* libtool.m4 (LD): Append -melf* option to LD on IRIX with GNU ld.
[deliverable/binutils-gdb.git] / gdb / arch-utils.c
1 /* Dynamic architecture support for GDB, the GNU debugger.
2
3 Copyright 1998, 1999, 2000, 2001, 2002, 2003 Free Software Foundation,
4 Inc.
5
6 This file is part of GDB.
7
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 2 of the License, or
11 (at your option) any later version.
12
13 This program is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with this program; if not, write to the Free Software
20 Foundation, Inc., 59 Temple Place - Suite 330,
21 Boston, MA 02111-1307, USA. */
22
23 #include "defs.h"
24
25 #if GDB_MULTI_ARCH
26 #include "arch-utils.h"
27 #include "gdbcmd.h"
28 #include "inferior.h" /* enum CALL_DUMMY_LOCATION et.al. */
29 #else
30 /* Just include everything in sight so that the every old definition
31 of macro is visible. */
32 #include "symtab.h"
33 #include "frame.h"
34 #include "inferior.h"
35 #include "breakpoint.h"
36 #include "gdb_wait.h"
37 #include "gdbcore.h"
38 #include "gdbcmd.h"
39 #include "target.h"
40 #include "annotate.h"
41 #endif
42 #include "gdb_string.h"
43 #include "regcache.h"
44 #include "gdb_assert.h"
45 #include "sim-regno.h"
46
47 #include "version.h"
48
49 #include "floatformat.h"
50
51 /* Use the program counter to determine the contents and size
52 of a breakpoint instruction. If no target-dependent macro
53 BREAKPOINT_FROM_PC has been defined to implement this function,
54 assume that the breakpoint doesn't depend on the PC, and
55 use the values of the BIG_BREAKPOINT and LITTLE_BREAKPOINT macros.
56 Return a pointer to a string of bytes that encode a breakpoint
57 instruction, stores the length of the string to *lenptr,
58 and optionally adjust the pc to point to the correct memory location
59 for inserting the breakpoint. */
60
61 const unsigned char *
62 legacy_breakpoint_from_pc (CORE_ADDR * pcptr, int *lenptr)
63 {
64 /* {BIG_,LITTLE_}BREAKPOINT is the sequence of bytes we insert for a
65 breakpoint. On some machines, breakpoints are handled by the
66 target environment and we don't have to worry about them here. */
67 #ifdef BIG_BREAKPOINT
68 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
69 {
70 static unsigned char big_break_insn[] = BIG_BREAKPOINT;
71 *lenptr = sizeof (big_break_insn);
72 return big_break_insn;
73 }
74 #endif
75 #ifdef LITTLE_BREAKPOINT
76 if (TARGET_BYTE_ORDER != BFD_ENDIAN_BIG)
77 {
78 static unsigned char little_break_insn[] = LITTLE_BREAKPOINT;
79 *lenptr = sizeof (little_break_insn);
80 return little_break_insn;
81 }
82 #endif
83 #ifdef BREAKPOINT
84 {
85 static unsigned char break_insn[] = BREAKPOINT;
86 *lenptr = sizeof (break_insn);
87 return break_insn;
88 }
89 #endif
90 *lenptr = 0;
91 return NULL;
92 }
93
94 /* Implementation of extract return value that grubs around in the
95 register cache. */
96 void
97 legacy_extract_return_value (struct type *type, struct regcache *regcache,
98 void *valbuf)
99 {
100 char *registers = deprecated_grub_regcache_for_registers (regcache);
101 bfd_byte *buf = valbuf;
102 DEPRECATED_EXTRACT_RETURN_VALUE (type, registers, buf); /* OK */
103 }
104
105 /* Implementation of store return value that grubs the register cache.
106 Takes a local copy of the buffer to avoid const problems. */
107 void
108 legacy_store_return_value (struct type *type, struct regcache *regcache,
109 const void *buf)
110 {
111 bfd_byte *b = alloca (TYPE_LENGTH (type));
112 gdb_assert (regcache == current_regcache);
113 memcpy (b, buf, TYPE_LENGTH (type));
114 DEPRECATED_STORE_RETURN_VALUE (type, b);
115 }
116
117
118 int
119 legacy_register_sim_regno (int regnum)
120 {
121 /* Only makes sense to supply raw registers. */
122 gdb_assert (regnum >= 0 && regnum < NUM_REGS);
123 /* NOTE: cagney/2002-05-13: The old code did it this way and it is
124 suspected that some GDB/SIM combinations may rely on this
125 behavour. The default should be one2one_register_sim_regno
126 (below). */
127 if (REGISTER_NAME (regnum) != NULL
128 && REGISTER_NAME (regnum)[0] != '\0')
129 return regnum;
130 else
131 return LEGACY_SIM_REGNO_IGNORE;
132 }
133
134 int
135 generic_frameless_function_invocation_not (struct frame_info *fi)
136 {
137 return 0;
138 }
139
140 int
141 generic_return_value_on_stack_not (struct type *type)
142 {
143 return 0;
144 }
145
146 CORE_ADDR
147 generic_skip_trampoline_code (CORE_ADDR pc)
148 {
149 return 0;
150 }
151
152 int
153 generic_in_solib_call_trampoline (CORE_ADDR pc, char *name)
154 {
155 return 0;
156 }
157
158 int
159 generic_in_solib_return_trampoline (CORE_ADDR pc, char *name)
160 {
161 return 0;
162 }
163
164 int
165 generic_in_function_epilogue_p (struct gdbarch *gdbarch, CORE_ADDR pc)
166 {
167 return 0;
168 }
169
170 const char *
171 legacy_register_name (int i)
172 {
173 #ifdef REGISTER_NAMES
174 static char *names[] = REGISTER_NAMES;
175 if (i < 0 || i >= (sizeof (names) / sizeof (*names)))
176 return NULL;
177 else
178 return names[i];
179 #else
180 internal_error (__FILE__, __LINE__,
181 "legacy_register_name: called.");
182 return NULL;
183 #endif
184 }
185
186 #if defined (CALL_DUMMY)
187 LONGEST legacy_call_dummy_words[] = CALL_DUMMY;
188 #else
189 LONGEST legacy_call_dummy_words[1];
190 #endif
191 int legacy_sizeof_call_dummy_words = sizeof (legacy_call_dummy_words);
192
193 void
194 generic_remote_translate_xfer_address (CORE_ADDR gdb_addr, int gdb_len,
195 CORE_ADDR * rem_addr, int *rem_len)
196 {
197 *rem_addr = gdb_addr;
198 *rem_len = gdb_len;
199 }
200
201 int
202 generic_prologue_frameless_p (CORE_ADDR ip)
203 {
204 return ip == SKIP_PROLOGUE (ip);
205 }
206
207 /* New/multi-arched targets should use the correct gdbarch field
208 instead of using this global pointer. */
209 int
210 legacy_print_insn (bfd_vma vma, disassemble_info *info)
211 {
212 return (*tm_print_insn) (vma, info);
213 }
214
215 /* Helper functions for INNER_THAN */
216
217 int
218 core_addr_lessthan (CORE_ADDR lhs, CORE_ADDR rhs)
219 {
220 return (lhs < rhs);
221 }
222
223 int
224 core_addr_greaterthan (CORE_ADDR lhs, CORE_ADDR rhs)
225 {
226 return (lhs > rhs);
227 }
228
229
230 /* Helper functions for TARGET_{FLOAT,DOUBLE}_FORMAT */
231
232 const struct floatformat *
233 default_float_format (struct gdbarch *gdbarch)
234 {
235 #if GDB_MULTI_ARCH
236 int byte_order = gdbarch_byte_order (gdbarch);
237 #else
238 int byte_order = TARGET_BYTE_ORDER;
239 #endif
240 switch (byte_order)
241 {
242 case BFD_ENDIAN_BIG:
243 return &floatformat_ieee_single_big;
244 case BFD_ENDIAN_LITTLE:
245 return &floatformat_ieee_single_little;
246 default:
247 internal_error (__FILE__, __LINE__,
248 "default_float_format: bad byte order");
249 }
250 }
251
252
253 const struct floatformat *
254 default_double_format (struct gdbarch *gdbarch)
255 {
256 #if GDB_MULTI_ARCH
257 int byte_order = gdbarch_byte_order (gdbarch);
258 #else
259 int byte_order = TARGET_BYTE_ORDER;
260 #endif
261 switch (byte_order)
262 {
263 case BFD_ENDIAN_BIG:
264 return &floatformat_ieee_double_big;
265 case BFD_ENDIAN_LITTLE:
266 return &floatformat_ieee_double_little;
267 default:
268 internal_error (__FILE__, __LINE__,
269 "default_double_format: bad byte order");
270 }
271 }
272
273 /* Misc helper functions for targets. */
274
275 int
276 frame_num_args_unknown (struct frame_info *fi)
277 {
278 return -1;
279 }
280
281
282 int
283 generic_register_convertible_not (int num)
284 {
285 return 0;
286 }
287
288
289 /* Under some ABI's that specify the `struct convention' for returning
290 structures by value, by the time we've returned from the function,
291 the return value is sitting there in the caller's buffer, but GDB
292 has no way to find the address of that buffer.
293
294 On such architectures, use this function as your
295 extract_struct_value_address method. When asked to a struct
296 returned by value in this fashion, GDB will print a nice error
297 message, instead of garbage. */
298 CORE_ADDR
299 generic_cannot_extract_struct_value_address (char *dummy)
300 {
301 return 0;
302 }
303
304 CORE_ADDR
305 core_addr_identity (CORE_ADDR addr)
306 {
307 return addr;
308 }
309
310 int
311 no_op_reg_to_regnum (int reg)
312 {
313 return reg;
314 }
315
316 /* Default prepare_to_procced(). */
317 int
318 default_prepare_to_proceed (int select_it)
319 {
320 return 0;
321 }
322
323 /* Generic prepare_to_proceed(). This one should be suitable for most
324 targets that support threads. */
325 int
326 generic_prepare_to_proceed (int select_it)
327 {
328 ptid_t wait_ptid;
329 struct target_waitstatus wait_status;
330
331 /* Get the last target status returned by target_wait(). */
332 get_last_target_status (&wait_ptid, &wait_status);
333
334 /* Make sure we were stopped either at a breakpoint, or because
335 of a Ctrl-C. */
336 if (wait_status.kind != TARGET_WAITKIND_STOPPED
337 || (wait_status.value.sig != TARGET_SIGNAL_TRAP &&
338 wait_status.value.sig != TARGET_SIGNAL_INT))
339 {
340 return 0;
341 }
342
343 if (!ptid_equal (wait_ptid, minus_one_ptid)
344 && !ptid_equal (inferior_ptid, wait_ptid))
345 {
346 /* Switched over from WAIT_PID. */
347 CORE_ADDR wait_pc = read_pc_pid (wait_ptid);
348
349 if (wait_pc != read_pc ())
350 {
351 if (select_it)
352 {
353 /* Switch back to WAIT_PID thread. */
354 inferior_ptid = wait_ptid;
355
356 /* FIXME: This stuff came from switch_to_thread() in
357 thread.c (which should probably be a public function). */
358 flush_cached_frames ();
359 registers_changed ();
360 stop_pc = wait_pc;
361 select_frame (get_current_frame ());
362 }
363 /* We return 1 to indicate that there is a breakpoint here,
364 so we need to step over it before continuing to avoid
365 hitting it straight away. */
366 if (breakpoint_here_p (wait_pc))
367 {
368 return 1;
369 }
370 }
371 }
372 return 0;
373
374 }
375
376 CORE_ADDR
377 init_frame_pc_noop (int fromleaf, struct frame_info *prev)
378 {
379 /* Do nothing, implies return the same PC value. */
380 return get_frame_pc (prev);
381 }
382
383 CORE_ADDR
384 init_frame_pc_default (int fromleaf, struct frame_info *prev)
385 {
386 if (fromleaf)
387 return SAVED_PC_AFTER_CALL (get_next_frame (prev));
388 else if (get_next_frame (prev) != NULL)
389 return FRAME_SAVED_PC (get_next_frame (prev));
390 else
391 return read_pc ();
392 }
393
394 void
395 default_elf_make_msymbol_special (asymbol *sym, struct minimal_symbol *msym)
396 {
397 return;
398 }
399
400 void
401 default_coff_make_msymbol_special (int val, struct minimal_symbol *msym)
402 {
403 return;
404 }
405
406 int
407 cannot_register_not (int regnum)
408 {
409 return 0;
410 }
411
412 /* Legacy version of target_virtual_frame_pointer(). Assumes that
413 there is an FP_REGNUM and that it is the same, cooked or raw. */
414
415 void
416 legacy_virtual_frame_pointer (CORE_ADDR pc,
417 int *frame_regnum,
418 LONGEST *frame_offset)
419 {
420 /* FIXME: cagney/2002-09-13: This code is used when identifying the
421 frame pointer of the current PC. It is assuming that a single
422 register and an offset can determine this. I think it should
423 instead generate a byte code expression as that would work better
424 with things like Dwarf2's CFI. */
425 if (FP_REGNUM >= 0 && FP_REGNUM < NUM_REGS)
426 *frame_regnum = FP_REGNUM;
427 else if (SP_REGNUM >= 0 && SP_REGNUM < NUM_REGS)
428 *frame_regnum = SP_REGNUM;
429 else
430 /* Should this be an internal error? I guess so, it is reflecting
431 an architectural limitation in the current design. */
432 internal_error (__FILE__, __LINE__, "No virtual frame pointer available");
433 *frame_offset = 0;
434 }
435
436 /* Assume the world is sane, every register's virtual and real size
437 is identical. */
438
439 int
440 generic_register_size (int regnum)
441 {
442 gdb_assert (regnum >= 0 && regnum < NUM_REGS + NUM_PSEUDO_REGS);
443 return TYPE_LENGTH (REGISTER_VIRTUAL_TYPE (regnum));
444 }
445
446 /* Assume all registers are adjacent. */
447
448 int
449 generic_register_byte (int regnum)
450 {
451 int byte;
452 int i;
453 gdb_assert (regnum >= 0 && regnum < NUM_REGS + NUM_PSEUDO_REGS);
454 byte = 0;
455 for (i = 0; i < regnum; i++)
456 {
457 byte += TYPE_LENGTH (REGISTER_VIRTUAL_TYPE (i));
458 }
459 return byte;
460 }
461
462 \f
463 int
464 legacy_pc_in_sigtramp (CORE_ADDR pc, char *name)
465 {
466 #if !defined (IN_SIGTRAMP)
467 if (SIGTRAMP_START_P ())
468 return (pc) >= SIGTRAMP_START (pc) && (pc) < SIGTRAMP_END (pc);
469 else
470 return name && strcmp ("_sigtramp", name) == 0;
471 #else
472 return IN_SIGTRAMP (pc, name);
473 #endif
474 }
475
476 int
477 legacy_convert_register_p (int regnum)
478 {
479 return REGISTER_CONVERTIBLE (regnum);
480 }
481
482 void
483 legacy_register_to_value (int regnum, struct type *type,
484 char *from, char *to)
485 {
486 REGISTER_CONVERT_TO_VIRTUAL (regnum, type, from, to);
487 }
488
489 void
490 legacy_value_to_register (struct type *type, int regnum,
491 char *from, char *to)
492 {
493 REGISTER_CONVERT_TO_RAW (type, regnum, from, to);
494 }
495
496 \f
497 /* Functions to manipulate the endianness of the target. */
498
499 /* ``target_byte_order'' is only used when non- multi-arch.
500 Multi-arch targets obtain the current byte order using the
501 TARGET_BYTE_ORDER gdbarch method.
502
503 The choice of initial value is entirely arbitrary. During startup,
504 the function initialize_current_architecture() updates this value
505 based on default byte-order information extracted from BFD. */
506 int target_byte_order = BFD_ENDIAN_BIG;
507 int target_byte_order_auto = 1;
508
509 static const char endian_big[] = "big";
510 static const char endian_little[] = "little";
511 static const char endian_auto[] = "auto";
512 static const char *endian_enum[] =
513 {
514 endian_big,
515 endian_little,
516 endian_auto,
517 NULL,
518 };
519 static const char *set_endian_string;
520
521 /* Called by ``show endian''. */
522
523 static void
524 show_endian (char *args, int from_tty)
525 {
526 if (TARGET_BYTE_ORDER_AUTO)
527 printf_unfiltered ("The target endianness is set automatically (currently %s endian)\n",
528 (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG ? "big" : "little"));
529 else
530 printf_unfiltered ("The target is assumed to be %s endian\n",
531 (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG ? "big" : "little"));
532 }
533
534 static void
535 set_endian (char *ignore_args, int from_tty, struct cmd_list_element *c)
536 {
537 if (set_endian_string == endian_auto)
538 {
539 target_byte_order_auto = 1;
540 }
541 else if (set_endian_string == endian_little)
542 {
543 target_byte_order_auto = 0;
544 if (GDB_MULTI_ARCH)
545 {
546 struct gdbarch_info info;
547 gdbarch_info_init (&info);
548 info.byte_order = BFD_ENDIAN_LITTLE;
549 if (! gdbarch_update_p (info))
550 {
551 printf_unfiltered ("Little endian target not supported by GDB\n");
552 }
553 }
554 else
555 {
556 target_byte_order = BFD_ENDIAN_LITTLE;
557 }
558 }
559 else if (set_endian_string == endian_big)
560 {
561 target_byte_order_auto = 0;
562 if (GDB_MULTI_ARCH)
563 {
564 struct gdbarch_info info;
565 gdbarch_info_init (&info);
566 info.byte_order = BFD_ENDIAN_BIG;
567 if (! gdbarch_update_p (info))
568 {
569 printf_unfiltered ("Big endian target not supported by GDB\n");
570 }
571 }
572 else
573 {
574 target_byte_order = BFD_ENDIAN_BIG;
575 }
576 }
577 else
578 internal_error (__FILE__, __LINE__,
579 "set_endian: bad value");
580 show_endian (NULL, from_tty);
581 }
582
583 /* Set the endianness from a BFD. */
584
585 static void
586 set_endian_from_file (bfd *abfd)
587 {
588 int want;
589 if (GDB_MULTI_ARCH)
590 internal_error (__FILE__, __LINE__,
591 "set_endian_from_file: not for multi-arch");
592 if (bfd_big_endian (abfd))
593 want = BFD_ENDIAN_BIG;
594 else
595 want = BFD_ENDIAN_LITTLE;
596 if (TARGET_BYTE_ORDER_AUTO)
597 target_byte_order = want;
598 else if (TARGET_BYTE_ORDER != want)
599 warning ("%s endian file does not match %s endian target.",
600 want == BFD_ENDIAN_BIG ? "big" : "little",
601 TARGET_BYTE_ORDER == BFD_ENDIAN_BIG ? "big" : "little");
602 }
603
604
605 /* Functions to manipulate the architecture of the target */
606
607 enum set_arch { set_arch_auto, set_arch_manual };
608
609 int target_architecture_auto = 1;
610
611 const char *set_architecture_string;
612
613 /* Old way of changing the current architecture. */
614
615 extern const struct bfd_arch_info bfd_default_arch_struct;
616 const struct bfd_arch_info *target_architecture = &bfd_default_arch_struct;
617 int (*target_architecture_hook) (const struct bfd_arch_info *ap);
618
619 static int
620 arch_ok (const struct bfd_arch_info *arch)
621 {
622 if (GDB_MULTI_ARCH)
623 internal_error (__FILE__, __LINE__,
624 "arch_ok: not multi-arched");
625 /* Should be performing the more basic check that the binary is
626 compatible with GDB. */
627 /* Check with the target that the architecture is valid. */
628 return (target_architecture_hook == NULL
629 || target_architecture_hook (arch));
630 }
631
632 static void
633 set_arch (const struct bfd_arch_info *arch,
634 enum set_arch type)
635 {
636 if (GDB_MULTI_ARCH)
637 internal_error (__FILE__, __LINE__,
638 "set_arch: not multi-arched");
639 switch (type)
640 {
641 case set_arch_auto:
642 if (!arch_ok (arch))
643 warning ("Target may not support %s architecture",
644 arch->printable_name);
645 target_architecture = arch;
646 break;
647 case set_arch_manual:
648 if (!arch_ok (arch))
649 {
650 printf_unfiltered ("Target does not support `%s' architecture.\n",
651 arch->printable_name);
652 }
653 else
654 {
655 target_architecture_auto = 0;
656 target_architecture = arch;
657 }
658 break;
659 }
660 if (gdbarch_debug)
661 gdbarch_dump (current_gdbarch, gdb_stdlog);
662 }
663
664 /* Set the architecture from arch/machine (deprecated) */
665
666 void
667 set_architecture_from_arch_mach (enum bfd_architecture arch,
668 unsigned long mach)
669 {
670 const struct bfd_arch_info *wanted = bfd_lookup_arch (arch, mach);
671 if (GDB_MULTI_ARCH)
672 internal_error (__FILE__, __LINE__,
673 "set_architecture_from_arch_mach: not multi-arched");
674 if (wanted != NULL)
675 set_arch (wanted, set_arch_manual);
676 else
677 internal_error (__FILE__, __LINE__,
678 "gdbarch: hardwired architecture/machine not recognized");
679 }
680
681 /* Set the architecture from a BFD (deprecated) */
682
683 static void
684 set_architecture_from_file (bfd *abfd)
685 {
686 const struct bfd_arch_info *wanted = bfd_get_arch_info (abfd);
687 if (GDB_MULTI_ARCH)
688 internal_error (__FILE__, __LINE__,
689 "set_architecture_from_file: not multi-arched");
690 if (target_architecture_auto)
691 {
692 set_arch (wanted, set_arch_auto);
693 }
694 else if (wanted != target_architecture)
695 {
696 warning ("%s architecture file may be incompatible with %s target.",
697 wanted->printable_name,
698 target_architecture->printable_name);
699 }
700 }
701
702
703 /* Called if the user enters ``show architecture'' without an
704 argument. */
705
706 static void
707 show_architecture (char *args, int from_tty)
708 {
709 const char *arch;
710 arch = TARGET_ARCHITECTURE->printable_name;
711 if (target_architecture_auto)
712 printf_filtered ("The target architecture is set automatically (currently %s)\n", arch);
713 else
714 printf_filtered ("The target architecture is assumed to be %s\n", arch);
715 }
716
717
718 /* Called if the user enters ``set architecture'' with or without an
719 argument. */
720
721 static void
722 set_architecture (char *ignore_args, int from_tty, struct cmd_list_element *c)
723 {
724 if (strcmp (set_architecture_string, "auto") == 0)
725 {
726 target_architecture_auto = 1;
727 }
728 else if (GDB_MULTI_ARCH)
729 {
730 struct gdbarch_info info;
731 gdbarch_info_init (&info);
732 info.bfd_arch_info = bfd_scan_arch (set_architecture_string);
733 if (info.bfd_arch_info == NULL)
734 internal_error (__FILE__, __LINE__,
735 "set_architecture: bfd_scan_arch failed");
736 if (gdbarch_update_p (info))
737 target_architecture_auto = 0;
738 else
739 printf_unfiltered ("Architecture `%s' not recognized.\n",
740 set_architecture_string);
741 }
742 else
743 {
744 const struct bfd_arch_info *arch
745 = bfd_scan_arch (set_architecture_string);
746 if (arch == NULL)
747 internal_error (__FILE__, __LINE__,
748 "set_architecture: bfd_scan_arch failed");
749 set_arch (arch, set_arch_manual);
750 }
751 show_architecture (NULL, from_tty);
752 }
753
754 /* Set the dynamic target-system-dependent parameters (architecture,
755 byte-order) using information found in the BFD */
756
757 void
758 set_gdbarch_from_file (bfd *abfd)
759 {
760 if (GDB_MULTI_ARCH)
761 {
762 struct gdbarch_info info;
763 gdbarch_info_init (&info);
764 info.abfd = abfd;
765 if (! gdbarch_update_p (info))
766 error ("Architecture of file not recognized.\n");
767 }
768 else
769 {
770 set_architecture_from_file (abfd);
771 set_endian_from_file (abfd);
772 }
773 }
774
775 /* Initialize the current architecture. Update the ``set
776 architecture'' command so that it specifies a list of valid
777 architectures. */
778
779 #ifdef DEFAULT_BFD_ARCH
780 extern const bfd_arch_info_type DEFAULT_BFD_ARCH;
781 static const bfd_arch_info_type *default_bfd_arch = &DEFAULT_BFD_ARCH;
782 #else
783 static const bfd_arch_info_type *default_bfd_arch;
784 #endif
785
786 #ifdef DEFAULT_BFD_VEC
787 extern const bfd_target DEFAULT_BFD_VEC;
788 static const bfd_target *default_bfd_vec = &DEFAULT_BFD_VEC;
789 #else
790 static const bfd_target *default_bfd_vec;
791 #endif
792
793 void
794 initialize_current_architecture (void)
795 {
796 const char **arches = gdbarch_printable_names ();
797
798 /* determine a default architecture and byte order. */
799 struct gdbarch_info info;
800 gdbarch_info_init (&info);
801
802 /* Find a default architecture. */
803 if (info.bfd_arch_info == NULL
804 && default_bfd_arch != NULL)
805 info.bfd_arch_info = default_bfd_arch;
806 if (info.bfd_arch_info == NULL)
807 {
808 /* Choose the architecture by taking the first one
809 alphabetically. */
810 const char *chosen = arches[0];
811 const char **arch;
812 for (arch = arches; *arch != NULL; arch++)
813 {
814 if (strcmp (*arch, chosen) < 0)
815 chosen = *arch;
816 }
817 if (chosen == NULL)
818 internal_error (__FILE__, __LINE__,
819 "initialize_current_architecture: No arch");
820 info.bfd_arch_info = bfd_scan_arch (chosen);
821 if (info.bfd_arch_info == NULL)
822 internal_error (__FILE__, __LINE__,
823 "initialize_current_architecture: Arch not found");
824 }
825
826 /* Take several guesses at a byte order. */
827 if (info.byte_order == BFD_ENDIAN_UNKNOWN
828 && default_bfd_vec != NULL)
829 {
830 /* Extract BFD's default vector's byte order. */
831 switch (default_bfd_vec->byteorder)
832 {
833 case BFD_ENDIAN_BIG:
834 info.byte_order = BFD_ENDIAN_BIG;
835 break;
836 case BFD_ENDIAN_LITTLE:
837 info.byte_order = BFD_ENDIAN_LITTLE;
838 break;
839 default:
840 break;
841 }
842 }
843 if (info.byte_order == BFD_ENDIAN_UNKNOWN)
844 {
845 /* look for ``*el-*'' in the target name. */
846 const char *chp;
847 chp = strchr (target_name, '-');
848 if (chp != NULL
849 && chp - 2 >= target_name
850 && strncmp (chp - 2, "el", 2) == 0)
851 info.byte_order = BFD_ENDIAN_LITTLE;
852 }
853 if (info.byte_order == BFD_ENDIAN_UNKNOWN)
854 {
855 /* Wire it to big-endian!!! */
856 info.byte_order = BFD_ENDIAN_BIG;
857 }
858
859 if (GDB_MULTI_ARCH)
860 {
861 if (! gdbarch_update_p (info))
862 {
863 internal_error (__FILE__, __LINE__,
864 "initialize_current_architecture: Selection of initial architecture failed");
865 }
866 }
867 else
868 {
869 /* If the multi-arch logic comes up with a byte-order (from BFD)
870 use it for the non-multi-arch case. */
871 if (info.byte_order != BFD_ENDIAN_UNKNOWN)
872 target_byte_order = info.byte_order;
873 initialize_non_multiarch ();
874 }
875
876 /* Create the ``set architecture'' command appending ``auto'' to the
877 list of architectures. */
878 {
879 struct cmd_list_element *c;
880 /* Append ``auto''. */
881 int nr;
882 for (nr = 0; arches[nr] != NULL; nr++);
883 arches = xrealloc (arches, sizeof (char*) * (nr + 2));
884 arches[nr + 0] = "auto";
885 arches[nr + 1] = NULL;
886 /* FIXME: add_set_enum_cmd() uses an array of ``char *'' instead
887 of ``const char *''. We just happen to know that the casts are
888 safe. */
889 c = add_set_enum_cmd ("architecture", class_support,
890 arches, &set_architecture_string,
891 "Set architecture of target.",
892 &setlist);
893 set_cmd_sfunc (c, set_architecture);
894 add_alias_cmd ("processor", "architecture", class_support, 1, &setlist);
895 /* Don't use set_from_show - need to print both auto/manual and
896 current setting. */
897 add_cmd ("architecture", class_support, show_architecture,
898 "Show the current target architecture", &showlist);
899 }
900 }
901
902
903 /* Initialize a gdbarch info to values that will be automatically
904 overridden. Note: Originally, this ``struct info'' was initialized
905 using memset(0). Unfortunatly, that ran into problems, namely
906 BFD_ENDIAN_BIG is zero. An explicit initialization function that
907 can explicitly set each field to a well defined value is used. */
908
909 void
910 gdbarch_info_init (struct gdbarch_info *info)
911 {
912 memset (info, 0, sizeof (struct gdbarch_info));
913 info->byte_order = BFD_ENDIAN_UNKNOWN;
914 info->osabi = GDB_OSABI_UNINITIALIZED;
915 }
916
917 /* */
918
919 extern initialize_file_ftype _initialize_gdbarch_utils;
920
921 void
922 _initialize_gdbarch_utils (void)
923 {
924 struct cmd_list_element *c;
925 c = add_set_enum_cmd ("endian", class_support,
926 endian_enum, &set_endian_string,
927 "Set endianness of target.",
928 &setlist);
929 set_cmd_sfunc (c, set_endian);
930 /* Don't use set_from_show - need to print both auto/manual and
931 current setting. */
932 add_cmd ("endian", class_support, show_endian,
933 "Show the current byte-order", &showlist);
934 }
This page took 0.05538 seconds and 4 git commands to generate.