655 return;
656
657 cache->start_rva
658 = extract_unsigned_integer (d.rva_BeginAddress, 4, byte_order);
659 cache->end_rva
660 = extract_unsigned_integer (d.rva_EndAddress, 4, byte_order);
661 unwind_info
662 = extract_unsigned_integer (d.rva_UnwindData, 4, byte_order);
663 }
664
665 while (1)
666 {
667 struct external_pex64_unwind_info ex_ui;
668 /* There are at most 256 16-bit unwind insns. */
669 gdb_byte insns[2 * 256];
670 gdb_byte *p;
671 gdb_byte *end_insns;
672 unsigned char codes_count;
673 unsigned char frame_reg;
674 unsigned char frame_off;
675 CORE_ADDR start;
676
677 /* Read and decode header. */
678 if (target_read_memory (cache->image_base + unwind_info,
679 (gdb_byte *) &ex_ui, sizeof (ex_ui)) != 0)
680 return;
681
682 if (frame_debug)
683 fprintf_unfiltered
684 (gdb_stdlog,
685 "amd64_windows_frame_decodes_insn: "
686 "%s: ver: %02x, plgsz: %02x, cnt: %02x, frame: %02x\n",
687 paddress (gdbarch, unwind_info),
688 ex_ui.Version_Flags, ex_ui.SizeOfPrologue,
689 ex_ui.CountOfCodes, ex_ui.FrameRegisterOffset);
690
691 /* Check version. */
692 if (PEX64_UWI_VERSION (ex_ui.Version_Flags) != 1
693 && PEX64_UWI_VERSION (ex_ui.Version_Flags) != 2)
694 return;
695
696 start = cache->image_base + cache->start_rva;
697 if (first
698 && !(cache->pc >= start && cache->pc < start + ex_ui.SizeOfPrologue))
699 {
700 /* We want to detect if the PC points to an epilogue. This needs
701 to be checked only once, and an epilogue can be anywhere but in
702 the prologue. If so, the epilogue detection+decoding function is
703 sufficient. Otherwise, the unwinder will consider that the PC
704 is in the body of the function and will need to decode unwind
705 info. */
706 if (amd64_windows_frame_decode_epilogue (this_frame, cache) == 1)
707 return;
708
709 /* Not in an epilog. Clear possible side effects. */
710 memset (cache->prev_reg_addr, 0, sizeof (cache->prev_reg_addr));
711 }
712
713 codes_count = ex_ui.CountOfCodes;
714 frame_reg = PEX64_UWI_FRAMEREG (ex_ui.FrameRegisterOffset);
715
716 if (frame_reg != 0)
717 {
718 /* According to msdn:
719 If an FP reg is used, then any unwind code taking an offset must
720 only be used after the FP reg is established in the prolog. */
721 gdb_byte buf[8];
722 int frreg = amd64_windows_w2gdb_regnum[frame_reg];
723
724 get_frame_register (this_frame, frreg, buf);
725 save_addr = extract_unsigned_integer (buf, 8, byte_order);
726
727 if (frame_debug)
728 fprintf_unfiltered (gdb_stdlog, " frame_reg=%s, val=%s\n",
729 gdbarch_register_name (gdbarch, frreg),
730 paddress (gdbarch, save_addr));
731 }
732
733 /* Read opcodes. */
734 if (codes_count != 0
735 && target_read_memory (cache->image_base + unwind_info
736 + sizeof (ex_ui),
737 insns, codes_count * 2) != 0)
738 return;
739
740 end_insns = &insns[codes_count * 2];
741 p = insns;
742
743 /* Skip opcodes 6 of version 2. This opcode is not documented. */
744 if (PEX64_UWI_VERSION (ex_ui.Version_Flags) == 2)
745 {
746 for (; p < end_insns; p += 2)
747 if (PEX64_UNWCODE_CODE (p[1]) != 6)
748 break;
749 }
750
751 for (; p < end_insns; p += 2)
752 {
753 int reg;
754
755 /* Virtually execute the operation if the pc is after the
756 corresponding instruction (that does matter in case of break
757 within the prologue). Note that for chained info (!first), the
758 prologue has been fully executed. */
759 if (cache->pc >= start + p[0] || cache->pc < start)
760 {
761 if (frame_debug)
762 fprintf_unfiltered
763 (gdb_stdlog, " op #%u: off=0x%02x, insn=0x%02x\n",
764 (unsigned) (p - insns), p[0], p[1]);
765
766 /* If there is no frame registers defined, the current value of
767 rsp is used instead. */
768 if (frame_reg == 0)
769 save_addr = cur_sp;
770
771 reg = -1;
772
773 switch (PEX64_UNWCODE_CODE (p[1]))
774 {
775 case UWOP_PUSH_NONVOL:
776 /* Push pre-decrements RSP. */
777 reg = amd64_windows_w2gdb_regnum[PEX64_UNWCODE_INFO (p[1])];
778 cache->prev_reg_addr[reg] = cur_sp;
779 cur_sp += 8;
780 break;
781 case UWOP_ALLOC_LARGE:
782 if (PEX64_UNWCODE_INFO (p[1]) == 0)
783 cur_sp +=
784 8 * extract_unsigned_integer (p + 2, 2, byte_order);
785 else if (PEX64_UNWCODE_INFO (p[1]) == 1)
786 cur_sp += extract_unsigned_integer (p + 2, 4, byte_order);
787 else
788 return;
789 break;
790 case UWOP_ALLOC_SMALL:
791 cur_sp += 8 + 8 * PEX64_UNWCODE_INFO (p[1]);
792 break;
793 case UWOP_SET_FPREG:
794 cur_sp = save_addr
795 - PEX64_UWI_FRAMEOFF (ex_ui.FrameRegisterOffset) * 16;
796 break;
797 case UWOP_SAVE_NONVOL:
798 reg = amd64_windows_w2gdb_regnum[PEX64_UNWCODE_INFO (p[1])];
799 cache->prev_reg_addr[reg] = save_addr
800 + 8 * extract_unsigned_integer (p + 2, 2, byte_order);
801 break;
802 case UWOP_SAVE_NONVOL_FAR:
803 reg = amd64_windows_w2gdb_regnum[PEX64_UNWCODE_INFO (p[1])];
804 cache->prev_reg_addr[reg] = save_addr
805 + 8 * extract_unsigned_integer (p + 2, 4, byte_order);
806 break;
807 case UWOP_SAVE_XMM128:
808 cache->prev_xmm_addr[PEX64_UNWCODE_INFO (p[1])] =
809 save_addr
810 - 16 * extract_unsigned_integer (p + 2, 2, byte_order);
811 break;
812 case UWOP_SAVE_XMM128_FAR:
813 cache->prev_xmm_addr[PEX64_UNWCODE_INFO (p[1])] =
814 save_addr
815 - 16 * extract_unsigned_integer (p + 2, 4, byte_order);
816 break;
817 case UWOP_PUSH_MACHFRAME:
818 if (PEX64_UNWCODE_INFO (p[1]) == 0)
819 {
820 cache->prev_rip_addr = cur_sp + 0;
821 cache->prev_rsp_addr = cur_sp + 24;
822 cur_sp += 40;
823 }
824 else if (PEX64_UNWCODE_INFO (p[1]) == 1)
825 {
826 cache->prev_rip_addr = cur_sp + 8;
827 cache->prev_rsp_addr = cur_sp + 32;
828 cur_sp += 48;
829 }
830 else
831 return;
832 break;
833 default:
834 return;
835 }
836
837 /* Display address where the register was saved. */
838 if (frame_debug && reg >= 0)
839 fprintf_unfiltered
840 (gdb_stdlog, " [reg %s at %s]\n",
841 gdbarch_register_name (gdbarch, reg),
842 paddress (gdbarch, cache->prev_reg_addr[reg]));
843 }
844
845 /* Adjust with the length of the opcode. */
846 switch (PEX64_UNWCODE_CODE (p[1]))
847 {
848 case UWOP_PUSH_NONVOL:
849 case UWOP_ALLOC_SMALL:
850 case UWOP_SET_FPREG:
851 case UWOP_PUSH_MACHFRAME:
852 break;
853 case UWOP_ALLOC_LARGE:
854 if (PEX64_UNWCODE_INFO (p[1]) == 0)
855 p += 2;
856 else if (PEX64_UNWCODE_INFO (p[1]) == 1)
857 p += 4;
858 else
859 return;
860 break;
861 case UWOP_SAVE_NONVOL:
862 case UWOP_SAVE_XMM128:
863 p += 2;
864 break;
865 case UWOP_SAVE_NONVOL_FAR:
866 case UWOP_SAVE_XMM128_FAR:
867 p += 4;
868 break;
869 default:
870 return;
871 }
872 }
873 if (PEX64_UWI_FLAGS (ex_ui.Version_Flags) != UNW_FLAG_CHAININFO)
874 {
875 /* End of unwind info. */
876 break;
877 }
878 else
879 {
880 /* Read the chained unwind info. */
881 struct external_pex64_runtime_function d;
882 CORE_ADDR chain_vma;
883
884 /* Not anymore the first entry. */
885 first = 0;
886
887 /* Stay aligned on word boundary. */
888 chain_vma = cache->image_base + unwind_info
889 + sizeof (ex_ui) + ((codes_count + 1) & ~1) * 2;
890
891 if (target_read_memory (chain_vma, (gdb_byte *) &d, sizeof (d)) != 0)
892 return;
893
894 /* Decode begin/end. This may be different from .pdata index, as
895 an unwind info may be shared by several functions (in particular
896 if many functions have the same prolog and handler. */
897 cache->start_rva =
898 extract_unsigned_integer (d.rva_BeginAddress, 4, byte_order);
899 cache->end_rva =
900 extract_unsigned_integer (d.rva_EndAddress, 4, byte_order);
901 unwind_info =
902 extract_unsigned_integer (d.rva_UnwindData, 4, byte_order);
903
904 if (frame_debug)
905 fprintf_unfiltered
906 (gdb_stdlog,
907 "amd64_windows_frame_decodes_insn (next in chain):"
908 " unwind_data=%s, start_rva=%s, end_rva=%s\n",
909 paddress (gdbarch, unwind_info),
910 paddress (gdbarch, cache->start_rva),
911 paddress (gdbarch, cache->end_rva));
912 }
913
914 /* Allow the user to break this loop. */
915 QUIT;
916 }
917 /* PC is saved by the call. */
918 if (cache->prev_rip_addr == 0)
919 cache->prev_rip_addr = cur_sp;
920 cache->prev_sp = cur_sp + 8;
921
922 if (frame_debug)
923 fprintf_unfiltered (gdb_stdlog, " prev_sp: %s, prev_pc @%s\n",
924 paddress (gdbarch, cache->prev_sp),
925 paddress (gdbarch, cache->prev_rip_addr));
926 }
927
928 /* Find SEH unwind info for PC, returning 0 on success.
929
930 UNWIND_INFO is set to the rva of unwind info address, IMAGE_BASE
931 to the base address of the corresponding image, and START_RVA
932 to the rva of the function containing PC. */
933
934 static int
935 amd64_windows_find_unwind_info (struct gdbarch *gdbarch, CORE_ADDR pc,
936 CORE_ADDR *unwind_info,
937 CORE_ADDR *image_base,
938 CORE_ADDR *start_rva,
939 CORE_ADDR *end_rva)
940 {
941 struct obj_section *sec;
942 pe_data_type *pe;
943 IMAGE_DATA_DIRECTORY *dir;
944 struct objfile *objfile;
945 unsigned long lo, hi;
946 CORE_ADDR base;
947 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
948
949 /* Get the corresponding exception directory. */
950 sec = find_pc_section (pc);
951 if (sec == NULL)
952 return -1;
953 objfile = sec->objfile;
954 pe = pe_data (sec->objfile->obfd);
955 dir = &pe->pe_opthdr.DataDirectory[PE_EXCEPTION_TABLE];
956
957 base = pe->pe_opthdr.ImageBase
958 + ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
959 *image_base = base;
960
961 /* Find the entry.
962
963 Note: This does not handle dynamically added entries (for JIT
964 engines). For this, we would need to ask the kernel directly,
965 which means getting some info from the native layer. For the
966 rest of the code, however, it's probably faster to search
967 the entry ourselves. */
968 lo = 0;
969 hi = dir->Size / sizeof (struct external_pex64_runtime_function);
970 *unwind_info = 0;
971 while (lo <= hi)
972 {
973 unsigned long mid = lo + (hi - lo) / 2;
974 struct external_pex64_runtime_function d;
975 CORE_ADDR sa, ea;
976
977 if (target_read_memory (base + dir->VirtualAddress + mid * sizeof (d),
978 (gdb_byte *) &d, sizeof (d)) != 0)
979 return -1;
980
981 sa = extract_unsigned_integer (d.rva_BeginAddress, 4, byte_order);
982 ea = extract_unsigned_integer (d.rva_EndAddress, 4, byte_order);
983 if (pc < base + sa)
984 hi = mid - 1;
985 else if (pc >= base + ea)
986 lo = mid + 1;
987 else if (pc >= base + sa && pc < base + ea)
988 {
989 /* Got it. */
990 *start_rva = sa;
991 *end_rva = ea;
992 *unwind_info =
993 extract_unsigned_integer (d.rva_UnwindData, 4, byte_order);
994 break;
995 }
996 else
997 break;
998 }
999
1000 if (frame_debug)
1001 fprintf_unfiltered
1002 (gdb_stdlog,
1003 "amd64_windows_find_unwind_data: image_base=%s, unwind_data=%s\n",
1004 paddress (gdbarch, base), paddress (gdbarch, *unwind_info));
1005
1006 return 0;
1007 }
1008
1009 /* Fill THIS_CACHE using the native amd64-windows unwinding data
1010 for THIS_FRAME. */
1011
1012 static struct amd64_windows_frame_cache *
1013 amd64_windows_frame_cache (struct frame_info *this_frame, void **this_cache)
1014 {
1015 struct gdbarch *gdbarch = get_frame_arch (this_frame);
1016 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1017 struct amd64_windows_frame_cache *cache;
1018 gdb_byte buf[8];
1019 struct obj_section *sec;
1020 pe_data_type *pe;
1021 IMAGE_DATA_DIRECTORY *dir;
1022 CORE_ADDR image_base;
1023 CORE_ADDR pc;
1024 struct objfile *objfile;
1025 unsigned long lo, hi;
1026 CORE_ADDR unwind_info = 0;
1027
1028 if (*this_cache)
1029 return (struct amd64_windows_frame_cache *) *this_cache;
1030
1031 cache = FRAME_OBSTACK_ZALLOC (struct amd64_windows_frame_cache);
1032 *this_cache = cache;
1033
1034 /* Get current PC and SP. */
1035 pc = get_frame_pc (this_frame);
1036 get_frame_register (this_frame, AMD64_RSP_REGNUM, buf);
1037 cache->sp = extract_unsigned_integer (buf, 8, byte_order);
1038 cache->pc = pc;
1039
1040 if (amd64_windows_find_unwind_info (gdbarch, pc, &unwind_info,
1041 &cache->image_base,
1042 &cache->start_rva,
1043 &cache->end_rva))
1044 return cache;
1045
1046 if (unwind_info == 0)
1047 {
1048 /* Assume a leaf function. */
1049 cache->prev_sp = cache->sp + 8;
1050 cache->prev_rip_addr = cache->sp;
1051 }
1052 else
1053 {
1054 /* Decode unwind insns to compute saved addresses. */
1055 amd64_windows_frame_decode_insns (this_frame, cache, unwind_info);
1056 }
1057 return cache;
1058 }
1059
1060 /* Implement the "prev_register" method of struct frame_unwind
1061 using the standard Windows x64 SEH info. */
1062
1063 static struct value *
1064 amd64_windows_frame_prev_register (struct frame_info *this_frame,
1065 void **this_cache, int regnum)
1066 {
1067 struct gdbarch *gdbarch = get_frame_arch (this_frame);
1068 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1069 struct amd64_windows_frame_cache *cache =
1070 amd64_windows_frame_cache (this_frame, this_cache);
1071 struct value *val;
1072 CORE_ADDR prev;
1073
1074 if (frame_debug)
1075 fprintf_unfiltered (gdb_stdlog,
1076 "amd64_windows_frame_prev_register %s for sp=%s\n",
1077 gdbarch_register_name (gdbarch, regnum),
1078 paddress (gdbarch, cache->prev_sp));
1079
1080 if (regnum >= AMD64_XMM0_REGNUM && regnum <= AMD64_XMM0_REGNUM + 15)
1081 prev = cache->prev_xmm_addr[regnum - AMD64_XMM0_REGNUM];
1082 else if (regnum == AMD64_RSP_REGNUM)
1083 {
1084 prev = cache->prev_rsp_addr;
1085 if (prev == 0)
1086 return frame_unwind_got_constant (this_frame, regnum, cache->prev_sp);
1087 }
1088 else if (regnum >= AMD64_RAX_REGNUM && regnum <= AMD64_R15_REGNUM)
1089 prev = cache->prev_reg_addr[regnum - AMD64_RAX_REGNUM];
1090 else if (regnum == AMD64_RIP_REGNUM)
1091 prev = cache->prev_rip_addr;
1092 else
1093 prev = 0;
1094
1095 if (prev && frame_debug)
1096 fprintf_unfiltered (gdb_stdlog, " -> at %s\n", paddress (gdbarch, prev));
1097
1098 if (prev)
1099 {
1100 /* Register was saved. */
1101 return frame_unwind_got_memory (this_frame, regnum, prev);
1102 }
1103 else
1104 {
1105 /* Register is either volatile or not modified. */
1106 return frame_unwind_got_register (this_frame, regnum, regnum);
1107 }
1108 }
1109
1110 /* Implement the "this_id" method of struct frame_unwind using
1111 the standard Windows x64 SEH info. */
1112
1113 static void
1114 amd64_windows_frame_this_id (struct frame_info *this_frame, void **this_cache,
1115 struct frame_id *this_id)
1116 {
1117 struct gdbarch *gdbarch = get_frame_arch (this_frame);
1118 struct amd64_windows_frame_cache *cache =
1119 amd64_windows_frame_cache (this_frame, this_cache);
1120
1121 *this_id = frame_id_build (cache->prev_sp,
1122 cache->image_base + cache->start_rva);
1123 }
1124
1125 /* Windows x64 SEH unwinder. */
1126
1127 static const struct frame_unwind amd64_windows_frame_unwind =
1128 {
1129 NORMAL_FRAME,
1130 default_frame_unwind_stop_reason,
1131 &amd64_windows_frame_this_id,
1132 &amd64_windows_frame_prev_register,
1133 NULL,
1134 default_frame_sniffer
1135 };
1136
1137 /* Implement the "skip_prologue" gdbarch method. */
1138
1139 static CORE_ADDR
1140 amd64_windows_skip_prologue (struct gdbarch *gdbarch, CORE_ADDR pc)
1141 {
1142 CORE_ADDR func_addr;
1143 CORE_ADDR unwind_info = 0;
1144 CORE_ADDR image_base, start_rva, end_rva;
1145 struct external_pex64_unwind_info ex_ui;
1146
1147 /* Use prologue size from unwind info. */
1148 if (amd64_windows_find_unwind_info (gdbarch, pc, &unwind_info,
1149 &image_base, &start_rva, &end_rva) == 0)
1150 {
1151 if (unwind_info == 0)
1152 {
1153 /* Leaf function. */
1154 return pc;
1155 }
1156 else if (target_read_memory (image_base + unwind_info,
1157 (gdb_byte *) &ex_ui, sizeof (ex_ui)) == 0
1158 && PEX64_UWI_VERSION (ex_ui.Version_Flags) == 1)
1159 return max (pc, image_base + start_rva + ex_ui.SizeOfPrologue);
1160 }
1161
1162 /* See if we can determine the end of the prologue via the symbol
1163 table. If so, then return either the PC, or the PC after
1164 the prologue, whichever is greater. */
1165 if (find_pc_partial_function (pc, NULL, &func_addr, NULL))
1166 {
1167 CORE_ADDR post_prologue_pc
1168 = skip_prologue_using_sal (gdbarch, func_addr);
1169
1170 if (post_prologue_pc != 0)
1171 return max (pc, post_prologue_pc);
1172 }
1173
1174 return pc;
1175 }
1176
1177 /* Check Win64 DLL jmp trampolines and find jump destination. */
1178
1179 static CORE_ADDR
1180 amd64_windows_skip_trampoline_code (struct frame_info *frame, CORE_ADDR pc)
1181 {
1182 CORE_ADDR destination = 0;
1183 struct gdbarch *gdbarch = get_frame_arch (frame);
1184 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1185
1186 /* Check for jmp *<offset>(%rip) (jump near, absolute indirect (/4)). */
1187 if (pc && read_memory_unsigned_integer (pc, 2, byte_order) == 0x25ff)
1188 {
1189 /* Get opcode offset and see if we can find a reference in our data. */
1190 ULONGEST offset
1191 = read_memory_unsigned_integer (pc + 2, 4, byte_order);
1192
1193 /* Get address of function pointer at end of pc. */
1194 CORE_ADDR indirect_addr = pc + offset + 6;
1195
1196 struct minimal_symbol *indsym
1197 = (indirect_addr
1198 ? lookup_minimal_symbol_by_pc (indirect_addr).minsym
1199 : NULL);
1200 const char *symname = indsym ? MSYMBOL_LINKAGE_NAME (indsym) : NULL;
1201
1202 if (symname)
1203 {
1204 if (startswith (symname, "__imp_")
1205 || startswith (symname, "_imp_"))
1206 destination
1207 = read_memory_unsigned_integer (indirect_addr, 8, byte_order);
1208 }
1209 }
1210
1211 return destination;
1212 }
1213
1214 /* Implement the "auto_wide_charset" gdbarch method. */
1215
1216 static const char *
1217 amd64_windows_auto_wide_charset (void)
1218 {
1219 return "UTF-16";
1220 }
1221
1222 static void
1223 amd64_windows_init_abi (struct gdbarch_info info, struct gdbarch *gdbarch)
1224 {
1225 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
1226
1227 /* The dwarf2 unwinder (appended very early by i386_gdbarch_init) is
1228 preferred over the SEH one. The reasons are:
1229 - binaries without SEH but with dwarf2 debug info are correcly handled
1230 (although they aren't ABI compliant, gcc before 4.7 didn't emit SEH
1231 info).
1232 - dwarf3 DW_OP_call_frame_cfa is correctly handled (it can only be
1233 handled if the dwarf2 unwinder is used).
1234
1235 The call to amd64_init_abi appends default unwinders, that aren't
1236 compatible with the SEH one.
1237 */
1238 frame_unwind_append_unwinder (gdbarch, &amd64_windows_frame_unwind);
1239
1240 amd64_init_abi (info, gdbarch);
1241
1242 windows_init_abi (info, gdbarch);
1243
1244 /* On Windows, "long"s are only 32bit. */
1245 set_gdbarch_long_bit (gdbarch, 32);
1246
1247 /* Function calls. */
1248 set_gdbarch_push_dummy_call (gdbarch, amd64_windows_push_dummy_call);
1249 set_gdbarch_return_value (gdbarch, amd64_windows_return_value);
1250 set_gdbarch_skip_main_prologue (gdbarch, amd64_skip_main_prologue);
1251 set_gdbarch_skip_trampoline_code (gdbarch,
1252 amd64_windows_skip_trampoline_code);
1253
1254 set_gdbarch_skip_prologue (gdbarch, amd64_windows_skip_prologue);
1255
1256 set_gdbarch_auto_wide_charset (gdbarch, amd64_windows_auto_wide_charset);
1257 }
1258
1259 /* -Wmissing-prototypes */
1260 extern initialize_file_ftype _initialize_amd64_windows_tdep;
1261
1262 void
1263 _initialize_amd64_windows_tdep (void)
1264 {
1265 gdbarch_register_osabi (bfd_arch_i386, bfd_mach_x86_64, GDB_OSABI_CYGWIN,
1266 amd64_windows_init_abi);
1267 }
This page took 0.082414 seconds and 4 git commands to generate.