2003-11-09 Andrew Cagney <cagney@redhat.com>
[deliverable/binutils-gdb.git] / gdb / arch-utils.c
1 /* Dynamic architecture support for GDB, the GNU debugger.
2
3 Copyright 1998, 1999, 2000, 2001, 2002, 2003 Free Software Foundation,
4 Inc.
5
6 This file is part of GDB.
7
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 2 of the License, or
11 (at your option) any later version.
12
13 This program is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with this program; if not, write to the Free Software
20 Foundation, Inc., 59 Temple Place - Suite 330,
21 Boston, MA 02111-1307, USA. */
22
23 #include "defs.h"
24
25 #include "arch-utils.h"
26 #include "buildsym.h"
27 #include "gdbcmd.h"
28 #include "inferior.h" /* enum CALL_DUMMY_LOCATION et.al. */
29 #include "gdb_string.h"
30 #include "regcache.h"
31 #include "gdb_assert.h"
32 #include "sim-regno.h"
33
34 #include "osabi.h"
35
36 #include "version.h"
37
38 #include "floatformat.h"
39
40 /* Implementation of extract return value that grubs around in the
41 register cache. */
42 void
43 legacy_extract_return_value (struct type *type, struct regcache *regcache,
44 void *valbuf)
45 {
46 char *registers = deprecated_grub_regcache_for_registers (regcache);
47 bfd_byte *buf = valbuf;
48 DEPRECATED_EXTRACT_RETURN_VALUE (type, registers, buf); /* OK */
49 }
50
51 /* Implementation of store return value that grubs the register cache.
52 Takes a local copy of the buffer to avoid const problems. */
53 void
54 legacy_store_return_value (struct type *type, struct regcache *regcache,
55 const void *buf)
56 {
57 bfd_byte *b = alloca (TYPE_LENGTH (type));
58 gdb_assert (regcache == current_regcache);
59 memcpy (b, buf, TYPE_LENGTH (type));
60 DEPRECATED_STORE_RETURN_VALUE (type, b);
61 }
62
63
64 int
65 always_use_struct_convention (int gcc_p, struct type *value_type)
66 {
67 return 1;
68 }
69
70
71 int
72 legacy_register_sim_regno (int regnum)
73 {
74 /* Only makes sense to supply raw registers. */
75 gdb_assert (regnum >= 0 && regnum < NUM_REGS);
76 /* NOTE: cagney/2002-05-13: The old code did it this way and it is
77 suspected that some GDB/SIM combinations may rely on this
78 behavour. The default should be one2one_register_sim_regno
79 (below). */
80 if (REGISTER_NAME (regnum) != NULL
81 && REGISTER_NAME (regnum)[0] != '\0')
82 return regnum;
83 else
84 return LEGACY_SIM_REGNO_IGNORE;
85 }
86
87 int
88 generic_frameless_function_invocation_not (struct frame_info *fi)
89 {
90 return 0;
91 }
92
93 int
94 generic_return_value_on_stack_not (struct type *type)
95 {
96 return 0;
97 }
98
99 CORE_ADDR
100 generic_skip_trampoline_code (CORE_ADDR pc)
101 {
102 return 0;
103 }
104
105 CORE_ADDR
106 generic_skip_solib_resolver (CORE_ADDR pc)
107 {
108 return 0;
109 }
110
111 int
112 generic_in_solib_call_trampoline (CORE_ADDR pc, char *name)
113 {
114 return 0;
115 }
116
117 int
118 generic_in_solib_return_trampoline (CORE_ADDR pc, char *name)
119 {
120 return 0;
121 }
122
123 int
124 generic_in_function_epilogue_p (struct gdbarch *gdbarch, CORE_ADDR pc)
125 {
126 return 0;
127 }
128
129 #if defined (CALL_DUMMY)
130 LONGEST legacy_call_dummy_words[] = CALL_DUMMY;
131 #else
132 LONGEST legacy_call_dummy_words[1];
133 #endif
134 int legacy_sizeof_call_dummy_words = sizeof (legacy_call_dummy_words);
135
136 void
137 generic_remote_translate_xfer_address (struct gdbarch *gdbarch,
138 struct regcache *regcache,
139 CORE_ADDR gdb_addr, int gdb_len,
140 CORE_ADDR * rem_addr, int *rem_len)
141 {
142 *rem_addr = gdb_addr;
143 *rem_len = gdb_len;
144 }
145
146 int
147 generic_prologue_frameless_p (CORE_ADDR ip)
148 {
149 return ip == SKIP_PROLOGUE (ip);
150 }
151
152 /* Helper functions for INNER_THAN */
153
154 int
155 core_addr_lessthan (CORE_ADDR lhs, CORE_ADDR rhs)
156 {
157 return (lhs < rhs);
158 }
159
160 int
161 core_addr_greaterthan (CORE_ADDR lhs, CORE_ADDR rhs)
162 {
163 return (lhs > rhs);
164 }
165
166
167 /* Helper functions for TARGET_{FLOAT,DOUBLE}_FORMAT */
168
169 const struct floatformat *
170 default_float_format (struct gdbarch *gdbarch)
171 {
172 int byte_order = gdbarch_byte_order (gdbarch);
173 switch (byte_order)
174 {
175 case BFD_ENDIAN_BIG:
176 return &floatformat_ieee_single_big;
177 case BFD_ENDIAN_LITTLE:
178 return &floatformat_ieee_single_little;
179 default:
180 internal_error (__FILE__, __LINE__,
181 "default_float_format: bad byte order");
182 }
183 }
184
185
186 const struct floatformat *
187 default_double_format (struct gdbarch *gdbarch)
188 {
189 int byte_order = gdbarch_byte_order (gdbarch);
190 switch (byte_order)
191 {
192 case BFD_ENDIAN_BIG:
193 return &floatformat_ieee_double_big;
194 case BFD_ENDIAN_LITTLE:
195 return &floatformat_ieee_double_little;
196 default:
197 internal_error (__FILE__, __LINE__,
198 "default_double_format: bad byte order");
199 }
200 }
201
202 /* Misc helper functions for targets. */
203
204 int
205 deprecated_register_convertible_not (int num)
206 {
207 return 0;
208 }
209
210
211 CORE_ADDR
212 core_addr_identity (CORE_ADDR addr)
213 {
214 return addr;
215 }
216
217 CORE_ADDR
218 convert_from_func_ptr_addr_identity (struct gdbarch *gdbarch, CORE_ADDR addr,
219 struct target_ops *targ)
220 {
221 return addr;
222 }
223
224 int
225 no_op_reg_to_regnum (int reg)
226 {
227 return reg;
228 }
229
230 CORE_ADDR
231 deprecated_init_frame_pc_default (int fromleaf, struct frame_info *prev)
232 {
233 if (fromleaf && DEPRECATED_SAVED_PC_AFTER_CALL_P ())
234 return DEPRECATED_SAVED_PC_AFTER_CALL (get_next_frame (prev));
235 else if (get_next_frame (prev) != NULL)
236 return DEPRECATED_FRAME_SAVED_PC (get_next_frame (prev));
237 else
238 return read_pc ();
239 }
240
241 void
242 default_elf_make_msymbol_special (asymbol *sym, struct minimal_symbol *msym)
243 {
244 return;
245 }
246
247 void
248 default_coff_make_msymbol_special (int val, struct minimal_symbol *msym)
249 {
250 return;
251 }
252
253 int
254 cannot_register_not (int regnum)
255 {
256 return 0;
257 }
258
259 /* Legacy version of target_virtual_frame_pointer(). Assumes that
260 there is an DEPRECATED_FP_REGNUM and that it is the same, cooked or
261 raw. */
262
263 void
264 legacy_virtual_frame_pointer (CORE_ADDR pc,
265 int *frame_regnum,
266 LONGEST *frame_offset)
267 {
268 /* FIXME: cagney/2002-09-13: This code is used when identifying the
269 frame pointer of the current PC. It is assuming that a single
270 register and an offset can determine this. I think it should
271 instead generate a byte code expression as that would work better
272 with things like Dwarf2's CFI. */
273 if (DEPRECATED_FP_REGNUM >= 0 && DEPRECATED_FP_REGNUM < NUM_REGS)
274 *frame_regnum = DEPRECATED_FP_REGNUM;
275 else if (SP_REGNUM >= 0 && SP_REGNUM < NUM_REGS)
276 *frame_regnum = SP_REGNUM;
277 else
278 /* Should this be an internal error? I guess so, it is reflecting
279 an architectural limitation in the current design. */
280 internal_error (__FILE__, __LINE__, "No virtual frame pointer available");
281 *frame_offset = 0;
282 }
283
284 /* Assume the world is sane, every register's virtual and real size
285 is identical. */
286
287 int
288 generic_register_size (int regnum)
289 {
290 gdb_assert (regnum >= 0 && regnum < NUM_REGS + NUM_PSEUDO_REGS);
291 if (gdbarch_register_type_p (current_gdbarch))
292 return TYPE_LENGTH (gdbarch_register_type (current_gdbarch, regnum));
293 else
294 /* FIXME: cagney/2003-03-01: Once all architectures implement
295 gdbarch_register_type(), this entire function can go away. It
296 is made obsolete by register_size(). */
297 return TYPE_LENGTH (DEPRECATED_REGISTER_VIRTUAL_TYPE (regnum)); /* OK */
298 }
299
300 /* Assume all registers are adjacent. */
301
302 int
303 generic_register_byte (int regnum)
304 {
305 int byte;
306 int i;
307 gdb_assert (regnum >= 0 && regnum < NUM_REGS + NUM_PSEUDO_REGS);
308 byte = 0;
309 for (i = 0; i < regnum; i++)
310 {
311 byte += generic_register_size (i);
312 }
313 return byte;
314 }
315
316 \f
317 int
318 legacy_pc_in_sigtramp (CORE_ADDR pc, char *name)
319 {
320 #if !defined (IN_SIGTRAMP)
321 if (SIGTRAMP_START_P ())
322 return (pc) >= SIGTRAMP_START (pc) && (pc) < SIGTRAMP_END (pc);
323 else
324 return name && strcmp ("_sigtramp", name) == 0;
325 #else
326 return IN_SIGTRAMP (pc, name);
327 #endif
328 }
329
330 int
331 legacy_convert_register_p (int regnum, struct type *type)
332 {
333 return DEPRECATED_REGISTER_CONVERTIBLE (regnum);
334 }
335
336 void
337 legacy_register_to_value (struct frame_info *frame, int regnum,
338 struct type *type, void *to)
339 {
340 char from[MAX_REGISTER_SIZE];
341 get_frame_register (frame, regnum, from);
342 DEPRECATED_REGISTER_CONVERT_TO_VIRTUAL (regnum, type, from, to);
343 }
344
345 void
346 legacy_value_to_register (struct frame_info *frame, int regnum,
347 struct type *type, const void *tmp)
348 {
349 char to[MAX_REGISTER_SIZE];
350 char *from = alloca (TYPE_LENGTH (type));
351 memcpy (from, from, TYPE_LENGTH (type));
352 DEPRECATED_REGISTER_CONVERT_TO_RAW (type, regnum, from, to);
353 put_frame_register (frame, regnum, to);
354 }
355
356 int
357 default_stabs_argument_has_addr (struct gdbarch *gdbarch, struct type *type)
358 {
359 if (DEPRECATED_REG_STRUCT_HAS_ADDR_P ()
360 && DEPRECATED_REG_STRUCT_HAS_ADDR (processing_gcc_compilation, type))
361 {
362 CHECK_TYPEDEF (type);
363
364 return (TYPE_CODE (type) == TYPE_CODE_STRUCT
365 || TYPE_CODE (type) == TYPE_CODE_UNION
366 || TYPE_CODE (type) == TYPE_CODE_SET
367 || TYPE_CODE (type) == TYPE_CODE_BITSTRING);
368 }
369
370 return 0;
371 }
372
373 \f
374 /* Functions to manipulate the endianness of the target. */
375
376 /* ``target_byte_order'' is only used when non- multi-arch.
377 Multi-arch targets obtain the current byte order using the
378 TARGET_BYTE_ORDER gdbarch method.
379
380 The choice of initial value is entirely arbitrary. During startup,
381 the function initialize_current_architecture() updates this value
382 based on default byte-order information extracted from BFD. */
383 int target_byte_order = BFD_ENDIAN_BIG;
384 int target_byte_order_auto = 1;
385
386 static const char endian_big[] = "big";
387 static const char endian_little[] = "little";
388 static const char endian_auto[] = "auto";
389 static const char *endian_enum[] =
390 {
391 endian_big,
392 endian_little,
393 endian_auto,
394 NULL,
395 };
396 static const char *set_endian_string;
397
398 /* Called by ``show endian''. */
399
400 static void
401 show_endian (char *args, int from_tty)
402 {
403 if (TARGET_BYTE_ORDER_AUTO)
404 printf_unfiltered ("The target endianness is set automatically (currently %s endian)\n",
405 (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG ? "big" : "little"));
406 else
407 printf_unfiltered ("The target is assumed to be %s endian\n",
408 (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG ? "big" : "little"));
409 }
410
411 static void
412 set_endian (char *ignore_args, int from_tty, struct cmd_list_element *c)
413 {
414 if (set_endian_string == endian_auto)
415 {
416 target_byte_order_auto = 1;
417 }
418 else if (set_endian_string == endian_little)
419 {
420 struct gdbarch_info info;
421 target_byte_order_auto = 0;
422 gdbarch_info_init (&info);
423 info.byte_order = BFD_ENDIAN_LITTLE;
424 if (! gdbarch_update_p (info))
425 printf_unfiltered ("Little endian target not supported by GDB\n");
426 }
427 else if (set_endian_string == endian_big)
428 {
429 struct gdbarch_info info;
430 target_byte_order_auto = 0;
431 gdbarch_info_init (&info);
432 info.byte_order = BFD_ENDIAN_BIG;
433 if (! gdbarch_update_p (info))
434 printf_unfiltered ("Big endian target not supported by GDB\n");
435 }
436 else
437 internal_error (__FILE__, __LINE__,
438 "set_endian: bad value");
439 show_endian (NULL, from_tty);
440 }
441
442 /* Functions to manipulate the architecture of the target */
443
444 enum set_arch { set_arch_auto, set_arch_manual };
445
446 int target_architecture_auto = 1;
447
448 const char *set_architecture_string;
449
450 /* Called if the user enters ``show architecture'' without an
451 argument. */
452
453 static void
454 show_architecture (char *args, int from_tty)
455 {
456 const char *arch;
457 arch = TARGET_ARCHITECTURE->printable_name;
458 if (target_architecture_auto)
459 printf_filtered ("The target architecture is set automatically (currently %s)\n", arch);
460 else
461 printf_filtered ("The target architecture is assumed to be %s\n", arch);
462 }
463
464
465 /* Called if the user enters ``set architecture'' with or without an
466 argument. */
467
468 static void
469 set_architecture (char *ignore_args, int from_tty, struct cmd_list_element *c)
470 {
471 if (strcmp (set_architecture_string, "auto") == 0)
472 {
473 target_architecture_auto = 1;
474 }
475 else
476 {
477 struct gdbarch_info info;
478 gdbarch_info_init (&info);
479 info.bfd_arch_info = bfd_scan_arch (set_architecture_string);
480 if (info.bfd_arch_info == NULL)
481 internal_error (__FILE__, __LINE__,
482 "set_architecture: bfd_scan_arch failed");
483 if (gdbarch_update_p (info))
484 target_architecture_auto = 0;
485 else
486 printf_unfiltered ("Architecture `%s' not recognized.\n",
487 set_architecture_string);
488 }
489 show_architecture (NULL, from_tty);
490 }
491
492 /* FIXME: kettenis/20031124: Of the functions that follow, only
493 gdbarch_from_bfd is supposed to survive. The others will
494 dissappear since in the future GDB will (hopefully) be truly
495 multi-arch. However, for now we're still stuck with the concept of
496 a single active architecture. */
497
498 /* Make GDBARCH the currently selected architecture. */
499
500 static void
501 deprecated_select_gdbarch_hack (struct gdbarch *gdbarch)
502 {
503 struct gdbarch_info info;
504
505 /* FIXME: kettenis/20031024: The only way to select a specific
506 architecture is to clone its `struct gdbarch_info', and update
507 according to that copy. This is gross, but significant work will
508 need to be done before we can take a more sane approach. */
509 gdbarch_info_init (&info);
510 info.bfd_arch_info = gdbarch_bfd_arch_info (gdbarch);
511 info.byte_order = gdbarch_byte_order (gdbarch);
512 info.osabi = gdbarch_osabi (gdbarch);
513 gdbarch_update_p (info);
514 gdb_assert (gdbarch == current_gdbarch);
515 }
516
517 /* Return the architecture for ABFD. If no suitable architecture
518 could be find, return NULL. */
519
520 struct gdbarch *
521 gdbarch_from_bfd (bfd *abfd)
522 {
523 struct gdbarch *old_gdbarch = current_gdbarch;
524 struct gdbarch *new_gdbarch;
525 struct gdbarch_info info;
526
527 /* FIXME: kettenis/20031024: The only way to find the architecture
528 for a certain BFD is by doing an architecture update. This
529 activates the architecture, so we need to reactivate the old
530 architecture. This is gross, but significant work will need to
531 be done before we can take a more sane approach. */
532 gdbarch_info_init (&info);
533 info.abfd = abfd;
534 if (! gdbarch_update_p (info))
535 return NULL;
536
537 new_gdbarch = current_gdbarch;
538 deprecated_select_gdbarch_hack (old_gdbarch);
539 return new_gdbarch;
540 }
541
542 /* Set the dynamic target-system-dependent parameters (architecture,
543 byte-order) using information found in the BFD */
544
545 void
546 set_gdbarch_from_file (bfd *abfd)
547 {
548 struct gdbarch *gdbarch;
549
550 gdbarch = gdbarch_from_bfd (abfd);
551 if (gdbarch == NULL)
552 error ("Architecture of file not recognized.\n");
553 deprecated_select_gdbarch_hack (gdbarch);
554 }
555
556 /* Initialize the current architecture. Update the ``set
557 architecture'' command so that it specifies a list of valid
558 architectures. */
559
560 #ifdef DEFAULT_BFD_ARCH
561 extern const bfd_arch_info_type DEFAULT_BFD_ARCH;
562 static const bfd_arch_info_type *default_bfd_arch = &DEFAULT_BFD_ARCH;
563 #else
564 static const bfd_arch_info_type *default_bfd_arch;
565 #endif
566
567 #ifdef DEFAULT_BFD_VEC
568 extern const bfd_target DEFAULT_BFD_VEC;
569 static const bfd_target *default_bfd_vec = &DEFAULT_BFD_VEC;
570 #else
571 static const bfd_target *default_bfd_vec;
572 #endif
573
574 void
575 initialize_current_architecture (void)
576 {
577 const char **arches = gdbarch_printable_names ();
578
579 /* determine a default architecture and byte order. */
580 struct gdbarch_info info;
581 gdbarch_info_init (&info);
582
583 /* Find a default architecture. */
584 if (info.bfd_arch_info == NULL
585 && default_bfd_arch != NULL)
586 info.bfd_arch_info = default_bfd_arch;
587 if (info.bfd_arch_info == NULL)
588 {
589 /* Choose the architecture by taking the first one
590 alphabetically. */
591 const char *chosen = arches[0];
592 const char **arch;
593 for (arch = arches; *arch != NULL; arch++)
594 {
595 if (strcmp (*arch, chosen) < 0)
596 chosen = *arch;
597 }
598 if (chosen == NULL)
599 internal_error (__FILE__, __LINE__,
600 "initialize_current_architecture: No arch");
601 info.bfd_arch_info = bfd_scan_arch (chosen);
602 if (info.bfd_arch_info == NULL)
603 internal_error (__FILE__, __LINE__,
604 "initialize_current_architecture: Arch not found");
605 }
606
607 /* Take several guesses at a byte order. */
608 if (info.byte_order == BFD_ENDIAN_UNKNOWN
609 && default_bfd_vec != NULL)
610 {
611 /* Extract BFD's default vector's byte order. */
612 switch (default_bfd_vec->byteorder)
613 {
614 case BFD_ENDIAN_BIG:
615 info.byte_order = BFD_ENDIAN_BIG;
616 break;
617 case BFD_ENDIAN_LITTLE:
618 info.byte_order = BFD_ENDIAN_LITTLE;
619 break;
620 default:
621 break;
622 }
623 }
624 if (info.byte_order == BFD_ENDIAN_UNKNOWN)
625 {
626 /* look for ``*el-*'' in the target name. */
627 const char *chp;
628 chp = strchr (target_name, '-');
629 if (chp != NULL
630 && chp - 2 >= target_name
631 && strncmp (chp - 2, "el", 2) == 0)
632 info.byte_order = BFD_ENDIAN_LITTLE;
633 }
634 if (info.byte_order == BFD_ENDIAN_UNKNOWN)
635 {
636 /* Wire it to big-endian!!! */
637 info.byte_order = BFD_ENDIAN_BIG;
638 }
639
640 if (! gdbarch_update_p (info))
641 internal_error (__FILE__, __LINE__,
642 "initialize_current_architecture: Selection of initial architecture failed");
643
644 /* Create the ``set architecture'' command appending ``auto'' to the
645 list of architectures. */
646 {
647 struct cmd_list_element *c;
648 /* Append ``auto''. */
649 int nr;
650 for (nr = 0; arches[nr] != NULL; nr++);
651 arches = xrealloc (arches, sizeof (char*) * (nr + 2));
652 arches[nr + 0] = "auto";
653 arches[nr + 1] = NULL;
654 /* FIXME: add_set_enum_cmd() uses an array of ``char *'' instead
655 of ``const char *''. We just happen to know that the casts are
656 safe. */
657 c = add_set_enum_cmd ("architecture", class_support,
658 arches, &set_architecture_string,
659 "Set architecture of target.",
660 &setlist);
661 set_cmd_sfunc (c, set_architecture);
662 add_alias_cmd ("processor", "architecture", class_support, 1, &setlist);
663 /* Don't use set_from_show - need to print both auto/manual and
664 current setting. */
665 add_cmd ("architecture", class_support, show_architecture,
666 "Show the current target architecture", &showlist);
667 }
668 }
669
670
671 /* Initialize a gdbarch info to values that will be automatically
672 overridden. Note: Originally, this ``struct info'' was initialized
673 using memset(0). Unfortunately, that ran into problems, namely
674 BFD_ENDIAN_BIG is zero. An explicit initialization function that
675 can explicitly set each field to a well defined value is used. */
676
677 void
678 gdbarch_info_init (struct gdbarch_info *info)
679 {
680 memset (info, 0, sizeof (struct gdbarch_info));
681 info->byte_order = BFD_ENDIAN_UNKNOWN;
682 info->osabi = GDB_OSABI_UNINITIALIZED;
683 }
684
685 /* Similar it init, but this time fill in the blanks. Information is
686 obtained from the specified architecture, global "set ..." options,
687 and explicitly initialized INFO fields. */
688
689 void
690 gdbarch_info_fill (struct gdbarch *gdbarch, struct gdbarch_info *info)
691 {
692 /* "(gdb) set architecture ...". */
693 if (info->bfd_arch_info == NULL
694 && !target_architecture_auto
695 && gdbarch != NULL)
696 info->bfd_arch_info = gdbarch_bfd_arch_info (gdbarch);
697 if (info->bfd_arch_info == NULL
698 && info->abfd != NULL
699 && bfd_get_arch (info->abfd) != bfd_arch_unknown
700 && bfd_get_arch (info->abfd) != bfd_arch_obscure)
701 info->bfd_arch_info = bfd_get_arch_info (info->abfd);
702 if (info->bfd_arch_info == NULL
703 && gdbarch != NULL)
704 info->bfd_arch_info = gdbarch_bfd_arch_info (gdbarch);
705
706 /* "(gdb) set byte-order ...". */
707 if (info->byte_order == BFD_ENDIAN_UNKNOWN
708 && !target_byte_order_auto
709 && gdbarch != NULL)
710 info->byte_order = gdbarch_byte_order (gdbarch);
711 /* From the INFO struct. */
712 if (info->byte_order == BFD_ENDIAN_UNKNOWN
713 && info->abfd != NULL)
714 info->byte_order = (bfd_big_endian (info->abfd) ? BFD_ENDIAN_BIG
715 : bfd_little_endian (info->abfd) ? BFD_ENDIAN_LITTLE
716 : BFD_ENDIAN_UNKNOWN);
717 /* From the current target. */
718 if (info->byte_order == BFD_ENDIAN_UNKNOWN
719 && gdbarch != NULL)
720 info->byte_order = gdbarch_byte_order (gdbarch);
721
722 /* "(gdb) set osabi ...". Handled by gdbarch_lookup_osabi. */
723 if (info->osabi == GDB_OSABI_UNINITIALIZED)
724 info->osabi = gdbarch_lookup_osabi (info->abfd);
725 if (info->osabi == GDB_OSABI_UNINITIALIZED
726 && gdbarch != NULL)
727 info->osabi = gdbarch_osabi (gdbarch);
728
729 /* Must have at least filled in the architecture. */
730 gdb_assert (info->bfd_arch_info != NULL);
731 }
732
733 /* */
734
735 extern initialize_file_ftype _initialize_gdbarch_utils; /* -Wmissing-prototypes */
736
737 void
738 _initialize_gdbarch_utils (void)
739 {
740 struct cmd_list_element *c;
741 c = add_set_enum_cmd ("endian", class_support,
742 endian_enum, &set_endian_string,
743 "Set endianness of target.",
744 &setlist);
745 set_cmd_sfunc (c, set_endian);
746 /* Don't use set_from_show - need to print both auto/manual and
747 current setting. */
748 add_cmd ("endian", class_support, show_endian,
749 "Show the current byte-order", &showlist);
750 }
This page took 0.058133 seconds and 4 git commands to generate.