*** empty log message ***
[deliverable/binutils-gdb.git] / gdb / arch-utils.c
1 /* Dynamic architecture support for GDB, the GNU debugger.
2
3 Copyright (C) 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007,
4 2008, 2009, 2010 Free Software Foundation, Inc.
5
6 This file is part of GDB.
7
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 3 of the License, or
11 (at your option) any later version.
12
13 This program is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with this program. If not, see <http://www.gnu.org/licenses/>. */
20
21 #include "defs.h"
22
23 #include "arch-utils.h"
24 #include "buildsym.h"
25 #include "gdbcmd.h"
26 #include "inferior.h" /* enum CALL_DUMMY_LOCATION et.al. */
27 #include "gdb_string.h"
28 #include "regcache.h"
29 #include "gdb_assert.h"
30 #include "sim-regno.h"
31 #include "gdbcore.h"
32 #include "osabi.h"
33 #include "target-descriptions.h"
34 #include "objfiles.h"
35
36 #include "version.h"
37
38 #include "floatformat.h"
39
40
41 struct displaced_step_closure *
42 simple_displaced_step_copy_insn (struct gdbarch *gdbarch,
43 CORE_ADDR from, CORE_ADDR to,
44 struct regcache *regs)
45 {
46 size_t len = gdbarch_max_insn_length (gdbarch);
47 gdb_byte *buf = xmalloc (len);
48
49 read_memory (from, buf, len);
50 write_memory (to, buf, len);
51
52 if (debug_displaced)
53 {
54 fprintf_unfiltered (gdb_stdlog, "displaced: copy %s->%s: ",
55 paddress (gdbarch, from), paddress (gdbarch, to));
56 displaced_step_dump_bytes (gdb_stdlog, buf, len);
57 }
58
59 return (struct displaced_step_closure *) buf;
60 }
61
62
63 void
64 simple_displaced_step_free_closure (struct gdbarch *gdbarch,
65 struct displaced_step_closure *closure)
66 {
67 xfree (closure);
68 }
69
70 int
71 default_displaced_step_hw_singlestep (struct gdbarch *gdbarch,
72 struct displaced_step_closure *closure)
73 {
74 return !gdbarch_software_single_step_p (gdbarch);
75 }
76
77 CORE_ADDR
78 displaced_step_at_entry_point (struct gdbarch *gdbarch)
79 {
80 CORE_ADDR addr;
81 int bp_len;
82
83 addr = entry_point_address ();
84
85 /* Inferior calls also use the entry point as a breakpoint location.
86 We don't want displaced stepping to interfere with those
87 breakpoints, so leave space. */
88 gdbarch_breakpoint_from_pc (gdbarch, &addr, &bp_len);
89 addr += bp_len * 2;
90
91 return addr;
92 }
93
94 int
95 legacy_register_sim_regno (struct gdbarch *gdbarch, int regnum)
96 {
97 /* Only makes sense to supply raw registers. */
98 gdb_assert (regnum >= 0 && regnum < gdbarch_num_regs (gdbarch));
99 /* NOTE: cagney/2002-05-13: The old code did it this way and it is
100 suspected that some GDB/SIM combinations may rely on this
101 behavour. The default should be one2one_register_sim_regno
102 (below). */
103 if (gdbarch_register_name (gdbarch, regnum) != NULL
104 && gdbarch_register_name (gdbarch, regnum)[0] != '\0')
105 return regnum;
106 else
107 return LEGACY_SIM_REGNO_IGNORE;
108 }
109
110 CORE_ADDR
111 generic_skip_trampoline_code (struct frame_info *frame, CORE_ADDR pc)
112 {
113 return 0;
114 }
115
116 CORE_ADDR
117 generic_skip_solib_resolver (struct gdbarch *gdbarch, CORE_ADDR pc)
118 {
119 return 0;
120 }
121
122 int
123 generic_in_solib_return_trampoline (struct gdbarch *gdbarch,
124 CORE_ADDR pc, char *name)
125 {
126 return 0;
127 }
128
129 int
130 generic_in_function_epilogue_p (struct gdbarch *gdbarch, CORE_ADDR pc)
131 {
132 return 0;
133 }
134
135 /* Helper functions for gdbarch_inner_than */
136
137 int
138 core_addr_lessthan (CORE_ADDR lhs, CORE_ADDR rhs)
139 {
140 return (lhs < rhs);
141 }
142
143 int
144 core_addr_greaterthan (CORE_ADDR lhs, CORE_ADDR rhs)
145 {
146 return (lhs > rhs);
147 }
148
149 /* Misc helper functions for targets. */
150
151 CORE_ADDR
152 core_addr_identity (struct gdbarch *gdbarch, CORE_ADDR addr)
153 {
154 return addr;
155 }
156
157 CORE_ADDR
158 convert_from_func_ptr_addr_identity (struct gdbarch *gdbarch, CORE_ADDR addr,
159 struct target_ops *targ)
160 {
161 return addr;
162 }
163
164 int
165 no_op_reg_to_regnum (struct gdbarch *gdbarch, int reg)
166 {
167 return reg;
168 }
169
170 void
171 default_elf_make_msymbol_special (asymbol *sym, struct minimal_symbol *msym)
172 {
173 return;
174 }
175
176 void
177 default_coff_make_msymbol_special (int val, struct minimal_symbol *msym)
178 {
179 return;
180 }
181
182 int
183 cannot_register_not (struct gdbarch *gdbarch, int regnum)
184 {
185 return 0;
186 }
187
188 /* Legacy version of target_virtual_frame_pointer(). Assumes that
189 there is an gdbarch_deprecated_fp_regnum and that it is the same, cooked or
190 raw. */
191
192 void
193 legacy_virtual_frame_pointer (struct gdbarch *gdbarch,
194 CORE_ADDR pc,
195 int *frame_regnum,
196 LONGEST *frame_offset)
197 {
198 /* FIXME: cagney/2002-09-13: This code is used when identifying the
199 frame pointer of the current PC. It is assuming that a single
200 register and an offset can determine this. I think it should
201 instead generate a byte code expression as that would work better
202 with things like Dwarf2's CFI. */
203 if (gdbarch_deprecated_fp_regnum (gdbarch) >= 0
204 && gdbarch_deprecated_fp_regnum (gdbarch)
205 < gdbarch_num_regs (gdbarch))
206 *frame_regnum = gdbarch_deprecated_fp_regnum (gdbarch);
207 else if (gdbarch_sp_regnum (gdbarch) >= 0
208 && gdbarch_sp_regnum (gdbarch)
209 < gdbarch_num_regs (gdbarch))
210 *frame_regnum = gdbarch_sp_regnum (gdbarch);
211 else
212 /* Should this be an internal error? I guess so, it is reflecting
213 an architectural limitation in the current design. */
214 internal_error (__FILE__, __LINE__, _("No virtual frame pointer available"));
215 *frame_offset = 0;
216 }
217
218 \f
219 int
220 generic_convert_register_p (struct gdbarch *gdbarch, int regnum,
221 struct type *type)
222 {
223 return 0;
224 }
225
226 int
227 default_stabs_argument_has_addr (struct gdbarch *gdbarch, struct type *type)
228 {
229 return 0;
230 }
231
232 int
233 generic_instruction_nullified (struct gdbarch *gdbarch,
234 struct regcache *regcache)
235 {
236 return 0;
237 }
238
239 int
240 default_remote_register_number (struct gdbarch *gdbarch,
241 int regno)
242 {
243 return regno;
244 }
245
246 \f
247 /* Functions to manipulate the endianness of the target. */
248
249 static int target_byte_order_user = BFD_ENDIAN_UNKNOWN;
250
251 static const char endian_big[] = "big";
252 static const char endian_little[] = "little";
253 static const char endian_auto[] = "auto";
254 static const char *endian_enum[] =
255 {
256 endian_big,
257 endian_little,
258 endian_auto,
259 NULL,
260 };
261 static const char *set_endian_string;
262
263 enum bfd_endian
264 selected_byte_order (void)
265 {
266 return target_byte_order_user;
267 }
268
269 /* Called by ``show endian''. */
270
271 static void
272 show_endian (struct ui_file *file, int from_tty, struct cmd_list_element *c,
273 const char *value)
274 {
275 if (target_byte_order_user == BFD_ENDIAN_UNKNOWN)
276 if (gdbarch_byte_order (get_current_arch ()) == BFD_ENDIAN_BIG)
277 fprintf_unfiltered (file, _("The target endianness is set automatically "
278 "(currently big endian)\n"));
279 else
280 fprintf_unfiltered (file, _("The target endianness is set automatically "
281 "(currently little endian)\n"));
282 else
283 if (target_byte_order_user == BFD_ENDIAN_BIG)
284 fprintf_unfiltered (file,
285 _("The target is assumed to be big endian\n"));
286 else
287 fprintf_unfiltered (file,
288 _("The target is assumed to be little endian\n"));
289 }
290
291 static void
292 set_endian (char *ignore_args, int from_tty, struct cmd_list_element *c)
293 {
294 struct gdbarch_info info;
295
296 gdbarch_info_init (&info);
297
298 if (set_endian_string == endian_auto)
299 {
300 target_byte_order_user = BFD_ENDIAN_UNKNOWN;
301 if (! gdbarch_update_p (info))
302 internal_error (__FILE__, __LINE__,
303 _("set_endian: architecture update failed"));
304 }
305 else if (set_endian_string == endian_little)
306 {
307 info.byte_order = BFD_ENDIAN_LITTLE;
308 if (! gdbarch_update_p (info))
309 printf_unfiltered (_("Little endian target not supported by GDB\n"));
310 else
311 target_byte_order_user = BFD_ENDIAN_LITTLE;
312 }
313 else if (set_endian_string == endian_big)
314 {
315 info.byte_order = BFD_ENDIAN_BIG;
316 if (! gdbarch_update_p (info))
317 printf_unfiltered (_("Big endian target not supported by GDB\n"));
318 else
319 target_byte_order_user = BFD_ENDIAN_BIG;
320 }
321 else
322 internal_error (__FILE__, __LINE__,
323 _("set_endian: bad value"));
324
325 show_endian (gdb_stdout, from_tty, NULL, NULL);
326 }
327
328 /* Given SELECTED, a currently selected BFD architecture, and
329 TARGET_DESC, the current target description, return what
330 architecture to use.
331
332 SELECTED may be NULL, in which case we return the architecture
333 associated with TARGET_DESC. If SELECTED specifies a variant
334 of the architecture associtated with TARGET_DESC, return the
335 more specific of the two.
336
337 If SELECTED is a different architecture, but it is accepted as
338 compatible by the target, we can use the target architecture.
339
340 If SELECTED is obviously incompatible, warn the user. */
341
342 static const struct bfd_arch_info *
343 choose_architecture_for_target (const struct target_desc *target_desc,
344 const struct bfd_arch_info *selected)
345 {
346 const struct bfd_arch_info *from_target = tdesc_architecture (target_desc);
347 const struct bfd_arch_info *compat1, *compat2;
348
349 if (selected == NULL)
350 return from_target;
351
352 if (from_target == NULL)
353 return selected;
354
355 /* struct bfd_arch_info objects are singletons: that is, there's
356 supposed to be exactly one instance for a given machine. So you
357 can tell whether two are equivalent by comparing pointers. */
358 if (from_target == selected)
359 return selected;
360
361 /* BFD's 'A->compatible (A, B)' functions return zero if A and B are
362 incompatible. But if they are compatible, it returns the 'more
363 featureful' of the two arches. That is, if A can run code
364 written for B, but B can't run code written for A, then it'll
365 return A.
366
367 Some targets (e.g. MIPS as of 2006-12-04) don't fully
368 implement this, instead always returning NULL or the first
369 argument. We detect that case by checking both directions. */
370
371 compat1 = selected->compatible (selected, from_target);
372 compat2 = from_target->compatible (from_target, selected);
373
374 if (compat1 == NULL && compat2 == NULL)
375 {
376 /* BFD considers the architectures incompatible. Check our target
377 description whether it accepts SELECTED as compatible anyway. */
378 if (tdesc_compatible_p (target_desc, selected))
379 return from_target;
380
381 warning (_("Selected architecture %s is not compatible "
382 "with reported target architecture %s"),
383 selected->printable_name, from_target->printable_name);
384 return selected;
385 }
386
387 if (compat1 == NULL)
388 return compat2;
389 if (compat2 == NULL)
390 return compat1;
391 if (compat1 == compat2)
392 return compat1;
393
394 /* If the two didn't match, but one of them was a default architecture,
395 assume the more specific one is correct. This handles the case
396 where an executable or target description just says "mips", but
397 the other knows which MIPS variant. */
398 if (compat1->the_default)
399 return compat2;
400 if (compat2->the_default)
401 return compat1;
402
403 /* We have no idea which one is better. This is a bug, but not
404 a critical problem; warn the user. */
405 warning (_("Selected architecture %s is ambiguous with "
406 "reported target architecture %s"),
407 selected->printable_name, from_target->printable_name);
408 return selected;
409 }
410
411 /* Functions to manipulate the architecture of the target */
412
413 enum set_arch { set_arch_auto, set_arch_manual };
414
415 static const struct bfd_arch_info *target_architecture_user;
416
417 static const char *set_architecture_string;
418
419 const char *
420 selected_architecture_name (void)
421 {
422 if (target_architecture_user == NULL)
423 return NULL;
424 else
425 return set_architecture_string;
426 }
427
428 /* Called if the user enters ``show architecture'' without an
429 argument. */
430
431 static void
432 show_architecture (struct ui_file *file, int from_tty,
433 struct cmd_list_element *c, const char *value)
434 {
435 if (target_architecture_user == NULL)
436 fprintf_filtered (file, _("\
437 The target architecture is set automatically (currently %s)\n"),
438 gdbarch_bfd_arch_info (get_current_arch ())->printable_name);
439 else
440 fprintf_filtered (file, _("\
441 The target architecture is assumed to be %s\n"), set_architecture_string);
442 }
443
444
445 /* Called if the user enters ``set architecture'' with or without an
446 argument. */
447
448 static void
449 set_architecture (char *ignore_args, int from_tty, struct cmd_list_element *c)
450 {
451 struct gdbarch_info info;
452
453 gdbarch_info_init (&info);
454
455 if (strcmp (set_architecture_string, "auto") == 0)
456 {
457 target_architecture_user = NULL;
458 if (!gdbarch_update_p (info))
459 internal_error (__FILE__, __LINE__,
460 _("could not select an architecture automatically"));
461 }
462 else
463 {
464 info.bfd_arch_info = bfd_scan_arch (set_architecture_string);
465 if (info.bfd_arch_info == NULL)
466 internal_error (__FILE__, __LINE__,
467 _("set_architecture: bfd_scan_arch failed"));
468 if (gdbarch_update_p (info))
469 target_architecture_user = info.bfd_arch_info;
470 else
471 printf_unfiltered (_("Architecture `%s' not recognized.\n"),
472 set_architecture_string);
473 }
474 show_architecture (gdb_stdout, from_tty, NULL, NULL);
475 }
476
477 /* Try to select a global architecture that matches "info". Return
478 non-zero if the attempt succeds. */
479 int
480 gdbarch_update_p (struct gdbarch_info info)
481 {
482 struct gdbarch *new_gdbarch;
483
484 /* Check for the current file. */
485 if (info.abfd == NULL)
486 info.abfd = exec_bfd;
487 if (info.abfd == NULL)
488 info.abfd = core_bfd;
489
490 /* Check for the current target description. */
491 if (info.target_desc == NULL)
492 info.target_desc = target_current_description ();
493
494 new_gdbarch = gdbarch_find_by_info (info);
495
496 /* If there no architecture by that name, reject the request. */
497 if (new_gdbarch == NULL)
498 {
499 if (gdbarch_debug)
500 fprintf_unfiltered (gdb_stdlog, "gdbarch_update_p: "
501 "Architecture not found\n");
502 return 0;
503 }
504
505 /* If it is the same old architecture, accept the request (but don't
506 swap anything). */
507 if (new_gdbarch == target_gdbarch)
508 {
509 if (gdbarch_debug)
510 fprintf_unfiltered (gdb_stdlog, "gdbarch_update_p: "
511 "Architecture %s (%s) unchanged\n",
512 host_address_to_string (new_gdbarch),
513 gdbarch_bfd_arch_info (new_gdbarch)->printable_name);
514 return 1;
515 }
516
517 /* It's a new architecture, swap it in. */
518 if (gdbarch_debug)
519 fprintf_unfiltered (gdb_stdlog, "gdbarch_update_p: "
520 "New architecture %s (%s) selected\n",
521 host_address_to_string (new_gdbarch),
522 gdbarch_bfd_arch_info (new_gdbarch)->printable_name);
523 deprecated_target_gdbarch_select_hack (new_gdbarch);
524
525 return 1;
526 }
527
528 /* Return the architecture for ABFD. If no suitable architecture
529 could be find, return NULL. */
530
531 struct gdbarch *
532 gdbarch_from_bfd (bfd *abfd)
533 {
534 struct gdbarch_info info;
535 gdbarch_info_init (&info);
536
537 info.abfd = abfd;
538 return gdbarch_find_by_info (info);
539 }
540
541 /* Set the dynamic target-system-dependent parameters (architecture,
542 byte-order) using information found in the BFD */
543
544 void
545 set_gdbarch_from_file (bfd *abfd)
546 {
547 struct gdbarch_info info;
548 struct gdbarch *gdbarch;
549
550 gdbarch_info_init (&info);
551 info.abfd = abfd;
552 info.target_desc = target_current_description ();
553 gdbarch = gdbarch_find_by_info (info);
554
555 if (gdbarch == NULL)
556 error (_("Architecture of file not recognized."));
557 deprecated_target_gdbarch_select_hack (gdbarch);
558 }
559
560 /* Initialize the current architecture. Update the ``set
561 architecture'' command so that it specifies a list of valid
562 architectures. */
563
564 #ifdef DEFAULT_BFD_ARCH
565 extern const bfd_arch_info_type DEFAULT_BFD_ARCH;
566 static const bfd_arch_info_type *default_bfd_arch = &DEFAULT_BFD_ARCH;
567 #else
568 static const bfd_arch_info_type *default_bfd_arch;
569 #endif
570
571 #ifdef DEFAULT_BFD_VEC
572 extern const bfd_target DEFAULT_BFD_VEC;
573 static const bfd_target *default_bfd_vec = &DEFAULT_BFD_VEC;
574 #else
575 static const bfd_target *default_bfd_vec;
576 #endif
577
578 static int default_byte_order = BFD_ENDIAN_UNKNOWN;
579
580 void
581 initialize_current_architecture (void)
582 {
583 const char **arches = gdbarch_printable_names ();
584 struct gdbarch_info info;
585
586 /* determine a default architecture and byte order. */
587 gdbarch_info_init (&info);
588
589 /* Find a default architecture. */
590 if (default_bfd_arch == NULL)
591 {
592 /* Choose the architecture by taking the first one
593 alphabetically. */
594 const char *chosen = arches[0];
595 const char **arch;
596 for (arch = arches; *arch != NULL; arch++)
597 {
598 if (strcmp (*arch, chosen) < 0)
599 chosen = *arch;
600 }
601 if (chosen == NULL)
602 internal_error (__FILE__, __LINE__,
603 _("initialize_current_architecture: No arch"));
604 default_bfd_arch = bfd_scan_arch (chosen);
605 if (default_bfd_arch == NULL)
606 internal_error (__FILE__, __LINE__,
607 _("initialize_current_architecture: Arch not found"));
608 }
609
610 info.bfd_arch_info = default_bfd_arch;
611
612 /* Take several guesses at a byte order. */
613 if (default_byte_order == BFD_ENDIAN_UNKNOWN
614 && default_bfd_vec != NULL)
615 {
616 /* Extract BFD's default vector's byte order. */
617 switch (default_bfd_vec->byteorder)
618 {
619 case BFD_ENDIAN_BIG:
620 default_byte_order = BFD_ENDIAN_BIG;
621 break;
622 case BFD_ENDIAN_LITTLE:
623 default_byte_order = BFD_ENDIAN_LITTLE;
624 break;
625 default:
626 break;
627 }
628 }
629 if (default_byte_order == BFD_ENDIAN_UNKNOWN)
630 {
631 /* look for ``*el-*'' in the target name. */
632 const char *chp;
633 chp = strchr (target_name, '-');
634 if (chp != NULL
635 && chp - 2 >= target_name
636 && strncmp (chp - 2, "el", 2) == 0)
637 default_byte_order = BFD_ENDIAN_LITTLE;
638 }
639 if (default_byte_order == BFD_ENDIAN_UNKNOWN)
640 {
641 /* Wire it to big-endian!!! */
642 default_byte_order = BFD_ENDIAN_BIG;
643 }
644
645 info.byte_order = default_byte_order;
646 info.byte_order_for_code = info.byte_order;
647
648 if (! gdbarch_update_p (info))
649 internal_error (__FILE__, __LINE__,
650 _("initialize_current_architecture: Selection of "
651 "initial architecture failed"));
652
653 /* Create the ``set architecture'' command appending ``auto'' to the
654 list of architectures. */
655 {
656 /* Append ``auto''. */
657 int nr;
658 for (nr = 0; arches[nr] != NULL; nr++);
659 arches = xrealloc (arches, sizeof (char*) * (nr + 2));
660 arches[nr + 0] = "auto";
661 arches[nr + 1] = NULL;
662 add_setshow_enum_cmd ("architecture", class_support,
663 arches, &set_architecture_string, _("\
664 Set architecture of target."), _("\
665 Show architecture of target."), NULL,
666 set_architecture, show_architecture,
667 &setlist, &showlist);
668 add_alias_cmd ("processor", "architecture", class_support, 1, &setlist);
669 }
670 }
671
672
673 /* Initialize a gdbarch info to values that will be automatically
674 overridden. Note: Originally, this ``struct info'' was initialized
675 using memset(0). Unfortunately, that ran into problems, namely
676 BFD_ENDIAN_BIG is zero. An explicit initialization function that
677 can explicitly set each field to a well defined value is used. */
678
679 void
680 gdbarch_info_init (struct gdbarch_info *info)
681 {
682 memset (info, 0, sizeof (struct gdbarch_info));
683 info->byte_order = BFD_ENDIAN_UNKNOWN;
684 info->byte_order_for_code = info->byte_order;
685 info->osabi = GDB_OSABI_UNINITIALIZED;
686 }
687
688 /* Similar to init, but this time fill in the blanks. Information is
689 obtained from the global "set ..." options and explicitly
690 initialized INFO fields. */
691
692 void
693 gdbarch_info_fill (struct gdbarch_info *info)
694 {
695 /* "(gdb) set architecture ...". */
696 if (info->bfd_arch_info == NULL
697 && target_architecture_user)
698 info->bfd_arch_info = target_architecture_user;
699 /* From the file. */
700 if (info->bfd_arch_info == NULL
701 && info->abfd != NULL
702 && bfd_get_arch (info->abfd) != bfd_arch_unknown
703 && bfd_get_arch (info->abfd) != bfd_arch_obscure)
704 info->bfd_arch_info = bfd_get_arch_info (info->abfd);
705 /* From the target. */
706 if (info->target_desc != NULL)
707 info->bfd_arch_info = choose_architecture_for_target
708 (info->target_desc, info->bfd_arch_info);
709 /* From the default. */
710 if (info->bfd_arch_info == NULL)
711 info->bfd_arch_info = default_bfd_arch;
712
713 /* "(gdb) set byte-order ...". */
714 if (info->byte_order == BFD_ENDIAN_UNKNOWN
715 && target_byte_order_user != BFD_ENDIAN_UNKNOWN)
716 info->byte_order = target_byte_order_user;
717 /* From the INFO struct. */
718 if (info->byte_order == BFD_ENDIAN_UNKNOWN
719 && info->abfd != NULL)
720 info->byte_order = (bfd_big_endian (info->abfd) ? BFD_ENDIAN_BIG
721 : bfd_little_endian (info->abfd) ? BFD_ENDIAN_LITTLE
722 : BFD_ENDIAN_UNKNOWN);
723 /* From the default. */
724 if (info->byte_order == BFD_ENDIAN_UNKNOWN)
725 info->byte_order = default_byte_order;
726 info->byte_order_for_code = info->byte_order;
727
728 /* "(gdb) set osabi ...". Handled by gdbarch_lookup_osabi. */
729 /* From the manual override, or from file. */
730 if (info->osabi == GDB_OSABI_UNINITIALIZED)
731 info->osabi = gdbarch_lookup_osabi (info->abfd);
732 /* From the target. */
733 if (info->osabi == GDB_OSABI_UNKNOWN && info->target_desc != NULL)
734 info->osabi = tdesc_osabi (info->target_desc);
735 /* From the configured default. */
736 #ifdef GDB_OSABI_DEFAULT
737 if (info->osabi == GDB_OSABI_UNKNOWN)
738 info->osabi = GDB_OSABI_DEFAULT;
739 #endif
740
741 /* Must have at least filled in the architecture. */
742 gdb_assert (info->bfd_arch_info != NULL);
743 }
744
745 /* Return "current" architecture. If the target is running, this is the
746 architecture of the selected frame. Otherwise, the "current" architecture
747 defaults to the target architecture.
748
749 This function should normally be called solely by the command interpreter
750 routines to determine the architecture to execute a command in. */
751 struct gdbarch *
752 get_current_arch (void)
753 {
754 if (has_stack_frames ())
755 return get_frame_arch (get_selected_frame (NULL));
756 else
757 return target_gdbarch;
758 }
759
760 int
761 default_has_shared_address_space (struct gdbarch *gdbarch)
762 {
763 /* Simply say no. In most unix-like targets each inferior/process
764 has its own address space. */
765 return 0;
766 }
767
768 int
769 default_fast_tracepoint_valid_at (struct gdbarch *gdbarch,
770 CORE_ADDR addr, int *isize, char **msg)
771 {
772 /* We don't know if maybe the target has some way to do fast
773 tracepoints that doesn't need gdbarch, so always say yes. */
774 if (msg)
775 *msg = NULL;
776 return 1;
777 }
778
779 void
780 default_remote_breakpoint_from_pc (struct gdbarch *gdbarch, CORE_ADDR *pcptr,
781 int *kindptr)
782 {
783 gdbarch_breakpoint_from_pc (gdbarch, pcptr, kindptr);
784 }
785
786 /* */
787
788 extern initialize_file_ftype _initialize_gdbarch_utils; /* -Wmissing-prototypes */
789
790 void
791 _initialize_gdbarch_utils (void)
792 {
793 add_setshow_enum_cmd ("endian", class_support,
794 endian_enum, &set_endian_string, _("\
795 Set endianness of target."), _("\
796 Show endianness of target."), NULL,
797 set_endian, show_endian,
798 &setlist, &showlist);
799 }
This page took 0.047038 seconds and 4 git commands to generate.