missed 2 in 2002. oops.
[deliverable/binutils-gdb.git] / gdb / arc-tdep.c
1 /* ARC target-dependent stuff.
2 Copyright 1995, 1996, 1999, 2000, 2001 Free Software Foundation, Inc.
3
4 This file is part of GDB.
5
6 This program is free software; you can redistribute it and/or modify
7 it under the terms of the GNU General Public License as published by
8 the Free Software Foundation; either version 2 of the License, or
9 (at your option) any later version.
10
11 This program is distributed in the hope that it will be useful,
12 but WITHOUT ANY WARRANTY; without even the implied warranty of
13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 GNU General Public License for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with this program; if not, write to the Free Software
18 Foundation, Inc., 59 Temple Place - Suite 330,
19 Boston, MA 02111-1307, USA. */
20
21 #include "defs.h"
22 #include "frame.h"
23 #include "inferior.h"
24 #include "gdbcore.h"
25 #include "target.h"
26 #include "floatformat.h"
27 #include "symtab.h"
28 #include "gdbcmd.h"
29 #include "regcache.h"
30
31 /* Local functions */
32
33 static int arc_set_cpu_type (char *str);
34
35 /* Current CPU, set with the "set cpu" command. */
36 static int arc_bfd_mach_type;
37 char *arc_cpu_type;
38 char *tmp_arc_cpu_type;
39
40 /* Table of cpu names. */
41 struct
42 {
43 char *name;
44 int value;
45 }
46 arc_cpu_type_table[] =
47 {
48 { "arc5", bfd_mach_arc_5 },
49 { "arc6", bfd_mach_arc_6 },
50 { "arc7", bfd_mach_arc_7 },
51 { "arc8", bfd_mach_arc_8 },
52 { NULL, 0 }
53 };
54
55 /* Used by simulator. */
56 int display_pipeline_p;
57 int cpu_timer;
58 /* This one must have the same type as used in the emulator.
59 It's currently an enum so this should be ok for now. */
60 int debug_pipeline_p;
61
62 #define ARC_CALL_SAVED_REG(r) ((r) >= 16 && (r) < 24)
63
64 #define OPMASK 0xf8000000
65
66 /* Instruction field accessor macros.
67 See the Programmer's Reference Manual. */
68 #define X_OP(i) (((i) >> 27) & 0x1f)
69 #define X_A(i) (((i) >> 21) & 0x3f)
70 #define X_B(i) (((i) >> 15) & 0x3f)
71 #define X_C(i) (((i) >> 9) & 0x3f)
72 #define X_D(i) ((((i) & 0x1ff) ^ 0x100) - 0x100)
73 #define X_L(i) (((((i) >> 5) & 0x3ffffc) ^ 0x200000) - 0x200000)
74 #define X_N(i) (((i) >> 5) & 3)
75 #define X_Q(i) ((i) & 0x1f)
76
77 /* Return non-zero if X is a short immediate data indicator. */
78 #define SHIMM_P(x) ((x) == 61 || (x) == 63)
79
80 /* Return non-zero if X is a "long" (32 bit) immediate data indicator. */
81 #define LIMM_P(x) ((x) == 62)
82
83 /* Build a simple instruction. */
84 #define BUILD_INSN(op, a, b, c, d) \
85 ((((op) & 31) << 27) \
86 | (((a) & 63) << 21) \
87 | (((b) & 63) << 15) \
88 | (((c) & 63) << 9) \
89 | ((d) & 511))
90 \f
91 /* Codestream stuff. */
92 static void codestream_read (unsigned int *, int);
93 static void codestream_seek (CORE_ADDR);
94 static unsigned int codestream_fill (int);
95
96 #define CODESTREAM_BUFSIZ 16
97 static CORE_ADDR codestream_next_addr;
98 static CORE_ADDR codestream_addr;
99 /* FIXME assumes sizeof (int) == 32? */
100 static unsigned int codestream_buf[CODESTREAM_BUFSIZ];
101 static int codestream_off;
102 static int codestream_cnt;
103
104 #define codestream_tell() \
105 (codestream_addr + codestream_off * sizeof (codestream_buf[0]))
106 #define codestream_peek() \
107 (codestream_cnt == 0 \
108 ? codestream_fill (1) \
109 : codestream_buf[codestream_off])
110 #define codestream_get() \
111 (codestream_cnt-- == 0 \
112 ? codestream_fill (0) \
113 : codestream_buf[codestream_off++])
114
115 static unsigned int
116 codestream_fill (int peek_flag)
117 {
118 codestream_addr = codestream_next_addr;
119 codestream_next_addr += CODESTREAM_BUFSIZ * sizeof (codestream_buf[0]);
120 codestream_off = 0;
121 codestream_cnt = CODESTREAM_BUFSIZ;
122 read_memory (codestream_addr, (char *) codestream_buf,
123 CODESTREAM_BUFSIZ * sizeof (codestream_buf[0]));
124 /* FIXME: check return code? */
125
126
127 /* Handle byte order differences -> convert to host byte ordering. */
128 {
129 int i;
130 for (i = 0; i < CODESTREAM_BUFSIZ; i++)
131 codestream_buf[i] =
132 extract_unsigned_integer (&codestream_buf[i],
133 sizeof (codestream_buf[i]));
134 }
135
136 if (peek_flag)
137 return codestream_peek ();
138 else
139 return codestream_get ();
140 }
141
142 static void
143 codestream_seek (CORE_ADDR place)
144 {
145 codestream_next_addr = place / CODESTREAM_BUFSIZ;
146 codestream_next_addr *= CODESTREAM_BUFSIZ;
147 codestream_cnt = 0;
148 codestream_fill (1);
149 while (codestream_tell () != place)
150 codestream_get ();
151 }
152
153 /* This function is currently unused but leave in for now. */
154
155 static void
156 codestream_read (unsigned int *buf, int count)
157 {
158 unsigned int *p;
159 int i;
160 p = buf;
161 for (i = 0; i < count; i++)
162 *p++ = codestream_get ();
163 }
164 \f
165 /* Set up prologue scanning and return the first insn. */
166
167 static unsigned int
168 setup_prologue_scan (CORE_ADDR pc)
169 {
170 unsigned int insn;
171
172 codestream_seek (pc);
173 insn = codestream_get ();
174
175 return insn;
176 }
177
178 /*
179 * Find & return amount a local space allocated, and advance codestream to
180 * first register push (if any).
181 * If entry sequence doesn't make sense, return -1, and leave
182 * codestream pointer random.
183 */
184
185 static long
186 arc_get_frame_setup (CORE_ADDR pc)
187 {
188 unsigned int insn;
189 /* Size of frame or -1 if unrecognizable prologue. */
190 int frame_size = -1;
191 /* An initial "sub sp,sp,N" may or may not be for a stdarg fn. */
192 int maybe_stdarg_decr = -1;
193
194 insn = setup_prologue_scan (pc);
195
196 /* The authority for what appears here is the home-grown ABI.
197 The most recent version is 1.2. */
198
199 /* First insn may be "sub sp,sp,N" if stdarg fn. */
200 if ((insn & BUILD_INSN (-1, -1, -1, -1, 0))
201 == BUILD_INSN (10, SP_REGNUM, SP_REGNUM, SHIMM_REGNUM, 0))
202 {
203 maybe_stdarg_decr = X_D (insn);
204 insn = codestream_get ();
205 }
206
207 if ((insn & BUILD_INSN (-1, 0, -1, -1, -1)) /* st blink,[sp,4] */
208 == BUILD_INSN (2, 0, SP_REGNUM, BLINK_REGNUM, 4))
209 {
210 insn = codestream_get ();
211 /* Frame may not be necessary, even though blink is saved.
212 At least this is something we recognize. */
213 frame_size = 0;
214 }
215
216 if ((insn & BUILD_INSN (-1, 0, -1, -1, -1)) /* st fp,[sp] */
217 == BUILD_INSN (2, 0, SP_REGNUM, FP_REGNUM, 0))
218 {
219 insn = codestream_get ();
220 if ((insn & BUILD_INSN (-1, -1, -1, -1, 0))
221 != BUILD_INSN (12, FP_REGNUM, SP_REGNUM, SP_REGNUM, 0))
222 return -1;
223
224 /* Check for stack adjustment sub sp,sp,N. */
225 insn = codestream_peek ();
226 if ((insn & BUILD_INSN (-1, -1, -1, 0, 0))
227 == BUILD_INSN (10, SP_REGNUM, SP_REGNUM, 0, 0))
228 {
229 if (LIMM_P (X_C (insn)))
230 frame_size = codestream_get ();
231 else if (SHIMM_P (X_C (insn)))
232 frame_size = X_D (insn);
233 else
234 return -1;
235 if (frame_size < 0)
236 return -1;
237
238 codestream_get ();
239
240 /* This sequence is used to get the address of the return
241 buffer for a function that returns a structure. */
242 insn = codestream_peek ();
243 if ((insn & OPMASK) == 0x60000000)
244 codestream_get ();
245 }
246 /* Frameless fn. */
247 else
248 {
249 frame_size = 0;
250 }
251 }
252
253 /* If we found a "sub sp,sp,N" and nothing else, it may or may not be a
254 stdarg fn. The stdarg decrement is not treated as part of the frame size,
255 so we have a dilemma: what do we return? For now, if we get a
256 "sub sp,sp,N" and nothing else assume this isn't a stdarg fn. One way
257 to fix this completely would be to add a bit to the function descriptor
258 that says the function is a stdarg function. */
259
260 if (frame_size < 0 && maybe_stdarg_decr > 0)
261 return maybe_stdarg_decr;
262 return frame_size;
263 }
264
265 /* Given a pc value, skip it forward past the function prologue by
266 disassembling instructions that appear to be a prologue.
267
268 If FRAMELESS_P is set, we are only testing to see if the function
269 is frameless. If it is a frameless function, return PC unchanged.
270 This allows a quicker answer. */
271
272 CORE_ADDR
273 arc_skip_prologue (CORE_ADDR pc, int frameless_p)
274 {
275 unsigned int insn;
276 int i, frame_size;
277
278 if ((frame_size = arc_get_frame_setup (pc)) < 0)
279 return (pc);
280
281 if (frameless_p)
282 return frame_size == 0 ? pc : codestream_tell ();
283
284 /* Skip over register saves. */
285 for (i = 0; i < 8; i++)
286 {
287 insn = codestream_peek ();
288 if ((insn & BUILD_INSN (-1, 0, -1, 0, 0))
289 != BUILD_INSN (2, 0, SP_REGNUM, 0, 0))
290 break; /* not st insn */
291 if (!ARC_CALL_SAVED_REG (X_C (insn)))
292 break;
293 codestream_get ();
294 }
295
296 return codestream_tell ();
297 }
298
299 /* Is the prologue at PC frameless? */
300
301 int
302 arc_prologue_frameless_p (CORE_ADDR pc)
303 {
304 return (pc == arc_skip_prologue (pc, 1));
305 }
306
307 /* Return the return address for a frame.
308 This is used to implement FRAME_SAVED_PC.
309 This is taken from frameless_look_for_prologue. */
310
311 CORE_ADDR
312 arc_frame_saved_pc (struct frame_info *frame)
313 {
314 CORE_ADDR func_start;
315 unsigned int insn;
316
317 func_start = get_pc_function_start (frame->pc) + FUNCTION_START_OFFSET;
318 if (func_start == 0)
319 {
320 /* Best guess. */
321 return ARC_PC_TO_REAL_ADDRESS (read_memory_integer (FRAME_FP (frame) + 4, 4));
322 }
323
324 /* The authority for what appears here is the home-grown ABI.
325 The most recent version is 1.2. */
326
327 insn = setup_prologue_scan (func_start);
328
329 /* First insn may be "sub sp,sp,N" if stdarg fn. */
330 if ((insn & BUILD_INSN (-1, -1, -1, -1, 0))
331 == BUILD_INSN (10, SP_REGNUM, SP_REGNUM, SHIMM_REGNUM, 0))
332 insn = codestream_get ();
333
334 /* If the next insn is "st blink,[sp,4]" we can get blink from there.
335 Otherwise this is a leaf function and we can use blink. Note that
336 this still allows for the case where a leaf function saves/clobbers/
337 restores blink. */
338
339 if ((insn & BUILD_INSN (-1, 0, -1, -1, -1)) /* st blink,[sp,4] */
340 != BUILD_INSN (2, 0, SP_REGNUM, BLINK_REGNUM, 4))
341 return ARC_PC_TO_REAL_ADDRESS (read_register (BLINK_REGNUM));
342 else
343 return ARC_PC_TO_REAL_ADDRESS (read_memory_integer (FRAME_FP (frame) + 4, 4));
344 }
345
346 /*
347 * Parse the first few instructions of the function to see
348 * what registers were stored.
349 *
350 * The startup sequence can be at the start of the function.
351 * 'st blink,[sp+4], st fp,[sp], mov fp,sp'
352 *
353 * Local space is allocated just below by sub sp,sp,nnn.
354 * Next, the registers used by this function are stored (as offsets from sp).
355 */
356
357 void
358 frame_find_saved_regs (struct frame_info *fip, struct frame_saved_regs *fsrp)
359 {
360 long locals;
361 unsigned int insn;
362 CORE_ADDR dummy_bottom;
363 CORE_ADDR adr;
364 int i, regnum, offset;
365
366 memset (fsrp, 0, sizeof *fsrp);
367
368 /* If frame is the end of a dummy, compute where the beginning would be. */
369 dummy_bottom = fip->frame - 4 - REGISTER_BYTES - CALL_DUMMY_LENGTH;
370
371 /* Check if the PC is in the stack, in a dummy frame. */
372 if (dummy_bottom <= fip->pc && fip->pc <= fip->frame)
373 {
374 /* all regs were saved by push_call_dummy () */
375 adr = fip->frame;
376 for (i = 0; i < NUM_REGS; i++)
377 {
378 adr -= REGISTER_RAW_SIZE (i);
379 fsrp->regs[i] = adr;
380 }
381 return;
382 }
383
384 locals = arc_get_frame_setup (get_pc_function_start (fip->pc));
385
386 if (locals >= 0)
387 {
388 /* Set `adr' to the value of `sp'. */
389 adr = fip->frame - locals;
390 for (i = 0; i < 8; i++)
391 {
392 insn = codestream_get ();
393 if ((insn & BUILD_INSN (-1, 0, -1, 0, 0))
394 != BUILD_INSN (2, 0, SP_REGNUM, 0, 0))
395 break;
396 regnum = X_C (insn);
397 offset = X_D (insn);
398 fsrp->regs[regnum] = adr + offset;
399 }
400 }
401
402 fsrp->regs[PC_REGNUM] = fip->frame + 4;
403 fsrp->regs[FP_REGNUM] = fip->frame;
404 }
405
406 void
407 arc_push_dummy_frame (void)
408 {
409 CORE_ADDR sp = read_register (SP_REGNUM);
410 int regnum;
411 char regbuf[MAX_REGISTER_RAW_SIZE];
412
413 read_register_gen (PC_REGNUM, regbuf);
414 write_memory (sp + 4, regbuf, REGISTER_SIZE);
415 read_register_gen (FP_REGNUM, regbuf);
416 write_memory (sp, regbuf, REGISTER_SIZE);
417 write_register (FP_REGNUM, sp);
418 for (regnum = 0; regnum < NUM_REGS; regnum++)
419 {
420 read_register_gen (regnum, regbuf);
421 sp = push_bytes (sp, regbuf, REGISTER_RAW_SIZE (regnum));
422 }
423 sp += (2 * REGISTER_SIZE);
424 write_register (SP_REGNUM, sp);
425 }
426
427 void
428 arc_pop_frame (void)
429 {
430 struct frame_info *frame = get_current_frame ();
431 CORE_ADDR fp;
432 int regnum;
433 struct frame_saved_regs fsr;
434 char regbuf[MAX_REGISTER_RAW_SIZE];
435
436 fp = FRAME_FP (frame);
437 get_frame_saved_regs (frame, &fsr);
438 for (regnum = 0; regnum < NUM_REGS; regnum++)
439 {
440 CORE_ADDR adr;
441 adr = fsr.regs[regnum];
442 if (adr)
443 {
444 read_memory (adr, regbuf, REGISTER_RAW_SIZE (regnum));
445 write_register_bytes (REGISTER_BYTE (regnum), regbuf,
446 REGISTER_RAW_SIZE (regnum));
447 }
448 }
449 write_register (FP_REGNUM, read_memory_integer (fp, 4));
450 write_register (PC_REGNUM, read_memory_integer (fp + 4, 4));
451 write_register (SP_REGNUM, fp + 8);
452 flush_cached_frames ();
453 }
454 \f
455 /* Simulate single-step. */
456
457 typedef enum
458 {
459 NORMAL4, /* a normal 4 byte insn */
460 NORMAL8, /* a normal 8 byte insn */
461 BRANCH4, /* a 4 byte branch insn, including ones without delay slots */
462 BRANCH8, /* an 8 byte branch insn, including ones with delay slots */
463 }
464 insn_type;
465
466 /* Return the type of INSN and store in TARGET the destination address of a
467 branch if this is one. */
468 /* ??? Need to verify all cases are properly handled. */
469
470 static insn_type
471 get_insn_type (unsigned long insn, CORE_ADDR pc, CORE_ADDR *target)
472 {
473 unsigned long limm;
474
475 switch (insn >> 27)
476 {
477 case 0:
478 case 1:
479 case 2: /* load/store insns */
480 if (LIMM_P (X_A (insn))
481 || LIMM_P (X_B (insn))
482 || LIMM_P (X_C (insn)))
483 return NORMAL8;
484 return NORMAL4;
485 case 4:
486 case 5:
487 case 6: /* branch insns */
488 *target = pc + 4 + X_L (insn);
489 /* ??? It isn't clear that this is always the right answer.
490 The problem occurs when the next insn is an 8 byte insn. If the
491 branch is conditional there's no worry as there shouldn't be an 8
492 byte insn following. The programmer may be cheating if s/he knows
493 the branch will never be taken, but we don't deal with that.
494 Note that the programmer is also allowed to play games by putting
495 an insn with long immediate data in the delay slot and then duplicate
496 the long immediate data at the branch target. Ugh! */
497 if (X_N (insn) == 0)
498 return BRANCH4;
499 return BRANCH8;
500 case 7: /* jump insns */
501 if (LIMM_P (X_B (insn)))
502 {
503 limm = read_memory_integer (pc + 4, 4);
504 *target = ARC_PC_TO_REAL_ADDRESS (limm);
505 return BRANCH8;
506 }
507 if (SHIMM_P (X_B (insn)))
508 *target = ARC_PC_TO_REAL_ADDRESS (X_D (insn));
509 else
510 *target = ARC_PC_TO_REAL_ADDRESS (read_register (X_B (insn)));
511 if (X_Q (insn) == 0 && X_N (insn) == 0)
512 return BRANCH4;
513 return BRANCH8;
514 default: /* arithmetic insns, etc. */
515 if (LIMM_P (X_A (insn))
516 || LIMM_P (X_B (insn))
517 || LIMM_P (X_C (insn)))
518 return NORMAL8;
519 return NORMAL4;
520 }
521 }
522
523 /* single_step() is called just before we want to resume the inferior, if we
524 want to single-step it but there is no hardware or kernel single-step
525 support. We find all the possible targets of the coming instruction and
526 breakpoint them.
527
528 single_step is also called just after the inferior stops. If we had
529 set up a simulated single-step, we undo our damage. */
530
531 void
532 arc_software_single_step (enum target_signal ignore, /* sig but we don't need it */
533 int insert_breakpoints_p)
534 {
535 static CORE_ADDR next_pc, target;
536 static int brktrg_p;
537 typedef char binsn_quantum[BREAKPOINT_MAX];
538 static binsn_quantum break_mem[2];
539
540 if (insert_breakpoints_p)
541 {
542 insn_type type;
543 CORE_ADDR pc;
544 unsigned long insn;
545
546 pc = read_register (PC_REGNUM);
547 insn = read_memory_integer (pc, 4);
548 type = get_insn_type (insn, pc, &target);
549
550 /* Always set a breakpoint for the insn after the branch. */
551 next_pc = pc + ((type == NORMAL8 || type == BRANCH8) ? 8 : 4);
552 target_insert_breakpoint (next_pc, break_mem[0]);
553
554 brktrg_p = 0;
555
556 if ((type == BRANCH4 || type == BRANCH8)
557 /* Watch out for branches to the following location.
558 We just stored a breakpoint there and another call to
559 target_insert_breakpoint will think the real insn is the
560 breakpoint we just stored there. */
561 && target != next_pc)
562 {
563 brktrg_p = 1;
564 target_insert_breakpoint (target, break_mem[1]);
565 }
566
567 }
568 else
569 {
570 /* Remove breakpoints. */
571 target_remove_breakpoint (next_pc, break_mem[0]);
572
573 if (brktrg_p)
574 target_remove_breakpoint (target, break_mem[1]);
575
576 /* Fix the pc. */
577 stop_pc -= DECR_PC_AFTER_BREAK;
578 write_pc (stop_pc);
579 }
580 }
581 \f
582 /* Because of Multi-arch, GET_LONGJMP_TARGET is always defined. So test
583 for a definition of JB_PC. */
584 #ifdef JB_PC
585 /* Figure out where the longjmp will land. Slurp the args out of the stack.
586 We expect the first arg to be a pointer to the jmp_buf structure from which
587 we extract the pc (JB_PC) that we will land at. The pc is copied into PC.
588 This routine returns true on success. */
589
590 int
591 get_longjmp_target (CORE_ADDR *pc)
592 {
593 char buf[TARGET_PTR_BIT / TARGET_CHAR_BIT];
594 CORE_ADDR sp, jb_addr;
595
596 sp = read_register (SP_REGNUM);
597
598 if (target_read_memory (sp + SP_ARG0, /* Offset of first arg on stack */
599 buf,
600 TARGET_PTR_BIT / TARGET_CHAR_BIT))
601 return 0;
602
603 jb_addr = extract_address (buf, TARGET_PTR_BIT / TARGET_CHAR_BIT);
604
605 if (target_read_memory (jb_addr + JB_PC * JB_ELEMENT_SIZE, buf,
606 TARGET_PTR_BIT / TARGET_CHAR_BIT))
607 return 0;
608
609 *pc = extract_address (buf, TARGET_PTR_BIT / TARGET_CHAR_BIT);
610
611 return 1;
612 }
613 #endif /* GET_LONGJMP_TARGET */
614 \f
615 /* Disassemble one instruction. */
616
617 static int
618 arc_print_insn (bfd_vma vma, disassemble_info *info)
619 {
620 static int current_mach;
621 static int current_endian;
622 static disassembler_ftype current_disasm;
623
624 if (current_disasm == NULL
625 || arc_bfd_mach_type != current_mach
626 || TARGET_BYTE_ORDER != current_endian)
627 {
628 current_mach = arc_bfd_mach_type;
629 current_endian = TARGET_BYTE_ORDER;
630 current_disasm = arc_get_disassembler (NULL);
631 }
632
633 return (*current_disasm) (vma, info);
634 }
635 \f
636 /* Command to set cpu type. */
637
638 void
639 arc_set_cpu_type_command (char *args, int from_tty)
640 {
641 int i;
642
643 if (tmp_arc_cpu_type == NULL || *tmp_arc_cpu_type == '\0')
644 {
645 printf_unfiltered ("The known ARC cpu types are as follows:\n");
646 for (i = 0; arc_cpu_type_table[i].name != NULL; ++i)
647 printf_unfiltered ("%s\n", arc_cpu_type_table[i].name);
648
649 /* Restore the value. */
650 tmp_arc_cpu_type = xstrdup (arc_cpu_type);
651
652 return;
653 }
654
655 if (!arc_set_cpu_type (tmp_arc_cpu_type))
656 {
657 error ("Unknown cpu type `%s'.", tmp_arc_cpu_type);
658 /* Restore its value. */
659 tmp_arc_cpu_type = xstrdup (arc_cpu_type);
660 }
661 }
662
663 static void
664 arc_show_cpu_type_command (char *args, int from_tty)
665 {
666 }
667
668 /* Modify the actual cpu type.
669 Result is a boolean indicating success. */
670
671 static int
672 arc_set_cpu_type (char *str)
673 {
674 int i, j;
675
676 if (str == NULL)
677 return 0;
678
679 for (i = 0; arc_cpu_type_table[i].name != NULL; ++i)
680 {
681 if (strcasecmp (str, arc_cpu_type_table[i].name) == 0)
682 {
683 arc_cpu_type = str;
684 arc_bfd_mach_type = arc_cpu_type_table[i].value;
685 return 1;
686 }
687 }
688
689 return 0;
690 }
691 \f
692 void
693 _initialize_arc_tdep (void)
694 {
695 struct cmd_list_element *c;
696
697 c = add_set_cmd ("cpu", class_support, var_string_noescape,
698 (char *) &tmp_arc_cpu_type,
699 "Set the type of ARC cpu in use.\n\
700 This command has two purposes. In a multi-cpu system it lets one\n\
701 change the cpu being debugged. It also gives one access to\n\
702 cpu-type-specific registers and recognize cpu-type-specific instructions.\
703 ",
704 &setlist);
705 set_cmd_cfunc (c, arc_set_cpu_type_command);
706 c = add_show_from_set (c, &showlist);
707 set_cmd_cfunc (c, arc_show_cpu_type_command);
708
709 /* We have to use xstrdup() here because the `set' command frees it
710 before setting a new value. */
711 tmp_arc_cpu_type = xstrdup (DEFAULT_ARC_CPU_TYPE);
712 arc_set_cpu_type (tmp_arc_cpu_type);
713
714 c = add_set_cmd ("displaypipeline", class_support, var_zinteger,
715 (char *) &display_pipeline_p,
716 "Set pipeline display (simulator only).\n\
717 When enabled, the state of the pipeline after each cycle is displayed.",
718 &setlist);
719 c = add_show_from_set (c, &showlist);
720
721 c = add_set_cmd ("debugpipeline", class_support, var_zinteger,
722 (char *) &debug_pipeline_p,
723 "Set pipeline debug display (simulator only).\n\
724 When enabled, debugging information about the pipeline is displayed.",
725 &setlist);
726 c = add_show_from_set (c, &showlist);
727
728 c = add_set_cmd ("cputimer", class_support, var_zinteger,
729 (char *) &cpu_timer,
730 "Set maximum cycle count (simulator only).\n\
731 Control will return to gdb if the timer expires.\n\
732 A negative value disables the timer.",
733 &setlist);
734 c = add_show_from_set (c, &showlist);
735
736 tm_print_insn = arc_print_insn;
737 }
This page took 0.174658 seconds and 4 git commands to generate.