Introduce ref_ptr::new_reference
[deliverable/binutils-gdb.git] / gdb / arc-tdep.c
1 /* Target dependent code for ARC arhitecture, for GDB.
2
3 Copyright 2005-2018 Free Software Foundation, Inc.
4 Contributed by Synopsys Inc.
5
6 This file is part of GDB.
7
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 3 of the License, or
11 (at your option) any later version.
12
13 This program is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with this program. If not, see <http://www.gnu.org/licenses/>. */
20
21 /* GDB header files. */
22 #include "defs.h"
23 #include "arch-utils.h"
24 #include "disasm.h"
25 #include "dwarf2-frame.h"
26 #include "frame-base.h"
27 #include "frame-unwind.h"
28 #include "gdbcore.h"
29 #include "gdbcmd.h"
30 #include "objfiles.h"
31 #include "prologue-value.h"
32 #include "trad-frame.h"
33
34 /* ARC header files. */
35 #include "opcode/arc.h"
36 #include "opcodes/arc-dis.h"
37 #include "arc-tdep.h"
38
39 /* Standard headers. */
40 #include <algorithm>
41
42 /* Default target descriptions. */
43 #include "features/arc-v2.c"
44 #include "features/arc-arcompact.c"
45
46 /* The frame unwind cache for ARC. */
47
48 struct arc_frame_cache
49 {
50 /* The stack pointer at the time this frame was created; i.e. the caller's
51 stack pointer when this function was called. It is used to identify this
52 frame. */
53 CORE_ADDR prev_sp;
54
55 /* Register that is a base for this frame - FP for normal frame, SP for
56 non-FP frames. */
57 int frame_base_reg;
58
59 /* Offset from the previous SP to the current frame base. If GCC uses
60 `SUB SP,SP,offset` to allocate space for local variables, then it will be
61 done after setting up a frame pointer, but it still will be considered
62 part of prologue, therefore SP will be lesser than FP at the end of the
63 prologue analysis. In this case that would be an offset from old SP to a
64 new FP. But in case of non-FP frames, frame base is an SP and thus that
65 would be an offset from old SP to new SP. What is important is that this
66 is an offset from old SP to a known register, so it can be used to find
67 old SP.
68
69 Using FP is preferable, when possible, because SP can change in function
70 body after prologue due to alloca, variadic arguments or other shenanigans.
71 If that is the case in the caller frame, then PREV_SP will point to SP at
72 the moment of function call, but it will be different from SP value at the
73 end of the caller prologue. As a result it will not be possible to
74 reconstruct caller's frame and go past it in the backtrace. Those things
75 are unlikely to happen to FP - FP value at the moment of function call (as
76 stored on stack in callee prologue) is also an FP value at the end of the
77 caller's prologue. */
78
79 LONGEST frame_base_offset;
80
81 /* Store addresses for registers saved in prologue. During prologue analysis
82 GDB stores offsets relatively to "old SP", then after old SP is evaluated,
83 offsets are replaced with absolute addresses. */
84 struct trad_frame_saved_reg *saved_regs;
85 };
86
87 /* Global debug flag. */
88
89 int arc_debug;
90
91 /* List of "maintenance print arc" commands. */
92
93 static struct cmd_list_element *maintenance_print_arc_list = NULL;
94
95 /* XML target description features. */
96
97 static const char core_v2_feature_name[] = "org.gnu.gdb.arc.core.v2";
98 static const char
99 core_reduced_v2_feature_name[] = "org.gnu.gdb.arc.core-reduced.v2";
100 static const char
101 core_arcompact_feature_name[] = "org.gnu.gdb.arc.core.arcompact";
102 static const char aux_minimal_feature_name[] = "org.gnu.gdb.arc.aux-minimal";
103
104 /* XML target description known registers. */
105
106 static const char *const core_v2_register_names[] = {
107 "r0", "r1", "r2", "r3",
108 "r4", "r5", "r6", "r7",
109 "r8", "r9", "r10", "r11",
110 "r12", "r13", "r14", "r15",
111 "r16", "r17", "r18", "r19",
112 "r20", "r21", "r22", "r23",
113 "r24", "r25", "gp", "fp",
114 "sp", "ilink", "r30", "blink",
115 "r32", "r33", "r34", "r35",
116 "r36", "r37", "r38", "r39",
117 "r40", "r41", "r42", "r43",
118 "r44", "r45", "r46", "r47",
119 "r48", "r49", "r50", "r51",
120 "r52", "r53", "r54", "r55",
121 "r56", "r57", "accl", "acch",
122 "lp_count", "reserved", "limm", "pcl",
123 };
124
125 static const char *const aux_minimal_register_names[] = {
126 "pc", "status32",
127 };
128
129 static const char *const core_arcompact_register_names[] = {
130 "r0", "r1", "r2", "r3",
131 "r4", "r5", "r6", "r7",
132 "r8", "r9", "r10", "r11",
133 "r12", "r13", "r14", "r15",
134 "r16", "r17", "r18", "r19",
135 "r20", "r21", "r22", "r23",
136 "r24", "r25", "gp", "fp",
137 "sp", "ilink1", "ilink2", "blink",
138 "r32", "r33", "r34", "r35",
139 "r36", "r37", "r38", "r39",
140 "r40", "r41", "r42", "r43",
141 "r44", "r45", "r46", "r47",
142 "r48", "r49", "r50", "r51",
143 "r52", "r53", "r54", "r55",
144 "r56", "r57", "r58", "r59",
145 "lp_count", "reserved", "limm", "pcl",
146 };
147
148 static char *arc_disassembler_options = NULL;
149
150 /* Functions are sorted in the order as they are used in the
151 _initialize_arc_tdep (), which uses the same order as gdbarch.h. Static
152 functions are defined before the first invocation. */
153
154 /* Returns an unsigned value of OPERAND_NUM in instruction INSN.
155 For relative branch instructions returned value is an offset, not an actual
156 branch target. */
157
158 static ULONGEST
159 arc_insn_get_operand_value (const struct arc_instruction &insn,
160 unsigned int operand_num)
161 {
162 switch (insn.operands[operand_num].kind)
163 {
164 case ARC_OPERAND_KIND_LIMM:
165 gdb_assert (insn.limm_p);
166 return insn.limm_value;
167 case ARC_OPERAND_KIND_SHIMM:
168 return insn.operands[operand_num].value;
169 default:
170 /* Value in instruction is a register number. */
171 struct regcache *regcache = get_current_regcache ();
172 ULONGEST value;
173 regcache_cooked_read_unsigned (regcache,
174 insn.operands[operand_num].value,
175 &value);
176 return value;
177 }
178 }
179
180 /* Like arc_insn_get_operand_value, but returns a signed value. */
181
182 static LONGEST
183 arc_insn_get_operand_value_signed (const struct arc_instruction &insn,
184 unsigned int operand_num)
185 {
186 switch (insn.operands[operand_num].kind)
187 {
188 case ARC_OPERAND_KIND_LIMM:
189 gdb_assert (insn.limm_p);
190 /* Convert unsigned raw value to signed one. This assumes 2's
191 complement arithmetic, but so is the LONG_MIN value from generic
192 defs.h and that assumption is true for ARC. */
193 gdb_static_assert (sizeof (insn.limm_value) == sizeof (int));
194 return (((LONGEST) insn.limm_value) ^ INT_MIN) - INT_MIN;
195 case ARC_OPERAND_KIND_SHIMM:
196 /* Sign conversion has been done by binutils. */
197 return insn.operands[operand_num].value;
198 default:
199 /* Value in instruction is a register number. */
200 struct regcache *regcache = get_current_regcache ();
201 LONGEST value;
202 regcache_cooked_read_signed (regcache,
203 insn.operands[operand_num].value,
204 &value);
205 return value;
206 }
207 }
208
209 /* Get register with base address of memory operation. */
210
211 int
212 arc_insn_get_memory_base_reg (const struct arc_instruction &insn)
213 {
214 /* POP_S and PUSH_S have SP as an implicit argument in a disassembler. */
215 if (insn.insn_class == PUSH || insn.insn_class == POP)
216 return ARC_SP_REGNUM;
217
218 gdb_assert (insn.insn_class == LOAD || insn.insn_class == STORE);
219
220 /* Other instructions all have at least two operands: operand 0 is data,
221 operand 1 is address. Operand 2 is offset from address. However, see
222 comment to arc_instruction.operands - in some cases, third operand may be
223 missing, namely if it is 0. */
224 gdb_assert (insn.operands_count >= 2);
225 return insn.operands[1].value;
226 }
227
228 /* Get offset of a memory operation INSN. */
229
230 CORE_ADDR
231 arc_insn_get_memory_offset (const struct arc_instruction &insn)
232 {
233 /* POP_S and PUSH_S have offset as an implicit argument in a
234 disassembler. */
235 if (insn.insn_class == POP)
236 return 4;
237 else if (insn.insn_class == PUSH)
238 return -4;
239
240 gdb_assert (insn.insn_class == LOAD || insn.insn_class == STORE);
241
242 /* Other instructions all have at least two operands: operand 0 is data,
243 operand 1 is address. Operand 2 is offset from address. However, see
244 comment to arc_instruction.operands - in some cases, third operand may be
245 missing, namely if it is 0. */
246 if (insn.operands_count < 3)
247 return 0;
248
249 CORE_ADDR value = arc_insn_get_operand_value (insn, 2);
250 /* Handle scaling. */
251 if (insn.writeback_mode == ARC_WRITEBACK_AS)
252 {
253 /* Byte data size is not valid for AS. Halfword means shift by 1 bit.
254 Word and double word means shift by 2 bits. */
255 gdb_assert (insn.data_size_mode != ARC_SCALING_B);
256 if (insn.data_size_mode == ARC_SCALING_H)
257 value <<= 1;
258 else
259 value <<= 2;
260 }
261 return value;
262 }
263
264 CORE_ADDR
265 arc_insn_get_branch_target (const struct arc_instruction &insn)
266 {
267 gdb_assert (insn.is_control_flow);
268
269 /* BI [c]: PC = nextPC + (c << 2). */
270 if (insn.insn_class == BI)
271 {
272 ULONGEST reg_value = arc_insn_get_operand_value (insn, 0);
273 return arc_insn_get_linear_next_pc (insn) + (reg_value << 2);
274 }
275 /* BIH [c]: PC = nextPC + (c << 1). */
276 else if (insn.insn_class == BIH)
277 {
278 ULONGEST reg_value = arc_insn_get_operand_value (insn, 0);
279 return arc_insn_get_linear_next_pc (insn) + (reg_value << 1);
280 }
281 /* JLI and EI. */
282 /* JLI and EI depend on optional AUX registers. Not supported right now. */
283 else if (insn.insn_class == JLI)
284 {
285 fprintf_unfiltered (gdb_stderr,
286 "JLI_S instruction is not supported by the GDB.");
287 return 0;
288 }
289 else if (insn.insn_class == EI)
290 {
291 fprintf_unfiltered (gdb_stderr,
292 "EI_S instruction is not supported by the GDB.");
293 return 0;
294 }
295 /* LEAVE_S: PC = BLINK. */
296 else if (insn.insn_class == LEAVE)
297 {
298 struct regcache *regcache = get_current_regcache ();
299 ULONGEST value;
300 regcache_cooked_read_unsigned (regcache, ARC_BLINK_REGNUM, &value);
301 return value;
302 }
303 /* BBIT0/1, BRcc: PC = currentPC + operand. */
304 else if (insn.insn_class == BBIT0 || insn.insn_class == BBIT1
305 || insn.insn_class == BRCC)
306 {
307 /* Most instructions has branch target as their sole argument. However
308 conditional brcc/bbit has it as a third operand. */
309 CORE_ADDR pcrel_addr = arc_insn_get_operand_value (insn, 2);
310
311 /* Offset is relative to the 4-byte aligned address of the current
312 instruction, hence last two bits should be truncated. */
313 return pcrel_addr + align_down (insn.address, 4);
314 }
315 /* B, Bcc, BL, BLcc, LP, LPcc: PC = currentPC + operand. */
316 else if (insn.insn_class == BRANCH || insn.insn_class == LOOP)
317 {
318 CORE_ADDR pcrel_addr = arc_insn_get_operand_value (insn, 0);
319
320 /* Offset is relative to the 4-byte aligned address of the current
321 instruction, hence last two bits should be truncated. */
322 return pcrel_addr + align_down (insn.address, 4);
323 }
324 /* J, Jcc, JL, JLcc: PC = operand. */
325 else if (insn.insn_class == JUMP)
326 {
327 /* All jumps are single-operand. */
328 return arc_insn_get_operand_value (insn, 0);
329 }
330
331 /* This is some new and unknown instruction. */
332 gdb_assert_not_reached ("Unknown branch instruction.");
333 }
334
335 /* Dump INSN into gdb_stdlog. */
336
337 void
338 arc_insn_dump (const struct arc_instruction &insn)
339 {
340 struct gdbarch *gdbarch = target_gdbarch ();
341
342 arc_print ("Dumping arc_instruction at %s\n",
343 paddress (gdbarch, insn.address));
344 arc_print ("\tlength = %u\n", insn.length);
345
346 if (!insn.valid)
347 {
348 arc_print ("\tThis is not a valid ARC instruction.\n");
349 return;
350 }
351
352 arc_print ("\tlength_with_limm = %u\n", insn.length + (insn.limm_p ? 4 : 0));
353 arc_print ("\tcc = 0x%x\n", insn.condition_code);
354 arc_print ("\tinsn_class = %u\n", insn.insn_class);
355 arc_print ("\tis_control_flow = %i\n", insn.is_control_flow);
356 arc_print ("\thas_delay_slot = %i\n", insn.has_delay_slot);
357
358 CORE_ADDR next_pc = arc_insn_get_linear_next_pc (insn);
359 arc_print ("\tlinear_next_pc = %s\n", paddress (gdbarch, next_pc));
360
361 if (insn.is_control_flow)
362 {
363 CORE_ADDR t = arc_insn_get_branch_target (insn);
364 arc_print ("\tbranch_target = %s\n", paddress (gdbarch, t));
365 }
366
367 arc_print ("\tlimm_p = %i\n", insn.limm_p);
368 if (insn.limm_p)
369 arc_print ("\tlimm_value = 0x%08x\n", insn.limm_value);
370
371 if (insn.insn_class == STORE || insn.insn_class == LOAD
372 || insn.insn_class == PUSH || insn.insn_class == POP)
373 {
374 arc_print ("\twriteback_mode = %u\n", insn.writeback_mode);
375 arc_print ("\tdata_size_mode = %u\n", insn.data_size_mode);
376 arc_print ("\tmemory_base_register = %s\n",
377 gdbarch_register_name (gdbarch,
378 arc_insn_get_memory_base_reg (insn)));
379 /* get_memory_offset returns an unsigned CORE_ADDR, but treat it as a
380 LONGEST for a nicer representation. */
381 arc_print ("\taddr_offset = %s\n",
382 plongest (arc_insn_get_memory_offset (insn)));
383 }
384
385 arc_print ("\toperands_count = %u\n", insn.operands_count);
386 for (unsigned int i = 0; i < insn.operands_count; ++i)
387 {
388 int is_reg = (insn.operands[i].kind == ARC_OPERAND_KIND_REG);
389
390 arc_print ("\toperand[%u] = {\n", i);
391 arc_print ("\t\tis_reg = %i\n", is_reg);
392 if (is_reg)
393 arc_print ("\t\tregister = %s\n",
394 gdbarch_register_name (gdbarch, insn.operands[i].value));
395 /* Don't know if this value is signed or not, so print both
396 representations. This tends to look quite ugly, especially for big
397 numbers. */
398 arc_print ("\t\tunsigned value = %s\n",
399 pulongest (arc_insn_get_operand_value (insn, i)));
400 arc_print ("\t\tsigned value = %s\n",
401 plongest (arc_insn_get_operand_value_signed (insn, i)));
402 arc_print ("\t}\n");
403 }
404 }
405
406 CORE_ADDR
407 arc_insn_get_linear_next_pc (const struct arc_instruction &insn)
408 {
409 /* In ARC long immediate is always 4 bytes. */
410 return (insn.address + insn.length + (insn.limm_p ? 4 : 0));
411 }
412
413 /* Implement the "write_pc" gdbarch method.
414
415 In ARC PC register is a normal register so in most cases setting PC value
416 is a straightforward process: debugger just writes PC value. However it
417 gets trickier in case when current instruction is an instruction in delay
418 slot. In this case CPU will execute instruction at current PC value, then
419 will set PC to the current value of BTA register; also current instruction
420 cannot be branch/jump and some of the other instruction types. Thus if
421 debugger would try to just change PC value in this case, this instruction
422 will get executed, but then core will "jump" to the original branch target.
423
424 Whether current instruction is a delay-slot instruction or not is indicated
425 by DE bit in STATUS32 register indicates if current instruction is a delay
426 slot instruction. This bit is writable by debug host, which allows debug
427 host to prevent core from jumping after the delay slot instruction. It
428 also works in another direction: setting this bit will make core to treat
429 any current instructions as a delay slot instruction and to set PC to the
430 current value of BTA register.
431
432 To workaround issues with changing PC register while in delay slot
433 instruction, debugger should check for the STATUS32.DE bit and reset it if
434 it is set. No other change is required in this function. Most common
435 case, where this function might be required is calling inferior functions
436 from debugger. Generic GDB logic handles this pretty well: current values
437 of registers are stored, value of PC is changed (that is the job of this
438 function), and after inferior function is executed, GDB restores all
439 registers, include BTA and STATUS32, which also means that core is returned
440 to its original state of being halted on delay slot instructions.
441
442 This method is useless for ARC 600, because it doesn't have externally
443 exposed BTA register. In the case of ARC 600 it is impossible to restore
444 core to its state in all occasions thus core should never be halted (from
445 the perspective of debugger host) in the delay slot. */
446
447 static void
448 arc_write_pc (struct regcache *regcache, CORE_ADDR new_pc)
449 {
450 struct gdbarch *gdbarch = regcache->arch ();
451
452 if (arc_debug)
453 debug_printf ("arc: Writing PC, new value=%s\n",
454 paddress (gdbarch, new_pc));
455
456 regcache_cooked_write_unsigned (regcache, gdbarch_pc_regnum (gdbarch),
457 new_pc);
458
459 ULONGEST status32;
460 regcache_cooked_read_unsigned (regcache, gdbarch_ps_regnum (gdbarch),
461 &status32);
462
463 /* Mask for DE bit is 0x40. */
464 if (status32 & 0x40)
465 {
466 if (arc_debug)
467 {
468 debug_printf ("arc: Changing PC while in delay slot. Will "
469 "reset STATUS32.DE bit to zero. Value of STATUS32 "
470 "register is 0x%s\n",
471 phex (status32, ARC_REGISTER_SIZE));
472 }
473
474 /* Reset bit and write to the cache. */
475 status32 &= ~0x40;
476 regcache_cooked_write_unsigned (regcache, gdbarch_ps_regnum (gdbarch),
477 status32);
478 }
479 }
480
481 /* Implement the "virtual_frame_pointer" gdbarch method.
482
483 According to ABI the FP (r27) is used to point to the middle of the current
484 stack frame, just below the saved FP and before local variables, register
485 spill area and outgoing args. However for optimization levels above O2 and
486 in any case in leaf functions, the frame pointer is usually not set at all.
487 The exception being when handling nested functions.
488
489 We use this function to return a "virtual" frame pointer, marking the start
490 of the current stack frame as a register-offset pair. If the FP is not
491 being used, then it should return SP, with an offset of the frame size.
492
493 The current implementation doesn't actually know the frame size, nor
494 whether the FP is actually being used, so for now we just return SP and an
495 offset of zero. This is no worse than other architectures, but is needed
496 to avoid assertion failures.
497
498 TODO: Can we determine the frame size to get a correct offset?
499
500 PC is a program counter where we need the virtual FP. REG_PTR is the base
501 register used for the virtual FP. OFFSET_PTR is the offset used for the
502 virtual FP. */
503
504 static void
505 arc_virtual_frame_pointer (struct gdbarch *gdbarch, CORE_ADDR pc,
506 int *reg_ptr, LONGEST *offset_ptr)
507 {
508 *reg_ptr = gdbarch_sp_regnum (gdbarch);
509 *offset_ptr = 0;
510 }
511
512 /* Implement the "dummy_id" gdbarch method.
513
514 Tear down a dummy frame created by arc_push_dummy_call (). This data has
515 to be constructed manually from the data in our hand. The stack pointer
516 and program counter can be obtained from the frame info. */
517
518 static struct frame_id
519 arc_dummy_id (struct gdbarch *gdbarch, struct frame_info *this_frame)
520 {
521 return frame_id_build (get_frame_sp (this_frame),
522 get_frame_pc (this_frame));
523 }
524
525 /* Implement the "push_dummy_call" gdbarch method.
526
527 Stack Frame Layout
528
529 This shows the layout of the stack frame for the general case of a
530 function call; a given function might not have a variable number of
531 arguments or local variables, or might not save any registers, so it would
532 not have the corresponding frame areas. Additionally, a leaf function
533 (i.e. one which calls no other functions) does not need to save the
534 contents of the BLINK register (which holds its return address), and a
535 function might not have a frame pointer.
536
537 The stack grows downward, so SP points below FP in memory; SP always
538 points to the last used word on the stack, not the first one.
539
540 | | |
541 | arg word N | | caller's
542 | : | | frame
543 | arg word 10 | |
544 | arg word 9 | |
545 old SP ---> +-----------------------+ --+
546 | | |
547 | callee-saved | |
548 | registers | |
549 | including fp, blink | |
550 | | | callee's
551 new FP ---> +-----------------------+ | frame
552 | | |
553 | local | |
554 | variables | |
555 | | |
556 | register | |
557 | spill area | |
558 | | |
559 | outgoing args | |
560 | | |
561 new SP ---> +-----------------------+ --+
562 | |
563 | unused |
564 | |
565 |
566 |
567 V
568 downwards
569
570 The list of arguments to be passed to a function is considered to be a
571 sequence of _N_ words (as though all the parameters were stored in order in
572 memory with each parameter occupying an integral number of words). Words
573 1..8 are passed in registers 0..7; if the function has more than 8 words of
574 arguments then words 9..@em N are passed on the stack in the caller's frame.
575
576 If the function has a variable number of arguments, e.g. it has a form such
577 as `function (p1, p2, ...);' and _P_ words are required to hold the values
578 of the named parameters (which are passed in registers 0..@em P -1), then
579 the remaining 8 - _P_ words passed in registers _P_..7 are spilled into the
580 top of the frame so that the anonymous parameter words occupy a continuous
581 region.
582
583 Any arguments are already in target byte order. We just need to store
584 them!
585
586 BP_ADDR is the return address where breakpoint must be placed. NARGS is
587 the number of arguments to the function. ARGS is the arguments values (in
588 target byte order). SP is the Current value of SP register. STRUCT_RETURN
589 is TRUE if structures are returned by the function. STRUCT_ADDR is the
590 hidden address for returning a struct. Returns SP of a new frame. */
591
592 static CORE_ADDR
593 arc_push_dummy_call (struct gdbarch *gdbarch, struct value *function,
594 struct regcache *regcache, CORE_ADDR bp_addr, int nargs,
595 struct value **args, CORE_ADDR sp, int struct_return,
596 CORE_ADDR struct_addr)
597 {
598 if (arc_debug)
599 debug_printf ("arc: push_dummy_call (nargs = %d)\n", nargs);
600
601 int arg_reg = ARC_FIRST_ARG_REGNUM;
602
603 /* Push the return address. */
604 regcache_cooked_write_unsigned (regcache, ARC_BLINK_REGNUM, bp_addr);
605
606 /* Are we returning a value using a structure return instead of a normal
607 value return? If so, struct_addr is the address of the reserved space for
608 the return structure to be written on the stack, and that address is
609 passed to that function as a hidden first argument. */
610 if (struct_return)
611 {
612 /* Pass the return address in the first argument register. */
613 regcache_cooked_write_unsigned (regcache, arg_reg, struct_addr);
614
615 if (arc_debug)
616 debug_printf ("arc: struct return address %s passed in R%d",
617 print_core_address (gdbarch, struct_addr), arg_reg);
618
619 arg_reg++;
620 }
621
622 if (nargs > 0)
623 {
624 unsigned int total_space = 0;
625
626 /* How much space do the arguments occupy in total? Must round each
627 argument's size up to an integral number of words. */
628 for (int i = 0; i < nargs; i++)
629 {
630 unsigned int len = TYPE_LENGTH (value_type (args[i]));
631 unsigned int space = align_up (len, 4);
632
633 total_space += space;
634
635 if (arc_debug)
636 debug_printf ("arc: arg %d: %u bytes -> %u\n", i, len, space);
637 }
638
639 /* Allocate a buffer to hold a memory image of the arguments. */
640 gdb_byte *memory_image = XCNEWVEC (gdb_byte, total_space);
641
642 /* Now copy all of the arguments into the buffer, correctly aligned. */
643 gdb_byte *data = memory_image;
644 for (int i = 0; i < nargs; i++)
645 {
646 unsigned int len = TYPE_LENGTH (value_type (args[i]));
647 unsigned int space = align_up (len, 4);
648
649 memcpy (data, value_contents (args[i]), (size_t) len);
650 if (arc_debug)
651 debug_printf ("arc: copying arg %d, val 0x%08x, len %d to mem\n",
652 i, *((int *) value_contents (args[i])), len);
653
654 data += space;
655 }
656
657 /* Now load as much as possible of the memory image into registers. */
658 data = memory_image;
659 while (arg_reg <= ARC_LAST_ARG_REGNUM)
660 {
661 if (arc_debug)
662 debug_printf ("arc: passing 0x%02x%02x%02x%02x in register R%d\n",
663 data[0], data[1], data[2], data[3], arg_reg);
664
665 /* Note we don't use write_unsigned here, since that would convert
666 the byte order, but we are already in the correct byte order. */
667 regcache_cooked_write (regcache, arg_reg, data);
668
669 data += ARC_REGISTER_SIZE;
670 total_space -= ARC_REGISTER_SIZE;
671
672 /* All the data is now in registers. */
673 if (total_space == 0)
674 break;
675
676 arg_reg++;
677 }
678
679 /* If there is any data left, push it onto the stack (in a single write
680 operation). */
681 if (total_space > 0)
682 {
683 if (arc_debug)
684 debug_printf ("arc: passing %d bytes on stack\n", total_space);
685
686 sp -= total_space;
687 write_memory (sp, data, (int) total_space);
688 }
689
690 xfree (memory_image);
691 }
692
693 /* Finally, update the SP register. */
694 regcache_cooked_write_unsigned (regcache, gdbarch_sp_regnum (gdbarch), sp);
695
696 return sp;
697 }
698
699 /* Implement the "push_dummy_code" gdbarch method.
700
701 We don't actually push any code. We just identify where a breakpoint can
702 be inserted to which we are can return and the resume address where we
703 should be called.
704
705 ARC does not necessarily have an executable stack, so we can't put the
706 return breakpoint there. Instead we put it at the entry point of the
707 function. This means the SP is unchanged.
708
709 SP is a current stack pointer FUNADDR is an address of the function to be
710 called. ARGS is arguments to pass. NARGS is a number of args to pass.
711 VALUE_TYPE is a type of value returned. REAL_PC is a resume address when
712 the function is called. BP_ADDR is an address where breakpoint should be
713 set. Returns the updated stack pointer. */
714
715 static CORE_ADDR
716 arc_push_dummy_code (struct gdbarch *gdbarch, CORE_ADDR sp, CORE_ADDR funaddr,
717 struct value **args, int nargs, struct type *value_type,
718 CORE_ADDR *real_pc, CORE_ADDR *bp_addr,
719 struct regcache *regcache)
720 {
721 *real_pc = funaddr;
722 *bp_addr = entry_point_address ();
723 return sp;
724 }
725
726 /* Implement the "cannot_fetch_register" gdbarch method. */
727
728 static int
729 arc_cannot_fetch_register (struct gdbarch *gdbarch, int regnum)
730 {
731 /* Assume that register is readable if it is unknown. LIMM and RESERVED are
732 not real registers, but specific register numbers. They are available as
733 regnums to align architectural register numbers with GDB internal regnums,
734 but they shouldn't appear in target descriptions generated by
735 GDB-servers. */
736 switch (regnum)
737 {
738 case ARC_RESERVED_REGNUM:
739 case ARC_LIMM_REGNUM:
740 return true;
741 default:
742 return false;
743 }
744 }
745
746 /* Implement the "cannot_store_register" gdbarch method. */
747
748 static int
749 arc_cannot_store_register (struct gdbarch *gdbarch, int regnum)
750 {
751 /* Assume that register is writable if it is unknown. See comment in
752 arc_cannot_fetch_register about LIMM and RESERVED. */
753 switch (regnum)
754 {
755 case ARC_RESERVED_REGNUM:
756 case ARC_LIMM_REGNUM:
757 case ARC_PCL_REGNUM:
758 return true;
759 default:
760 return false;
761 }
762 }
763
764 /* Get the return value of a function from the registers/memory used to
765 return it, according to the convention used by the ABI - 4-bytes values are
766 in the R0, while 8-byte values are in the R0-R1.
767
768 TODO: This implementation ignores the case of "complex double", where
769 according to ABI, value is returned in the R0-R3 registers.
770
771 TYPE is a returned value's type. VALBUF is a buffer for the returned
772 value. */
773
774 static void
775 arc_extract_return_value (struct gdbarch *gdbarch, struct type *type,
776 struct regcache *regcache, gdb_byte *valbuf)
777 {
778 unsigned int len = TYPE_LENGTH (type);
779
780 if (arc_debug)
781 debug_printf ("arc: extract_return_value\n");
782
783 if (len <= ARC_REGISTER_SIZE)
784 {
785 ULONGEST val;
786
787 /* Get the return value from one register. */
788 regcache_cooked_read_unsigned (regcache, ARC_R0_REGNUM, &val);
789 store_unsigned_integer (valbuf, (int) len,
790 gdbarch_byte_order (gdbarch), val);
791
792 if (arc_debug)
793 debug_printf ("arc: returning 0x%s\n", phex (val, ARC_REGISTER_SIZE));
794 }
795 else if (len <= ARC_REGISTER_SIZE * 2)
796 {
797 ULONGEST low, high;
798
799 /* Get the return value from two registers. */
800 regcache_cooked_read_unsigned (regcache, ARC_R0_REGNUM, &low);
801 regcache_cooked_read_unsigned (regcache, ARC_R1_REGNUM, &high);
802
803 store_unsigned_integer (valbuf, ARC_REGISTER_SIZE,
804 gdbarch_byte_order (gdbarch), low);
805 store_unsigned_integer (valbuf + ARC_REGISTER_SIZE,
806 (int) len - ARC_REGISTER_SIZE,
807 gdbarch_byte_order (gdbarch), high);
808
809 if (arc_debug)
810 debug_printf ("arc: returning 0x%s%s\n",
811 phex (high, ARC_REGISTER_SIZE),
812 phex (low, ARC_REGISTER_SIZE));
813 }
814 else
815 error (_("arc: extract_return_value: type length %u too large"), len);
816 }
817
818
819 /* Store the return value of a function into the registers/memory used to
820 return it, according to the convention used by the ABI.
821
822 TODO: This implementation ignores the case of "complex double", where
823 according to ABI, value is returned in the R0-R3 registers.
824
825 TYPE is a returned value's type. VALBUF is a buffer with the value to
826 return. */
827
828 static void
829 arc_store_return_value (struct gdbarch *gdbarch, struct type *type,
830 struct regcache *regcache, const gdb_byte *valbuf)
831 {
832 unsigned int len = TYPE_LENGTH (type);
833
834 if (arc_debug)
835 debug_printf ("arc: store_return_value\n");
836
837 if (len <= ARC_REGISTER_SIZE)
838 {
839 ULONGEST val;
840
841 /* Put the return value into one register. */
842 val = extract_unsigned_integer (valbuf, (int) len,
843 gdbarch_byte_order (gdbarch));
844 regcache_cooked_write_unsigned (regcache, ARC_R0_REGNUM, val);
845
846 if (arc_debug)
847 debug_printf ("arc: storing 0x%s\n", phex (val, ARC_REGISTER_SIZE));
848 }
849 else if (len <= ARC_REGISTER_SIZE * 2)
850 {
851 ULONGEST low, high;
852
853 /* Put the return value into two registers. */
854 low = extract_unsigned_integer (valbuf, ARC_REGISTER_SIZE,
855 gdbarch_byte_order (gdbarch));
856 high = extract_unsigned_integer (valbuf + ARC_REGISTER_SIZE,
857 (int) len - ARC_REGISTER_SIZE,
858 gdbarch_byte_order (gdbarch));
859
860 regcache_cooked_write_unsigned (regcache, ARC_R0_REGNUM, low);
861 regcache_cooked_write_unsigned (regcache, ARC_R1_REGNUM, high);
862
863 if (arc_debug)
864 debug_printf ("arc: storing 0x%s%s\n",
865 phex (high, ARC_REGISTER_SIZE),
866 phex (low, ARC_REGISTER_SIZE));
867 }
868 else
869 error (_("arc_store_return_value: type length too large."));
870 }
871
872 /* Implement the "get_longjmp_target" gdbarch method. */
873
874 static int
875 arc_get_longjmp_target (struct frame_info *frame, CORE_ADDR *pc)
876 {
877 if (arc_debug)
878 debug_printf ("arc: get_longjmp_target\n");
879
880 struct gdbarch *gdbarch = get_frame_arch (frame);
881 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
882 int pc_offset = tdep->jb_pc * ARC_REGISTER_SIZE;
883 gdb_byte buf[ARC_REGISTER_SIZE];
884 CORE_ADDR jb_addr = get_frame_register_unsigned (frame, ARC_FIRST_ARG_REGNUM);
885
886 if (target_read_memory (jb_addr + pc_offset, buf, ARC_REGISTER_SIZE))
887 return 0; /* Failed to read from memory. */
888
889 *pc = extract_unsigned_integer (buf, ARC_REGISTER_SIZE,
890 gdbarch_byte_order (gdbarch));
891 return 1;
892 }
893
894 /* Implement the "return_value" gdbarch method. */
895
896 static enum return_value_convention
897 arc_return_value (struct gdbarch *gdbarch, struct value *function,
898 struct type *valtype, struct regcache *regcache,
899 gdb_byte *readbuf, const gdb_byte *writebuf)
900 {
901 /* If the return type is a struct, or a union, or would occupy more than two
902 registers, the ABI uses the "struct return convention": the calling
903 function passes a hidden first parameter to the callee (in R0). That
904 parameter is the address at which the value being returned should be
905 stored. Otherwise, the result is returned in registers. */
906 int is_struct_return = (TYPE_CODE (valtype) == TYPE_CODE_STRUCT
907 || TYPE_CODE (valtype) == TYPE_CODE_UNION
908 || TYPE_LENGTH (valtype) > 2 * ARC_REGISTER_SIZE);
909
910 if (arc_debug)
911 debug_printf ("arc: return_value (readbuf = %s, writebuf = %s)\n",
912 host_address_to_string (readbuf),
913 host_address_to_string (writebuf));
914
915 if (writebuf != NULL)
916 {
917 /* Case 1. GDB should not ask us to set a struct return value: it
918 should know the struct return location and write the value there
919 itself. */
920 gdb_assert (!is_struct_return);
921 arc_store_return_value (gdbarch, valtype, regcache, writebuf);
922 }
923 else if (readbuf != NULL)
924 {
925 /* Case 2. GDB should not ask us to get a struct return value: it
926 should know the struct return location and read the value from there
927 itself. */
928 gdb_assert (!is_struct_return);
929 arc_extract_return_value (gdbarch, valtype, regcache, readbuf);
930 }
931
932 return (is_struct_return
933 ? RETURN_VALUE_STRUCT_CONVENTION
934 : RETURN_VALUE_REGISTER_CONVENTION);
935 }
936
937 /* Return the base address of the frame. For ARC, the base address is the
938 frame pointer. */
939
940 static CORE_ADDR
941 arc_frame_base_address (struct frame_info *this_frame, void **prologue_cache)
942 {
943 return (CORE_ADDR) get_frame_register_unsigned (this_frame, ARC_FP_REGNUM);
944 }
945
946 /* Helper function that returns valid pv_t for an instruction operand:
947 either a register or a constant. */
948
949 static pv_t
950 arc_pv_get_operand (pv_t *regs, const struct arc_instruction &insn, int operand)
951 {
952 if (insn.operands[operand].kind == ARC_OPERAND_KIND_REG)
953 return regs[insn.operands[operand].value];
954 else
955 return pv_constant (arc_insn_get_operand_value (insn, operand));
956 }
957
958 /* Determine whether the given disassembled instruction may be part of a
959 function prologue. If it is, the information in the frame unwind cache will
960 be updated. */
961
962 static bool
963 arc_is_in_prologue (struct gdbarch *gdbarch, const struct arc_instruction &insn,
964 pv_t *regs, struct pv_area *stack)
965 {
966 /* It might be that currently analyzed address doesn't contain an
967 instruction, hence INSN is not valid. It likely means that address points
968 to a data, non-initialized memory, or middle of a 32-bit instruction. In
969 practice this may happen if GDB connects to a remote target that has
970 non-zeroed memory. GDB would read PC value and would try to analyze
971 prologue, but there is no guarantee that memory contents at the address
972 specified in PC is address is a valid instruction. There is not much that
973 that can be done about that. */
974 if (!insn.valid)
975 return false;
976
977 /* Branch/jump or a predicated instruction. */
978 if (insn.is_control_flow || insn.condition_code != ARC_CC_AL)
979 return false;
980
981 /* Store of some register. May or may not update base address register. */
982 if (insn.insn_class == STORE || insn.insn_class == PUSH)
983 {
984 /* There is definetely at least one operand - register/value being
985 stored. */
986 gdb_assert (insn.operands_count > 0);
987
988 /* Store at some constant address. */
989 if (insn.operands_count > 1
990 && insn.operands[1].kind != ARC_OPERAND_KIND_REG)
991 return false;
992
993 /* Writeback modes:
994 Mode Address used Writeback value
995 --------------------------------------------------
996 No reg + offset no
997 A/AW reg + offset reg + offset
998 AB reg reg + offset
999 AS reg + (offset << scaling) no
1000
1001 "PUSH reg" is an alias to "ST.AW reg, [SP, -4]" encoding. However
1002 16-bit PUSH_S is a distinct instruction encoding, where offset and
1003 base register are implied through opcode. */
1004
1005 /* Register with base memory address. */
1006 int base_reg = arc_insn_get_memory_base_reg (insn);
1007
1008 /* Address where to write. arc_insn_get_memory_offset returns scaled
1009 value for ARC_WRITEBACK_AS. */
1010 pv_t addr;
1011 if (insn.writeback_mode == ARC_WRITEBACK_AB)
1012 addr = regs[base_reg];
1013 else
1014 addr = pv_add_constant (regs[base_reg],
1015 arc_insn_get_memory_offset (insn));
1016
1017 if (stack->store_would_trash (addr))
1018 return false;
1019
1020 if (insn.data_size_mode != ARC_SCALING_D)
1021 {
1022 /* Find the value being stored. */
1023 pv_t store_value = arc_pv_get_operand (regs, insn, 0);
1024
1025 /* What is the size of a the stored value? */
1026 CORE_ADDR size;
1027 if (insn.data_size_mode == ARC_SCALING_B)
1028 size = 1;
1029 else if (insn.data_size_mode == ARC_SCALING_H)
1030 size = 2;
1031 else
1032 size = ARC_REGISTER_SIZE;
1033
1034 stack->store (addr, size, store_value);
1035 }
1036 else
1037 {
1038 if (insn.operands[0].kind == ARC_OPERAND_KIND_REG)
1039 {
1040 /* If this is a double store, than write N+1 register as well. */
1041 pv_t store_value1 = regs[insn.operands[0].value];
1042 pv_t store_value2 = regs[insn.operands[0].value + 1];
1043 stack->store (addr, ARC_REGISTER_SIZE, store_value1);
1044 stack->store (pv_add_constant (addr, ARC_REGISTER_SIZE),
1045 ARC_REGISTER_SIZE, store_value2);
1046 }
1047 else
1048 {
1049 pv_t store_value
1050 = pv_constant (arc_insn_get_operand_value (insn, 0));
1051 stack->store (addr, ARC_REGISTER_SIZE * 2, store_value);
1052 }
1053 }
1054
1055 /* Is base register updated? */
1056 if (insn.writeback_mode == ARC_WRITEBACK_A
1057 || insn.writeback_mode == ARC_WRITEBACK_AB)
1058 regs[base_reg] = pv_add_constant (regs[base_reg],
1059 arc_insn_get_memory_offset (insn));
1060
1061 return true;
1062 }
1063 else if (insn.insn_class == MOVE)
1064 {
1065 gdb_assert (insn.operands_count == 2);
1066
1067 /* Destination argument can be "0", so nothing will happen. */
1068 if (insn.operands[0].kind == ARC_OPERAND_KIND_REG)
1069 {
1070 int dst_regnum = insn.operands[0].value;
1071 regs[dst_regnum] = arc_pv_get_operand (regs, insn, 1);
1072 }
1073 return true;
1074 }
1075 else if (insn.insn_class == SUB)
1076 {
1077 gdb_assert (insn.operands_count == 3);
1078
1079 /* SUB 0,b,c. */
1080 if (insn.operands[0].kind != ARC_OPERAND_KIND_REG)
1081 return true;
1082
1083 int dst_regnum = insn.operands[0].value;
1084 regs[dst_regnum] = pv_subtract (arc_pv_get_operand (regs, insn, 1),
1085 arc_pv_get_operand (regs, insn, 2));
1086 return true;
1087 }
1088 else if (insn.insn_class == ENTER)
1089 {
1090 /* ENTER_S is a prologue-in-instruction - it saves all callee-saved
1091 registers according to given arguments thus greatly reducing code
1092 size. Which registers will be actually saved depends on arguments.
1093
1094 ENTER_S {R13-...,FP,BLINK} stores registers in following order:
1095
1096 new SP ->
1097 BLINK
1098 R13
1099 R14
1100 R15
1101 ...
1102 FP
1103 old SP ->
1104
1105 There are up to three arguments for this opcode, as presented by ARC
1106 disassembler:
1107 1) amount of general-purpose registers to be saved - this argument is
1108 always present even when it is 0;
1109 2) FP register number (27) if FP has to be stored, otherwise argument
1110 is not present;
1111 3) BLINK register number (31) if BLINK has to be stored, otherwise
1112 argument is not present. If both FP and BLINK are stored, then FP
1113 is present before BLINK in argument list. */
1114 gdb_assert (insn.operands_count > 0);
1115
1116 int regs_saved = arc_insn_get_operand_value (insn, 0);
1117
1118 bool is_fp_saved;
1119 if (insn.operands_count > 1)
1120 is_fp_saved = (insn.operands[1].value == ARC_FP_REGNUM);
1121 else
1122 is_fp_saved = false;
1123
1124 bool is_blink_saved;
1125 if (insn.operands_count > 1)
1126 is_blink_saved = (insn.operands[insn.operands_count - 1].value
1127 == ARC_BLINK_REGNUM);
1128 else
1129 is_blink_saved = false;
1130
1131 /* Amount of bytes to be allocated to store specified registers. */
1132 CORE_ADDR st_size = ((regs_saved + is_fp_saved + is_blink_saved)
1133 * ARC_REGISTER_SIZE);
1134 pv_t new_sp = pv_add_constant (regs[ARC_SP_REGNUM], -st_size);
1135
1136 /* Assume that if the last register (closest to new SP) can be written,
1137 then it is possible to write all of them. */
1138 if (stack->store_would_trash (new_sp))
1139 return false;
1140
1141 /* Current store address. */
1142 pv_t addr = regs[ARC_SP_REGNUM];
1143
1144 if (is_fp_saved)
1145 {
1146 addr = pv_add_constant (addr, -ARC_REGISTER_SIZE);
1147 stack->store (addr, ARC_REGISTER_SIZE, regs[ARC_FP_REGNUM]);
1148 }
1149
1150 /* Registers are stored in backward order: from GP (R26) to R13. */
1151 for (int i = ARC_R13_REGNUM + regs_saved - 1; i >= ARC_R13_REGNUM; i--)
1152 {
1153 addr = pv_add_constant (addr, -ARC_REGISTER_SIZE);
1154 stack->store (addr, ARC_REGISTER_SIZE, regs[i]);
1155 }
1156
1157 if (is_blink_saved)
1158 {
1159 addr = pv_add_constant (addr, -ARC_REGISTER_SIZE);
1160 stack->store (addr, ARC_REGISTER_SIZE,
1161 regs[ARC_BLINK_REGNUM]);
1162 }
1163
1164 gdb_assert (pv_is_identical (addr, new_sp));
1165
1166 regs[ARC_SP_REGNUM] = new_sp;
1167
1168 if (is_fp_saved)
1169 regs[ARC_FP_REGNUM] = regs[ARC_SP_REGNUM];
1170
1171 return true;
1172 }
1173
1174 /* Some other architectures, like nds32 or arm, try to continue as far as
1175 possible when building a prologue cache (as opposed to when skipping
1176 prologue), so that cache will be as full as possible. However current
1177 code for ARC doesn't recognize some instructions that may modify SP, like
1178 ADD, AND, OR, etc, hence there is no way to guarantee that SP wasn't
1179 clobbered by the skipped instruction. Potential existence of extension
1180 instruction, which may do anything they want makes this even more complex,
1181 so it is just better to halt on a first unrecognized instruction. */
1182
1183 return false;
1184 }
1185
1186 /* Copy of gdb_buffered_insn_length_fprintf from disasm.c. */
1187
1188 static int ATTRIBUTE_PRINTF (2, 3)
1189 arc_fprintf_disasm (void *stream, const char *format, ...)
1190 {
1191 return 0;
1192 }
1193
1194 struct disassemble_info
1195 arc_disassemble_info (struct gdbarch *gdbarch)
1196 {
1197 struct disassemble_info di;
1198 init_disassemble_info (&di, &null_stream, arc_fprintf_disasm);
1199 di.arch = gdbarch_bfd_arch_info (gdbarch)->arch;
1200 di.mach = gdbarch_bfd_arch_info (gdbarch)->mach;
1201 di.endian = gdbarch_byte_order (gdbarch);
1202 di.read_memory_func = [](bfd_vma memaddr, gdb_byte *myaddr,
1203 unsigned int len, struct disassemble_info *info)
1204 {
1205 return target_read_code (memaddr, myaddr, len);
1206 };
1207 return di;
1208 }
1209
1210 /* Analyze the prologue and update the corresponding frame cache for the frame
1211 unwinder for unwinding frames that doesn't have debug info. In such
1212 situation GDB attempts to parse instructions in the prologue to understand
1213 where each register is saved.
1214
1215 If CACHE is not NULL, then it will be filled with information about saved
1216 registers.
1217
1218 There are several variations of prologue which GDB may encouter. "Full"
1219 prologue looks like this:
1220
1221 sub sp,sp,<imm> ; Space for variadic arguments.
1222 push blink ; Store return address.
1223 push r13 ; Store callee saved registers (up to R26/GP).
1224 push r14
1225 push fp ; Store frame pointer.
1226 mov fp,sp ; Update frame pointer.
1227 sub sp,sp,<imm> ; Create space for local vars on the stack.
1228
1229 Depending on compiler options lots of things may change:
1230
1231 1) BLINK is not saved in leaf functions.
1232 2) Frame pointer is not saved and updated if -fomit-frame-pointer is used.
1233 3) 16-bit versions of those instructions may be used.
1234 4) Instead of a sequence of several push'es, compiler may instead prefer to
1235 do one subtract on stack pointer and then store registers using normal
1236 store, that doesn't update SP. Like this:
1237
1238
1239 sub sp,sp,8 ; Create space for calee-saved registers.
1240 st r13,[sp,4] ; Store callee saved registers (up to R26/GP).
1241 st r14,[sp,0]
1242
1243 5) ENTER_S instruction can encode most of prologue sequence in one
1244 instruction (except for those subtracts for variadic arguments and local
1245 variables).
1246 6) GCC may use "millicode" functions from libgcc to store callee-saved
1247 registers with minimal code-size requirements. This function currently
1248 doesn't support this.
1249
1250 ENTRYPOINT is a function entry point where prologue starts.
1251
1252 LIMIT_PC is a maximum possible end address of prologue (meaning address
1253 of first instruction after the prologue). It might also point to the middle
1254 of prologue if execution has been stopped by the breakpoint at this address
1255 - in this case debugger should analyze prologue only up to this address,
1256 because further instructions haven't been executed yet.
1257
1258 Returns address of the first instruction after the prologue. */
1259
1260 static CORE_ADDR
1261 arc_analyze_prologue (struct gdbarch *gdbarch, const CORE_ADDR entrypoint,
1262 const CORE_ADDR limit_pc, struct arc_frame_cache *cache)
1263 {
1264 if (arc_debug)
1265 debug_printf ("arc: analyze_prologue (entrypoint=%s, limit_pc=%s)\n",
1266 paddress (gdbarch, entrypoint),
1267 paddress (gdbarch, limit_pc));
1268
1269 /* Prologue values. Only core registers can be stored. */
1270 pv_t regs[ARC_LAST_CORE_REGNUM + 1];
1271 for (int i = 0; i <= ARC_LAST_CORE_REGNUM; i++)
1272 regs[i] = pv_register (i, 0);
1273 pv_area stack (ARC_SP_REGNUM, gdbarch_addr_bit (gdbarch));
1274
1275 CORE_ADDR current_prologue_end = entrypoint;
1276
1277 /* Look at each instruction in the prologue. */
1278 while (current_prologue_end < limit_pc)
1279 {
1280 struct arc_instruction insn;
1281 struct disassemble_info di = arc_disassemble_info (gdbarch);
1282 arc_insn_decode (current_prologue_end, &di, arc_delayed_print_insn,
1283 &insn);
1284
1285 if (arc_debug >= 2)
1286 arc_insn_dump (insn);
1287
1288 /* If this instruction is in the prologue, fields in the cache will be
1289 updated, and the saved registers mask may be updated. */
1290 if (!arc_is_in_prologue (gdbarch, insn, regs, &stack))
1291 {
1292 /* Found an instruction that is not in the prologue. */
1293 if (arc_debug)
1294 debug_printf ("arc: End of prologue reached at address %s\n",
1295 paddress (gdbarch, insn.address));
1296 break;
1297 }
1298
1299 current_prologue_end = arc_insn_get_linear_next_pc (insn);
1300 }
1301
1302 if (cache != NULL)
1303 {
1304 /* Figure out if it is a frame pointer or just a stack pointer. */
1305 if (pv_is_register (regs[ARC_FP_REGNUM], ARC_SP_REGNUM))
1306 {
1307 cache->frame_base_reg = ARC_FP_REGNUM;
1308 cache->frame_base_offset = -regs[ARC_FP_REGNUM].k;
1309 }
1310 else
1311 {
1312 cache->frame_base_reg = ARC_SP_REGNUM;
1313 cache->frame_base_offset = -regs[ARC_SP_REGNUM].k;
1314 }
1315
1316 /* Assign offset from old SP to all saved registers. */
1317 for (int i = 0; i <= ARC_LAST_CORE_REGNUM; i++)
1318 {
1319 CORE_ADDR offset;
1320 if (stack.find_reg (gdbarch, i, &offset))
1321 cache->saved_regs[i].addr = offset;
1322 }
1323 }
1324
1325 return current_prologue_end;
1326 }
1327
1328 /* Estimated maximum prologue length in bytes. This should include:
1329 1) Store instruction for each callee-saved register (R25 - R13 + 1)
1330 2) Two instructions for FP
1331 3) One for BLINK
1332 4) Three substract instructions for SP (for variadic args, for
1333 callee saved regs and for local vars) and assuming that those SUB use
1334 long-immediate (hence double length).
1335 5) Stores of arguments registers are considered part of prologue too
1336 (R7 - R1 + 1).
1337 This is quite an extreme case, because even with -O0 GCC will collapse first
1338 two SUBs into one and long immediate values are quite unlikely to appear in
1339 this case, but still better to overshoot a bit - prologue analysis will
1340 anyway stop at the first instruction that doesn't fit prologue, so this
1341 limit will be rarely reached. */
1342
1343 const static int MAX_PROLOGUE_LENGTH
1344 = 4 * (ARC_R25_REGNUM - ARC_R13_REGNUM + 1 + 2 + 1 + 6
1345 + ARC_LAST_ARG_REGNUM - ARC_FIRST_ARG_REGNUM + 1);
1346
1347 /* Implement the "skip_prologue" gdbarch method.
1348
1349 Skip the prologue for the function at PC. This is done by checking from
1350 the line information read from the DWARF, if possible; otherwise, we scan
1351 the function prologue to find its end. */
1352
1353 static CORE_ADDR
1354 arc_skip_prologue (struct gdbarch *gdbarch, CORE_ADDR pc)
1355 {
1356 if (arc_debug)
1357 debug_printf ("arc: skip_prologue\n");
1358
1359 CORE_ADDR func_addr;
1360 const char *func_name;
1361
1362 /* See what the symbol table says. */
1363 if (find_pc_partial_function (pc, &func_name, &func_addr, NULL))
1364 {
1365 /* Found a function. */
1366 CORE_ADDR postprologue_pc
1367 = skip_prologue_using_sal (gdbarch, func_addr);
1368
1369 if (postprologue_pc != 0)
1370 return std::max (pc, postprologue_pc);
1371 }
1372
1373 /* No prologue info in symbol table, have to analyze prologue. */
1374
1375 /* Find an upper limit on the function prologue using the debug
1376 information. If there is no debug information about prologue end, then
1377 skip_prologue_using_sal will return 0. */
1378 CORE_ADDR limit_pc = skip_prologue_using_sal (gdbarch, pc);
1379
1380 /* If there is no debug information at all, it is required to give some
1381 semi-arbitrary hard limit on amount of bytes to scan during prologue
1382 analysis. */
1383 if (limit_pc == 0)
1384 limit_pc = pc + MAX_PROLOGUE_LENGTH;
1385
1386 /* Find the address of the first instruction after the prologue by scanning
1387 through it - no other information is needed, so pass NULL as a cache. */
1388 return arc_analyze_prologue (gdbarch, pc, limit_pc, NULL);
1389 }
1390
1391 /* Implement the "print_insn" gdbarch method.
1392
1393 arc_get_disassembler () may return different functions depending on bfd
1394 type, so it is not possible to pass print_insn directly to
1395 set_gdbarch_print_insn (). Instead this wrapper function is used. It also
1396 may be used by other functions to get disassemble_info for address. It is
1397 important to note, that those print_insn from opcodes always print
1398 instruction to the stream specified in the INFO. If this is not desired,
1399 then either `print_insn` function in INFO should be set to some function
1400 that will not print, or `stream` should be different from standard
1401 gdb_stdlog. */
1402
1403 int
1404 arc_delayed_print_insn (bfd_vma addr, struct disassemble_info *info)
1405 {
1406 /* Standard BFD "machine number" field allows libocodes disassembler to
1407 distinguish ARC 600, 700 and v2 cores, however v2 encompasses both ARC EM
1408 and HS, which have some difference between. There are two ways to specify
1409 what is the target core:
1410 1) via the disassemble_info->disassembler_options;
1411 2) otherwise libopcodes will use private (architecture-specific) ELF
1412 header.
1413
1414 Using disassembler_options is preferable, because it comes directly from
1415 GDBserver which scanned an actual ARC core identification info. However,
1416 not all GDBservers report core architecture, so as a fallback GDB still
1417 should support analysis of ELF header. The libopcodes disassembly code
1418 uses the section to find the BFD and the BFD to find the ELF header,
1419 therefore this function should set disassemble_info->section properly.
1420
1421 disassembler_options was already set by non-target specific code with
1422 proper options obtained via gdbarch_disassembler_options ().
1423
1424 This function might be called multiple times in a sequence, reusing same
1425 disassemble_info. */
1426 if ((info->disassembler_options == NULL) && (info->section == NULL))
1427 {
1428 struct obj_section *s = find_pc_section (addr);
1429 if (s != NULL)
1430 info->section = s->the_bfd_section;
1431 }
1432
1433 return default_print_insn (addr, info);
1434 }
1435
1436 /* Baremetal breakpoint instructions.
1437
1438 ARC supports both big- and little-endian. However, instructions for
1439 little-endian processors are encoded in the middle-endian: half-words are
1440 in big-endian, while bytes inside the half-words are in little-endian; data
1441 is represented in the "normal" little-endian. Big-endian processors treat
1442 data and code identically.
1443
1444 Assuming the number 0x01020304, it will be presented this way:
1445
1446 Address : N N+1 N+2 N+3
1447 little-endian : 0x04 0x03 0x02 0x01
1448 big-endian : 0x01 0x02 0x03 0x04
1449 ARC middle-endian : 0x02 0x01 0x04 0x03
1450 */
1451
1452 static const gdb_byte arc_brk_s_be[] = { 0x7f, 0xff };
1453 static const gdb_byte arc_brk_s_le[] = { 0xff, 0x7f };
1454 static const gdb_byte arc_brk_be[] = { 0x25, 0x6f, 0x00, 0x3f };
1455 static const gdb_byte arc_brk_le[] = { 0x6f, 0x25, 0x3f, 0x00 };
1456
1457 /* For ARC ELF, breakpoint uses the 16-bit BRK_S instruction, which is 0x7fff
1458 (little endian) or 0xff7f (big endian). We used to insert BRK_S even
1459 instead of 32-bit instructions, which works mostly ok, unless breakpoint is
1460 inserted into delay slot instruction. In this case if branch is taken
1461 BLINK value will be set to address of instruction after delay slot, however
1462 if we replaced 32-bit instruction in delay slot with 16-bit long BRK_S,
1463 then BLINK value will have an invalid value - it will point to the address
1464 after the BRK_S (which was there at the moment of branch execution) while
1465 it should point to the address after the 32-bit long instruction. To avoid
1466 such issues this function disassembles instruction at target location and
1467 evaluates it value.
1468
1469 ARC 600 supports only 16-bit BRK_S.
1470
1471 NB: Baremetal GDB uses BRK[_S], while user-space GDB uses TRAP_S. BRK[_S]
1472 is much better because it doesn't commit unlike TRAP_S, so it can be set in
1473 delay slots; however it cannot be used in user-mode, hence usage of TRAP_S
1474 in GDB for user-space. */
1475
1476 /* Implement the "breakpoint_kind_from_pc" gdbarch method. */
1477
1478 static int
1479 arc_breakpoint_kind_from_pc (struct gdbarch *gdbarch, CORE_ADDR *pcptr)
1480 {
1481 size_t length_with_limm = gdb_insn_length (gdbarch, *pcptr);
1482
1483 /* Replace 16-bit instruction with BRK_S, replace 32-bit instructions with
1484 BRK. LIMM is part of instruction length, so it can be either 4 or 8
1485 bytes for 32-bit instructions. */
1486 if ((length_with_limm == 4 || length_with_limm == 8)
1487 && !arc_mach_is_arc600 (gdbarch))
1488 return sizeof (arc_brk_le);
1489 else
1490 return sizeof (arc_brk_s_le);
1491 }
1492
1493 /* Implement the "sw_breakpoint_from_kind" gdbarch method. */
1494
1495 static const gdb_byte *
1496 arc_sw_breakpoint_from_kind (struct gdbarch *gdbarch, int kind, int *size)
1497 {
1498 *size = kind;
1499
1500 if (kind == sizeof (arc_brk_le))
1501 {
1502 return ((gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG)
1503 ? arc_brk_be
1504 : arc_brk_le);
1505 }
1506 else
1507 {
1508 return ((gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG)
1509 ? arc_brk_s_be
1510 : arc_brk_s_le);
1511 }
1512 }
1513
1514 /* Implement the "unwind_pc" gdbarch method. */
1515
1516 static CORE_ADDR
1517 arc_unwind_pc (struct gdbarch *gdbarch, struct frame_info *next_frame)
1518 {
1519 int pc_regnum = gdbarch_pc_regnum (gdbarch);
1520 CORE_ADDR pc = frame_unwind_register_unsigned (next_frame, pc_regnum);
1521
1522 if (arc_debug)
1523 debug_printf ("arc: unwind PC: %s\n", paddress (gdbarch, pc));
1524
1525 return pc;
1526 }
1527
1528 /* Implement the "unwind_sp" gdbarch method. */
1529
1530 static CORE_ADDR
1531 arc_unwind_sp (struct gdbarch *gdbarch, struct frame_info *next_frame)
1532 {
1533 int sp_regnum = gdbarch_sp_regnum (gdbarch);
1534 CORE_ADDR sp = frame_unwind_register_unsigned (next_frame, sp_regnum);
1535
1536 if (arc_debug)
1537 debug_printf ("arc: unwind SP: %s\n", paddress (gdbarch, sp));
1538
1539 return sp;
1540 }
1541
1542 /* Implement the "frame_align" gdbarch method. */
1543
1544 static CORE_ADDR
1545 arc_frame_align (struct gdbarch *gdbarch, CORE_ADDR sp)
1546 {
1547 return align_down (sp, 4);
1548 }
1549
1550 /* Dump the frame info. Used for internal debugging only. */
1551
1552 static void
1553 arc_print_frame_cache (struct gdbarch *gdbarch, const char *message,
1554 struct arc_frame_cache *cache, int addresses_known)
1555 {
1556 debug_printf ("arc: frame_info %s\n", message);
1557 debug_printf ("arc: prev_sp = %s\n", paddress (gdbarch, cache->prev_sp));
1558 debug_printf ("arc: frame_base_reg = %i\n", cache->frame_base_reg);
1559 debug_printf ("arc: frame_base_offset = %s\n",
1560 plongest (cache->frame_base_offset));
1561
1562 for (int i = 0; i <= ARC_BLINK_REGNUM; i++)
1563 {
1564 if (trad_frame_addr_p (cache->saved_regs, i))
1565 debug_printf ("arc: saved register %s at %s %s\n",
1566 gdbarch_register_name (gdbarch, i),
1567 (addresses_known) ? "address" : "offset",
1568 paddress (gdbarch, cache->saved_regs[i].addr));
1569 }
1570 }
1571
1572 /* Frame unwinder for normal frames. */
1573
1574 static struct arc_frame_cache *
1575 arc_make_frame_cache (struct frame_info *this_frame)
1576 {
1577 if (arc_debug)
1578 debug_printf ("arc: frame_cache\n");
1579
1580 struct gdbarch *gdbarch = get_frame_arch (this_frame);
1581
1582 CORE_ADDR block_addr = get_frame_address_in_block (this_frame);
1583 CORE_ADDR entrypoint, prologue_end;
1584 if (find_pc_partial_function (block_addr, NULL, &entrypoint, &prologue_end))
1585 {
1586 struct symtab_and_line sal = find_pc_line (entrypoint, 0);
1587 CORE_ADDR prev_pc = get_frame_pc (this_frame);
1588 if (sal.line == 0)
1589 /* No line info so use current PC. */
1590 prologue_end = prev_pc;
1591 else if (sal.end < prologue_end)
1592 /* The next line begins after the function end. */
1593 prologue_end = sal.end;
1594
1595 prologue_end = std::min (prologue_end, prev_pc);
1596 }
1597 else
1598 {
1599 /* If find_pc_partial_function returned nothing then there is no symbol
1600 information at all for this PC. Currently it is assumed in this case
1601 that current PC is entrypoint to function and try to construct the
1602 frame from that. This is, probably, suboptimal, for example ARM
1603 assumes in this case that program is inside the normal frame (with
1604 frame pointer). ARC, perhaps, should try to do the same. */
1605 entrypoint = get_frame_register_unsigned (this_frame,
1606 gdbarch_pc_regnum (gdbarch));
1607 prologue_end = entrypoint + MAX_PROLOGUE_LENGTH;
1608 }
1609
1610 /* Allocate new frame cache instance and space for saved register info.
1611 FRAME_OBSTACK_ZALLOC will initialize fields to zeroes. */
1612 struct arc_frame_cache *cache
1613 = FRAME_OBSTACK_ZALLOC (struct arc_frame_cache);
1614 cache->saved_regs = trad_frame_alloc_saved_regs (this_frame);
1615
1616 arc_analyze_prologue (gdbarch, entrypoint, prologue_end, cache);
1617
1618 if (arc_debug)
1619 arc_print_frame_cache (gdbarch, "after prologue", cache, false);
1620
1621 CORE_ADDR unwound_fb = get_frame_register_unsigned (this_frame,
1622 cache->frame_base_reg);
1623 if (unwound_fb == 0)
1624 return cache;
1625 cache->prev_sp = unwound_fb + cache->frame_base_offset;
1626
1627 for (int i = 0; i <= ARC_LAST_CORE_REGNUM; i++)
1628 {
1629 if (trad_frame_addr_p (cache->saved_regs, i))
1630 cache->saved_regs[i].addr += cache->prev_sp;
1631 }
1632
1633 if (arc_debug)
1634 arc_print_frame_cache (gdbarch, "after previous SP found", cache, true);
1635
1636 return cache;
1637 }
1638
1639 /* Implement the "this_id" frame_unwind method. */
1640
1641 static void
1642 arc_frame_this_id (struct frame_info *this_frame, void **this_cache,
1643 struct frame_id *this_id)
1644 {
1645 if (arc_debug)
1646 debug_printf ("arc: frame_this_id\n");
1647
1648 struct gdbarch *gdbarch = get_frame_arch (this_frame);
1649
1650 if (*this_cache == NULL)
1651 *this_cache = arc_make_frame_cache (this_frame);
1652 struct arc_frame_cache *cache = (struct arc_frame_cache *) (*this_cache);
1653
1654 CORE_ADDR stack_addr = cache->prev_sp;
1655
1656 /* There are 4 possible situation which decide how frame_id->code_addr is
1657 evaluated:
1658
1659 1) Function is compiled with option -g. Then frame_id will be created
1660 in dwarf_* function and not in this function. NB: even if target
1661 binary is compiled with -g, some std functions like __start and _init
1662 are not, so they still will follow one of the following choices.
1663
1664 2) Function is compiled without -g and binary hasn't been stripped in
1665 any way. In this case GDB still has enough information to evaluate
1666 frame code_addr properly. This case is covered by call to
1667 get_frame_func ().
1668
1669 3) Binary has been striped with option -g (strip debug symbols). In
1670 this case there is still enough symbols for get_frame_func () to work
1671 properly, so this case is also covered by it.
1672
1673 4) Binary has been striped with option -s (strip all symbols). In this
1674 case GDB cannot get function start address properly, so we return current
1675 PC value instead.
1676 */
1677 CORE_ADDR code_addr = get_frame_func (this_frame);
1678 if (code_addr == 0)
1679 code_addr = get_frame_register_unsigned (this_frame,
1680 gdbarch_pc_regnum (gdbarch));
1681
1682 *this_id = frame_id_build (stack_addr, code_addr);
1683 }
1684
1685 /* Implement the "prev_register" frame_unwind method. */
1686
1687 static struct value *
1688 arc_frame_prev_register (struct frame_info *this_frame,
1689 void **this_cache, int regnum)
1690 {
1691 if (*this_cache == NULL)
1692 *this_cache = arc_make_frame_cache (this_frame);
1693 struct arc_frame_cache *cache = (struct arc_frame_cache *) (*this_cache);
1694
1695 struct gdbarch *gdbarch = get_frame_arch (this_frame);
1696
1697 /* If we are asked to unwind the PC, then we need to return BLINK instead:
1698 the saved value of PC points into this frame's function's prologue, not
1699 the next frame's function's resume location. */
1700 if (regnum == gdbarch_pc_regnum (gdbarch))
1701 regnum = ARC_BLINK_REGNUM;
1702
1703 /* SP is a special case - we should return prev_sp, because
1704 trad_frame_get_prev_register will return _current_ SP value.
1705 Alternatively we could have stored cache->prev_sp in the cache->saved
1706 regs, but here we follow the lead of AArch64, ARM and Xtensa and will
1707 leave that logic in this function, instead of prologue analyzers. That I
1708 think is a bit more clear as `saved_regs` should contain saved regs, not
1709 computable.
1710
1711 Because value has been computed, "got_constant" should be used, so that
1712 returned value will be a "not_lval" - immutable. */
1713
1714 if (regnum == gdbarch_sp_regnum (gdbarch))
1715 return frame_unwind_got_constant (this_frame, regnum, cache->prev_sp);
1716
1717 return trad_frame_get_prev_register (this_frame, cache->saved_regs, regnum);
1718 }
1719
1720 /* Implement the "init_reg" dwarf2_frame method. */
1721
1722 static void
1723 arc_dwarf2_frame_init_reg (struct gdbarch *gdbarch, int regnum,
1724 struct dwarf2_frame_state_reg *reg,
1725 struct frame_info *info)
1726 {
1727 if (regnum == gdbarch_pc_regnum (gdbarch))
1728 /* The return address column. */
1729 reg->how = DWARF2_FRAME_REG_RA;
1730 else if (regnum == gdbarch_sp_regnum (gdbarch))
1731 /* The call frame address. */
1732 reg->how = DWARF2_FRAME_REG_CFA;
1733 }
1734
1735 /* Structure defining the ARC ordinary frame unwind functions. Since we are
1736 the fallback unwinder, we use the default frame sniffer, which always
1737 accepts the frame. */
1738
1739 static const struct frame_unwind arc_frame_unwind = {
1740 NORMAL_FRAME,
1741 default_frame_unwind_stop_reason,
1742 arc_frame_this_id,
1743 arc_frame_prev_register,
1744 NULL,
1745 default_frame_sniffer,
1746 NULL,
1747 NULL
1748 };
1749
1750
1751 static const struct frame_base arc_normal_base = {
1752 &arc_frame_unwind,
1753 arc_frame_base_address,
1754 arc_frame_base_address,
1755 arc_frame_base_address
1756 };
1757
1758 /* Initialize target description for the ARC.
1759
1760 Returns TRUE if input tdesc was valid and in this case it will assign TDESC
1761 and TDESC_DATA output parameters. */
1762
1763 static int
1764 arc_tdesc_init (struct gdbarch_info info, const struct target_desc **tdesc,
1765 struct tdesc_arch_data **tdesc_data)
1766 {
1767 if (arc_debug)
1768 debug_printf ("arc: Target description initialization.\n");
1769
1770 const struct target_desc *tdesc_loc = info.target_desc;
1771
1772 /* Depending on whether this is ARCompact or ARCv2 we will assign
1773 different default registers sets (which will differ in exactly two core
1774 registers). GDB will also refuse to accept register feature from invalid
1775 ISA - v2 features can be used only with v2 ARChitecture. We read
1776 bfd_arch_info, which looks like to be a safe bet here, as it looks like it
1777 is always initialized even when we don't pass any elf file to GDB at all
1778 (it uses default arch in this case). Also GDB will call this function
1779 multiple times, and if XML target description file contains architecture
1780 specifications, then GDB will set this architecture to info.bfd_arch_info,
1781 overriding value from ELF file if they are different. That means that,
1782 where matters, this value is always our best guess on what CPU we are
1783 debugging. It has been noted that architecture specified in tdesc file
1784 has higher precedence over ELF and even "set architecture" - that is,
1785 using "set architecture" command will have no effect when tdesc has "arch"
1786 tag. */
1787 /* Cannot use arc_mach_is_arcv2 (), because gdbarch is not created yet. */
1788 const int is_arcv2 = (info.bfd_arch_info->mach == bfd_mach_arc_arcv2);
1789 int is_reduced_rf;
1790 const char *const *core_regs;
1791 const char *core_feature_name;
1792
1793 /* If target doesn't provide a description - use default one. */
1794 if (!tdesc_has_registers (tdesc_loc))
1795 {
1796 if (is_arcv2)
1797 {
1798 tdesc_loc = tdesc_arc_v2;
1799 if (arc_debug)
1800 debug_printf ("arc: Using default register set for ARC v2.\n");
1801 }
1802 else
1803 {
1804 tdesc_loc = tdesc_arc_arcompact;
1805 if (arc_debug)
1806 debug_printf ("arc: Using default register set for ARCompact.\n");
1807 }
1808 }
1809 else
1810 {
1811 if (arc_debug)
1812 debug_printf ("arc: Using provided register set.\n");
1813 }
1814 gdb_assert (tdesc_loc != NULL);
1815
1816 /* Now we can search for base registers. Core registers can be either full
1817 or reduced. Summary:
1818
1819 - core.v2 + aux-minimal
1820 - core-reduced.v2 + aux-minimal
1821 - core.arcompact + aux-minimal
1822
1823 NB: It is entirely feasible to have ARCompact with reduced core regs, but
1824 we ignore that because GCC doesn't support that and at the same time
1825 ARCompact is considered obsolete, so there is not much reason to support
1826 that. */
1827 const struct tdesc_feature *feature
1828 = tdesc_find_feature (tdesc_loc, core_v2_feature_name);
1829 if (feature != NULL)
1830 {
1831 /* Confirm that register and architecture match, to prevent accidents in
1832 some situations. This code will trigger an error if:
1833
1834 1. XML tdesc doesn't specify arch explicitly, registers are for arch
1835 X, but ELF specifies arch Y.
1836
1837 2. XML tdesc specifies arch X, but contains registers for arch Y.
1838
1839 It will not protect from case where XML or ELF specify arch X,
1840 registers are for the same arch X, but the real target is arch Y. To
1841 detect this case we need to check IDENTITY register. */
1842 if (!is_arcv2)
1843 {
1844 arc_print (_("Error: ARC v2 target description supplied for "
1845 "non-ARCv2 target.\n"));
1846 return FALSE;
1847 }
1848
1849 is_reduced_rf = FALSE;
1850 core_feature_name = core_v2_feature_name;
1851 core_regs = core_v2_register_names;
1852 }
1853 else
1854 {
1855 feature = tdesc_find_feature (tdesc_loc, core_reduced_v2_feature_name);
1856 if (feature != NULL)
1857 {
1858 if (!is_arcv2)
1859 {
1860 arc_print (_("Error: ARC v2 target description supplied for "
1861 "non-ARCv2 target.\n"));
1862 return FALSE;
1863 }
1864
1865 is_reduced_rf = TRUE;
1866 core_feature_name = core_reduced_v2_feature_name;
1867 core_regs = core_v2_register_names;
1868 }
1869 else
1870 {
1871 feature = tdesc_find_feature (tdesc_loc,
1872 core_arcompact_feature_name);
1873 if (feature != NULL)
1874 {
1875 if (is_arcv2)
1876 {
1877 arc_print (_("Error: ARCompact target description supplied "
1878 "for non-ARCompact target.\n"));
1879 return FALSE;
1880 }
1881
1882 is_reduced_rf = FALSE;
1883 core_feature_name = core_arcompact_feature_name;
1884 core_regs = core_arcompact_register_names;
1885 }
1886 else
1887 {
1888 arc_print (_("Error: Couldn't find core register feature in "
1889 "supplied target description."));
1890 return FALSE;
1891 }
1892 }
1893 }
1894
1895 struct tdesc_arch_data *tdesc_data_loc = tdesc_data_alloc ();
1896
1897 gdb_assert (feature != NULL);
1898 int valid_p = 1;
1899
1900 for (int i = 0; i <= ARC_LAST_CORE_REGNUM; i++)
1901 {
1902 /* If rf16, then skip extra registers. */
1903 if (is_reduced_rf && ((i >= ARC_R4_REGNUM && i <= ARC_R9_REGNUM)
1904 || (i >= ARC_R16_REGNUM && i <= ARC_R25_REGNUM)))
1905 continue;
1906
1907 valid_p = tdesc_numbered_register (feature, tdesc_data_loc, i,
1908 core_regs[i]);
1909
1910 /* - Ignore errors in extension registers - they are optional.
1911 - Ignore missing ILINK because it doesn't make sense for Linux.
1912 - Ignore missing ILINK2 when architecture is ARCompact, because it
1913 doesn't make sense for Linux targets.
1914
1915 In theory those optional registers should be in separate features, but
1916 that would create numerous but tiny features, which looks like an
1917 overengineering of a rather simple task. */
1918 if (!valid_p && (i <= ARC_SP_REGNUM || i == ARC_BLINK_REGNUM
1919 || i == ARC_LP_COUNT_REGNUM || i == ARC_PCL_REGNUM
1920 || (i == ARC_R30_REGNUM && is_arcv2)))
1921 {
1922 arc_print (_("Error: Cannot find required register `%s' in "
1923 "feature `%s'.\n"), core_regs[i], core_feature_name);
1924 tdesc_data_cleanup (tdesc_data_loc);
1925 return FALSE;
1926 }
1927 }
1928
1929 /* Mandatory AUX registeres are intentionally few and are common between
1930 ARCompact and ARC v2, so same code can be used for both. */
1931 feature = tdesc_find_feature (tdesc_loc, aux_minimal_feature_name);
1932 if (feature == NULL)
1933 {
1934 arc_print (_("Error: Cannot find required feature `%s' in supplied "
1935 "target description.\n"), aux_minimal_feature_name);
1936 tdesc_data_cleanup (tdesc_data_loc);
1937 return FALSE;
1938 }
1939
1940 for (int i = ARC_FIRST_AUX_REGNUM; i <= ARC_LAST_AUX_REGNUM; i++)
1941 {
1942 const char *name = aux_minimal_register_names[i - ARC_FIRST_AUX_REGNUM];
1943 valid_p = tdesc_numbered_register (feature, tdesc_data_loc, i, name);
1944 if (!valid_p)
1945 {
1946 arc_print (_("Error: Cannot find required register `%s' "
1947 "in feature `%s'.\n"),
1948 name, tdesc_feature_name (feature));
1949 tdesc_data_cleanup (tdesc_data_loc);
1950 return FALSE;
1951 }
1952 }
1953
1954 *tdesc = tdesc_loc;
1955 *tdesc_data = tdesc_data_loc;
1956
1957 return TRUE;
1958 }
1959
1960 /* Implement the type_align gdbarch function. */
1961
1962 static ULONGEST
1963 arc_type_align (struct gdbarch *gdbarch, struct type *type)
1964 {
1965 type = check_typedef (type);
1966 return std::min<ULONGEST> (4, TYPE_LENGTH (type));
1967 }
1968
1969 /* Implement the "init" gdbarch method. */
1970
1971 static struct gdbarch *
1972 arc_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
1973 {
1974 const struct target_desc *tdesc;
1975 struct tdesc_arch_data *tdesc_data;
1976
1977 if (arc_debug)
1978 debug_printf ("arc: Architecture initialization.\n");
1979
1980 if (!arc_tdesc_init (info, &tdesc, &tdesc_data))
1981 return NULL;
1982
1983 /* Allocate the ARC-private target-dependent information structure, and the
1984 GDB target-independent information structure. */
1985 struct gdbarch_tdep *tdep = XCNEW (struct gdbarch_tdep);
1986 tdep->jb_pc = -1; /* No longjmp support by default. */
1987 struct gdbarch *gdbarch = gdbarch_alloc (&info, tdep);
1988
1989 /* Data types. */
1990 set_gdbarch_short_bit (gdbarch, 16);
1991 set_gdbarch_int_bit (gdbarch, 32);
1992 set_gdbarch_long_bit (gdbarch, 32);
1993 set_gdbarch_long_long_bit (gdbarch, 64);
1994 set_gdbarch_type_align (gdbarch, arc_type_align);
1995 set_gdbarch_float_bit (gdbarch, 32);
1996 set_gdbarch_float_format (gdbarch, floatformats_ieee_single);
1997 set_gdbarch_double_bit (gdbarch, 64);
1998 set_gdbarch_double_format (gdbarch, floatformats_ieee_double);
1999 set_gdbarch_ptr_bit (gdbarch, 32);
2000 set_gdbarch_addr_bit (gdbarch, 32);
2001 set_gdbarch_char_signed (gdbarch, 0);
2002
2003 set_gdbarch_write_pc (gdbarch, arc_write_pc);
2004
2005 set_gdbarch_virtual_frame_pointer (gdbarch, arc_virtual_frame_pointer);
2006
2007 /* tdesc_use_registers expects gdbarch_num_regs to return number of registers
2008 parsed by gdbarch_init, and then it will add all of the remaining
2009 registers and will increase number of registers. */
2010 set_gdbarch_num_regs (gdbarch, ARC_LAST_REGNUM + 1);
2011 set_gdbarch_num_pseudo_regs (gdbarch, 0);
2012 set_gdbarch_sp_regnum (gdbarch, ARC_SP_REGNUM);
2013 set_gdbarch_pc_regnum (gdbarch, ARC_PC_REGNUM);
2014 set_gdbarch_ps_regnum (gdbarch, ARC_STATUS32_REGNUM);
2015 set_gdbarch_fp0_regnum (gdbarch, -1); /* No FPU registers. */
2016
2017 set_gdbarch_dummy_id (gdbarch, arc_dummy_id);
2018 set_gdbarch_push_dummy_call (gdbarch, arc_push_dummy_call);
2019 set_gdbarch_push_dummy_code (gdbarch, arc_push_dummy_code);
2020
2021 set_gdbarch_cannot_fetch_register (gdbarch, arc_cannot_fetch_register);
2022 set_gdbarch_cannot_store_register (gdbarch, arc_cannot_store_register);
2023
2024 set_gdbarch_believe_pcc_promotion (gdbarch, 1);
2025
2026 set_gdbarch_return_value (gdbarch, arc_return_value);
2027
2028 set_gdbarch_skip_prologue (gdbarch, arc_skip_prologue);
2029 set_gdbarch_inner_than (gdbarch, core_addr_lessthan);
2030
2031 set_gdbarch_breakpoint_kind_from_pc (gdbarch, arc_breakpoint_kind_from_pc);
2032 set_gdbarch_sw_breakpoint_from_kind (gdbarch, arc_sw_breakpoint_from_kind);
2033
2034 /* On ARC 600 BRK_S instruction advances PC, unlike other ARC cores. */
2035 if (!arc_mach_is_arc600 (gdbarch))
2036 set_gdbarch_decr_pc_after_break (gdbarch, 0);
2037 else
2038 set_gdbarch_decr_pc_after_break (gdbarch, 2);
2039
2040 set_gdbarch_unwind_pc (gdbarch, arc_unwind_pc);
2041 set_gdbarch_unwind_sp (gdbarch, arc_unwind_sp);
2042
2043 set_gdbarch_frame_align (gdbarch, arc_frame_align);
2044
2045 set_gdbarch_print_insn (gdbarch, arc_delayed_print_insn);
2046
2047 set_gdbarch_cannot_step_breakpoint (gdbarch, 1);
2048
2049 /* "nonsteppable" watchpoint means that watchpoint triggers before
2050 instruction is committed, therefore it is required to remove watchpoint
2051 to step though instruction that triggers it. ARC watchpoints trigger
2052 only after instruction is committed, thus there is no need to remove
2053 them. In fact on ARC watchpoint for memory writes may trigger with more
2054 significant delay, like one or two instructions, depending on type of
2055 memory where write is performed (CCM or external) and next instruction
2056 after the memory write. */
2057 set_gdbarch_have_nonsteppable_watchpoint (gdbarch, 0);
2058
2059 /* This doesn't include possible long-immediate value. */
2060 set_gdbarch_max_insn_length (gdbarch, 4);
2061
2062 /* Frame unwinders and sniffers. */
2063 dwarf2_frame_set_init_reg (gdbarch, arc_dwarf2_frame_init_reg);
2064 dwarf2_append_unwinders (gdbarch);
2065 frame_unwind_append_unwinder (gdbarch, &arc_frame_unwind);
2066 frame_base_set_default (gdbarch, &arc_normal_base);
2067
2068 /* Setup stuff specific to a particular environment (baremetal or Linux).
2069 It can override functions set earlier. */
2070 gdbarch_init_osabi (info, gdbarch);
2071
2072 if (tdep->jb_pc >= 0)
2073 set_gdbarch_get_longjmp_target (gdbarch, arc_get_longjmp_target);
2074
2075 /* Disassembler options. Enforce CPU if it was specified in XML target
2076 description, otherwise use default method of determining CPU (ELF private
2077 header). */
2078 if (info.target_desc != NULL)
2079 {
2080 const struct bfd_arch_info *tdesc_arch
2081 = tdesc_architecture (info.target_desc);
2082 if (tdesc_arch != NULL)
2083 {
2084 xfree (arc_disassembler_options);
2085 /* FIXME: It is not really good to change disassembler options
2086 behind the scene, because that might override options
2087 specified by the user. However as of now ARC doesn't support
2088 `set disassembler-options' hence this code is the only place
2089 where options are changed. It also changes options for all
2090 existing gdbarches, which also can be problematic, if
2091 arc_gdbarch_init will start reusing existing gdbarch
2092 instances. */
2093 /* Target description specifies a BFD architecture, which is
2094 different from ARC cpu, as accepted by disassembler (and most
2095 other ARC tools), because cpu values are much more fine grained -
2096 there can be multiple cpu values per single BFD architecture. As
2097 a result this code should translate architecture to some cpu
2098 value. Since there is no info on exact cpu configuration, it is
2099 best to use the most feature-rich CPU, so that disassembler will
2100 recognize all instructions available to the specified
2101 architecture. */
2102 switch (tdesc_arch->mach)
2103 {
2104 case bfd_mach_arc_arc601:
2105 arc_disassembler_options = xstrdup ("cpu=arc601");
2106 break;
2107 case bfd_mach_arc_arc600:
2108 arc_disassembler_options = xstrdup ("cpu=arc600");
2109 break;
2110 case bfd_mach_arc_arc700:
2111 arc_disassembler_options = xstrdup ("cpu=arc700");
2112 break;
2113 case bfd_mach_arc_arcv2:
2114 /* Machine arcv2 has three arches: ARCv2, EM and HS; where ARCv2
2115 is treated as EM. */
2116 if (arc_arch_is_hs (tdesc_arch))
2117 arc_disassembler_options = xstrdup ("cpu=hs38_linux");
2118 else
2119 arc_disassembler_options = xstrdup ("cpu=em4_fpuda");
2120 break;
2121 default:
2122 arc_disassembler_options = NULL;
2123 break;
2124 }
2125 set_gdbarch_disassembler_options (gdbarch,
2126 &arc_disassembler_options);
2127 }
2128 }
2129
2130 tdesc_use_registers (gdbarch, tdesc, tdesc_data);
2131
2132 return gdbarch;
2133 }
2134
2135 /* Implement the "dump_tdep" gdbarch method. */
2136
2137 static void
2138 arc_dump_tdep (struct gdbarch *gdbarch, struct ui_file *file)
2139 {
2140 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2141
2142 fprintf_unfiltered (file, "arc_dump_tdep: jb_pc = %i\n", tdep->jb_pc);
2143 }
2144
2145 /* Wrapper for "maintenance print arc" list of commands. */
2146
2147 static void
2148 maintenance_print_arc_command (const char *args, int from_tty)
2149 {
2150 cmd_show_list (maintenance_print_arc_list, from_tty, "");
2151 }
2152
2153 /* This command accepts single argument - address of instruction to
2154 disassemble. */
2155
2156 static void
2157 dump_arc_instruction_command (const char *args, int from_tty)
2158 {
2159 struct value *val;
2160 if (args != NULL && strlen (args) > 0)
2161 val = evaluate_expression (parse_expression (args).get ());
2162 else
2163 val = access_value_history (0);
2164 record_latest_value (val);
2165
2166 CORE_ADDR address = value_as_address (val);
2167 struct arc_instruction insn;
2168 struct disassemble_info di = arc_disassemble_info (target_gdbarch ());
2169 arc_insn_decode (address, &di, arc_delayed_print_insn, &insn);
2170 arc_insn_dump (insn);
2171 }
2172
2173 void
2174 _initialize_arc_tdep (void)
2175 {
2176 gdbarch_register (bfd_arch_arc, arc_gdbarch_init, arc_dump_tdep);
2177
2178 initialize_tdesc_arc_v2 ();
2179 initialize_tdesc_arc_arcompact ();
2180
2181 /* Register ARC-specific commands with gdb. */
2182
2183 /* Add root prefix command for "maintenance print arc" commands. */
2184 add_prefix_cmd ("arc", class_maintenance, maintenance_print_arc_command,
2185 _("ARC-specific maintenance commands for printing GDB "
2186 "internal state."),
2187 &maintenance_print_arc_list, "maintenance print arc ", 0,
2188 &maintenanceprintlist);
2189
2190 add_cmd ("arc-instruction", class_maintenance,
2191 dump_arc_instruction_command,
2192 _("Dump arc_instruction structure for specified address."),
2193 &maintenance_print_arc_list);
2194
2195 /* Debug internals for ARC GDB. */
2196 add_setshow_zinteger_cmd ("arc", class_maintenance,
2197 &arc_debug,
2198 _("Set ARC specific debugging."),
2199 _("Show ARC specific debugging."),
2200 _("Non-zero enables ARC specific debugging."),
2201 NULL, NULL, &setdebuglist, &showdebuglist);
2202 }
This page took 0.091412 seconds and 4 git commands to generate.