2004-08-02 Andrew Cagney <cagney@gnu.org>
[deliverable/binutils-gdb.git] / gdb / arch-utils.c
1 /* Dynamic architecture support for GDB, the GNU debugger.
2
3 Copyright 1998, 1999, 2000, 2001, 2002, 2003, 2004 Free Software
4 Foundation, Inc.
5
6 This file is part of GDB.
7
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 2 of the License, or
11 (at your option) any later version.
12
13 This program is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with this program; if not, write to the Free Software
20 Foundation, Inc., 59 Temple Place - Suite 330,
21 Boston, MA 02111-1307, USA. */
22
23 #include "defs.h"
24
25 #include "arch-utils.h"
26 #include "buildsym.h"
27 #include "gdbcmd.h"
28 #include "inferior.h" /* enum CALL_DUMMY_LOCATION et.al. */
29 #include "gdb_string.h"
30 #include "regcache.h"
31 #include "gdb_assert.h"
32 #include "sim-regno.h"
33 #include "gdbcore.h"
34 #include "osabi.h"
35
36 #include "version.h"
37
38 #include "floatformat.h"
39
40 /* Implementation of extract return value that grubs around in the
41 register cache. */
42 void
43 legacy_extract_return_value (struct type *type, struct regcache *regcache,
44 void *valbuf)
45 {
46 char *registers = deprecated_grub_regcache_for_registers (regcache);
47 bfd_byte *buf = valbuf;
48 DEPRECATED_EXTRACT_RETURN_VALUE (type, registers, buf); /* OK */
49 }
50
51 /* Implementation of store return value that grubs the register cache.
52 Takes a local copy of the buffer to avoid const problems. */
53 void
54 legacy_store_return_value (struct type *type, struct regcache *regcache,
55 const void *buf)
56 {
57 bfd_byte *b = alloca (TYPE_LENGTH (type));
58 gdb_assert (regcache == current_regcache);
59 memcpy (b, buf, TYPE_LENGTH (type));
60 DEPRECATED_STORE_RETURN_VALUE (type, b);
61 }
62
63 int
64 always_use_struct_convention (int gcc_p, struct type *value_type)
65 {
66 return 1;
67 }
68
69 enum return_value_convention
70 legacy_return_value (struct gdbarch *gdbarch, struct type *valtype,
71 struct regcache *regcache, void *readbuf,
72 const void *writebuf)
73 {
74 /* NOTE: cagney/2004-06-13: The gcc_p parameter to
75 USE_STRUCT_CONVENTION isn't used. */
76 int struct_return = ((TYPE_CODE (valtype) == TYPE_CODE_STRUCT
77 || TYPE_CODE (valtype) == TYPE_CODE_UNION
78 || TYPE_CODE (valtype) == TYPE_CODE_ARRAY)
79 && DEPRECATED_USE_STRUCT_CONVENTION (0, valtype));
80
81 if (writebuf != NULL)
82 {
83 gdb_assert (!struct_return);
84 /* NOTE: cagney/2004-06-13: See stack.c:return_command. Old
85 architectures don't expect STORE_RETURN_VALUE to handle small
86 structures. Should not be called with such types. */
87 gdb_assert (TYPE_CODE (valtype) != TYPE_CODE_STRUCT
88 && TYPE_CODE (valtype) != TYPE_CODE_UNION);
89 STORE_RETURN_VALUE (valtype, regcache, writebuf);
90 }
91
92 if (readbuf != NULL)
93 {
94 gdb_assert (!struct_return);
95 EXTRACT_RETURN_VALUE (valtype, regcache, readbuf);
96 }
97
98 if (struct_return)
99 return RETURN_VALUE_STRUCT_CONVENTION;
100 else
101 return RETURN_VALUE_REGISTER_CONVENTION;
102 }
103
104 int
105 legacy_register_sim_regno (int regnum)
106 {
107 /* Only makes sense to supply raw registers. */
108 gdb_assert (regnum >= 0 && regnum < NUM_REGS);
109 /* NOTE: cagney/2002-05-13: The old code did it this way and it is
110 suspected that some GDB/SIM combinations may rely on this
111 behavour. The default should be one2one_register_sim_regno
112 (below). */
113 if (REGISTER_NAME (regnum) != NULL
114 && REGISTER_NAME (regnum)[0] != '\0')
115 return regnum;
116 else
117 return LEGACY_SIM_REGNO_IGNORE;
118 }
119
120 CORE_ADDR
121 generic_skip_trampoline_code (CORE_ADDR pc)
122 {
123 return 0;
124 }
125
126 CORE_ADDR
127 generic_skip_solib_resolver (struct gdbarch *gdbarch, CORE_ADDR pc)
128 {
129 return 0;
130 }
131
132 int
133 generic_in_solib_call_trampoline (CORE_ADDR pc, char *name)
134 {
135 return 0;
136 }
137
138 int
139 generic_in_solib_return_trampoline (CORE_ADDR pc, char *name)
140 {
141 return 0;
142 }
143
144 int
145 generic_in_function_epilogue_p (struct gdbarch *gdbarch, CORE_ADDR pc)
146 {
147 return 0;
148 }
149
150 void
151 generic_remote_translate_xfer_address (struct gdbarch *gdbarch,
152 struct regcache *regcache,
153 CORE_ADDR gdb_addr, int gdb_len,
154 CORE_ADDR * rem_addr, int *rem_len)
155 {
156 *rem_addr = gdb_addr;
157 *rem_len = gdb_len;
158 }
159
160 /* Helper functions for INNER_THAN */
161
162 int
163 core_addr_lessthan (CORE_ADDR lhs, CORE_ADDR rhs)
164 {
165 return (lhs < rhs);
166 }
167
168 int
169 core_addr_greaterthan (CORE_ADDR lhs, CORE_ADDR rhs)
170 {
171 return (lhs > rhs);
172 }
173
174
175 /* Helper functions for TARGET_{FLOAT,DOUBLE}_FORMAT */
176
177 const struct floatformat *
178 default_float_format (struct gdbarch *gdbarch)
179 {
180 int byte_order = gdbarch_byte_order (gdbarch);
181 switch (byte_order)
182 {
183 case BFD_ENDIAN_BIG:
184 return &floatformat_ieee_single_big;
185 case BFD_ENDIAN_LITTLE:
186 return &floatformat_ieee_single_little;
187 default:
188 internal_error (__FILE__, __LINE__,
189 "default_float_format: bad byte order");
190 }
191 }
192
193
194 const struct floatformat *
195 default_double_format (struct gdbarch *gdbarch)
196 {
197 int byte_order = gdbarch_byte_order (gdbarch);
198 switch (byte_order)
199 {
200 case BFD_ENDIAN_BIG:
201 return &floatformat_ieee_double_big;
202 case BFD_ENDIAN_LITTLE:
203 return &floatformat_ieee_double_little;
204 default:
205 internal_error (__FILE__, __LINE__,
206 "default_double_format: bad byte order");
207 }
208 }
209
210 /* Misc helper functions for targets. */
211
212 CORE_ADDR
213 core_addr_identity (CORE_ADDR addr)
214 {
215 return addr;
216 }
217
218 CORE_ADDR
219 convert_from_func_ptr_addr_identity (struct gdbarch *gdbarch, CORE_ADDR addr,
220 struct target_ops *targ)
221 {
222 return addr;
223 }
224
225 int
226 no_op_reg_to_regnum (int reg)
227 {
228 return reg;
229 }
230
231 CORE_ADDR
232 deprecated_init_frame_pc_default (int fromleaf, struct frame_info *prev)
233 {
234 if (fromleaf && DEPRECATED_SAVED_PC_AFTER_CALL_P ())
235 return DEPRECATED_SAVED_PC_AFTER_CALL (get_next_frame (prev));
236 else if (get_next_frame (prev) != NULL)
237 return DEPRECATED_FRAME_SAVED_PC (get_next_frame (prev));
238 else
239 return read_pc ();
240 }
241
242 void
243 default_elf_make_msymbol_special (asymbol *sym, struct minimal_symbol *msym)
244 {
245 return;
246 }
247
248 void
249 default_coff_make_msymbol_special (int val, struct minimal_symbol *msym)
250 {
251 return;
252 }
253
254 int
255 cannot_register_not (int regnum)
256 {
257 return 0;
258 }
259
260 /* Legacy version of target_virtual_frame_pointer(). Assumes that
261 there is an DEPRECATED_FP_REGNUM and that it is the same, cooked or
262 raw. */
263
264 void
265 legacy_virtual_frame_pointer (CORE_ADDR pc,
266 int *frame_regnum,
267 LONGEST *frame_offset)
268 {
269 /* FIXME: cagney/2002-09-13: This code is used when identifying the
270 frame pointer of the current PC. It is assuming that a single
271 register and an offset can determine this. I think it should
272 instead generate a byte code expression as that would work better
273 with things like Dwarf2's CFI. */
274 if (DEPRECATED_FP_REGNUM >= 0 && DEPRECATED_FP_REGNUM < NUM_REGS)
275 *frame_regnum = DEPRECATED_FP_REGNUM;
276 else if (SP_REGNUM >= 0 && SP_REGNUM < NUM_REGS)
277 *frame_regnum = SP_REGNUM;
278 else
279 /* Should this be an internal error? I guess so, it is reflecting
280 an architectural limitation in the current design. */
281 internal_error (__FILE__, __LINE__, "No virtual frame pointer available");
282 *frame_offset = 0;
283 }
284
285 /* Assume the world is sane, every register's virtual and real size
286 is identical. */
287
288 int
289 generic_register_size (int regnum)
290 {
291 gdb_assert (regnum >= 0 && regnum < NUM_REGS + NUM_PSEUDO_REGS);
292 return TYPE_LENGTH (gdbarch_register_type (current_gdbarch, regnum));
293 }
294
295 /* Assume all registers are adjacent. */
296
297 int
298 generic_register_byte (int regnum)
299 {
300 int byte;
301 int i;
302 gdb_assert (regnum >= 0 && regnum < NUM_REGS + NUM_PSEUDO_REGS);
303 byte = 0;
304 for (i = 0; i < regnum; i++)
305 {
306 byte += generic_register_size (i);
307 }
308 return byte;
309 }
310
311 \f
312 int
313 legacy_pc_in_sigtramp (CORE_ADDR pc, char *name)
314 {
315 #if defined (DEPRECATED_IN_SIGTRAMP)
316 return DEPRECATED_IN_SIGTRAMP (pc, name);
317 #else
318 return name && strcmp ("_sigtramp", name) == 0;
319 #endif
320 }
321
322 int
323 generic_convert_register_p (int regnum, struct type *type)
324 {
325 return 0;
326 }
327
328 int
329 default_stabs_argument_has_addr (struct gdbarch *gdbarch, struct type *type)
330 {
331 if (DEPRECATED_REG_STRUCT_HAS_ADDR_P ()
332 && DEPRECATED_REG_STRUCT_HAS_ADDR (processing_gcc_compilation, type))
333 {
334 CHECK_TYPEDEF (type);
335
336 return (TYPE_CODE (type) == TYPE_CODE_STRUCT
337 || TYPE_CODE (type) == TYPE_CODE_UNION
338 || TYPE_CODE (type) == TYPE_CODE_SET
339 || TYPE_CODE (type) == TYPE_CODE_BITSTRING);
340 }
341
342 return 0;
343 }
344
345 \f
346 /* Functions to manipulate the endianness of the target. */
347
348 /* ``target_byte_order'' is only used when non- multi-arch.
349 Multi-arch targets obtain the current byte order using the
350 TARGET_BYTE_ORDER gdbarch method.
351
352 The choice of initial value is entirely arbitrary. During startup,
353 the function initialize_current_architecture() updates this value
354 based on default byte-order information extracted from BFD. */
355 static int target_byte_order = BFD_ENDIAN_BIG;
356 static int target_byte_order_auto = 1;
357
358 enum bfd_endian
359 selected_byte_order (void)
360 {
361 if (target_byte_order_auto)
362 return BFD_ENDIAN_UNKNOWN;
363 else
364 return target_byte_order;
365 }
366
367 static const char endian_big[] = "big";
368 static const char endian_little[] = "little";
369 static const char endian_auto[] = "auto";
370 static const char *endian_enum[] =
371 {
372 endian_big,
373 endian_little,
374 endian_auto,
375 NULL,
376 };
377 static const char *set_endian_string;
378
379 /* Called by ``show endian''. */
380
381 static void
382 show_endian (char *args, int from_tty)
383 {
384 if (target_byte_order_auto)
385 printf_unfiltered ("The target endianness is set automatically (currently %s endian)\n",
386 (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG ? "big" : "little"));
387 else
388 printf_unfiltered ("The target is assumed to be %s endian\n",
389 (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG ? "big" : "little"));
390 }
391
392 static void
393 set_endian (char *ignore_args, int from_tty, struct cmd_list_element *c)
394 {
395 if (set_endian_string == endian_auto)
396 {
397 target_byte_order_auto = 1;
398 }
399 else if (set_endian_string == endian_little)
400 {
401 struct gdbarch_info info;
402 target_byte_order_auto = 0;
403 gdbarch_info_init (&info);
404 info.byte_order = BFD_ENDIAN_LITTLE;
405 if (! gdbarch_update_p (info))
406 printf_unfiltered ("Little endian target not supported by GDB\n");
407 }
408 else if (set_endian_string == endian_big)
409 {
410 struct gdbarch_info info;
411 target_byte_order_auto = 0;
412 gdbarch_info_init (&info);
413 info.byte_order = BFD_ENDIAN_BIG;
414 if (! gdbarch_update_p (info))
415 printf_unfiltered ("Big endian target not supported by GDB\n");
416 }
417 else
418 internal_error (__FILE__, __LINE__,
419 "set_endian: bad value");
420 show_endian (NULL, from_tty);
421 }
422
423 /* Functions to manipulate the architecture of the target */
424
425 enum set_arch { set_arch_auto, set_arch_manual };
426
427 static int target_architecture_auto = 1;
428
429 static const char *set_architecture_string;
430
431 const char *
432 selected_architecture_name (void)
433 {
434 if (target_architecture_auto)
435 return NULL;
436 else
437 return set_architecture_string;
438 }
439
440 /* Called if the user enters ``show architecture'' without an
441 argument. */
442
443 static void
444 show_architecture (char *args, int from_tty)
445 {
446 const char *arch;
447 arch = TARGET_ARCHITECTURE->printable_name;
448 if (target_architecture_auto)
449 printf_filtered ("The target architecture is set automatically (currently %s)\n", arch);
450 else
451 printf_filtered ("The target architecture is assumed to be %s\n", arch);
452 }
453
454
455 /* Called if the user enters ``set architecture'' with or without an
456 argument. */
457
458 static void
459 set_architecture (char *ignore_args, int from_tty, struct cmd_list_element *c)
460 {
461 if (strcmp (set_architecture_string, "auto") == 0)
462 {
463 target_architecture_auto = 1;
464 }
465 else
466 {
467 struct gdbarch_info info;
468 gdbarch_info_init (&info);
469 info.bfd_arch_info = bfd_scan_arch (set_architecture_string);
470 if (info.bfd_arch_info == NULL)
471 internal_error (__FILE__, __LINE__,
472 "set_architecture: bfd_scan_arch failed");
473 if (gdbarch_update_p (info))
474 target_architecture_auto = 0;
475 else
476 printf_unfiltered ("Architecture `%s' not recognized.\n",
477 set_architecture_string);
478 }
479 show_architecture (NULL, from_tty);
480 }
481
482 /* Try to select a global architecture that matches "info". Return
483 non-zero if the attempt succeds. */
484 int
485 gdbarch_update_p (struct gdbarch_info info)
486 {
487 struct gdbarch *new_gdbarch = gdbarch_find_by_info (info);
488
489 /* If there no architecture by that name, reject the request. */
490 if (new_gdbarch == NULL)
491 {
492 if (gdbarch_debug)
493 fprintf_unfiltered (gdb_stdlog, "gdbarch_update_p: "
494 "Architecture not found\n");
495 return 0;
496 }
497
498 /* If it is the same old architecture, accept the request (but don't
499 swap anything). */
500 if (new_gdbarch == current_gdbarch)
501 {
502 if (gdbarch_debug)
503 fprintf_unfiltered (gdb_stdlog, "gdbarch_update_p: "
504 "Architecture 0x%08lx (%s) unchanged\n",
505 (long) new_gdbarch,
506 gdbarch_bfd_arch_info (new_gdbarch)->printable_name);
507 return 1;
508 }
509
510 /* It's a new architecture, swap it in. */
511 if (gdbarch_debug)
512 fprintf_unfiltered (gdb_stdlog, "gdbarch_update_p: "
513 "New architecture 0x%08lx (%s) selected\n",
514 (long) new_gdbarch,
515 gdbarch_bfd_arch_info (new_gdbarch)->printable_name);
516 deprecated_current_gdbarch_select_hack (new_gdbarch);
517
518 return 1;
519 }
520
521 /* Return the architecture for ABFD. If no suitable architecture
522 could be find, return NULL. */
523
524 struct gdbarch *
525 gdbarch_from_bfd (bfd *abfd)
526 {
527 struct gdbarch *old_gdbarch = current_gdbarch;
528 struct gdbarch *new_gdbarch;
529 struct gdbarch_info info;
530
531 gdbarch_info_init (&info);
532 info.abfd = abfd;
533 return gdbarch_find_by_info (info);
534 }
535
536 /* Set the dynamic target-system-dependent parameters (architecture,
537 byte-order) using information found in the BFD */
538
539 void
540 set_gdbarch_from_file (bfd *abfd)
541 {
542 struct gdbarch *gdbarch;
543
544 gdbarch = gdbarch_from_bfd (abfd);
545 if (gdbarch == NULL)
546 error ("Architecture of file not recognized.\n");
547 deprecated_current_gdbarch_select_hack (gdbarch);
548 }
549
550 /* Initialize the current architecture. Update the ``set
551 architecture'' command so that it specifies a list of valid
552 architectures. */
553
554 #ifdef DEFAULT_BFD_ARCH
555 extern const bfd_arch_info_type DEFAULT_BFD_ARCH;
556 static const bfd_arch_info_type *default_bfd_arch = &DEFAULT_BFD_ARCH;
557 #else
558 static const bfd_arch_info_type *default_bfd_arch;
559 #endif
560
561 #ifdef DEFAULT_BFD_VEC
562 extern const bfd_target DEFAULT_BFD_VEC;
563 static const bfd_target *default_bfd_vec = &DEFAULT_BFD_VEC;
564 #else
565 static const bfd_target *default_bfd_vec;
566 #endif
567
568 void
569 initialize_current_architecture (void)
570 {
571 const char **arches = gdbarch_printable_names ();
572
573 /* determine a default architecture and byte order. */
574 struct gdbarch_info info;
575 gdbarch_info_init (&info);
576
577 /* Find a default architecture. */
578 if (info.bfd_arch_info == NULL
579 && default_bfd_arch != NULL)
580 info.bfd_arch_info = default_bfd_arch;
581 if (info.bfd_arch_info == NULL)
582 {
583 /* Choose the architecture by taking the first one
584 alphabetically. */
585 const char *chosen = arches[0];
586 const char **arch;
587 for (arch = arches; *arch != NULL; arch++)
588 {
589 if (strcmp (*arch, chosen) < 0)
590 chosen = *arch;
591 }
592 if (chosen == NULL)
593 internal_error (__FILE__, __LINE__,
594 "initialize_current_architecture: No arch");
595 info.bfd_arch_info = bfd_scan_arch (chosen);
596 if (info.bfd_arch_info == NULL)
597 internal_error (__FILE__, __LINE__,
598 "initialize_current_architecture: Arch not found");
599 }
600
601 /* Take several guesses at a byte order. */
602 if (info.byte_order == BFD_ENDIAN_UNKNOWN
603 && default_bfd_vec != NULL)
604 {
605 /* Extract BFD's default vector's byte order. */
606 switch (default_bfd_vec->byteorder)
607 {
608 case BFD_ENDIAN_BIG:
609 info.byte_order = BFD_ENDIAN_BIG;
610 break;
611 case BFD_ENDIAN_LITTLE:
612 info.byte_order = BFD_ENDIAN_LITTLE;
613 break;
614 default:
615 break;
616 }
617 }
618 if (info.byte_order == BFD_ENDIAN_UNKNOWN)
619 {
620 /* look for ``*el-*'' in the target name. */
621 const char *chp;
622 chp = strchr (target_name, '-');
623 if (chp != NULL
624 && chp - 2 >= target_name
625 && strncmp (chp - 2, "el", 2) == 0)
626 info.byte_order = BFD_ENDIAN_LITTLE;
627 }
628 if (info.byte_order == BFD_ENDIAN_UNKNOWN)
629 {
630 /* Wire it to big-endian!!! */
631 info.byte_order = BFD_ENDIAN_BIG;
632 }
633
634 if (! gdbarch_update_p (info))
635 internal_error (__FILE__, __LINE__,
636 "initialize_current_architecture: Selection of initial architecture failed");
637
638 /* Create the ``set architecture'' command appending ``auto'' to the
639 list of architectures. */
640 {
641 struct cmd_list_element *c;
642 /* Append ``auto''. */
643 int nr;
644 for (nr = 0; arches[nr] != NULL; nr++);
645 arches = xrealloc (arches, sizeof (char*) * (nr + 2));
646 arches[nr + 0] = "auto";
647 arches[nr + 1] = NULL;
648 /* FIXME: add_set_enum_cmd() uses an array of ``char *'' instead
649 of ``const char *''. We just happen to know that the casts are
650 safe. */
651 c = add_set_enum_cmd ("architecture", class_support,
652 arches, &set_architecture_string,
653 "Set architecture of target.",
654 &setlist);
655 set_cmd_sfunc (c, set_architecture);
656 add_alias_cmd ("processor", "architecture", class_support, 1, &setlist);
657 /* Don't use set_from_show - need to print both auto/manual and
658 current setting. */
659 add_cmd ("architecture", class_support, show_architecture,
660 "Show the current target architecture", &showlist);
661 }
662 }
663
664
665 /* Initialize a gdbarch info to values that will be automatically
666 overridden. Note: Originally, this ``struct info'' was initialized
667 using memset(0). Unfortunately, that ran into problems, namely
668 BFD_ENDIAN_BIG is zero. An explicit initialization function that
669 can explicitly set each field to a well defined value is used. */
670
671 void
672 gdbarch_info_init (struct gdbarch_info *info)
673 {
674 memset (info, 0, sizeof (struct gdbarch_info));
675 info->byte_order = BFD_ENDIAN_UNKNOWN;
676 info->osabi = GDB_OSABI_UNINITIALIZED;
677 }
678
679 /* Similar to init, but this time fill in the blanks. Information is
680 obtained from the specified architecture, global "set ..." options,
681 and explicitly initialized INFO fields. */
682
683 void
684 gdbarch_info_fill (struct gdbarch *gdbarch, struct gdbarch_info *info)
685 {
686 /* "(gdb) set architecture ...". */
687 if (info->bfd_arch_info == NULL
688 && !target_architecture_auto
689 && gdbarch != NULL)
690 info->bfd_arch_info = gdbarch_bfd_arch_info (gdbarch);
691 if (info->bfd_arch_info == NULL
692 && info->abfd != NULL
693 && bfd_get_arch (info->abfd) != bfd_arch_unknown
694 && bfd_get_arch (info->abfd) != bfd_arch_obscure)
695 info->bfd_arch_info = bfd_get_arch_info (info->abfd);
696 if (info->bfd_arch_info == NULL
697 && gdbarch != NULL)
698 info->bfd_arch_info = gdbarch_bfd_arch_info (gdbarch);
699
700 /* "(gdb) set byte-order ...". */
701 if (info->byte_order == BFD_ENDIAN_UNKNOWN
702 && !target_byte_order_auto
703 && gdbarch != NULL)
704 info->byte_order = gdbarch_byte_order (gdbarch);
705 /* From the INFO struct. */
706 if (info->byte_order == BFD_ENDIAN_UNKNOWN
707 && info->abfd != NULL)
708 info->byte_order = (bfd_big_endian (info->abfd) ? BFD_ENDIAN_BIG
709 : bfd_little_endian (info->abfd) ? BFD_ENDIAN_LITTLE
710 : BFD_ENDIAN_UNKNOWN);
711 /* From the current target. */
712 if (info->byte_order == BFD_ENDIAN_UNKNOWN
713 && gdbarch != NULL)
714 info->byte_order = gdbarch_byte_order (gdbarch);
715
716 /* "(gdb) set osabi ...". Handled by gdbarch_lookup_osabi. */
717 if (info->osabi == GDB_OSABI_UNINITIALIZED)
718 info->osabi = gdbarch_lookup_osabi (info->abfd);
719 if (info->osabi == GDB_OSABI_UNINITIALIZED
720 && gdbarch != NULL)
721 info->osabi = gdbarch_osabi (gdbarch);
722
723 /* Must have at least filled in the architecture. */
724 gdb_assert (info->bfd_arch_info != NULL);
725 }
726
727 /* */
728
729 extern initialize_file_ftype _initialize_gdbarch_utils; /* -Wmissing-prototypes */
730
731 void
732 _initialize_gdbarch_utils (void)
733 {
734 struct cmd_list_element *c;
735 c = add_set_enum_cmd ("endian", class_support,
736 endian_enum, &set_endian_string,
737 "Set endianness of target.",
738 &setlist);
739 set_cmd_sfunc (c, set_endian);
740 /* Don't use set_from_show - need to print both auto/manual and
741 current setting. */
742 add_cmd ("endian", class_support, show_endian,
743 "Show the current byte-order", &showlist);
744 }
This page took 0.044737 seconds and 4 git commands to generate.