*** empty log message ***
[deliverable/binutils-gdb.git] / gdb / arch-utils.c
1 /* Dynamic architecture support for GDB, the GNU debugger.
2
3 Copyright 1998, 1999, 2000, 2001, 2002, 2003 Free Software Foundation,
4 Inc.
5
6 This file is part of GDB.
7
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 2 of the License, or
11 (at your option) any later version.
12
13 This program is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with this program; if not, write to the Free Software
20 Foundation, Inc., 59 Temple Place - Suite 330,
21 Boston, MA 02111-1307, USA. */
22
23 #include "defs.h"
24
25 #include "arch-utils.h"
26 #include "buildsym.h"
27 #include "gdbcmd.h"
28 #include "inferior.h" /* enum CALL_DUMMY_LOCATION et.al. */
29 #include "gdb_string.h"
30 #include "regcache.h"
31 #include "gdb_assert.h"
32 #include "sim-regno.h"
33
34 #include "osabi.h"
35
36 #include "version.h"
37
38 #include "floatformat.h"
39
40 /* Implementation of extract return value that grubs around in the
41 register cache. */
42 void
43 legacy_extract_return_value (struct type *type, struct regcache *regcache,
44 void *valbuf)
45 {
46 char *registers = deprecated_grub_regcache_for_registers (regcache);
47 bfd_byte *buf = valbuf;
48 DEPRECATED_EXTRACT_RETURN_VALUE (type, registers, buf); /* OK */
49 }
50
51 /* Implementation of store return value that grubs the register cache.
52 Takes a local copy of the buffer to avoid const problems. */
53 void
54 legacy_store_return_value (struct type *type, struct regcache *regcache,
55 const void *buf)
56 {
57 bfd_byte *b = alloca (TYPE_LENGTH (type));
58 gdb_assert (regcache == current_regcache);
59 memcpy (b, buf, TYPE_LENGTH (type));
60 DEPRECATED_STORE_RETURN_VALUE (type, b);
61 }
62
63
64 int
65 always_use_struct_convention (int gcc_p, struct type *value_type)
66 {
67 return 1;
68 }
69
70
71 int
72 legacy_register_sim_regno (int regnum)
73 {
74 /* Only makes sense to supply raw registers. */
75 gdb_assert (regnum >= 0 && regnum < NUM_REGS);
76 /* NOTE: cagney/2002-05-13: The old code did it this way and it is
77 suspected that some GDB/SIM combinations may rely on this
78 behavour. The default should be one2one_register_sim_regno
79 (below). */
80 if (REGISTER_NAME (regnum) != NULL
81 && REGISTER_NAME (regnum)[0] != '\0')
82 return regnum;
83 else
84 return LEGACY_SIM_REGNO_IGNORE;
85 }
86
87 int
88 generic_frameless_function_invocation_not (struct frame_info *fi)
89 {
90 return 0;
91 }
92
93 int
94 generic_return_value_on_stack_not (struct type *type)
95 {
96 return 0;
97 }
98
99 CORE_ADDR
100 generic_skip_trampoline_code (CORE_ADDR pc)
101 {
102 return 0;
103 }
104
105 CORE_ADDR
106 generic_skip_solib_resolver (struct gdbarch *gdbarch, CORE_ADDR pc)
107 {
108 return 0;
109 }
110
111 int
112 generic_in_solib_call_trampoline (CORE_ADDR pc, char *name)
113 {
114 return 0;
115 }
116
117 int
118 generic_in_solib_return_trampoline (CORE_ADDR pc, char *name)
119 {
120 return 0;
121 }
122
123 int
124 generic_in_function_epilogue_p (struct gdbarch *gdbarch, CORE_ADDR pc)
125 {
126 return 0;
127 }
128
129 #if defined (CALL_DUMMY)
130 LONGEST legacy_call_dummy_words[] = CALL_DUMMY;
131 #else
132 LONGEST legacy_call_dummy_words[1];
133 #endif
134 int legacy_sizeof_call_dummy_words = sizeof (legacy_call_dummy_words);
135
136 void
137 generic_remote_translate_xfer_address (struct gdbarch *gdbarch,
138 struct regcache *regcache,
139 CORE_ADDR gdb_addr, int gdb_len,
140 CORE_ADDR * rem_addr, int *rem_len)
141 {
142 *rem_addr = gdb_addr;
143 *rem_len = gdb_len;
144 }
145
146 int
147 generic_prologue_frameless_p (CORE_ADDR ip)
148 {
149 return ip == SKIP_PROLOGUE (ip);
150 }
151
152 /* Helper functions for INNER_THAN */
153
154 int
155 core_addr_lessthan (CORE_ADDR lhs, CORE_ADDR rhs)
156 {
157 return (lhs < rhs);
158 }
159
160 int
161 core_addr_greaterthan (CORE_ADDR lhs, CORE_ADDR rhs)
162 {
163 return (lhs > rhs);
164 }
165
166
167 /* Helper functions for TARGET_{FLOAT,DOUBLE}_FORMAT */
168
169 const struct floatformat *
170 default_float_format (struct gdbarch *gdbarch)
171 {
172 int byte_order = gdbarch_byte_order (gdbarch);
173 switch (byte_order)
174 {
175 case BFD_ENDIAN_BIG:
176 return &floatformat_ieee_single_big;
177 case BFD_ENDIAN_LITTLE:
178 return &floatformat_ieee_single_little;
179 default:
180 internal_error (__FILE__, __LINE__,
181 "default_float_format: bad byte order");
182 }
183 }
184
185
186 const struct floatformat *
187 default_double_format (struct gdbarch *gdbarch)
188 {
189 int byte_order = gdbarch_byte_order (gdbarch);
190 switch (byte_order)
191 {
192 case BFD_ENDIAN_BIG:
193 return &floatformat_ieee_double_big;
194 case BFD_ENDIAN_LITTLE:
195 return &floatformat_ieee_double_little;
196 default:
197 internal_error (__FILE__, __LINE__,
198 "default_double_format: bad byte order");
199 }
200 }
201
202 /* Misc helper functions for targets. */
203
204 int
205 deprecated_register_convertible_not (int num)
206 {
207 return 0;
208 }
209
210
211 CORE_ADDR
212 core_addr_identity (CORE_ADDR addr)
213 {
214 return addr;
215 }
216
217 CORE_ADDR
218 convert_from_func_ptr_addr_identity (struct gdbarch *gdbarch, CORE_ADDR addr,
219 struct target_ops *targ)
220 {
221 return addr;
222 }
223
224 int
225 no_op_reg_to_regnum (int reg)
226 {
227 return reg;
228 }
229
230 CORE_ADDR
231 deprecated_init_frame_pc_default (int fromleaf, struct frame_info *prev)
232 {
233 if (fromleaf && DEPRECATED_SAVED_PC_AFTER_CALL_P ())
234 return DEPRECATED_SAVED_PC_AFTER_CALL (get_next_frame (prev));
235 else if (get_next_frame (prev) != NULL)
236 return DEPRECATED_FRAME_SAVED_PC (get_next_frame (prev));
237 else
238 return read_pc ();
239 }
240
241 void
242 default_elf_make_msymbol_special (asymbol *sym, struct minimal_symbol *msym)
243 {
244 return;
245 }
246
247 void
248 default_coff_make_msymbol_special (int val, struct minimal_symbol *msym)
249 {
250 return;
251 }
252
253 int
254 cannot_register_not (int regnum)
255 {
256 return 0;
257 }
258
259 /* Legacy version of target_virtual_frame_pointer(). Assumes that
260 there is an DEPRECATED_FP_REGNUM and that it is the same, cooked or
261 raw. */
262
263 void
264 legacy_virtual_frame_pointer (CORE_ADDR pc,
265 int *frame_regnum,
266 LONGEST *frame_offset)
267 {
268 /* FIXME: cagney/2002-09-13: This code is used when identifying the
269 frame pointer of the current PC. It is assuming that a single
270 register and an offset can determine this. I think it should
271 instead generate a byte code expression as that would work better
272 with things like Dwarf2's CFI. */
273 if (DEPRECATED_FP_REGNUM >= 0 && DEPRECATED_FP_REGNUM < NUM_REGS)
274 *frame_regnum = DEPRECATED_FP_REGNUM;
275 else if (SP_REGNUM >= 0 && SP_REGNUM < NUM_REGS)
276 *frame_regnum = SP_REGNUM;
277 else
278 /* Should this be an internal error? I guess so, it is reflecting
279 an architectural limitation in the current design. */
280 internal_error (__FILE__, __LINE__, "No virtual frame pointer available");
281 *frame_offset = 0;
282 }
283
284 /* Assume the world is sane, every register's virtual and real size
285 is identical. */
286
287 int
288 generic_register_size (int regnum)
289 {
290 gdb_assert (regnum >= 0 && regnum < NUM_REGS + NUM_PSEUDO_REGS);
291 if (gdbarch_register_type_p (current_gdbarch))
292 return TYPE_LENGTH (gdbarch_register_type (current_gdbarch, regnum));
293 else
294 /* FIXME: cagney/2003-03-01: Once all architectures implement
295 gdbarch_register_type(), this entire function can go away. It
296 is made obsolete by register_size(). */
297 return TYPE_LENGTH (DEPRECATED_REGISTER_VIRTUAL_TYPE (regnum)); /* OK */
298 }
299
300 /* Assume all registers are adjacent. */
301
302 int
303 generic_register_byte (int regnum)
304 {
305 int byte;
306 int i;
307 gdb_assert (regnum >= 0 && regnum < NUM_REGS + NUM_PSEUDO_REGS);
308 byte = 0;
309 for (i = 0; i < regnum; i++)
310 {
311 byte += generic_register_size (i);
312 }
313 return byte;
314 }
315
316 \f
317 int
318 legacy_pc_in_sigtramp (CORE_ADDR pc, char *name)
319 {
320 #if !defined (IN_SIGTRAMP)
321 if (SIGTRAMP_START_P ())
322 return (pc) >= SIGTRAMP_START (pc) && (pc) < SIGTRAMP_END (pc);
323 else
324 return name && strcmp ("_sigtramp", name) == 0;
325 #else
326 return IN_SIGTRAMP (pc, name);
327 #endif
328 }
329
330 int
331 legacy_convert_register_p (int regnum, struct type *type)
332 {
333 return DEPRECATED_REGISTER_CONVERTIBLE (regnum);
334 }
335
336 void
337 legacy_register_to_value (struct frame_info *frame, int regnum,
338 struct type *type, void *to)
339 {
340 char from[MAX_REGISTER_SIZE];
341 get_frame_register (frame, regnum, from);
342 DEPRECATED_REGISTER_CONVERT_TO_VIRTUAL (regnum, type, from, to);
343 }
344
345 void
346 legacy_value_to_register (struct frame_info *frame, int regnum,
347 struct type *type, const void *tmp)
348 {
349 char to[MAX_REGISTER_SIZE];
350 char *from = alloca (TYPE_LENGTH (type));
351 memcpy (from, from, TYPE_LENGTH (type));
352 DEPRECATED_REGISTER_CONVERT_TO_RAW (type, regnum, from, to);
353 put_frame_register (frame, regnum, to);
354 }
355
356 int
357 default_stabs_argument_has_addr (struct gdbarch *gdbarch, struct type *type)
358 {
359 if (DEPRECATED_REG_STRUCT_HAS_ADDR_P ()
360 && DEPRECATED_REG_STRUCT_HAS_ADDR (processing_gcc_compilation, type))
361 {
362 CHECK_TYPEDEF (type);
363
364 return (TYPE_CODE (type) == TYPE_CODE_STRUCT
365 || TYPE_CODE (type) == TYPE_CODE_UNION
366 || TYPE_CODE (type) == TYPE_CODE_SET
367 || TYPE_CODE (type) == TYPE_CODE_BITSTRING);
368 }
369
370 return 0;
371 }
372
373 \f
374 /* Functions to manipulate the endianness of the target. */
375
376 /* ``target_byte_order'' is only used when non- multi-arch.
377 Multi-arch targets obtain the current byte order using the
378 TARGET_BYTE_ORDER gdbarch method.
379
380 The choice of initial value is entirely arbitrary. During startup,
381 the function initialize_current_architecture() updates this value
382 based on default byte-order information extracted from BFD. */
383 static int target_byte_order = BFD_ENDIAN_BIG;
384 static int target_byte_order_auto = 1;
385
386 enum bfd_endian
387 selected_byte_order (void)
388 {
389 if (target_byte_order_auto)
390 return BFD_ENDIAN_UNKNOWN;
391 else
392 return target_byte_order;
393 }
394
395 static const char endian_big[] = "big";
396 static const char endian_little[] = "little";
397 static const char endian_auto[] = "auto";
398 static const char *endian_enum[] =
399 {
400 endian_big,
401 endian_little,
402 endian_auto,
403 NULL,
404 };
405 static const char *set_endian_string;
406
407 /* Called by ``show endian''. */
408
409 static void
410 show_endian (char *args, int from_tty)
411 {
412 if (target_byte_order_auto)
413 printf_unfiltered ("The target endianness is set automatically (currently %s endian)\n",
414 (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG ? "big" : "little"));
415 else
416 printf_unfiltered ("The target is assumed to be %s endian\n",
417 (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG ? "big" : "little"));
418 }
419
420 static void
421 set_endian (char *ignore_args, int from_tty, struct cmd_list_element *c)
422 {
423 if (set_endian_string == endian_auto)
424 {
425 target_byte_order_auto = 1;
426 }
427 else if (set_endian_string == endian_little)
428 {
429 struct gdbarch_info info;
430 target_byte_order_auto = 0;
431 gdbarch_info_init (&info);
432 info.byte_order = BFD_ENDIAN_LITTLE;
433 if (! gdbarch_update_p (info))
434 printf_unfiltered ("Little endian target not supported by GDB\n");
435 }
436 else if (set_endian_string == endian_big)
437 {
438 struct gdbarch_info info;
439 target_byte_order_auto = 0;
440 gdbarch_info_init (&info);
441 info.byte_order = BFD_ENDIAN_BIG;
442 if (! gdbarch_update_p (info))
443 printf_unfiltered ("Big endian target not supported by GDB\n");
444 }
445 else
446 internal_error (__FILE__, __LINE__,
447 "set_endian: bad value");
448 show_endian (NULL, from_tty);
449 }
450
451 /* Functions to manipulate the architecture of the target */
452
453 enum set_arch { set_arch_auto, set_arch_manual };
454
455 static int target_architecture_auto = 1;
456
457 static const char *set_architecture_string;
458
459 const char *
460 selected_architecture_name (void)
461 {
462 if (target_architecture_auto)
463 return NULL;
464 else
465 return set_architecture_string;
466 }
467
468 /* Called if the user enters ``show architecture'' without an
469 argument. */
470
471 static void
472 show_architecture (char *args, int from_tty)
473 {
474 const char *arch;
475 arch = TARGET_ARCHITECTURE->printable_name;
476 if (target_architecture_auto)
477 printf_filtered ("The target architecture is set automatically (currently %s)\n", arch);
478 else
479 printf_filtered ("The target architecture is assumed to be %s\n", arch);
480 }
481
482
483 /* Called if the user enters ``set architecture'' with or without an
484 argument. */
485
486 static void
487 set_architecture (char *ignore_args, int from_tty, struct cmd_list_element *c)
488 {
489 if (strcmp (set_architecture_string, "auto") == 0)
490 {
491 target_architecture_auto = 1;
492 }
493 else
494 {
495 struct gdbarch_info info;
496 gdbarch_info_init (&info);
497 info.bfd_arch_info = bfd_scan_arch (set_architecture_string);
498 if (info.bfd_arch_info == NULL)
499 internal_error (__FILE__, __LINE__,
500 "set_architecture: bfd_scan_arch failed");
501 if (gdbarch_update_p (info))
502 target_architecture_auto = 0;
503 else
504 printf_unfiltered ("Architecture `%s' not recognized.\n",
505 set_architecture_string);
506 }
507 show_architecture (NULL, from_tty);
508 }
509
510 /* Try to select a global architecture that matches "info". Return
511 non-zero if the attempt succeds. */
512 int
513 gdbarch_update_p (struct gdbarch_info info)
514 {
515 struct gdbarch *new_gdbarch = gdbarch_find_by_info (info);
516
517 /* If there no architecture by that name, reject the request. */
518 if (new_gdbarch == NULL)
519 {
520 if (gdbarch_debug)
521 fprintf_unfiltered (gdb_stdlog, "gdbarch_update_p: "
522 "Architecture not found\n");
523 return 0;
524 }
525
526 /* If it is the same old architecture, accept the request (but don't
527 swap anything). */
528 if (new_gdbarch == current_gdbarch)
529 {
530 if (gdbarch_debug)
531 fprintf_unfiltered (gdb_stdlog, "gdbarch_update_p: "
532 "Architecture 0x%08lx (%s) unchanged\n",
533 (long) new_gdbarch,
534 gdbarch_bfd_arch_info (new_gdbarch)->printable_name);
535 return 1;
536 }
537
538 /* It's a new architecture, swap it in. */
539 if (gdbarch_debug)
540 fprintf_unfiltered (gdb_stdlog, "gdbarch_update_p: "
541 "New architecture 0x%08lx (%s) selected\n",
542 (long) new_gdbarch,
543 gdbarch_bfd_arch_info (new_gdbarch)->printable_name);
544 deprecated_current_gdbarch_select_hack (new_gdbarch);
545
546 return 1;
547 }
548
549 /* Return the architecture for ABFD. If no suitable architecture
550 could be find, return NULL. */
551
552 struct gdbarch *
553 gdbarch_from_bfd (bfd *abfd)
554 {
555 struct gdbarch *old_gdbarch = current_gdbarch;
556 struct gdbarch *new_gdbarch;
557 struct gdbarch_info info;
558
559 gdbarch_info_init (&info);
560 info.abfd = abfd;
561 return gdbarch_find_by_info (info);
562 }
563
564 /* Set the dynamic target-system-dependent parameters (architecture,
565 byte-order) using information found in the BFD */
566
567 void
568 set_gdbarch_from_file (bfd *abfd)
569 {
570 struct gdbarch *gdbarch;
571
572 gdbarch = gdbarch_from_bfd (abfd);
573 if (gdbarch == NULL)
574 error ("Architecture of file not recognized.\n");
575 deprecated_current_gdbarch_select_hack (gdbarch);
576 }
577
578 /* Initialize the current architecture. Update the ``set
579 architecture'' command so that it specifies a list of valid
580 architectures. */
581
582 #ifdef DEFAULT_BFD_ARCH
583 extern const bfd_arch_info_type DEFAULT_BFD_ARCH;
584 static const bfd_arch_info_type *default_bfd_arch = &DEFAULT_BFD_ARCH;
585 #else
586 static const bfd_arch_info_type *default_bfd_arch;
587 #endif
588
589 #ifdef DEFAULT_BFD_VEC
590 extern const bfd_target DEFAULT_BFD_VEC;
591 static const bfd_target *default_bfd_vec = &DEFAULT_BFD_VEC;
592 #else
593 static const bfd_target *default_bfd_vec;
594 #endif
595
596 void
597 initialize_current_architecture (void)
598 {
599 const char **arches = gdbarch_printable_names ();
600
601 /* determine a default architecture and byte order. */
602 struct gdbarch_info info;
603 gdbarch_info_init (&info);
604
605 /* Find a default architecture. */
606 if (info.bfd_arch_info == NULL
607 && default_bfd_arch != NULL)
608 info.bfd_arch_info = default_bfd_arch;
609 if (info.bfd_arch_info == NULL)
610 {
611 /* Choose the architecture by taking the first one
612 alphabetically. */
613 const char *chosen = arches[0];
614 const char **arch;
615 for (arch = arches; *arch != NULL; arch++)
616 {
617 if (strcmp (*arch, chosen) < 0)
618 chosen = *arch;
619 }
620 if (chosen == NULL)
621 internal_error (__FILE__, __LINE__,
622 "initialize_current_architecture: No arch");
623 info.bfd_arch_info = bfd_scan_arch (chosen);
624 if (info.bfd_arch_info == NULL)
625 internal_error (__FILE__, __LINE__,
626 "initialize_current_architecture: Arch not found");
627 }
628
629 /* Take several guesses at a byte order. */
630 if (info.byte_order == BFD_ENDIAN_UNKNOWN
631 && default_bfd_vec != NULL)
632 {
633 /* Extract BFD's default vector's byte order. */
634 switch (default_bfd_vec->byteorder)
635 {
636 case BFD_ENDIAN_BIG:
637 info.byte_order = BFD_ENDIAN_BIG;
638 break;
639 case BFD_ENDIAN_LITTLE:
640 info.byte_order = BFD_ENDIAN_LITTLE;
641 break;
642 default:
643 break;
644 }
645 }
646 if (info.byte_order == BFD_ENDIAN_UNKNOWN)
647 {
648 /* look for ``*el-*'' in the target name. */
649 const char *chp;
650 chp = strchr (target_name, '-');
651 if (chp != NULL
652 && chp - 2 >= target_name
653 && strncmp (chp - 2, "el", 2) == 0)
654 info.byte_order = BFD_ENDIAN_LITTLE;
655 }
656 if (info.byte_order == BFD_ENDIAN_UNKNOWN)
657 {
658 /* Wire it to big-endian!!! */
659 info.byte_order = BFD_ENDIAN_BIG;
660 }
661
662 if (! gdbarch_update_p (info))
663 internal_error (__FILE__, __LINE__,
664 "initialize_current_architecture: Selection of initial architecture failed");
665
666 /* Create the ``set architecture'' command appending ``auto'' to the
667 list of architectures. */
668 {
669 struct cmd_list_element *c;
670 /* Append ``auto''. */
671 int nr;
672 for (nr = 0; arches[nr] != NULL; nr++);
673 arches = xrealloc (arches, sizeof (char*) * (nr + 2));
674 arches[nr + 0] = "auto";
675 arches[nr + 1] = NULL;
676 /* FIXME: add_set_enum_cmd() uses an array of ``char *'' instead
677 of ``const char *''. We just happen to know that the casts are
678 safe. */
679 c = add_set_enum_cmd ("architecture", class_support,
680 arches, &set_architecture_string,
681 "Set architecture of target.",
682 &setlist);
683 set_cmd_sfunc (c, set_architecture);
684 add_alias_cmd ("processor", "architecture", class_support, 1, &setlist);
685 /* Don't use set_from_show - need to print both auto/manual and
686 current setting. */
687 add_cmd ("architecture", class_support, show_architecture,
688 "Show the current target architecture", &showlist);
689 }
690 }
691
692
693 /* Initialize a gdbarch info to values that will be automatically
694 overridden. Note: Originally, this ``struct info'' was initialized
695 using memset(0). Unfortunately, that ran into problems, namely
696 BFD_ENDIAN_BIG is zero. An explicit initialization function that
697 can explicitly set each field to a well defined value is used. */
698
699 void
700 gdbarch_info_init (struct gdbarch_info *info)
701 {
702 memset (info, 0, sizeof (struct gdbarch_info));
703 info->byte_order = BFD_ENDIAN_UNKNOWN;
704 info->osabi = GDB_OSABI_UNINITIALIZED;
705 }
706
707 /* Similar to init, but this time fill in the blanks. Information is
708 obtained from the specified architecture, global "set ..." options,
709 and explicitly initialized INFO fields. */
710
711 void
712 gdbarch_info_fill (struct gdbarch *gdbarch, struct gdbarch_info *info)
713 {
714 /* "(gdb) set architecture ...". */
715 if (info->bfd_arch_info == NULL
716 && !target_architecture_auto
717 && gdbarch != NULL)
718 info->bfd_arch_info = gdbarch_bfd_arch_info (gdbarch);
719 if (info->bfd_arch_info == NULL
720 && info->abfd != NULL
721 && bfd_get_arch (info->abfd) != bfd_arch_unknown
722 && bfd_get_arch (info->abfd) != bfd_arch_obscure)
723 info->bfd_arch_info = bfd_get_arch_info (info->abfd);
724 if (info->bfd_arch_info == NULL
725 && gdbarch != NULL)
726 info->bfd_arch_info = gdbarch_bfd_arch_info (gdbarch);
727
728 /* "(gdb) set byte-order ...". */
729 if (info->byte_order == BFD_ENDIAN_UNKNOWN
730 && !target_byte_order_auto
731 && gdbarch != NULL)
732 info->byte_order = gdbarch_byte_order (gdbarch);
733 /* From the INFO struct. */
734 if (info->byte_order == BFD_ENDIAN_UNKNOWN
735 && info->abfd != NULL)
736 info->byte_order = (bfd_big_endian (info->abfd) ? BFD_ENDIAN_BIG
737 : bfd_little_endian (info->abfd) ? BFD_ENDIAN_LITTLE
738 : BFD_ENDIAN_UNKNOWN);
739 /* From the current target. */
740 if (info->byte_order == BFD_ENDIAN_UNKNOWN
741 && gdbarch != NULL)
742 info->byte_order = gdbarch_byte_order (gdbarch);
743
744 /* "(gdb) set osabi ...". Handled by gdbarch_lookup_osabi. */
745 if (info->osabi == GDB_OSABI_UNINITIALIZED)
746 info->osabi = gdbarch_lookup_osabi (info->abfd);
747 if (info->osabi == GDB_OSABI_UNINITIALIZED
748 && gdbarch != NULL)
749 info->osabi = gdbarch_osabi (gdbarch);
750
751 /* Must have at least filled in the architecture. */
752 gdb_assert (info->bfd_arch_info != NULL);
753 }
754
755 /* */
756
757 extern initialize_file_ftype _initialize_gdbarch_utils; /* -Wmissing-prototypes */
758
759 void
760 _initialize_gdbarch_utils (void)
761 {
762 struct cmd_list_element *c;
763 c = add_set_enum_cmd ("endian", class_support,
764 endian_enum, &set_endian_string,
765 "Set endianness of target.",
766 &setlist);
767 set_cmd_sfunc (c, set_endian);
768 /* Don't use set_from_show - need to print both auto/manual and
769 current setting. */
770 add_cmd ("endian", class_support, show_endian,
771 "Show the current byte-order", &showlist);
772 }
This page took 0.047827 seconds and 4 git commands to generate.