* sim-regno.h: New file.
[deliverable/binutils-gdb.git] / gdb / arch-utils.c
1 /* Dynamic architecture support for GDB, the GNU debugger.
2
3 Copyright 1998, 1999, 2000, 2001, 2002 Free Software Foundation,
4 Inc.
5
6 This file is part of GDB.
7
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 2 of the License, or
11 (at your option) any later version.
12
13 This program is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with this program; if not, write to the Free Software
20 Foundation, Inc., 59 Temple Place - Suite 330,
21 Boston, MA 02111-1307, USA. */
22
23 #include "defs.h"
24
25 #if GDB_MULTI_ARCH
26 #include "arch-utils.h"
27 #include "gdbcmd.h"
28 #include "inferior.h" /* enum CALL_DUMMY_LOCATION et.al. */
29 #else
30 /* Just include everything in sight so that the every old definition
31 of macro is visible. */
32 #include "gdb_string.h"
33 #include "symtab.h"
34 #include "frame.h"
35 #include "inferior.h"
36 #include "breakpoint.h"
37 #include "gdb_wait.h"
38 #include "gdbcore.h"
39 #include "gdbcmd.h"
40 #include "target.h"
41 #include "annotate.h"
42 #endif
43 #include "regcache.h"
44 #include "gdb_assert.h"
45
46 #include "version.h"
47
48 #include "floatformat.h"
49
50 /* Use the program counter to determine the contents and size
51 of a breakpoint instruction. If no target-dependent macro
52 BREAKPOINT_FROM_PC has been defined to implement this function,
53 assume that the breakpoint doesn't depend on the PC, and
54 use the values of the BIG_BREAKPOINT and LITTLE_BREAKPOINT macros.
55 Return a pointer to a string of bytes that encode a breakpoint
56 instruction, stores the length of the string to *lenptr,
57 and optionally adjust the pc to point to the correct memory location
58 for inserting the breakpoint. */
59
60 const unsigned char *
61 legacy_breakpoint_from_pc (CORE_ADDR * pcptr, int *lenptr)
62 {
63 /* {BIG_,LITTLE_}BREAKPOINT is the sequence of bytes we insert for a
64 breakpoint. On some machines, breakpoints are handled by the
65 target environment and we don't have to worry about them here. */
66 #ifdef BIG_BREAKPOINT
67 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
68 {
69 static unsigned char big_break_insn[] = BIG_BREAKPOINT;
70 *lenptr = sizeof (big_break_insn);
71 return big_break_insn;
72 }
73 #endif
74 #ifdef LITTLE_BREAKPOINT
75 if (TARGET_BYTE_ORDER != BFD_ENDIAN_BIG)
76 {
77 static unsigned char little_break_insn[] = LITTLE_BREAKPOINT;
78 *lenptr = sizeof (little_break_insn);
79 return little_break_insn;
80 }
81 #endif
82 #ifdef BREAKPOINT
83 {
84 static unsigned char break_insn[] = BREAKPOINT;
85 *lenptr = sizeof (break_insn);
86 return break_insn;
87 }
88 #endif
89 *lenptr = 0;
90 return NULL;
91 }
92
93 int
94 generic_frameless_function_invocation_not (struct frame_info *fi)
95 {
96 return 0;
97 }
98
99 int
100 generic_return_value_on_stack_not (struct type *type)
101 {
102 return 0;
103 }
104
105 CORE_ADDR
106 generic_skip_trampoline_code (CORE_ADDR pc)
107 {
108 return 0;
109 }
110
111 int
112 generic_in_solib_call_trampoline (CORE_ADDR pc, char *name)
113 {
114 return 0;
115 }
116
117 int
118 generic_in_function_epilogue_p (struct gdbarch *gdbarch, CORE_ADDR pc)
119 {
120 return 0;
121 }
122
123 char *
124 legacy_register_name (int i)
125 {
126 #ifdef REGISTER_NAMES
127 static char *names[] = REGISTER_NAMES;
128 if (i < 0 || i >= (sizeof (names) / sizeof (*names)))
129 return NULL;
130 else
131 return names[i];
132 #else
133 internal_error (__FILE__, __LINE__,
134 "legacy_register_name: called.");
135 return NULL;
136 #endif
137 }
138
139 #if defined (CALL_DUMMY)
140 LONGEST legacy_call_dummy_words[] = CALL_DUMMY;
141 #else
142 LONGEST legacy_call_dummy_words[1];
143 #endif
144 int legacy_sizeof_call_dummy_words = sizeof (legacy_call_dummy_words);
145
146 void
147 generic_remote_translate_xfer_address (CORE_ADDR gdb_addr, int gdb_len,
148 CORE_ADDR * rem_addr, int *rem_len)
149 {
150 *rem_addr = gdb_addr;
151 *rem_len = gdb_len;
152 }
153
154 int
155 generic_prologue_frameless_p (CORE_ADDR ip)
156 {
157 return ip == SKIP_PROLOGUE (ip);
158 }
159
160 /* New/multi-arched targets should use the correct gdbarch field
161 instead of using this global pointer. */
162 int
163 legacy_print_insn (bfd_vma vma, disassemble_info *info)
164 {
165 return (*tm_print_insn) (vma, info);
166 }
167
168 /* Helper functions for INNER_THAN */
169
170 int
171 core_addr_lessthan (CORE_ADDR lhs, CORE_ADDR rhs)
172 {
173 return (lhs < rhs);
174 }
175
176 int
177 core_addr_greaterthan (CORE_ADDR lhs, CORE_ADDR rhs)
178 {
179 return (lhs > rhs);
180 }
181
182
183 /* Helper functions for TARGET_{FLOAT,DOUBLE}_FORMAT */
184
185 const struct floatformat *
186 default_float_format (struct gdbarch *gdbarch)
187 {
188 #if GDB_MULTI_ARCH
189 int byte_order = gdbarch_byte_order (gdbarch);
190 #else
191 int byte_order = TARGET_BYTE_ORDER;
192 #endif
193 switch (byte_order)
194 {
195 case BFD_ENDIAN_BIG:
196 return &floatformat_ieee_single_big;
197 case BFD_ENDIAN_LITTLE:
198 return &floatformat_ieee_single_little;
199 default:
200 internal_error (__FILE__, __LINE__,
201 "default_float_format: bad byte order");
202 }
203 }
204
205
206 const struct floatformat *
207 default_double_format (struct gdbarch *gdbarch)
208 {
209 #if GDB_MULTI_ARCH
210 int byte_order = gdbarch_byte_order (gdbarch);
211 #else
212 int byte_order = TARGET_BYTE_ORDER;
213 #endif
214 switch (byte_order)
215 {
216 case BFD_ENDIAN_BIG:
217 return &floatformat_ieee_double_big;
218 case BFD_ENDIAN_LITTLE:
219 return &floatformat_ieee_double_little;
220 default:
221 internal_error (__FILE__, __LINE__,
222 "default_double_format: bad byte order");
223 }
224 }
225
226 void
227 default_print_float_info (void)
228 {
229 #ifdef FLOAT_INFO
230 #if GDB_MULTI_ARCH > GDB_MULTI_ARCH_PARTIAL
231 #error "FLOAT_INFO defined in multi-arch"
232 #endif
233 FLOAT_INFO;
234 #else
235 printf_filtered ("No floating point info available for this processor.\n");
236 #endif
237 }
238
239 /* Misc helper functions for targets. */
240
241 int
242 frame_num_args_unknown (struct frame_info *fi)
243 {
244 return -1;
245 }
246
247
248 int
249 generic_register_convertible_not (int num)
250 {
251 return 0;
252 }
253
254
255 /* Under some ABI's that specify the `struct convention' for returning
256 structures by value, by the time we've returned from the function,
257 the return value is sitting there in the caller's buffer, but GDB
258 has no way to find the address of that buffer.
259
260 On such architectures, use this function as your
261 extract_struct_value_address method. When asked to a struct
262 returned by value in this fashion, GDB will print a nice error
263 message, instead of garbage. */
264 CORE_ADDR
265 generic_cannot_extract_struct_value_address (char *dummy)
266 {
267 return 0;
268 }
269
270 CORE_ADDR
271 core_addr_identity (CORE_ADDR addr)
272 {
273 return addr;
274 }
275
276 int
277 no_op_reg_to_regnum (int reg)
278 {
279 return reg;
280 }
281
282 /* For use by frame_args_address and frame_locals_address. */
283 CORE_ADDR
284 default_frame_address (struct frame_info *fi)
285 {
286 return fi->frame;
287 }
288
289 /* Default prepare_to_procced(). */
290 int
291 default_prepare_to_proceed (int select_it)
292 {
293 return 0;
294 }
295
296 /* Generic prepare_to_proceed(). This one should be suitable for most
297 targets that support threads. */
298 int
299 generic_prepare_to_proceed (int select_it)
300 {
301 ptid_t wait_ptid;
302 struct target_waitstatus wait_status;
303
304 /* Get the last target status returned by target_wait(). */
305 get_last_target_status (&wait_ptid, &wait_status);
306
307 /* Make sure we were stopped either at a breakpoint, or because
308 of a Ctrl-C. */
309 if (wait_status.kind != TARGET_WAITKIND_STOPPED
310 || (wait_status.value.sig != TARGET_SIGNAL_TRAP &&
311 wait_status.value.sig != TARGET_SIGNAL_INT))
312 {
313 return 0;
314 }
315
316 if (!ptid_equal (wait_ptid, minus_one_ptid)
317 && !ptid_equal (inferior_ptid, wait_ptid))
318 {
319 /* Switched over from WAIT_PID. */
320 CORE_ADDR wait_pc = read_pc_pid (wait_ptid);
321
322 if (wait_pc != read_pc ())
323 {
324 if (select_it)
325 {
326 /* Switch back to WAIT_PID thread. */
327 inferior_ptid = wait_ptid;
328
329 /* FIXME: This stuff came from switch_to_thread() in
330 thread.c (which should probably be a public function). */
331 flush_cached_frames ();
332 registers_changed ();
333 stop_pc = wait_pc;
334 select_frame (get_current_frame ());
335 }
336 /* We return 1 to indicate that there is a breakpoint here,
337 so we need to step over it before continuing to avoid
338 hitting it straight away. */
339 if (breakpoint_here_p (wait_pc))
340 {
341 return 1;
342 }
343 }
344 }
345 return 0;
346
347 }
348
349 void
350 init_frame_pc_noop (int fromleaf, struct frame_info *prev)
351 {
352 return;
353 }
354
355 void
356 init_frame_pc_default (int fromleaf, struct frame_info *prev)
357 {
358 if (fromleaf)
359 prev->pc = SAVED_PC_AFTER_CALL (prev->next);
360 else if (prev->next != NULL)
361 prev->pc = FRAME_SAVED_PC (prev->next);
362 else
363 prev->pc = read_pc ();
364 }
365
366 void
367 default_elf_make_msymbol_special (asymbol *sym, struct minimal_symbol *msym)
368 {
369 return;
370 }
371
372 void
373 default_coff_make_msymbol_special (int val, struct minimal_symbol *msym)
374 {
375 return;
376 }
377
378 int
379 cannot_register_not (int regnum)
380 {
381 return 0;
382 }
383
384 /* Legacy version of target_virtual_frame_pointer(). Assumes that
385 there is an FP_REGNUM and that it is the same, cooked or raw. */
386
387 void
388 legacy_virtual_frame_pointer (CORE_ADDR pc,
389 int *frame_regnum,
390 LONGEST *frame_offset)
391 {
392 gdb_assert (FP_REGNUM >= 0);
393 *frame_regnum = FP_REGNUM;
394 *frame_offset = 0;
395 }
396
397 /* Assume the world is sane, every register's virtual and real size
398 is identical. */
399
400 int
401 generic_register_size (int regnum)
402 {
403 gdb_assert (regnum >= 0 && regnum < NUM_REGS + NUM_PSEUDO_REGS);
404 return TYPE_LENGTH (REGISTER_VIRTUAL_TYPE (regnum));
405 }
406
407 #if !defined (IN_SIGTRAMP)
408 #if defined (SIGTRAMP_START)
409 #define IN_SIGTRAMP(pc, name) \
410 ((pc) >= SIGTRAMP_START(pc) \
411 && (pc) < SIGTRAMP_END(pc) \
412 )
413 #else
414 #define IN_SIGTRAMP(pc, name) \
415 (name && STREQ ("_sigtramp", name))
416 #endif
417 #endif
418 \f
419 int
420 legacy_pc_in_sigtramp (CORE_ADDR pc, char *name)
421 {
422 return IN_SIGTRAMP(pc, name);
423 }
424
425 int
426 legacy_convert_register_p (int regnum)
427 {
428 return REGISTER_CONVERTIBLE (regnum);
429 }
430
431 void
432 legacy_register_to_value (int regnum, struct type *type,
433 char *from, char *to)
434 {
435 REGISTER_CONVERT_TO_VIRTUAL (regnum, type, from, to);
436 }
437
438 void
439 legacy_value_to_register (struct type *type, int regnum,
440 char *from, char *to)
441 {
442 REGISTER_CONVERT_TO_RAW (type, regnum, from, to);
443 }
444
445 \f
446 /* Functions to manipulate the endianness of the target. */
447
448 /* ``target_byte_order'' is only used when non- multi-arch.
449 Multi-arch targets obtain the current byte order using the
450 TARGET_BYTE_ORDER gdbarch method.
451
452 The choice of initial value is entirely arbitrary. During startup,
453 the function initialize_current_architecture() updates this value
454 based on default byte-order information extracted from BFD. */
455 int target_byte_order = BFD_ENDIAN_BIG;
456 int target_byte_order_auto = 1;
457
458 static const char endian_big[] = "big";
459 static const char endian_little[] = "little";
460 static const char endian_auto[] = "auto";
461 static const char *endian_enum[] =
462 {
463 endian_big,
464 endian_little,
465 endian_auto,
466 NULL,
467 };
468 static const char *set_endian_string;
469
470 /* Called by ``show endian''. */
471
472 static void
473 show_endian (char *args, int from_tty)
474 {
475 if (TARGET_BYTE_ORDER_AUTO)
476 printf_unfiltered ("The target endianness is set automatically (currently %s endian)\n",
477 (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG ? "big" : "little"));
478 else
479 printf_unfiltered ("The target is assumed to be %s endian\n",
480 (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG ? "big" : "little"));
481 }
482
483 static void
484 set_endian (char *ignore_args, int from_tty, struct cmd_list_element *c)
485 {
486 if (set_endian_string == endian_auto)
487 {
488 target_byte_order_auto = 1;
489 }
490 else if (set_endian_string == endian_little)
491 {
492 target_byte_order_auto = 0;
493 if (GDB_MULTI_ARCH)
494 {
495 struct gdbarch_info info;
496 gdbarch_info_init (&info);
497 info.byte_order = BFD_ENDIAN_LITTLE;
498 if (! gdbarch_update_p (info))
499 {
500 printf_unfiltered ("Little endian target not supported by GDB\n");
501 }
502 }
503 else
504 {
505 target_byte_order = BFD_ENDIAN_LITTLE;
506 }
507 }
508 else if (set_endian_string == endian_big)
509 {
510 target_byte_order_auto = 0;
511 if (GDB_MULTI_ARCH)
512 {
513 struct gdbarch_info info;
514 gdbarch_info_init (&info);
515 info.byte_order = BFD_ENDIAN_BIG;
516 if (! gdbarch_update_p (info))
517 {
518 printf_unfiltered ("Big endian target not supported by GDB\n");
519 }
520 }
521 else
522 {
523 target_byte_order = BFD_ENDIAN_BIG;
524 }
525 }
526 else
527 internal_error (__FILE__, __LINE__,
528 "set_endian: bad value");
529 show_endian (NULL, from_tty);
530 }
531
532 /* Set the endianness from a BFD. */
533
534 static void
535 set_endian_from_file (bfd *abfd)
536 {
537 int want;
538 if (GDB_MULTI_ARCH)
539 internal_error (__FILE__, __LINE__,
540 "set_endian_from_file: not for multi-arch");
541 if (bfd_big_endian (abfd))
542 want = BFD_ENDIAN_BIG;
543 else
544 want = BFD_ENDIAN_LITTLE;
545 if (TARGET_BYTE_ORDER_AUTO)
546 target_byte_order = want;
547 else if (TARGET_BYTE_ORDER != want)
548 warning ("%s endian file does not match %s endian target.",
549 want == BFD_ENDIAN_BIG ? "big" : "little",
550 TARGET_BYTE_ORDER == BFD_ENDIAN_BIG ? "big" : "little");
551 }
552
553
554 /* Functions to manipulate the architecture of the target */
555
556 enum set_arch { set_arch_auto, set_arch_manual };
557
558 int target_architecture_auto = 1;
559
560 const char *set_architecture_string;
561
562 /* Old way of changing the current architecture. */
563
564 extern const struct bfd_arch_info bfd_default_arch_struct;
565 const struct bfd_arch_info *target_architecture = &bfd_default_arch_struct;
566 int (*target_architecture_hook) (const struct bfd_arch_info *ap);
567
568 static int
569 arch_ok (const struct bfd_arch_info *arch)
570 {
571 if (GDB_MULTI_ARCH)
572 internal_error (__FILE__, __LINE__,
573 "arch_ok: not multi-arched");
574 /* Should be performing the more basic check that the binary is
575 compatible with GDB. */
576 /* Check with the target that the architecture is valid. */
577 return (target_architecture_hook == NULL
578 || target_architecture_hook (arch));
579 }
580
581 static void
582 set_arch (const struct bfd_arch_info *arch,
583 enum set_arch type)
584 {
585 if (GDB_MULTI_ARCH)
586 internal_error (__FILE__, __LINE__,
587 "set_arch: not multi-arched");
588 switch (type)
589 {
590 case set_arch_auto:
591 if (!arch_ok (arch))
592 warning ("Target may not support %s architecture",
593 arch->printable_name);
594 target_architecture = arch;
595 break;
596 case set_arch_manual:
597 if (!arch_ok (arch))
598 {
599 printf_unfiltered ("Target does not support `%s' architecture.\n",
600 arch->printable_name);
601 }
602 else
603 {
604 target_architecture_auto = 0;
605 target_architecture = arch;
606 }
607 break;
608 }
609 if (gdbarch_debug)
610 gdbarch_dump (current_gdbarch, gdb_stdlog);
611 }
612
613 /* Set the architecture from arch/machine (deprecated) */
614
615 void
616 set_architecture_from_arch_mach (enum bfd_architecture arch,
617 unsigned long mach)
618 {
619 const struct bfd_arch_info *wanted = bfd_lookup_arch (arch, mach);
620 if (GDB_MULTI_ARCH)
621 internal_error (__FILE__, __LINE__,
622 "set_architecture_from_arch_mach: not multi-arched");
623 if (wanted != NULL)
624 set_arch (wanted, set_arch_manual);
625 else
626 internal_error (__FILE__, __LINE__,
627 "gdbarch: hardwired architecture/machine not recognized");
628 }
629
630 /* Set the architecture from a BFD (deprecated) */
631
632 static void
633 set_architecture_from_file (bfd *abfd)
634 {
635 const struct bfd_arch_info *wanted = bfd_get_arch_info (abfd);
636 if (GDB_MULTI_ARCH)
637 internal_error (__FILE__, __LINE__,
638 "set_architecture_from_file: not multi-arched");
639 if (target_architecture_auto)
640 {
641 set_arch (wanted, set_arch_auto);
642 }
643 else if (wanted != target_architecture)
644 {
645 warning ("%s architecture file may be incompatible with %s target.",
646 wanted->printable_name,
647 target_architecture->printable_name);
648 }
649 }
650
651
652 /* Called if the user enters ``show architecture'' without an
653 argument. */
654
655 static void
656 show_architecture (char *args, int from_tty)
657 {
658 const char *arch;
659 arch = TARGET_ARCHITECTURE->printable_name;
660 if (target_architecture_auto)
661 printf_filtered ("The target architecture is set automatically (currently %s)\n", arch);
662 else
663 printf_filtered ("The target architecture is assumed to be %s\n", arch);
664 }
665
666
667 /* Called if the user enters ``set architecture'' with or without an
668 argument. */
669
670 static void
671 set_architecture (char *ignore_args, int from_tty, struct cmd_list_element *c)
672 {
673 if (strcmp (set_architecture_string, "auto") == 0)
674 {
675 target_architecture_auto = 1;
676 }
677 else if (GDB_MULTI_ARCH)
678 {
679 struct gdbarch_info info;
680 gdbarch_info_init (&info);
681 info.bfd_arch_info = bfd_scan_arch (set_architecture_string);
682 if (info.bfd_arch_info == NULL)
683 internal_error (__FILE__, __LINE__,
684 "set_architecture: bfd_scan_arch failed");
685 if (gdbarch_update_p (info))
686 target_architecture_auto = 0;
687 else
688 printf_unfiltered ("Architecture `%s' not recognized.\n",
689 set_architecture_string);
690 }
691 else
692 {
693 const struct bfd_arch_info *arch
694 = bfd_scan_arch (set_architecture_string);
695 if (arch == NULL)
696 internal_error (__FILE__, __LINE__,
697 "set_architecture: bfd_scan_arch failed");
698 set_arch (arch, set_arch_manual);
699 }
700 show_architecture (NULL, from_tty);
701 }
702
703 /* Set the dynamic target-system-dependent parameters (architecture,
704 byte-order) using information found in the BFD */
705
706 void
707 set_gdbarch_from_file (bfd *abfd)
708 {
709 if (GDB_MULTI_ARCH)
710 {
711 struct gdbarch_info info;
712 gdbarch_info_init (&info);
713 info.abfd = abfd;
714 if (! gdbarch_update_p (info))
715 error ("Architecture of file not recognized.\n");
716 }
717 else
718 {
719 set_architecture_from_file (abfd);
720 set_endian_from_file (abfd);
721 }
722 }
723
724 /* Initialize the current architecture. Update the ``set
725 architecture'' command so that it specifies a list of valid
726 architectures. */
727
728 #ifdef DEFAULT_BFD_ARCH
729 extern const bfd_arch_info_type DEFAULT_BFD_ARCH;
730 static const bfd_arch_info_type *default_bfd_arch = &DEFAULT_BFD_ARCH;
731 #else
732 static const bfd_arch_info_type *default_bfd_arch;
733 #endif
734
735 #ifdef DEFAULT_BFD_VEC
736 extern const bfd_target DEFAULT_BFD_VEC;
737 static const bfd_target *default_bfd_vec = &DEFAULT_BFD_VEC;
738 #else
739 static const bfd_target *default_bfd_vec;
740 #endif
741
742 void
743 initialize_current_architecture (void)
744 {
745 const char **arches = gdbarch_printable_names ();
746
747 /* determine a default architecture and byte order. */
748 struct gdbarch_info info;
749 gdbarch_info_init (&info);
750
751 /* Find a default architecture. */
752 if (info.bfd_arch_info == NULL
753 && default_bfd_arch != NULL)
754 info.bfd_arch_info = default_bfd_arch;
755 if (info.bfd_arch_info == NULL)
756 {
757 /* Choose the architecture by taking the first one
758 alphabetically. */
759 const char *chosen = arches[0];
760 const char **arch;
761 for (arch = arches; *arch != NULL; arch++)
762 {
763 if (strcmp (*arch, chosen) < 0)
764 chosen = *arch;
765 }
766 if (chosen == NULL)
767 internal_error (__FILE__, __LINE__,
768 "initialize_current_architecture: No arch");
769 info.bfd_arch_info = bfd_scan_arch (chosen);
770 if (info.bfd_arch_info == NULL)
771 internal_error (__FILE__, __LINE__,
772 "initialize_current_architecture: Arch not found");
773 }
774
775 /* Take several guesses at a byte order. */
776 if (info.byte_order == BFD_ENDIAN_UNKNOWN
777 && default_bfd_vec != NULL)
778 {
779 /* Extract BFD's default vector's byte order. */
780 switch (default_bfd_vec->byteorder)
781 {
782 case BFD_ENDIAN_BIG:
783 info.byte_order = BFD_ENDIAN_BIG;
784 break;
785 case BFD_ENDIAN_LITTLE:
786 info.byte_order = BFD_ENDIAN_LITTLE;
787 break;
788 default:
789 break;
790 }
791 }
792 if (info.byte_order == BFD_ENDIAN_UNKNOWN)
793 {
794 /* look for ``*el-*'' in the target name. */
795 const char *chp;
796 chp = strchr (target_name, '-');
797 if (chp != NULL
798 && chp - 2 >= target_name
799 && strncmp (chp - 2, "el", 2) == 0)
800 info.byte_order = BFD_ENDIAN_LITTLE;
801 }
802 if (info.byte_order == BFD_ENDIAN_UNKNOWN)
803 {
804 /* Wire it to big-endian!!! */
805 info.byte_order = BFD_ENDIAN_BIG;
806 }
807
808 if (GDB_MULTI_ARCH)
809 {
810 if (! gdbarch_update_p (info))
811 {
812 internal_error (__FILE__, __LINE__,
813 "initialize_current_architecture: Selection of initial architecture failed");
814 }
815 }
816 else
817 {
818 /* If the multi-arch logic comes up with a byte-order (from BFD)
819 use it for the non-multi-arch case. */
820 if (info.byte_order != BFD_ENDIAN_UNKNOWN)
821 target_byte_order = info.byte_order;
822 initialize_non_multiarch ();
823 }
824
825 /* Create the ``set architecture'' command appending ``auto'' to the
826 list of architectures. */
827 {
828 struct cmd_list_element *c;
829 /* Append ``auto''. */
830 int nr;
831 for (nr = 0; arches[nr] != NULL; nr++);
832 arches = xrealloc (arches, sizeof (char*) * (nr + 2));
833 arches[nr + 0] = "auto";
834 arches[nr + 1] = NULL;
835 /* FIXME: add_set_enum_cmd() uses an array of ``char *'' instead
836 of ``const char *''. We just happen to know that the casts are
837 safe. */
838 c = add_set_enum_cmd ("architecture", class_support,
839 arches, &set_architecture_string,
840 "Set architecture of target.",
841 &setlist);
842 set_cmd_sfunc (c, set_architecture);
843 add_alias_cmd ("processor", "architecture", class_support, 1, &setlist);
844 /* Don't use set_from_show - need to print both auto/manual and
845 current setting. */
846 add_cmd ("architecture", class_support, show_architecture,
847 "Show the current target architecture", &showlist);
848 }
849 }
850
851
852 /* Initialize a gdbarch info to values that will be automatically
853 overridden. Note: Originally, this ``struct info'' was initialized
854 using memset(0). Unfortunatly, that ran into problems, namely
855 BFD_ENDIAN_BIG is zero. An explicit initialization function that
856 can explicitly set each field to a well defined value is used. */
857
858 void
859 gdbarch_info_init (struct gdbarch_info *info)
860 {
861 memset (info, 0, sizeof (struct gdbarch_info));
862 info->byte_order = BFD_ENDIAN_UNKNOWN;
863 }
864
865 /* */
866
867 extern initialize_file_ftype _initialize_gdbarch_utils;
868
869 void
870 _initialize_gdbarch_utils (void)
871 {
872 struct cmd_list_element *c;
873 c = add_set_enum_cmd ("endian", class_support,
874 endian_enum, &set_endian_string,
875 "Set endianness of target.",
876 &setlist);
877 set_cmd_sfunc (c, set_endian);
878 /* Don't use set_from_show - need to print both auto/manual and
879 current setting. */
880 add_cmd ("endian", class_support, show_endian,
881 "Show the current byte-order", &showlist);
882 }
This page took 0.046888 seconds and 4 git commands to generate.